R. C. Bone, W. J. Sibbald, and C. L. Sprung, The ACCP-SCCM consensus conference on sepsis and organ failure, vol.101, pp.1481-1484, 1992.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach et al., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, Intensive Care Med, vol.39, issue.2, pp.165-228, 2012.

M. Cecconi, L. Evans, M. Levy, and A. Rhodes, Sepsis and septic shock, Lancet Lond Engl, vol.392, pp.75-87, 10141.

D. F. Gaieski, J. M. Edwards, M. J. Kallan, and B. G. Carr, Benchmarking the incidence and mortality of severe sepsis in the United States, Crit Care Med, vol.41, issue.5, pp.1167-74, 2013.

J. L. Vincent, A. De-mendonça, F. Cantraine, R. Moreno, J. Takala et al., Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine, Crit Care Med, vol.26, issue.11, pp.1793-800, 1998.

S. M. Michalek, R. N. Moore, J. R. Mcghee, D. L. Rosenstreich, and S. E. Mergenhagen, The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxim, J Infect Dis, vol.141, issue.1, pp.55-63, 1980.

J. M. Le and J. Vilcek, Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response, Lab Investig J Tech Methods Pathol, vol.61, issue.6, pp.588-602, 1989.

P. Matzinger, Tolerance, danger, and the extended family, Annu Rev Immunol, vol.12, pp.991-1045, 1994.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The Third International Consensus Definitions for Sepsis and Septic Shock

, JAMA, vol.315, issue.8, pp.801-811, 2016.

C. Fleischmann, A. Scherag, N. Adhikari, C. S. Hartog, T. Tsaganos et al., Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations, Am J Respir Crit Care Med, vol.193, issue.3, pp.259-72, 2016.

I. Jawad, I. Luk?i?, and S. B. Rafnsson, Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality, J Glob Health, vol.2, issue.1, p.10404, 2012.

J. U. Becker, C. Theodosis, S. T. Jacob, C. R. Wira, and N. E. Groce, Surviving sepsis in lowincome and middle-income countries: new directions for care and research, Lancet Infect Dis, vol.9, issue.9, pp.577-82, 2009.

C. Murray and A. D. Lopez, Measuring the global burden of disease, N Engl J Med

B. N. Mayanja, J. Todd, P. Hughes, L. Van-der-paal, J. O. Mugisha et al.,

, incidence, aetiology, antimicrobial drug resistance and impact of antiretroviral therapy, Septicaemia in a population-based HIV clinical cohort in rural Uganda, vol.15, pp.697-705, 1996.

M. A. Gordon, A. L. Walsh, M. Chaponda, D. Soko, M. Mbvwinji et al.,

, Bacteraemia and mortality among adult medical admissions in Malawi--predominance of non-typhi salmonellae and Streptococcus pneumoniae, J Infect, vol.42, issue.1, pp.44-53, 2001.

R. S. Hotchkiss, P. E. Swanson, B. D. Freeman, K. W. Tinsley, J. P. Cobb et al., Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction, Crit Care Med, vol.27, issue.7, pp.1230-51, 1999.

R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson, K. C. Chang, J. P. Cobb et al., Prevention of lymphocyte cell death in sepsis improves survival in mice, Proc Natl Acad Sci, vol.96, issue.25, pp.14541-14547, 1999.

A. M. Drewry, N. Samra, L. P. Skrupky, B. M. Fuller, S. M. Compton et al., Persistent lymphopenia after diagnosis of sepsis predicts mortality, Shock Augusta Ga, vol.42, issue.5, pp.383-91, 2014.

C. M. Coopersmith, D. M. Amiot, P. E. Stromberg, W. M. Dunne, C. G. Davis et al., Antibiotics improve survival and alter the inflammatory profile in a murine model of sepsis from Pseudomonas aeruginosa pneumonia, Shock Augusta Ga, vol.19, issue.5, pp.408-422, 2003.

R. S. Hotchkiss, K. C. Chang, P. E. Swanson, K. W. Tinsley, J. J. Hui et al., Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte, Nat Immunol, vol.1, issue.6, pp.496-501, 2000.

R. S. Hotchkiss, P. E. Swanson, C. M. Knudson, K. C. Chang, J. P. Cobb et al., Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis, J Immunol Baltim Md, vol.162, issue.7, pp.4148-56, 1950.

R. S. Hotchkiss, K. W. Mcconnell, K. Bullok, C. G. Davis, K. C. Chang et al.,

T. Tat-bh4, -xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo, J Immunol Baltim Md, vol.176, issue.9, pp.5471-5478, 1950.

C. S. Deutschman and K. J. Tracey, Sepsis: current dogma and new perspectives, Immunity, vol.40, issue.4, pp.463-75, 2014.

S. M. Opal and T. Van-der-poll, Endothelial barrier dysfunction in septic shock, J Intern Med, vol.277, issue.3, pp.277-93, 2015.

X. Shen, K. Cao, J. Jiang, W. Guan, and J. Du, Neutrophil dysregulation during sepsis: an overview and update, J Cell Mol Med, vol.21, issue.9, pp.1687-97, 2017.

J. M. Tarbell and L. M. Cancel, The glycocalyx and its significance in human medicine, J Intern Med, vol.280, issue.1, pp.97-113, 2016.

C. Ince, P. R. Mayeux, T. Nguyen, H. Gomez, J. A. Kellum et al., Shock Augusta Ga, vol.45, issue.3, pp.259-70, 2016.

C. Chelazzi, G. Villa, P. Mancinelli, D. Gaudio, A. R. Adembri et al., Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies, Crit Care Lond Engl, vol.19, issue.1, p.59, 2015.

L. Martin, P. Koczera, E. Zechendorf, T. Schuerholz, G. Ponce et al., Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis, Cell Mol Life Sci CMLS, vol.74, issue.11, pp.1985-97, 2016.

N. R. London, W. Zhu, F. A. Bozza, M. Smith, D. M. Greif et al., Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza, Sci Transl Med, vol.2, issue.23, pp.23-42, 2010.

M. Levi and T. Van-der-poll, Coagulation and sepsis, Thromb Res, vol.149, pp.38-44, 2017.

F. Gragnano, S. Sperlongano, E. Golia, F. Natale, R. Bianchi et al., The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy, Mediators Inflamm, p.5620314, 2017.

R. Bellomo, J. A. Kellum, C. Ronco, R. Wald, J. Martensson et al., Acute kidney injury in sepsis, Intensive Care Med, vol.43, issue.6, pp.816-844, 2017.

E. H. Post, J. A. Kellum, R. Bellomo, and J. Vincent, Renal perfusion in sepsis: from macroto microcirculation, Kidney Int, vol.91, issue.1, pp.45-60, 2017.

H. Gómez and J. A. Kellum, Sepsis-induced acute kidney injury, Curr Opin Crit Care, vol.22, issue.6, pp.546-53, 2016.

N. Lerolle, D. Nochy, E. Guérot, P. Bruneval, J. Fagon et al., Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration, Intensive Care Med, vol.36, issue.3, pp.471-479, 2010.

O. Takasu, J. P. Gaut, E. Watanabe, K. To, R. E. Fagley et al., Mechanisms of cardiac and renal dysfunction in patients dying of sepsis, Am J Respir Crit Care Med, vol.187, issue.5, pp.509-526, 2013.

A. Aslan, M. C. Van-den-heuvel, C. A. Stegeman, E. R. Popa, A. M. Leliveld et al., Structure and Function of the Kidney in Septic Shock. A Prospective Controlled Experimental Study, Am J Respir Crit Care Med, vol.22, issue.1, pp.692-700, 201615.

K. Okamoto, T. Tamura, and Y. Sawatsubashi, Sepsis and disseminated intravascular coagulation, J Intensive Care, vol.4, p.23, 2016.

N. Semeraro, C. T. Ammollo, F. Semeraro, and M. Colucci, Coagulopathy of Acute Sepsis, Semin Thromb Hemost, vol.41, issue.6, pp.650-658, 2015.

