A. Abbaspour, A. Khalilnejad, and Z. Chen, Robust adaptive neural network control for PEM fuel cell, Int. J. Hydrog. Energy, vol.41, pp.20385-20395, 2016.

A. Abbaspour, K. K. Yen, P. Forouzannezhad, and A. Sargolzaei, An Adaptive Resilient Control Approach for Pressure Control in Proton Exchange Membrane Fuel Cells, IEEE Trans. Ind. Appl, vol.55, pp.6344-6354, 2019.

M. Abdollahzadeh, P. Ribeirinha, M. Boaventura, and A. Mendes, Three-dimensional modeling of PEMFC with contaminated anode fuel, Energy, vol.152, pp.939-959, 2018.


P. E. Almeida and M. G. Simoes, Neural Optimal Control of PEM Fuel Cells With Parametric CMAC Networks, IEEE Trans. Ind. Appl, vol.41, pp.237-245, 2005.


J. M. Andújar and F. Segura, Fuel cells: History and updating. A walk along two centuries, Renew. Sustain. Energy Rev, vol.13, pp.2309-2322, 2009.

R. Arif, H. Chu, Y. Ryu, A. Filios, H. Tawfik et al., An Optimized Humidity And Temperature Control System For Fuel Cells 10, 2008.

A. Bakhtiar, Y. Kim, J. You, J. Yoon, and K. Choi, A model and simulation of cathode flooding and drying on unsteady proton exchange membrane fuel cell, J. Cent. South Univ, vol.19, pp.2572-2577, 2012.

M. Balakrishnan, L. Eifert, R. Zeis, B. D. Hatton, and A. Bazylak, Electrospun nano-fibrous gas diffusion layers with graded pore-sizes for polymer electrolyte membrane fuel cells, 8th Int. Conf. Fundam. Dev. Fuel Cells FDFC2019, 2019.

C. Bao, M. Ouyang, and B. Yi, Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-II. Linear and adaptive nonlinear control, Int. J. Hydrog. Energy, vol.31, pp.1897-1913, 2006.

F. Barbir, PEM Fuel Cells Theory and Practice, 2005.

R. Bellman, The theory of dynamic programming, Bull. Am. Math. Soc, vol.60, pp.503-516, 1954.

V. S. Bethapudi, M. Maier, G. Hinds, P. R. Shearing, D. J. Brett et al., Acoustic emission as a function of polarisation: Diagnosis of polymer electrolyte fuel cell hydration state, Electrochem. Commun, vol.109, p.106582, 2019.

Y. Bo and X. Zhang, Online adaptive dynamic programming based on echo state networks for dissolved oxygen control, Appl. Soft Comput, vol.62, pp.830-839, 2018.


L. Boulon, D. Hissel, A. Bouscayrol, and M. Pera, From Modeling to Control of a PEM Fuel Cell Using Energetic Macroscopic Representation, IEEE Trans. Ind. Electron, vol.57, pp.1882-1891, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00504637

K. Burke, Fuel Cells for Space Science Applications, 1st International Energy Conversion Engineering Conference (IECEC). Presented at the 1st International Energy Conversion Engineering Conference (IECEC), 2003.

L. Cerina, G. Franco, and M. D. Santambrogio, Lightweight autonomous bayesian optimization of Echo-State Networks, Comput. Intell, vol.6, 2019.

P. Chandran, A. Ghosh, and S. Ramaprabhu, High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell, Sci. Rep, vol.8, p.3591, 2018.

K. Charradi, Z. Ahmed, R. E. Cid, P. Aranda, E. Ruiz-hitzky et al., Amelioration of PEMFC performance at high temperature by incorporation of nanofiller (sepiolite/layered double hydroxide) in Nafion membrane, Int. J. Hydrog. Energy, vol.44, pp.10666-10676, 2019.

F. Chevrie and F. Guély, Cahier technique n o 191, La logique floue, 1998.

S. Cho and T. W. Chow, Training multilayer neural networks using fast global learning algorithm -least-squares and penalized optimization methods, Neurocomputing, vol.25, pp.55-62, 1999.

, Conoflow electro-pneumatic transducers, 2004.

J. Dai, C. Liu, and J. Sun, Adaptive optimal fault-tolerant control scheme for a class of strictfeedback nonlinear systems, Trans. Inst. Meas. Control, vol.41, pp.1079-1087, 2019.

