Thermodynamic Processes Driving Thermal Circulations on Slopes: Modeling Anabatic and Katabatic Flows on Reunion Island - Université de La Réunion
Journal Articles Journal of Geophysical Research: Atmospheres Year : 2024

Thermodynamic Processes Driving Thermal Circulations on Slopes: Modeling Anabatic and Katabatic Flows on Reunion Island

Pierre Tulet
C Mouchel‐vallon

Abstract

This study investigates thermal circulations on Reunion Island (21°07’S 55°32’E), focusing on the complex terrain of the region. Observations from the BIO-MAÏDO campaign, along with 2 days of high-resolution simulation using the MesoNH model, were analyzed to understand the thermally-driven mechanisms. This simulation was conducted with a horizontal resolution of 100 m and employed a vertically stretched grid, achieving a resolution of 1 m at the lowest levels. Two distinct wind regimes were identified, characterized by katabatic flows prevailing within a 30 m thick layer during nighttime, and an anabatic flow manifesting within a layer spanning from 150 to 200 m during the daytime. The simulation was confirmed through validation with surface measurements, and thus enabling a detailed study of thermal breeze circulations. Results reveal that the intensity of trade winds significantly influences the development of thermal circulations. Complex layered structures in the atmosphere were also identified. At an intensity of 7 m s−1, trade winds impede the development of thermal circulations atop the slope, and result in the emergence of a convergence zone between local and regional circulations. The analysis of the breeze establishment period indicates that the katabatic flow stabilizes in 35 min, quicker than the anabatic flow, which takes 110 min. Momentum and heat budget analysis provide insights into the primary drivers of thermal circulations: buoyancy acceleration, influenced by local surface heating during anabatic flow onset, and local surface cooling during katabatic flow onset.

Domains

Meteorology
Fichier principal
Vignette du fichier
JGR Atmospheres - 2024 - El Gdachi - Thermodynamic Processes Driving Thermal Circulations on Slopes Modeling Anabatic and.pdf (9.78 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04688872 , version 1 (05-09-2024)

Licence

Identifiers

Cite

Samira El gdachi, Pierre Tulet, Anne Réchou, Frédéric Burnet, C Mouchel‐vallon, et al.. Thermodynamic Processes Driving Thermal Circulations on Slopes: Modeling Anabatic and Katabatic Flows on Reunion Island. Journal of Geophysical Research: Atmospheres, 2024, 129 (17), ⟨10.1029/2023jd040431⟩. ⟨hal-04688872⟩
55 View
38 Download

Altmetric

Share

More