M. Bauer, A. T. Press, and M. Trauner, The liver in sepsis: patterns of response and injury, Curr Opin Crit Care, vol.19, issue.2, pp.123-130, 2013.

N. P. O'grady, A. M. Burns, L. A. Dellinger, E. P. Garland, J. Heard et al., Summary of recommendations: Guidelines for the Prevention of Intravascular Catheterrelated Infections, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.52, issue.9, pp.1087-99, 2011.

T. Van-engelen, W. J. Wiersinga, B. P. Scicluna, and T. Van-der-poll, Biomarkers in Sepsis. Crit Care Clin, vol.34, issue.1, pp.139-52, 2018.

J. Jensen and L. Bouadma, Why biomarkers failed in sepsis, Intensive Care Med, vol.42, issue.12, pp.2049-51, 2016.

T. Rowland, H. Hilliard, and G. Barlow, Procalcitonin: potential role in diagnosis and management of sepsis, Adv Clin Chem, vol.68, pp.71-86, 2015.

E. De-jong, J. A. Van-oers, A. Beishuizen, P. Vos, W. J. Vermeijden et al., Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial, Lancet Infect Dis, vol.16, issue.7, pp.819-846, 2016.

M. Westwood, B. Ramaekers, P. Whiting, F. Tomini, M. Joore et al., Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis, v-xxv, vol.19, pp.1-236, 2015.

P. Schuetz, Y. Wirz, R. Sager, M. Christ-crain, D. Stolz et al., Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections, Cochrane Database Syst Rev, vol.10, p.7498, 201712.

A. Kumar, D. Roberts, K. E. Wood, B. Light, J. E. Parrillo et al., Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock, Crit Care Med, vol.34, issue.6, pp.1589-96, 2006.

K. B. Laupland and R. Ferrer, Is it time to implement door-to-needle time for "infection attacks, Intensive Care Med, vol.43, issue.11, pp.1712-1715, 2017.

K. Reinhart, A. Perner, C. L. Sprung, R. Jaeschke, F. Schortgen et al., Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients, Intensive Care Med, vol.38, issue.3, pp.368-83, 2012.

J. A. Myburgh, Fluid resuscitation in acute medicine: what is the current situation?, J Intern Med, vol.277, issue.1, pp.58-68, 2015.

D. Backer, D. Aldecoa, C. Njimi, H. Vincent, and J. , Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*, Crit Care Med, vol.40, issue.3, pp.725-755, 2012.

D. Backer, D. Biston, P. Devriendt, J. Madl, C. Chochrad et al., Comparison of dopamine and norepinephrine in the treatment of shock, N Engl J Med, vol.362, issue.9, pp.779-89, 2010.

A. E. Jones, N. I. Shapiro, S. Trzeciak, R. C. Arnold, H. A. Claremont et al., Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial, JAMA, vol.303, issue.8, pp.739-785, 2010.

A. Vieillard-baron, M. Matthay, J. L. Teboul, T. Bein, M. Schultz et al., Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation, Intensive Care Med, vol.42, issue.5, pp.739-788, 2016.

A. P. Wheeler and G. R. Bernard, Treating patients with severe sepsis, N Engl J Med, vol.340, issue.3, pp.207-221, 1999.

J. C. Marshall, Why have clinical trials in sepsis failed?, Trends Mol Med, vol.20, issue.4, pp.195-203, 2014.

J. C. Marshall, Clinical trials of mediator-directed therapy in sepsis: what have we learned?, Intensive Care Med, vol.26, issue.1, pp.75-83, 2000.

M. M. Alejandria, M. Lansang, L. F. Dans, and J. B. Mantaring, Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev, p.1090, 2013.

C. J. Fisher, J. M. Agosti, S. M. Opal, S. F. Lowry, R. A. Balk et al., Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group, N Engl J Med, vol.334, issue.26, pp.1697-702, 1996.

P. Qiu, X. Cui, A. Barochia, Y. Li, C. Natanson et al., The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death, Expert Opin Investig Drugs, vol.20, issue.11, pp.1555-64, 2011.

K. D. Lehman and K. Thiessen, Sepsis guidelines: Clinical practice implications, Nurse Pract, vol.40, issue.6, pp.1-6, 2015.

G. Cross, I. Bilgrami, G. Eastwood, P. Johnson, B. P. Howden et al., The epidemiology of sepsis during rapid response team reviews in a teaching hospital, Anaesth Intensive Care, vol.43, issue.2, pp.193-201, 2015.

D. W. Dowdy, M. P. Eid, A. Sedrakyan, P. A. Mendez-tellez, P. J. Pronovost et al., Quality of life in adult survivors of critical illness: a systematic review of the literature, Intensive Care Med, vol.31, issue.5, pp.611-631, 2005.

H. C. Prescott, K. M. Langa, V. Liu, G. J. Escobar, and T. J. Iwashyna, Increased 1-year healthcare use in survivors of severe sepsis, Am J Respir Crit Care Med, vol.190, issue.1, pp.62-71, 2014.

J. E. Nelson, D. E. Meier, A. Litke, D. A. Natale, R. E. Siegel et al., The symptom burden of chronic critical illness, Crit Care Med, vol.32, issue.7, pp.1527-1561, 2004.

M. R. Baldwin, Measuring and predicting long-term outcomes in older survivors of critical illness, Minerva Anestesiol, vol.81, issue.6, pp.650-61, 2015.

A. Kaarlola, M. Tallgren, and V. Pettilä, Long-term survival, quality of life, and qualityadjusted life-years among critically ill elderly patients, Crit Care Med, vol.34, issue.8, pp.2120-2126, 2006.

C. E. Battle, G. Davies, and P. A. Evans, Long term health-related quality of life in survivors of sepsis in South West Wales: an epidemiological study, PloS One, vol.9, issue.12, p.116304, 2014.

A. Semmler, C. N. Widmann, T. Okulla, H. Urbach, M. Kaiser et al., Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors, J Neurol Neurosurg Psychiatry, vol.84, issue.1, pp.62-71, 2013.

A. M. Parker, T. Sricharoenchai, S. Raparla, K. W. Schneck, O. J. Bienvenu et al., Posttraumatic stress disorder in critical illness survivors: a metaanalysis, Crit Care Med, vol.43, issue.5, pp.1121-1130, 2015.

J. Hofhuis, P. E. Spronk, H. F. Van-stel, G. Schrijvers, J. H. Rommes et al., The impact of critical illness on perceived health-related quality of life during ICU treatment, hospital stay, and after hospital discharge: a long-term follow-up study, Chest, vol.133, issue.2, pp.377-85, 2008.

J. B. Poulsen, K. Møller, H. Kehlet, and A. Perner, Long-term physical outcome in patients with septic shock, Acta Anaesthesiol Scand, vol.53, issue.6, pp.724-754, 2009.

A. M. Peters-van-ton, M. Kox, W. F. Abdo, and P. Pickkers, Precision Immunotherapy for Sepsis, Front Immunol, vol.9, 1926.

C. A. Blum, N. Nigro, M. Briel, P. Schuetz, E. Ullmer et al., Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial, Lancet Lond Engl, vol.385, issue.9977, pp.1511-1519, 2015.

A. Torres, O. Sibila, M. Ferrer, E. Polverino, R. Menendez et al., Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial, JAMA, vol.313, issue.7, pp.677-86, 2015.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky et al., An extracorporeal blood-cleansing device for sepsis therapy, Nat Med, vol.20, issue.10, pp.1211-1217, 2014.

N. K. Patil, J. K. Bohannon, and E. R. Sherwood, Immunotherapy: A promising approach to reverse sepsis-induced immunosuppression, Pharmacol Res, vol.111, pp.688-702, 2016.

M. J. Delano and P. A. Ward, Sepsis-induced immune dysfunction: can immune therapies reduce mortality?, J Clin Invest, vol.126, issue.1, pp.23-31, 2016.

T. Rimmelé, D. Payen, V. Cantaluppi, J. Marshall, H. Gomez et al., IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS, Shock Augusta Ga, vol.45, issue.3, pp.282-91, 2016.