C. Damour, M. Benne, B. Grondin-perez, J. Chabriat, and B. G. Pollet, A novel non-linear model-based control strategy to improve PEMFC water management -The flatness-based approach, Int. J. Hydrog. Energy, vol.40, pp.2371-2376, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221974


C. Damour, M. Benne, C. Lebreton, J. Deseure, and B. Grondin-perez, Real-time implementation of a neural model-based self-tuning PID strategy for oxygen stoichiometry control in PEM fuel cell, Int. J. Hydrog. Energy, vol.39, pp.12819-12825, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01202269

M. A. Danzer, S. J. Wittmann, and E. P. Hofer, Prevention of fuel cell starvation by model predictive control of pressure, excess ratio, and current, J. Power Sources, vol.190, pp.86-91, 2009.

W. R. Daud, R. E. Rosli, E. H. Majlan, S. A. Hamid, R. Mohamed et al., PEM fuel cell system control: A review. Renew. Energy, vol.113, pp.620-638, 2017.


P. De-man and A. Preumont, Hybrid feedback-feedforward control for vibration suppression, J. Struct. Control, vol.3, pp.33-44, 1996.

C. Depature, W. Lhomme, P. Sicard, A. Bouscayrol, and L. Boulon, Real-time Backstepping control for fuel cell vehicle using supercapacitors, IEEE Trans. Veh. Technol. 1-1, 2017.

P. Devlin, G. Moreland, J. Gangi, F. Josek, and S. Satyapal, Industry Deployed Fuel Cell Powered Lift Trucks, DOE Hydrogen and Fuel Cells Program Record, 2018.

T. Dey, J. Deshpande, D. Singdeo, and P. C. Ghosh, Study of PEM Fuel Cell End Plate Design by Structural Analysis Based on Contact Pressure, J. Energy, vol.2019, pp.1-11, 2019.

E. Dijoux, Contrôle tolérant aux défauts appliqué aux systèmes pile à combustible à membrane échangeuse de protons (pemfc), 2019.

E. Dijoux, N. Y. Steiner, M. Benne, M. Péra, and B. G. Pérez, A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems, J. Power Sources, vol.359, pp.119-133, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01624984

W. Dong, G. Cao, X. Zhu, C. H. Santos, D. I. Cardozo et al., Bank of controllers and virtual thrusters for fault-tolerant control of autonomous underwater vehicles, Ocean Eng, vol.121, pp.210-223, 2003.

L. Dos-santos-coelho and M. W. Pessôa, Nonlinear identification using a B-spline neural network and chaotic immune approaches, Mech. Syst. Signal Process, vol.23, pp.2418-2434, 2009.

C. Edwards, T. Lombaerts, and H. Smaili, Fault tolerant flight control: a benchmark challenge, Lecture notes in control and information sciences, 2010.

L. Elba and H. Eren, Mineral Processing Design and Operations, pp.763-816, 2016.

J. P. Evans, Experimental Evaluation of the Effect of Inlet Gas Humidification on Fuel Cell Performance 110, 2003.

D. D. Fan and E. A. Theodorou, Differential Dynamic Programming for time-delayed systems, IEEE 55th Conf. Decis. Control CDC 573-579, 2016.

C. Fang, L. Xu, S. Cheng, J. Li, H. Jiang et al., Sliding-mode-based temperature regulation of a proton exchange membrane fuel cell test bench, Int. J. Hydrog. Energy, vol.42, pp.11745-11757, 2017.

A. Frèlon, T. Audichon, S. Baranton, J. Bigarré, C. Coutanceau et al., Nafion-free hybrid membrane electrode assembly for PEMFC application, 2019.

K. Fukushima, Neural network model for a mechanism of pattern recognition unaffected by shift in position, pp.658-665, 1979.

C. Gallicchio, A. Micheli, and L. Pedrelli, Design of deep echo state networks, Neural Netw, vol.108, pp.33-47, 2018.

C. Gallicchio, A. Micheli, and L. Silvestri, Local Lyapunov exponents of deep echo state networks, Neurocomputing, vol.298, pp.34-45, 2018.

A. Gebregergis, P. Pillay, and R. Rengaswemy, PEMFC fault diagnosis, modeling, and mitigation, Industry Applications Society Annual Meeting, pp.1-8, 2008.

J. J. Giner-sanz, E. M. Ortega, and V. Pérez-herranz, Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell, Int. J. Hydrog. Energy, vol.39, pp.13206-13216, 2014.

