The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source - Université de La Réunion
Journal Articles Nature Chemistry Year : 2022

The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source

Henning Finkenzeller
Siddharth Iyer
Xu-Cheng He
Mario Simon
  • Function : Author
Theodore Koenig
Christopher Lee
  • Function : Author
Rashid Valiev
Victoria Hofbauer
  • Function : Author
Antonio Amorim
  • Function : Author
Rima Baalbaki
Andrea Baccarini
Lisa Beck
David Bell
  • Function : Author
Lucía Caudillo
  • Function : Author
Dexian Chen
  • Function : Author
Randall Chiu
  • Function : Author
Biwu Chu
Lubna Dada
Jonathan Duplissy
Martin Heinritzi
  • Function : Author
Deniz Kemppainen
  • Function : Author
Changhyuk Kim
Jordan Krechmer
Andreas Kürten
  • Function : Author
Alexandr Kvashnin
Houssni Lamkaddam
  • Function : Author
Chuan Ping Lee
Katrianne Lehtipalo
Zijun Li
  • Function : Author
Vladimir Makhmutov
Hanna Manninen
Guillaume Marie
  • Function : Author
Ruby Marten
Roy Mauldin
  • Function : Author
Bernhard Mentler
Tatjana Müller
Tuukka Petäjä
Maxim Philippov
Ananth Ranjithkumar
  • Function : Author
Birte Rörup
  • Function : Author
Jiali Shen
  • Function : Author
Dominik Stolzenburg
  • Function : Author
Christian Tauber
Yee Jun Tham
António Tomé
  • Function : Author
Miguel Vazquez-Pufleau
  • Function : Author
Andrea Wagner
  • Function : Author
Dongyu Wang
  • Function : Author
Mingyi Wang
  • Function : Author
Yonghong Wang
  • Function : Author
Stefan Weber
  • Function : Author
Wei Nie
Yusheng Wu
  • Function : Author
Mao Xiao
  • Function : Author
Qing Ye
  • Function : Author
Marcel Zauner-Wieczorek
Armin Hansel
Urs Baltensperger
  • Function : Author
Joachim Curtius
Neil Donahue
Imad El Haddad
Richard Flagan
  • Function : Author
Markku Kulmala
Jasper Kirkby
Mikko Sipilä
  • Function : Author
Douglas Worsnop
  • Function : Author
Theo Kurten
Matti Rissanen
Rainer Volkamer

Abstract

Abstract Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O 3 surface concentrations. Although iodic acid (HIO 3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO 3 via reactions (R1) IOIO + O 3 → IOIO 4 and (R2) IOIO 4 + H 2 O → HIO 3 + HOI + (1) O 2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO 3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.
Fichier principal
Vignette du fichier
s41557-022-01067-z-1.pdf (3.23 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03859649 , version 1 (23-11-2022)

Licence

Identifiers

Cite

Henning Finkenzeller, Siddharth Iyer, Xu-Cheng He, Mario Simon, Theodore Koenig, et al.. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 2022, ⟨10.1038/s41557-022-01067-z⟩. ⟨hal-03859649⟩
55 View
70 Download

Altmetric

Share

More