F. Venet, A. Lukaszewicz, D. Payen, R. Hotchkiss, and G. Monneret, Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies, Curr Opin Immunol, vol.25, issue.4, pp.477-83, 2013.

A. Chéron, G. Monneret, C. Landelle, B. Floccard, and B. Allaouchiche, Low monocytic HLA-DR expression and risk of secondary infection

, Ann Fr Anesth Reanim, vol.29, issue.5, pp.368-76, 2010.

C. Meisel, J. C. Schefold, R. Pschowski, T. Baumann, K. Hetzger et al.,

, Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial, Am J Respir Crit Care Med, vol.180, issue.7, pp.640-648, 2009.

C. L. Mackall, T. J. Fry, and R. E. Gress, Harnessing the biology of IL-7 for therapeutic application, Nat Rev Immunol, vol.11, issue.5, pp.330-372, 2011.

R. S. Hotchkiss and L. L. Moldawer, Parallels between cancer and infectious disease, N Engl J Med, vol.371, issue.4, pp.380-383, 2014.

N. K. Sharma and R. Salomao, Sepsis Through the Eyes of Proteomics: The Progress in the Last Decade, Shock Augusta Ga, vol.47, issue.1S, pp.17-25, 2017.

D. M. Maslove and H. R. Wong, Gene expression profiling in sepsis: timing, tissue, and translational considerations, Trends Mol Med, vol.20, issue.4, pp.204-217, 2014.

T. E. Sweeney, A. Shidham, H. R. Wong, and P. Khatri, A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set, Sci Transl Med, vol.7, issue.287, pp.287-71, 2015.

E. E. Davenport, K. L. Burnham, J. Radhakrishnan, P. Humburg, P. Hutton et al., Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study, Lancet Respir Med, vol.4, issue.4, pp.259-71, 2016.

L. P. Chung and G. W. Waterer, Genetic predisposition to respiratory infection and sepsis, Crit Rev Clin Lab Sci, vol.48, issue.5-6, pp.250-68, 2011.

G. Assmann, R. J. Highet, E. A. Sokoloski, and H. B. Brewer, 13C nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc Natl Acad Sci U S A, vol.71, issue.9, pp.3701-3706, 1974.

G. W. Cockerill and S. Reed, High-density lipoprotein: multipotent effects on cells of the vasculature, Int Rev Cytol, vol.188, pp.257-97, 1999.

L. Camont, M. J. Chapman, and A. Kontush, Biological activities of HDL subpopulations and their relevance to cardiovascular disease, Trends Mol Med, vol.17, issue.10, pp.594-603, 2011.

O. F. Delalla, H. A. Elliott, and J. W. Gofman, Ultracentrifugal studies of high density serum lipoproteins in clinically healthy adults, Am J Physiol, vol.179, issue.2, pp.333-340, 1954.

A. V. Nichols, R. M. Krauss, and T. A. Musliner, Nondenaturing polyacrylamide gradient gel electrophoresis, Methods Enzymol, vol.128, pp.417-448, 1986.

B. F. Asztalos and E. J. Schaefer, High-density lipoprotein subpopulations in pathologic conditions, Am J Cardiol, vol.91, issue.7A, pp.12-17, 2003.

R. S. Rosenson, J. D. Otvos, and D. S. Freedman, Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial, Am J Cardiol, vol.90, issue.2, pp.89-94, 2002.

H. Karlsson, P. Leanderson, C. Tagesson, and M. Lindahl, Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry, Proteomics, vol.5, issue.2, pp.551-65, 2005.

H. Karlsson, P. Leanderson, C. Tagesson, and M. Lindahl, Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry, Proteomics, vol.5, issue.5, pp.1431-1476, 2005.

W. S. Davidson, R. Silva, S. Chantepie, W. R. Lagor, M. J. Chapman et al., Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function, Arterioscler Thromb Vasc Biol, vol.29, issue.6, pp.870-876, 2009.

T. Vaisar, S. Pennathur, P. S. Green, S. A. Gharib, A. N. Hoofnagle et al., Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL, J Clin Invest, vol.117, issue.3, pp.746-56, 2007.

M. T. Cooney, A. Dudina, D. Bacquer, D. Wilhelmsen, L. Sans et al., HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk, Atherosclerosis, vol.206, issue.2, pp.611-617, 2009.

J. R. Nofer, B. Kehrel, M. Fobker, B. Levkau, G. Assmann et al., A: HDL and arteriosclerosis: beyond reverse cholesterol transport, Atherosclerosis, vol.161, issue.1, pp.1-16, 2002.

N. E. Miller, D. S. Thelle, O. H. Forde, and O. D. Mjos, The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study, Lancet Lond Engl, vol.1, issue.8019, pp.965-973, 1977.

T. Gordon, W. P. Castelli, M. C. Hjortland, W. B. Kannel, and T. R. Dawber, High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study, Am J Med, vol.62, issue.5, pp.707-721, 1977.

R. S. Rosenson, H. B. Brewer, B. J. Ansell, P. Barter, M. J. Chapman et al., Dysfunctional HDL and atherosclerotic cardiovascular disease, Nat Rev Cardiol, vol.13, issue.1, pp.48-60, 2016.

N. Wang, D. L. Silver, P. Costet, and A. R. Tall, Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1, J Biol Chem, vol.275, issue.42, pp.33053-33061, 2000.

K. A. Rye, M. A. Clay, and P. J. Barter, Remodelling of high density lipoproteins by plasma factors, Atherosclerosis, vol.145, issue.2, pp.227-265, 1999.

C. J. Fielding, V. G. Shore, and P. E. Fielding, A protein cofactor of lecithin:cholesterol acyltransferase, Biochem Biophys Res Commun, vol.46, issue.4, pp.1493-1501, 1972.

V. I. Zannis, A. Chroni, and M. Krieger, Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL, J Mol Med Berl Ger, vol.84, issue.4, pp.276-94, 2006.

P. J. Barter, H. B. Brewer, M. J. Chapman, C. H. Hennekens, D. J. Rader et al., Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis, Arterioscler Thromb Vasc Biol, vol.23, issue.2, pp.160-167, 2003.

A. Jahangiri, D. J. Rader, D. Marchadier, L. K. Curtiss, D. J. Bonnet et al., Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I, J Lipid Res, vol.46, issue.5, pp.896-903, 2005.

R. Kozyraki, J. Fyfe, M. Kristiansen, C. Gerdes, C. Jacobsen et al., The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein, Nat Med, vol.5, issue.6, pp.656-61, 1999.

L. O. Martinez, S. Jacquet, J. Esteve, C. Rolland, E. Cabezón et al., Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, vol.421, issue.6918, pp.75-84, 2003.

M. Brundert, J. Heeren, M. Merkel, A. Carambia, J. Herkel et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells, J Lipid Res, vol.52, issue.4, pp.745-58, 2011.

C. Alexander and E. T. Rietschel, Bacterial lipopolysaccharides and innate immunity, J Endotoxin Res, vol.7, issue.3, pp.167-202, 2001.

H. W. Harris, C. Grunfeld, K. R. Feingold, and J. H. Rapp, Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice, J Clin Invest, vol.86, issue.3, pp.696-702, 1990.

J. B. Eggesbø, T. Lyberg, T. Aspelin, I. Hjermann, and P. Kierulf, Different binding of 125I-LPS to plasma proteins from persons with high or low HDL, Scand J Clin Lab Invest, vol.56, issue.6, pp.533-576, 1996.

R. I. Roth, F. C. Levin, and J. Levin, Distribution of bacterial endotoxin in human and rabbit blood and effects of stroma-free hemoglobin, Infect Immun, vol.61, issue.8, pp.3209-3224, 1993.

R. J. Ulevitch and A. R. Johnston, The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum, J Clin Invest, vol.62, issue.6, pp.1313-1337, 1978.

J. C. Mathison, E. Wolfson, and R. J. Ulevitch, Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits, J Clin Invest, vol.81, issue.6, pp.1925-1962, 1988.