W. Guoai, Q. Shuhai, C. Qihong, Z. Liyan, and S. Lin, Neural-PID Control of Air Pressure in Fuel Cells, pp.5353-5356, 2010.

H. Haghighat-ghahfarokhi, A. Saatchi, and S. M. Monirvaghefi, Corrosion Investigation of Chromium Nitride and Chromium Carbide Coatings for PEM Fuel Cell Bipolar Plates in Simulated Cathode Condition, Fuel Cells, vol.16, pp.356-364, 2016.

J. Han, S. Yu, and S. Yi, Oxygen excess ratio control for proton exchange membrane fuel cell using model reference adaptive control, Int. J. Hydrog. Energy, vol.44, pp.18425-18437, 2019.

M. A. Henson and D. E. Seborg, Feedback Linearizing Control, 1996.

H. Jaeger, Adaptative Nonlinear System Identification with Echo State Network, 2000.

A. Hernandez, D. Hissel, and R. Outbib, Modeling and fault diagnosis of a Polymer Electrolyte Fuel Cell using electrical equivalent analysis, IEEE Trans. Energy Convers, 2010.

D. Hissel and M. C. Pera, Diagnostic & health management of fuel cell systems: Issues and solutions, Annu. Rev. Control, vol.42, pp.201-211, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380293

Y. Huang, S. Li, and J. Sun, Mars entry fault-tolerant control via neural network and structure adaptive model inversion, Adv. Space Res, 2018.

Z. Huang, X. Xiong, W. Chen, Q. Zhang, Y. Liu et al., Three bounded proofs for nonlinear multi-input multi-output approximate dynamic programming based on the Lyapunov stability theory, Optim. Control Appl. Methods, vol.39, pp.35-50, 2018.

L. Ifrek, S. Rosini, G. Cauffet, O. Chadebec, L. Rouveyre et al., Fault detection for polymer electrolyte membrane fuel cell stack by external magnetic field, Electrochimica Acta, vol.313, pp.141-150, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350991

H. Jaeger, Adaptive Nonlinear System Identification with Echo State Networks 8, 2000.

N. Ji, D. Xu, and F. Liu, A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup, Neurocomputing, vol.214, pp.134-142, 2016.


C. Jia, X. Li, K. Wang, and D. Ding, Adaptive control of nonlinear system using online error minimum neural networks, ISA Trans, vol.65, pp.125-132, 2016.


W. Jia, D. Zhao, and L. Ding, An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample, Appl. Soft Comput, vol.48, pp.373-384, 2016.

Y. Jing and G. Yang, Neural-network-based adaptive fault-tolerant tracking control of uncertain nonlinear time-delay systems under output constraints and infinite number of actuator faults, Neurocomputing, vol.272, pp.343-355, 2018.

R. Jon, Z. Wang, C. Luo, and M. Jong, Adaptive robust speed control based on recurrent elman neural network for sensorless PMSM servo drives, Neurocomputing, vol.227, pp.131-141, 2017.

J. P. Jordanou, E. A. Antonelo, E. Camponogara, M. A. Aguiar, and . De, Recurrent Neural Network Based Control Of An Oil Well, 2017.

G. Jullian, Diagnostic robuste de pile à combustible PEM par modélisation physique et mesures d'impe?dance: prise en compte de conditions dynamiques et du vieillissement, 2019.

B. K. Kakati, A. R. Kucernak, and K. F. Fahy, Using corrosion-like processes to remove poisons from electrocatalysts: a viable strategy to chemically regenerate irreversibly poisoned polymer electrolyte fuel cells, Electrochimica Acta, vol.222, pp.888-897, 2016.


R. E. Kalman and J. E. Bertram, Control System Analysis and Design Via the "Second Method" of Lyapunov: II-Discrete-Time Systems, J. Basic Eng, vol.82, pp.394-400, 1960.


M. Karimi, Voltage Control of PEMFC Using A New Controller Based on Reinforcement Learning, Int. J. Inf. Electron. Eng, 2012.

F. K/bidi, Developpements et tests de strategies de gestion de l'energie a l'echelle de micro reseaux avec stockage et production d'hydrogene, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02650719

R. Keller, S. X. Ding, M. Müller, and D. Stolten, Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults, Control Eng. Pract, vol.66, pp.99-115, 2017.

R. Khalid and N. Javaid, A survey on hyperparameters optimization algorithms of forecasting models in smart grid, Sustain. Cities Soc, vol.61, 2020.

S. Kim and I. Hong, Effects of humidity and temperature on a proton exchange membrane fuel cell (PEMFC) stack, J. Ind. Eng. Chem, vol.14, pp.357-364, 2008.

M. Kishnani, S. Pareek, and D. R. Gupta, Optimal Tuning of PID Controller Using Meta Heuristic Approach 6, 2014.

A. Kongkanand, N. P. Subramanian, Y. Yu, Z. Liu, H. Igarashi et al., Achieving High-Power PEM Fuel Cell Performance with an Ultralow-Pt-Content Core-Shell Catalyst, ACS Catal, vol.6, pp.1578-1583, 2016.

R. Kumar, S. Srivastava, and J. R. Gupta, Lyapunov stability-based control and identification of nonlinear dynamical systems using adaptive dynamic programming, Soft Comput, vol.21, pp.4465-4480, 2017.

C. Kunde, R. Hanke-rauschenbach, M. Mangold, A. Kienle, K. Sundmacher et al., Temperature and Humidity Control of a Micro PEM Fuel Cell Stack, Fuel Cells, vol.10, pp.949-959, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00574811

P. P. Kundu and K. Dutta, Hydrogen fuel cells for portable applications, Compendium of Hydrogen Energy, pp.111-131, 2016.

C. Kunusch, P. Puleston, and M. Mayosky, Sliding-Mode Control of PEM Fuel Cells, Advances in Industrial Control, 2012.

J. M. Kurtz, S. Sprik, G. Saur, and S. Onorato, Fuel Cell Electric Vehicle Durability and Fuel Cell Performance, 2019.

S. Laghrouche, M. Harmouche, F. S. Ahmed, and Y. Chitour, Control of PEMFC Air-Feed System Using Lyapunov-Based Robust and Adaptive Higher Order Sliding Mode Control, 2014.

C. Lebreton, Contrôle tole?rant aux fautes en ligne d'une pile à combustible de type PEM. Contribution à la gestion de l'eau, 2015.

C. Lebreton, M. Benne, C. Damour, N. Yousfi-steiner, B. Grondin-perez et al., Fault Tolerant Control Strategy applied to PEMFC water management, Int. J. Hydrog. Energy, vol.40, pp.10636-10646, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02868261

C. Lebreton, C. Damour, M. Benne, B. Grondin-perez, and J. Chabriat, Passive Fault Tolerant Control of PEMFC air feeding system, Int. J. Hydrog. Energy, vol.41, pp.15615-15621, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388039

H. Lee, D. Nam, and C. H. Park, A Sliding Mode Controller Using Neural Networks for Robot Manipulator 6, 2004.

H. Lee and V. I. Utkin, Chattering suppression methods in sliding mode control systems, Annu. Rev. Control, vol.31, pp.179-188, 2007.

C. Li, X. Zhu, S. Sui, W. Hu, and M. Hu, Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems, J. Shanghai Univ. Engl. Ed, vol.13, pp.474-480, 2009.

L. Li, K. Jamieson, G. Desalvo, A. Rostamizadeh, and A. Talwalkar, Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization, ArXiv160306560 Cs Stat, 2016.

P. Li, J. Chen, T. Cai, and B. Zhang, Adaptive control of air delivery system for PEM fuel cell using backstepping, Control Conference (ASCC), pp.1282-1287, 2011.

Y. Li, H. Wang, and Z. Dai, Using artificial neural network to control the temperature of fuel cell, Communications, Circuits and Systems Proceedings, 2006 International Conference On. IEEE, pp.2159-2162, 2006.

Y. Li, X. Zhao, S. Tao, Q. Li, and W. Chen, Experimental Study on Anode and Cathode Pressure Difference Control and Effects in a Proton Exchange Membrane, Fuel Cell System. Energy Technol, vol.3, pp.946-954, 2015.

J. Lin and C. Hwang, Optimal Control of Time-Delay Systems by Forward Iterative Dynamic Programming 6, 1996.

T. Lin, B. G. Horne, P. Tiño, and C. L. Giles, Learning Long-Term Dependencies in NARX Recurrent Neural Networks 10, 1996.