R. J. Ulevitch, A. R. Johnston, and D. B. Weinstein, New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides, J Clin Invest, vol.64, issue.5, pp.1516-1540, 1979.

D. P. Rall, J. R. Gaskins, and M. G. Kelly, Reduction of febrile response to bacterial polysaccharide following incubation with serum, Am J Physiol, vol.188, issue.3, pp.559-62, 1957.

T. S. Parker, D. M. Levine, J. C. Chang, J. Laxer, C. C. Coffin et al., Reconstituted highdensity lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood, Infect Immun, vol.63, issue.1, pp.253-261, 1995.

J. Levels, P. R. Abraham, A. Van-den-ende, and S. Van-deventer, Distribution and Kinetics of Lipoprotein-Bound Endotoxin, Infect Immun, vol.69, issue.5, pp.2821-2829, 2001.

R. L. Kitchens, P. A. Thompson, R. S. Munford, and G. E. O'keefe, Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins, J Lipid Res, vol.44, issue.12, pp.2339-2387, 2003.

D. M. Levine, T. S. Parker, T. M. Donnelly, A. Walsh, and A. L. Rubin, In vivo protection against endotoxin by plasma high density lipoprotein, Proc Natl Acad Sci, vol.90, issue.24, pp.12040-12044, 1993.

C. J. Kirschning, J. Au-young, N. Lamping, D. Reuter, D. Pfeil et al., Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins, Genomics, vol.46, issue.3, pp.416-441, 1997.

P. S. Tobias, K. Soldau, and R. J. Ulevitch, Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum, J Exp Med, vol.164, issue.3, pp.777-93, 1986.

C. J. Vesy, R. L. Kitchens, G. Wolfbauer, J. J. Albers, and R. S. Munford, Lipopolysaccharidebinding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes, Infect Immun, vol.68, issue.5, pp.2410-2417, 2000.

N. Lamping, R. Dettmer, N. W. Schröder, D. Pfeil, W. Hallatschek et al., LPSbinding protein protects mice from septic shock caused by LPS or gram-negative bacteria, J Clin Invest, vol.101, issue.10, pp.2065-71, 1998.

B. J. Van-lenten, A. M. Fogelman, M. E. Haberland, and P. A. Edwards, The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide, Proc Natl Acad Sci, vol.83, issue.8, pp.2704-2712, 1986.

K. Brandenburg, G. Jürgens, J. Andrä, B. Lindner, M. Koch et al., Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins, Eur J Biochem, vol.269, issue.23, pp.5972-81, 2002.

M. M. Wurfel, S. T. Kunitake, H. Lichenstein, J. P. Kane, and S. D. Wright, Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS, J Exp Med, vol.180, issue.3, pp.1025-1035, 1994.

S. Morath, S. Von-aulock, and T. Hartung, Structure/function relationships of lipoteichoic acids, J Endotoxin Res, vol.11, issue.6, pp.348-56, 2005.

F. C. Neuhaus and J. Baddiley, A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria, Microbiol Mol Biol Rev MMBR, vol.67, issue.4, pp.686-723, 2003.

C. Grunfeld, M. Marshall, J. K. Shigenaga, A. H. Moser, P. Tobias et al., Lipoproteins inhibit macrophage activation by lipoteichoic acid, J Lipid Res, vol.40, issue.2, pp.245-52, 1999.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, issue.9, pp.840-851, 2013.

C. Pierrakos and J. Vincent, Sepsis biomarkers: a review, Crit Care Lond Engl, vol.14, issue.1, p.15, 2010.

W. Khovidhunkit, M. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser et al., Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host, J Lipid Res, vol.45, issue.7, pp.1169-96, 2004.

W. Khovidhunkit, R. A. Memon, K. R. Feingold, and C. Grunfeld, Infection and inflammation-induced proatherogenic changes of lipoproteins, J Infect Dis, vol.181, issue.3, pp.462-472, 2000.

K. Sammalkorpi, V. Valtonen, Y. Kerttula, E. Nikkilä, and M. R. Taskinen, Changes in serum lipoprotein pattern induced by acute infections, Metabolism, vol.37, issue.9, pp.859-65, 1988.

M. De-la-llera-moya, F. C. Mcgillicuddy, C. C. Hinkle, M. Byrne, M. R. Joshi et al., Inflammation modulates human HDL composition and function in vivo, Atherosclerosis, vol.222, issue.2, pp.390-394, 2012.

D. R. Van-der-westhuyzen, F. C. De-beer, and N. R. Webb, HDL cholesterol transport during inflammation, Curr Opin Lipidol, vol.18, issue.2, pp.147-51, 2007.

A. Jahangiri, M. C. De-beer, V. Noffsinger, L. R. Tannock, C. Ramaiah et al., HDL remodeling during the acute phase response, Arterioscler Thromb Vasc Biol, vol.29, issue.2, pp.261-268, 2009.

M. Hacquebard, A. Ducart, D. Schmartz, W. J. Malaisse, and Y. A. Carpentier, Changes in plasma LDL and HDL composition in patients undergoing cardiac surgery, Lipids, vol.42, issue.12, pp.1143-53, 2007.

F. Novak, L. Vavrova, J. Kodydkova, F. Novak, M. Hynkova et al., Decreased paraoxonase activity in critically ill patients with sepsis, Clin Exp Med, vol.10, issue.1, pp.21-26, 2010.

M. Kotosai, S. Shimada, M. Kanda, N. Matsuda, K. Sekido et al., Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability, Lipids, vol.48, issue.6, pp.569-78, 2013.

B. J. Van-lenten, S. Y. Hama, F. C. De-beer, D. M. Stafforini, T. M. Mcintyre et al., Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures, J Clin Invest, vol.96, issue.6, pp.2758-67, 1995.

T. Vaisar, C. Tang, I. Babenko, P. Hutchins, J. Wimberger et al., Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity, J Lipid Res, vol.56, issue.8, pp.1519-1549, 2015.

N. K. Sharma, A. K. Tashima, M. Brunialti, E. R. Ferreira, R. Torquato et al., Proteomic study revealed cellular assembly and lipid metabolism dysregulation in sepsis secondary to community-acquired pneumonia. Sci Rep, vol.7, p.15606, 2017.

N. K. Sharma, B. L. Ferreira, A. K. Tashima, M. Brunialti, R. Torquato et al., Lipid metabolism impairment in patients with sepsis secondary to hospital acquired pneumonia, a proteomic analysis, Clin Proteomics, vol.16, p.29, 2019.

F. C. Mcgillicuddy, M. Moya, C. C. Hinkle, M. R. Joshi, E. H. Chiquoine et al., Inflammation impairs reverse cholesterol transport in vivo, Circulation, vol.119, issue.8, pp.1135-1180, 2009.

P. Malik, S. Z. Berisha, J. Santore, C. Agatisa-boyle, G. Brubaker et al., Zymosanmediated inflammation impairs in vivo reverse cholesterol transport, J Lipid Res, vol.52, issue.5, pp.951-958, 2011.

K. A. Smoak, J. J. Aloor, J. Madenspacher, B. A. Merrick, J. B. Collins et al., Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation, Cell Metab, vol.11, issue.6, pp.493-502, 2009.

G. Datta, H. Gupta, Z. Zhang, P. Mayakonda, G. M. Anantharamaiah et al., HDL Mimetic Peptide Administration Improves Left Ventricular Filling and Cardiac output in Lipopolysaccharide-Treated Rats, J Clin Exp Cardiol, vol.2, issue.172, 2011.

W. Y. Kwon, G. J. Suh, K. S. Kim, Y. H. Kwak, and K. Kim, 4F, apolipoprotein AI mimetic peptide, attenuates acute lung injury and improves survival in endotoxemic rats, J Trauma Acute Care Surg, vol.72, issue.6, pp.1576-83, 2012.

R. S. Moreira, M. Irigoyen, T. R. Sanches, R. A. Volpini, N. Camara et al.,

, Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis, Am J Physiol Regul Integr Comp Physiol, vol.307, issue.5, pp.514-524, 2014.

A. T. Casas, A. P. Hubsch, and J. E. Doran, Effects of reconstituted high-density lipoprotein in persistent gram-negative bacteremia, Am Surg, vol.62, issue.5, pp.350-355, 1996.

X. Zhang, L. Wang, and B. Chen, Recombinant HDL (Milano) protects endotoxinchallenged rats from multiple organ injury and dysfunction, Biol Chem, 2015.

P. G. Lerch, V. Förtsch, G. Hodler, and R. Bolli, Production and characterization of a reconstituted high density lipoprotein for therapeutic applications, Vox Sang, vol.71, issue.3, pp.155-64, 1996.

S. Patel, B. G. Drew, S. Nakhla, S. J. Duffy, A. J. Murphy et al., Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes, J Am Coll Cardiol, vol.53, issue.11, pp.962-71, 2009.

J. Tardif, J. Grégoire, L. 'allier, P. L. , I. R. Lespérance et al., Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial, JAMA, vol.297, issue.15, pp.1675-82, 2007.

B. R. Gordon, T. S. Parker, D. M. Levine, S. D. Saal, L. C. Hudgins et al., Safety and pharmacokinetics of an endotoxin-binding phospholipid emulsion, Ann Pharmacother, vol.37, issue.7-8, pp.943-50, 2003.

B. R. Gordon, T. S. Parker, D. M. Levine, F. Feuerbach, S. D. Saal et al., Neutralization of endotoxin by a phospholipid emulsion in healthy volunteers, J Infect Dis, vol.191, issue.9, pp.1515-1537, 2005.

R. P. Dellinger, J. F. Tomayko, D. C. Angus, S. Opal, M. A. Cupo et al., Efficacy and safety of a phospholipid emulsion (GR270773) in Gram-negative severe sepsis: results of a phase II multicenter, randomized, placebo-controlled, dose-finding clinical trial, Crit Care Med, vol.37, issue.11, pp.2929-2967, 2009.

W. W. Winchell, J. Hardy, D. M. Levine, T. S. Parker, B. R. Gordon et al., Effect of administration of a phospholipid emulsion on the initial response of horses administered endotoxin, Am J Vet Res, vol.63, issue.10, pp.1370-1378, 2002.

R. D. Goldfarb, T. S. Parker, D. M. Levine, D. Glock, I. Akhter et al., Proteinfree phospholipid emulsion treatment improved cardiopulmonary function and survival in porcine sepsis, Am J Physiol Regul Integr Comp Physiol, vol.284, issue.2, pp.550-557, 2003.

D. Pajkrt, J. E. Doran, F. Koster, P. G. Lerch, B. Arnet et al., Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia, J Exp Med, vol.184, issue.5, pp.1601-1609, 1996.

D. Pajkrt, P. G. Lerch, T. Van-der-poll, M. Levi, M. Illi et al., Differential effects of reconstituted high-density lipoprotein on coagulation, fibrinolysis and platelet activation during human endotoxemia, Thromb Haemost, vol.77, issue.2, pp.303-310, 1997.

J. Hazeldine, P. Hampson, and J. M. Lord, The impact of trauma on neutrophil function, Injury, vol.45, issue.12, pp.1824-1833, 2014.

J. M. Lord, M. J. Midwinter, Y. F. Chen, A. Belli, K. Brohi et al., The systemic immune response to trauma: an overview of pathophysiology and treatment, Lancet, vol.384, issue.9952, pp.1455-1465, 2014.

J. Pugin, How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care, vol.2, p.27, 2012.

A. Lenz, G. A. Franklin, and W. G. Cheadle, Systemic inflammation after trauma, Injury, vol.38, issue.12, pp.1336-1345, 2007.

A. M. Binkowska, G. Michalak, and R. Slotwinski, Current views on the mechanisms of immune responses to trauma and infection, Cent Eur J Immunol, vol.40, issue.2, pp.206-216, 2015.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, Q. B. Dang et al., HDL and endothelial protection, Br J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

B. L. Heitmann, The effects of gender and age on associations between blood lipid levels and obesity in Danish men and women aged 35-65 years, J Clin Epidemiol, vol.45, issue.7, pp.693-702, 1992.

G. Heiss, I. Tamir, C. E. Davis, H. A. Tyroler, B. M. Rifkand et al.,

, Lipoprotein-cholesterol distributions in selected North American populations: the lipid research clinics program prevalence study, Circulation, vol.61, issue.2, pp.302-317, 1980.

R. D. Abbott, R. J. Garrison, P. W. Wilson, F. H. Epstein, W. P. Castelli et al., Joint distribution of lipoprotein cholesterol classes. The Framingham study. Arterioscler Dallas Tex, vol.3, pp.260-72, 1983.

P. W. Wilson, K. M. Anderson, T. Harris, W. B. Kannel, and W. P. Castelli, Determinants of change in total cholesterol and HDL-C with age: the Framingham Study, J Gerontol, vol.49, issue.6, pp.252-257, 1994.

F. Gao, Y. Ren, X. Shen, Y. Bian, C. Xiao et al., Correlation between the High Density Lipoprotein and its Subtypes in Coronary Heart Disease, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.38, issue.5, pp.1906-1920, 2016.

J. Li, Y. Zhang, S. Li, C. Cui, C. Zhu et al., Large HDL Subfraction But Not HDL-C Is Closely Linked With Risk Factors, Coronary Severity and Outcomes in a Cohort of Nontreated Patients With Stable Coronary Artery Disease: A Prospective Observational Study. Medicine (Baltimore), vol.95, p.2600, 2016.

S. M. Grundy, N. J. Stone, A. L. Bailey, C. Beam, K. K. Birtcher et al., , 2018.

, PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, J Am Coll Cardiol, 2018.

S. Delbosc, J. Alsac, C. Journe, L. Louedec, Y. Castier et al., Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats, PloS One, vol.6, issue.4, p.18679, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00759308

F. Gao, Y. Ren, X. Shen, Y. Bian, C. Xiao et al., Correlation between the High Density Lipoprotein and its Subtypes in Coronary Heart Disease, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.38, issue.5, pp.1906-1920, 2016.

M. Cirstea, K. R. Walley, J. A. Russell, L. R. Brunham, K. R. Genga et al., Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis, J Crit Care, vol.38, pp.289-94, 2017.

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli et al., Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med, vol.43, pp.304-77, 2017.

F. W. Guirgis, S. Dodani, L. Moldawer, C. Leeuwenburgh, J. Bowman et al., Exploring the Predictive Ability of Dysfunctional High-Density Lipoprotein for Adverse Outcomes in Emergency Department Patients with Sepsis: A Preliminary Investigation, Shock Augusta Ga, vol.48, issue.5, pp.539-583, 2017.

P. W. Siri-tarino and R. M. Krauss, The early years of lipoprotein research: from discovery to clinical application, J Lipid Res, vol.57, issue.10, pp.1771-1778, 2016.

S. E. Calvano, W. Xiao, D. R. Richards, R. M. Felciano, H. V. Baker et al., A networkbased analysis of systemic inflammation in humans, Nature, vol.437, issue.7061, pp.1032-1039, 2005.

W. Xiao, M. N. Mindrinos, J. Seok, J. Cuschieri, A. G. Cuenca et al., A genomic storm in critically injured humans, J Exp Med, vol.208, issue.13, pp.2581-90, 2011.

B. M. Tang, S. J. Huang, and A. S. Mclean, Genome-wide transcription profiling of human sepsis: a systematic review, Crit Care Lond Engl, vol.14, issue.6, p.237, 2010.

Z. Cao and R. Robinson, The role of proteomics in understanding biological mechanisms of sepsis, Proteomics Clin Appl, vol.8, issue.1-2, pp.35-52, 2014.

N. K. Sharma and R. Salomao, Sepsis Through the Eyes of Proteomics: The Progress in the Last Decade, Shock Augusta Ga, vol.47, issue.1S, pp.17-25, 2017.

J. D. Morrisett, R. L. Jackson, and A. M. Gotto, Lipoproteins: structure and function, Annu Rev Biochem, vol.44, pp.183-207, 1975.