C. Lin-kwong-chon, B. Grondin-pérez, J. A. Kadjo, C. Damour, and M. Benne, A review of adaptive neural control applied to proton exchange membrane fuel cell systems, Annu. Rev. Control, vol.47, pp.133-154, 2019.

V. Liso, M. P. Nielsen, S. K. Kaer, and H. H. Mortensen, Thermal modeling and temperature control of a PEM fuel cell system for forklift applications, Int. J. Hydrog. Energy, vol.39, pp.8410-8420, 2014.

Z. Liu, Z. Mao, and C. Wang, A two dimensional partial flooding model for PEMFC, J. Power Sources, vol.158, pp.1229-1239, 2006.

H. Lu, J. Chen, C. Yan, and H. Liu, On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement, J. Power Sources, vol.430, pp.233-243, 2019.

M. Luko?evi?ius, A practical guide to applying echo state networks, Neural Networks: Tricks of the Trade, pp.659-686, 2012.

J. Lunze and J. H. Richter, Reconfigurable Fault-tolerant Control: A Tutorial Introduction, Eur. J. Control, vol.14, pp.359-386, 2008.

K. S. Lyons, M. Teliska, W. Baker, and J. Pietron, Low-Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes 5, 2005.

G. D. Magoulas, V. P. Plagianakos, and M. N. Vrahatis, Globally convergent algorithms with local learning rates, IEEE Trans. Neural Netw, vol.13, pp.774-779, 2002.


I. Matraji, F. S. Ahmed, S. Laghrouche, and M. Wack, Comparison of robust and adaptive second order sliding mode control in PEMFC air-feed systems, Int. J. Hydrog. Energy, vol.40, pp.9491-9504, 2015.

I. Matraji, S. Laghrouche, and M. Wack, Pressure control in a PEM fuel cell via second order sliding mode, Int. J. Hydrog. Energy, vol.37, pp.16104-16116, 2012.

, MKS, 2018a. 1179C Mass Flow Controller

, MKS, 2018.

I. S. Mohamed, S. Rovetta, T. D. Do, T. Dragicevic, and A. A. Diab, A Neural-Network-Based Model Predictive Control of Three-Phase Inverter With an Output LC Filter. ArXiv190209964 Cs Stat, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02545225

M. Mortazavi and K. Tajiri, Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs), J. Power Sources, vol.245, pp.236-244, 2014.

S. Mumtaz, S. Ahmad, L. Khan, S. Ali, T. Kamal et al., Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System, vol.11, 2018.

R. Nagarale, R. H. Chile, B. M. Patre, and P. A. Kulkarni, Comparative study of SMC and SMFLC robustness Property, in: Mechatronics and Automation, ICMA 2007. International Conference On. IEEE, pp.1135-1140, 2007.

T. Nakama, Theoretical analysis of batch and on-line training for gradient descent learning in neural networks, Neurocomputing, vol.73, pp.151-159, 2009.

S. V. Narvekar and V. K. Upadhye, Review of PI and PID Controllers, Int. J. Recent Trends Eng. Res, vol.2, 2016.

M. H. Nehrir and C. Wang, Modeling and control of fuel cells: distributed generation applications, IEEE Press series on power engineering, 2009.

T. Nguyen, K. Nguyentien, T. Do, and T. Pham, Neural Network-based Adaptive Sliding Mode Control Method for Tracking of a Nonholonomic Wheeled Mobile Robot with Unknown Wheel Slips, Model Uncertainties, and Unknown Bounded External Disturbances, Acta Polytech. Hung, vol.15, 2018.

M. Niane, Contribution au diagnostic et à la commande de la pile à combustible de type PEM, 2018.

M. Noorkami, J. B. Robinson, Q. Meyer, O. A. Obeisun, E. S. Fraga et al., Effect of temperature uncertainty on polymer electrolyte fuel cell performance, Int. J. Hydrog. Energy, vol.39, pp.1439-1448, 2014.

, Bilan énergétique de La Réunion, OER, 2018.

U. Pasaogullari and C. Y. Wang, Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc, vol.151, 2004.

H. Pham, Equation d'Hamilton-Jacobi-Bellman 7, 2007.

F. Prado, M. C. Minutolo, and W. Kristjanpoller, Forecasting based on an ensemble Autoregressive Moving Average -Adaptive neuro -Fuzzy inference system -Neural network -Genetic Algorithm Framework, Energy, vol.197, p.117159, 2020.