R. W. Mahley, T. L. Innerarity, S. C. Rall, and K. H. Weisgraber, Plasma lipoproteins: apolipoprotein structure and function, J Lipid Res, vol.25, issue.12, pp.1277-94, 1984.

S. B. Kumaraswamy, A. Linder, P. Åkesson, and B. Dahlbäck, Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Crit Care Lond Engl, vol.16, p.60, 2012.

G. Utermann, The mysteries of lipoprotein(a). Science, vol.246, pp.904-914, 1989.

A. M. Scanu, A genetic risk factor for premature coronary heart disease, JAMA, vol.267, issue.24, pp.3326-3335, 1992.

A. G. Bostom, L. A. Cupples, J. L. Jenner, J. M. Ordovas, L. J. Seman et al., Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger. A prospective study, JAMA, vol.276, issue.7, pp.544-552, 1996.

V. Mooser, M. M. Berger, L. Tappy, C. Cayeux, S. M. Marcovina et al., Major reduction in plasma Lp(a) levels during sepsis and burns, Arterioscler Thromb Vasc Biol, vol.20, issue.4, pp.1137-1179, 2000.

M. C. Mcnutt, H. J. Kwon, C. Chen, J. R. Chen, J. D. Horton et al., Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells, J Biol Chem, vol.284, issue.16, pp.10561-70, 2009.

J. D. Horton, J. C. Cohen, and H. H. Hobbs, Molecular biology of PCSK9: its role in LDL metabolism, Trends Biochem Sci, vol.32, issue.2, pp.71-78, 2007.

K. R. Walley, K. R. Thain, J. A. Russell, M. P. Reilly, N. J. Meyer et al., PCSK9 is a critical regulator of the innate immune response and septic shock outcome, Sci Transl Med, vol.6, issue.258, pp.258-143, 2014.

C. Ricci, M. Ruscica, M. Camera, L. Rossetti, C. Macchi et al., PCSK9 induces a pro-inflammatory response in macrophages, Sci Rep, vol.8, issue.1, p.2267, 201802.

J. H. Boyd, C. D. Fjell, J. A. Russell, D. Sirounis, M. S. Cirstea et al., Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis, J Innate Immun, vol.8, issue.2, pp.211-231, 2016.

J. Rannikko, J. Sanz, D. Ortutay, Z. Seiskari, T. Aittoniemi et al., Reduced plasma PCSK9 response in patients with bacteraemia is associated with mortality, J Intern Med, 2019.

P. M. Grin, D. J. Dwivedi, K. M. Chathely, B. L. Trigatti, A. Prat et al., Lowdensity lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor, Sci Rep, vol.8, issue.1, p.10496, 2018.

L. Bras, M. Roquilly, A. Deckert, V. Langhi, C. Feuillet et al., Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury, J Clin Endocrinol Metab, vol.98, issue.4, pp.732-736, 2013.

B. G. Drew, S. J. Duffy, M. F. Formosa, A. K. Natoli, D. C. Henstridge et al., Highdensity lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus, Circulation, vol.119, issue.15, pp.2103-2114, 2009.

D. Rittirsch, M. S. Huber-lang, M. A. Flierl, and P. A. Ward, Immunodesign of experimental sepsis by cecal ligation and puncture, Nat Protoc, vol.4, issue.1, pp.31-37, 2009.

E. A. Deitch, Animal models of sepsis and shock: a review and lessons learned, Shock Augusta Ga, vol.9, issue.1, pp.1-11, 1998.

L. Guo, A. J. Zheng, Z. Howatt, D. A. Daugherty, A. Huang et al., High density lipoprotein protects against polymicrobe-induced sepsis in mice, J Biol Chem, vol.288, issue.25, pp.17947-53, 2013.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-2705, 2010.

M. A. Freudenberg, T. C. Bøg-hansen, U. Back, and C. Galanos, Interaction of lipopolysaccharides with plasma high-density lipoprotein in rats, Infect Immun, vol.28, issue.2, pp.373-80, 1980.

A. C. Calkin, B. G. Drew, A. Ono, S. J. Duffy, M. V. Gordon et al., Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux, Circulation, vol.120, issue.21, pp.2095-104, 2009.

M. Gibson, C. Korjian, S. Tricoci, P. Daaboul, Y. Yee et al., Safety and Tolerability of CSL112, a Reconstituted, Infusible, Plasma-Derived Apolipoprotein A-I, After Acute Myocardial Infarction: The AEGIS-I Trial (ApoA-I Event Reducing in Ischemic Syndromes I). Circulation, vol.134, pp.1918-1948, 2016.

S. E. Nissen, T. Tsunoda, E. M. Tuzcu, P. Schoenhagen, C. J. Cooper et al., Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial, JAMA, vol.290, issue.17, pp.2292-300, 2003.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach et al., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, Intensive Care Med, vol.39, issue.2, pp.165-228, 2012.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The third international consensus definitions for sepsis and septic shock (Sepsis-3), JAMA, vol.315, issue.8, pp.801-811, 2016.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, issue.9, pp.840-51, 2013.

J. R. Nofer, B. Kehrel, M. Fobker, B. Levkau, G. Assmann et al., HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis, vol.161, pp.1-16, 2002.

M. T. Cooney, A. Dudina, D. Bacquer, D. Wilhelmsen, L. Sans et al., HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk, Atherosclerosis, vol.206, issue.2, pp.611-617, 2009.

G. D. Norata, A. Pirillo, E. Ammirati, and A. L. Catapano, Emerging role of high density lipoproteins as a player in the immune system, Atherosclerosis, vol.220, issue.1, pp.11-21, 2012.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, Q. B. Dang et al., HDL and endothelial protection, Br J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

M. C. Mcdonald, P. Dhadly, G. W. Cockerill, S. Cuzzocrea, H. Mota-filipe et al., Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock, Shock, vol.20, issue.6, pp.551-558, 2003.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-705, 2010.

Z. Zhang, G. Datta, Y. Zhang, A. P. Miller, P. Mochon et al., Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats, Am J Physiol Heart Circ Physiol, vol.297, issue.2, pp.866-73, 2009.

H. Gupta, L. Dai, G. Datta, D. W. Garber, H. Grenett et al., Inhibition of lipopolysaccharideinduced inflammatory responses by an apolipoprotein AI mimetic peptide, Circ Res, vol.97, issue.3, pp.236-279, 2005.

X. Zhang, L. Wang, and B. Chen, Recombinant HDL (Milano) protects endotoxin-challenged rats from multiple organ injury and dysfunction, Biol Chem, vol.396, issue.1, pp.53-60, 2015.

H. J. Van-leeuwen, E. C. Heezius, G. M. Dallinga, J. A. Van-strijp, J. Verhoef et al., Lipoprotein metabolism in patients with severe sepsis, Crit Care Med, vol.31, issue.5, pp.1359-66, 2003.

J. Y. Chien, J. S. Jerng, C. J. Yu, and P. C. Yang, Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis, Crit Care Med, vol.33, issue.8, pp.1688-93, 2005.

S. Barlage, C. Gnewuch, G. Liebisch, Z. Wolf, F. X. Audebert et al., Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation, Intensive Care Med, vol.35, issue.11, pp.1877-85, 2009.

J. Hazeldine, P. Hampson, and J. M. Lord, The impact of trauma on neutrophil function, Injury, vol.45, issue.12, pp.1824-1857, 2014.

J. Pugin, How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome, Ann Intensive Care, vol.2, issue.1, p.27, 2012.

J. M. Lord, M. J. Midwinter, Y. F. Chen, A. Belli, K. Brohi et al., The systemic immune response to trauma: an overview of pathophysiology and treatment, Lancet, vol.384, issue.9952, pp.1455-65, 2014.

J. L. Vincent, R. Moreno, J. Takala, S. Willatts, D. Mendonça et al., The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine, Intensive Care Med, vol.22, issue.7, pp.707-717, 1996.

M. Antonelli, R. Moreno, J. L. Vincent, C. L. Sprung, A. Mendoça et al., Application of SOFA score to trauma patients. Sequential organ failure assessment, Intensive Care Med, vol.25, issue.4, pp.389-94, 1999.

S. P. Baker, B. O'neill, W. Haddon, and W. B. Long, The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care, J Trauma, vol.14, issue.3, pp.187-96, 1974.

L. M. Lavange and G. G. Koch, Rank score tests, Circulation, vol.114, issue.23, pp.2528-2561, 2006.

A. Pirillo, A. L. Catapano, and G. D. Norata, HDL in infectious diseases and sepsis, Handb Exp Pharmacol, vol.224, pp.483-508, 2015.

B. R. Gordon, T. S. Parker, D. M. Levine, S. D. Saal, J. C. Wang et al., Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients, Crit Care Med, vol.29, issue.8, pp.1563-1571, 2001.

C. J. Vesy, R. L. Kitchens, G. Wolfbauer, J. J. Albers, and R. S. Munford, Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes, Infect Immun, vol.68, issue.5, pp.2410-2417, 2000.

M. M. Wurfel, S. T. Kunitake, H. Lichenstein, J. P. Kane, and S. D. Wright, Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS, J Exp Med, vol.180, issue.3, pp.1025-1060, 1994.

A. Lenz, G. A. Franklin, and W. G. Cheadle, Systemic inflammation after trauma, Injury, vol.38, issue.12, pp.1336-1381, 2007.

A. M. Binkowska, G. Michalak, and R. Slotwinski, Current views on the mechanisms of immune responses to trauma and infection, Cent Eur J Immunol, vol.40, issue.2, pp.206-222, 2015.

Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal et al., Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, issue.7285, pp.104-111, 2010.

J. Seok, H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker et al., Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc Natl Acad Sci, vol.110, issue.9, pp.3507-3519, 2013.

O. Gilbert, J. R. Croffoot, A. J. Taylor, M. Nash, K. Schomer et al., Serum lipid concentrations among persons with spinal cord injury-a systematic review and meta-analysis of the literature, Atherosclerosis, vol.232, issue.2, pp.305-317, 2014.

S. H. Lee, M. S. Park, B. H. Park, W. J. Jung, I. S. Lee et al., Prognostic implications of serum lipid metabolism over time during sepsis, Biomed Res Int, p.789298, 2015.

M. Cirstea, K. R. Walley, J. A. Russell, L. R. Brunham, K. R. Genga et al., Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis, J Crit Care, vol.38, pp.289-94, 2017.

F. L. Ferreira, D. P. Bota, A. Bross, C. Mélot, and J. L. Vincent, Serial evaluation of the SOFA score to predict outcome in critically ill patients, JAMA, vol.286, issue.14, pp.1754-1762, 2001.

B. L. Heitmann, The effects of gender and age on associations between blood lipid levels and obesity in Danish men and women aged 35-65 years, J Clin Epidemiol, vol.45, issue.7, pp.693-702, 1992.

G. Heiss, I. Tamir, C. E. Davis, H. A. Tyroler, B. M. Rifkand et al., Lipoprotein-cholesterol distributions in selected North American populations: the lipid research clinics program prevalence study, Circulation, vol.61, issue.2, pp.302-317, 1980.

R. D. Abbott, R. J. Garrison, P. W. Wilson, F. H. Epstein, W. P. Castelli et al., Joint distribution of lipoprotein cholesterol classes. The Framingham study, Arterioscler Dallas Tex, vol.3, issue.3, pp.260-72, 1983.

P. W. Wilson, K. M. Anderson, T. Harris, W. B. Kannel, and W. P. Castelli, Determinants of change in total cholesterol and HDL-C with age: the Framingham Study, J Gerontol, vol.49, issue.6, pp.252-259, 1994.

, 3 Inserm U1148, Laboratory for Vascular, Translational Science Bichat Hospital, 46 Rue Henri Huchard, Bio-CANVAS: Biomarkers in CardioNeuroVascular DISEASES» UMRS 942, vol.4, p.75018

S. Clotilde, L. Réunion, and F. , , 2019.

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli et al., Surviving sepsis campaign: international guidelines for management of sepsis and septic shock, Crit Care Med, vol.45, issue.3, pp.486-552, 2016.

D. Annane, E. Bellissant, and J. Cavaillon, Septic shock, Lancet Lond Engl, vol.365, issue.9453, pp.63-78, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01414960

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The third international consensus definitions for sepsis and septic shock (sepsis-3), JAMA, vol.315, issue.8, pp.801-811, 2016.

C. Pierrakos and J. Vincent, Sepsis biomarkers: a review, Crit Care Lond Engl, vol.14, issue.1, p.15, 2010.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, issue.21, p.2063, 2013.

L. M. Hoesel, H. Gao, and P. A. Ward, New insights into cellular mechanisms during sepsis, Immunol Res, vol.34, issue.2, pp.133-174, 2006.

H. Ait-oufella, M. E. Lehoux, S. Guidet, B. Offenstadt, and G. , The endothelium: physiological functions and role in microcirculatory failure during severe sepsis, Intensive Care Med, vol.36, issue.8, pp.1286-98, 2010.

J. R. Nofer, B. Kehrel, M. Fobker, B. Levkau, G. Assmann et al., HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis, vol.161, pp.1-16, 2002.

M. T. Cooney, A. Dudina, D. Bacquer, D. Wilhelmsen, L. Sans et al., HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk, Atherosclerosis, vol.206, issue.2, pp.611-617, 2009.

C. Mineo and P. W. Shaul, HDL stimulation of endothelial nitric oxide synthase: a novel mechanism of HDL action, Trends Cardiovasc Med, vol.13, issue.6, pp.226-257, 2003.

P. G. Lerch, M. O. Spycher, and J. E. Doran, Reconstituted high density lipoprotein (rHDL) modulates platelet activity in vitro and ex vivo, Thromb Haemost, vol.80, issue.2, pp.316-336, 1998.

R. J. Ulevitch, A. R. Johnston, and D. B. Weinstein, New function for high density lipoproteins. Isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma, J Clin Invest, vol.67, issue.3, pp.827-864, 1981.

O. Murch, M. Collin, C. J. Hinds, and C. Thiemermann, Lipoproteins in inflammation and sepsis. I. Basic science, Intensive Care Med, vol.33, issue.1, pp.13-24, 2007.

A. J. Murphy, K. J. Woollard, A. Suhartoyo, R. A. Stirzaker, J. Shaw et al., Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation, Arterioscler Thromb Vasc Biol, vol.31, issue.6, pp.1333-1374, 2011.

G. A. Zimmerman, T. M. Mcintyre, S. M. Prescott, and D. M. Stafforini, The plateletactivating factor signaling system and its regulators in syndromes of inflammation and thrombosis, Crit Care Med, vol.30, issue.5, pp.294-301, 2002.

K. El-harchaoui, B. J. Arsenault, R. Franssen, J. Després, G. K. Hovingh et al., High-density lipoprotein particle size and concentration and coronary risk, Ann Intern Med, vol.150, issue.2, pp.84-93, 2009.

F. Gao, Y. Ren, X. Shen, Y. Bian, C. Xiao et al., Correlation between the high density lipoprotein and its subtypes in coronary heart disease, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.38, issue.5, pp.1906-1920, 2016.

J. Li, Y. Zhang, S. Li, C. Cui, C. Zhu et al., Large HDL subfraction but not HDL-C is closely linked with risk factors, coronary severity and outcomes in a cohort of nontreated patients with stable coronary artery disease: a prospective observational study, Medicine (Baltimore), vol.95, issue.4, p.2600, 2016.

H. J. Van-leeuwen, E. C. Heezius, G. M. Dallinga, J. A. Van-strijp, J. Verhoef et al., Lipoprotein metabolism in patients with severe sepsis, Crit Care Med, vol.31, issue.5, pp.1359-66, 2003.

S. Tanaka, J. Labreuche, E. Drumez, A. Harrois, S. Hamada et al., Low HDL levels in sepsis versus trauma patients in intensive care unit, Ann Intensive Care, vol.7, issue.1, p.60, 2017.