J. T. Pukrushpan, Modelling and control of Fuel Cell systems and fuel processors, 2003.

J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, Control of Fuel Cell Power Systems, Advances in Industrial Control, 2004.

O. Ragb, K. Jones, D. Yu, and J. Barry-gomm, Adaptive Feed-forward and Feedback control using neural networks for oxygen ratio in Fuel cell stacks, 2011.

S. M. Rakhtala, R. Ghaderi, and A. Ranjbar-noei, Proton exchange membrane fuel cell voltagetracking using artificial neural networks, J. Zhejiang Univ. Sci. C, vol.12, pp.338-344, 2011.

A. Rezazadeh, A. Askarzadeh, and M. Sedighizadeh, Adaptive Inverse Control of Proton Exchange Membrane Fuel Cell Using RBF Neural Network, 2011.

S. M. Richards, F. Berkenkamp, and A. Krause, The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems, 2018.

P. Roland, Gestion de projet par l'approche de l'analyse de la valeur, 2011.

D. Rotondo, F. Nejjari, and V. Puig, Fault tolerant control of a proton exchange membrane fuel cell using Takagi-Sugeno virtual actuators, J. Process Control, vol.45, pp.12-29, 2016.


M. Sadeghassadi, C. J. Macnab, B. Gopaluni, and D. Westwick, Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment, Comput. Chem. Eng, vol.115, pp.150-160, 2018.

V. Sanchez, J. M. Ramírez, and G. Arriaga, On-line air supply control of PEM fuel cell by an adaptive neural network, North American Power Symposium (NAPS), pp.1-6, 2010.

V. M. Sanchez, R. Barbosa, L. G. Arriaga, and J. M. Ramirez, Real time control of air feed system in a PEM fuel cell by means of an adaptive neural-network, Int. J. Hydrog. Energy, vol.39, pp.16750-16762, 2014.

M. B. Satterfield, Mechanical and water sorption properties of Nafion and Composite Nafion/Titanium dioxide membranes for polymer electrolyte membrane fuel cells, 2007.

L. Savidan, A. Schaffar, M. Dimou, and F. Garde, La Consommation énergétique des ménages à La Re?union : vers un retour à l'autonomie par le biais des énergies renouvelables. Études Caribéennes, 2008.

M. Sedighizadeh and A. Rezazadeh, Adaptive Self-Tuning Wavelet Neural Network Controller for a Proton Exchange Membrane Fuel Cell, Applications of Neural Networks in High Assurance Systems, pp.221-245, 2010.

M. Sedighizadeh and A. Rezazadeh, A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets, Int. J. Energy Power Eng, vol.1, p.5, 2007.

V. A. Sethuraman, J. W. Weidner, A. T. Haug, S. Motupally, and L. V. Protsailo, Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode, J. Electrochem. Soc, vol.155, 2008.

M. Shafiq, M. A. Shafiq, and H. A. Yousef, Stability and Convergence Analysis of Direct Adaptive Inverse Control, Complexity, vol.2017, pp.1-12, 2017.

M. A. Shafiq, Direct adaptive inverse control of nonlinear plants using neural networks, in: Future Technologies Conference (FTC), pp.827-830, 2016.

W. Sheng, H. A. Gasteiger, and Y. Shao-horn, Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes, J. Electrochem. Soc, vol.157, 2010.

M. Shirzadeh, A. Amirkhani, A. Jalali, and M. R. Mosavi, An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target, ISA Trans, vol.59, pp.290-302, 2015.

R. E. Silva, F. Harel, S. Jemeï, R. Gouriveau, D. Hissel et al., Proton Exchange Membrane Fuel Cell Operation and Degradation in Short-Circuit, Fuel Cells, vol.14, pp.894-905, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00834236

N. N. Son, C. V. Kien, and H. P. Anh, A novel adaptive feed-forward-PID controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on neural network and modified differential evolution algorithm, Robot. Auton. Syst, vol.96, pp.65-80, 2017.


N. Y. Steiner, D. Candusso, D. Hissel, and P. Moçoteguy, Model-based diagnosis for proton exchange membrane fuel cells, Math. Comput. Simul, vol.81, pp.158-170, 2010.


H. Su, C. Sita, and S. Pasupathi, The Effect of Gas Diffusion Layer PTFE Content on The Performance of High Temperature Proton Exchange Membrane Fuel Cell, Int. J. Electrochem. Sci, pp.2919-2926, 2016.

T. Sun, S. Yan, G. Cao, and X. Zhu, Modelling and control PEMFC using fuzzy neural networks, J. Zhejiang Univ.-Sci. A, vol.6, pp.1084-1089, 2005.

D. Sussillo and G. S. Corrado, , 2017.

E. Tapachès, Projet PEPS Production Électrique Photovoltaïque et Stockage à La Réunion, 2020.

, R340 and R410 Fuel Cell Compressor Motor and Controller Assembly, 2018.

G. Vasu and A. K. Tangirala, Control-orientated thermal model for proton-exchange membrane fuel cell systems, J. Power Sources, vol.183, pp.98-108, 2008.

F. Veen, A mostly complete chart of Neural Networks, 2017.

A. Visioli, Research trends for PID controllers, Acta Polytech, vol.52, 2012.

C. Wang, W. Zhao, Z. Luan, Q. Gao, and K. Deng, Decoupling control of vehicle chassis system based on neural network inverse system, Mech. Syst. Signal Process, vol.106, pp.176-197, 2018.

L. Wang, Y. Yang, R. Min, and S. Chakradhar, Accelerating deep neural network training with inconsistent stochastic gradient descent, Neural Netw, vol.93, pp.219-229, 2017.


P. Werbos, Advanced Forecasting Methods for Global Crisis Warning and Models of Intelligence, Gen. Syst. XXII, 1977.

W. Wong, E. Chee, J. Li, and X. Wang, Recurrent Neural Network-Based Model Predictive Control for, Continuous Pharmaceutical Manufacturing. Mathematics, vol.6, p.242, 2018.

N. Wu and H. Wang, Deep learning adaptive dynamic programming for real time energy management and control strategy of micro-grid, J. Clean. Prod, vol.204, pp.1169-1177, 2018.

X. Wu and B. Zhou, Fault tolerance control for proton exchange membrane fuel cell systems, J. Power Sources, vol.324, pp.804-829, 2016.

D. Xu, W. Yan, and N. Ji, RBF neural network based adaptive constrained PID control of a solid oxide fuel cell, Control and Decision Conference (CCDC), pp.3986-3991, 2016.

C. Yan, M. Li, W. Liu, and M. Qi, Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a, BP Neural Network. Theor. Comput. Sci, vol.817, pp.12-23, 2020.

I. B. Yildiz, H. Jaeger, and S. J. Kiebel, Re-visiting the echo state property, Neural Netw, vol.35, pp.1-9, 2012.

Y. Yin, H. Niu, and X. Liu, Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft, Complexity, vol.2017, pp.1-13, 2017.

Y. Steiner, N. Hissel, D. Moçotéguy, P. Candusso, D. Marra et al., Application of Fault Tree Analysis to Fuel Cell diagnosis, Fuel Cells, vol.12, pp.302-309, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01671445

N. Yousfi-steiner, P. Moçotéguy, D. Candusso, and D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, J. Power Sources, vol.194, pp.130-145, 2009.


S. Zhai, S. Zhou, P. Sun, F. Chen, and J. Niu, Modeling Study of Anode Water Flooding and Gas Purge for PEMFCs, J. Fuel Cell Sci. Technol, vol.9, 2012.

J. Zhang, G. Liu, W. Yu, and M. Ouyang, Adaptive control of the airflow of a PEM fuel cell system, J. Power Sources, vol.179, pp.649-659, 2008.

J. Zhang, H. Li, and J. Zhang, Effect of Operating Backpressure on PEM Fuel Cell Performance, pp.65-76, 2009.

J. Zhang, H. Zhang, J. Wu, . Zhang, and . Jiujun, Pressure Effects on PEM Fuel Cell Performance, in: Pem Fuel Cell Testing and Diagnosis, pp.225-241, 2013.

L. Zhang, M. Pan, and S. Quan, Model predictive control of water management in PEMFC, J. Power Sources, vol.180, pp.322-329, 2008.

L. Zhang, M. Pan, S. Quan, Q. Chen, and Y. Shi, Adaptive neural control based on pemfc hybrid modeling, Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress On. IEEE, pp.8319-8323, 2006.

P. Zhang, CHAPTER 2 -Industrial control engineering, Advances Industrial Control Technology, pp.41-70, 2010.

A. Zribi, M. Chtourou, and M. Djemel, A New PID Neural Network Controller Design for Nonlinear Processes, 2015.