C. Chenaud, P. G. Merlani, P. Roux-lombard, D. Burger, S. Harbarth et al., Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation, Crit Care Med, vol.32, issue.3, pp.632-639, 2004.

S. Barlage, C. Gnewuch, G. Liebisch, Z. Wolf, F. X. Audebert et al., Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation, Intensive Care Med, vol.35, issue.11, pp.1877-85, 2009.

J. Y. Chien, J. S. Jerng, C. J. Yu, and P. C. Yang, Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis, Crit Care Med, vol.33, issue.8, pp.1688-93, 2005.

S. M. Grundy, N. J. Stone, A. L. Bailey, C. Beam, K. K. Birtcher et al., AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/ PCNA guideline on the management of blood cholesterol: a report of the american college of Cardiology/American Heart Association task force on clinical practice guidelines, J Am Coll Cardiol, 2018.

S. Delbosc, J. Alsac, C. Journe, L. Louedec, Y. Castier et al., Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats, PLoS ONE, vol.6, issue.4, p.18679, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00759308

P. S. Tobias, J. C. Mathison, and R. J. Ulevitch, A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis, J Biol Chem, vol.263, issue.27, pp.13479-81, 1988.

V. Brinkmann and A. Zychlinsky, Beneficial suicide: why neutrophils die to make NETs, Nat Rev Microbiol, vol.5, issue.8, pp.577-82, 2007.

M. Hashiba, A. Huq, A. Tomino, A. Hirakawa, T. Hattori et al., Neutrophil extracellular traps in patients with sepsis, J Surg Res, vol.194, issue.1, pp.248-54, 2015.

A. Pirillo, A. L. Catapano, and G. D. Norata, HDL in infectious diseases and sepsis, Handb Exp Pharmacol, vol.224, pp.483-508, 2015.

C. Alvarez and A. Ramos, Lipids, lipoproteins, and apoproteins in serum during infection, Clin Chem, vol.32, issue.1, pp.142-147, 1986.

A. V. Khera, B. M. Everett, M. P. Caulfield, F. M. Hantash, J. Wohlgemuth et al., Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin), Circulation, vol.129, issue.6, pp.635-677, 2014.

M. De-la-llera-moya, F. C. Mcgillicuddy, C. C. Hinkle, M. Byrne, M. R. Joshi et al., Inflammation modulates human HDL composition and function in vivo, Atherosclerosis, vol.222, issue.2, pp.390-394, 2012.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, Q. B. Dang et al., HDL and endothelial protection, Br J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

M. Trinder, J. H. Boyd, and L. R. Brunham, Molecular regulation of plasma lipid levels during systemic inflammation and sepsis, Curr Opin Lipidol, vol.30, p.108, 2019.

J. Ma, A. A. Dempsey, D. Stamatiou, K. W. Marshall, and C. Liew, Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects, Atherosclerosis, vol.191, issue.1, pp.63-72, 2007.

M. C. Mcdonald, P. Dhadly, G. W. Cockerill, S. Cuzzocrea, H. Mota-filipe et al., Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock, Shock, vol.20, issue.6, pp.551-558, 2003.

M. A. Freudenberg, T. C. Bøg-hansen, U. Back, and C. Galanos, Interaction of lipopolysaccharides with plasma high-density lipoprotein in rats, Infect Immun, vol.28, issue.2, pp.373-80, 1980.

S. M. Opal, P. Laterre, B. Francois, S. P. Larosa, D. C. Angus et al., Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial, JAMA, vol.309, issue.11, pp.1154-62, 2013.

D. Pajkrt, J. E. Doran, F. Koster, P. G. Lerch, B. Arnet et al., Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia, J Exp Med, vol.184, issue.5, pp.1601-1609, 1996.

A. T. Casas, A. P. Hubsch, and J. E. Doran, Effects of reconstituted high-density lipoprotein in persistent gram-negative bacteremia, Am Surg, vol.62, issue.5, pp.350-355, 1996.

X. Zhang, L. Wang, and B. Chen, Recombinant HDL (Milano) protects endotoxin-challenged rats from multiple organ injury and dysfunction, Biol Chem, vol.396, issue.1, pp.53-60, 2015.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-705, 2010.

H. Gupta, L. Dai, G. Datta, D. W. Garber, H. Grenett et al., Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide, Circ Res, vol.97, issue.3, pp.236-279, 2005.

M. Trinder, K. R. Genga, H. J. Kong, L. L. Blauw, C. Lo et al., Cholesteryl ester transfer protein influences high-density lipoprotein levels and survival in sepsis, Am J Respir Crit Care Med, vol.199, issue.7, pp.854-62, 2019.

G. Datta, H. Gupta, Z. Zhang, P. Mayakonda, G. M. Anantharamaiah et al., HDL mimetic peptide administration improves left ventricular filling and cardiac output in lipopolysaccharide-treated rats, J Clin Exp Cardiol, vol.2, p.172, 2011.

R. S. Moreira, M. Irigoyen, T. R. Sanches, R. A. Volpini, N. Camara et al., Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis, Am J Physiol Regul Integr Comp Physiol, vol.307, issue.5, pp.514-538, 2014.

). Indien-(détroi and C. Plateforme,

S. Ap-hp, Anesthésie-Réanimation

, 3 Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital

, INSERM, UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, p.15

, Processus Infectieux en Milieu Insulaire Tropical, p.16

F. Réunion,

, 5 Inserm UMR1152. Physiopathologie et Epidémiologie des Maladies Respiratoires, p.18

. France,

, 6 Inserm UMR1137. Infection, Antimicrobiens, Modélisation, Evolution, p.20

S. Ap-hp, Anesthésie-Réanimation, Fondation pour la Recherche Médicale (FRM)». CG received 94 a research grant from « Assistance Publique Hôpitaux de Paris (APHP), vol.21

R. A. Balk, Severe sepsis and septic shock. Definitions, epidemiology, and clinical 508 manifestations, Crit Care Clin, vol.16, issue.2, pp.179-92, 2000.

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli et al., , p.510

J. E. Sevransky, C. L. Sprung, M. E. Nunnally, B. Rochwerg, G. D. Rubenfeld et al., , p.511

R. J. Beale, G. J. Bellinghan, G. R. Bernard, J. D. Chiche, C. Coopersmith et al., , p.512

S. Fujishima, H. Gerlach, J. L. Hidalgo, S. M. Hollenberg, A. E. Jones et al., , p.513

Y. Koh, T. C. Lisboa, F. R. Machado, J. J. Marini, J. C. Marshall et al., , p.516

M. Singer, B. T. Thompson, S. R. Townsend, T. Van-der-poll, J. L. Vincent et al., , p.517

J. L. Zimmerman and R. P. Dellinger, Surviving Sepsis Campaign: International Guidelines for 518 Management of Sepsis and Septic Shock: 2016. Crit Care Med, vol.45, pp.486-552, 2017.

K. H. Polderman and A. Girbes, Drug intervention trials in sepsis: divergent results

, Lancet Lond Engl, vol.363, issue.9422, pp.1721-1724, 2004.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., , p.522

R. Bellomo, G. R. Bernard, J. D. Chiche, C. M. Coopersmith, R. S. Hotchkiss et al., The Third 524 International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA, vol.315, issue.8, pp.801-811, 2016.

C. J. Fielding and P. E. Fielding, Molecular physiology of reverse cholesterol transport, J 527 Lipid Res, vol.36, issue.2, pp.211-239, 1995.

D. J. Gordon, J. L. Probstfield, R. J. Garrison, J. D. Neaton, W. P. Castelli et al., High-density lipoprotein cholesterol and cardiovascular 530 disease. Four prospective American studies, Circulation, vol.79, issue.1, pp.8-15, 1989.

S. Erqou, S. Kaptoge, P. L. Perry, D. Angelantonio-532, E. Thompson et al., Emerging Risk Factors Collaboration

, Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular 534 mortality, JAMA, vol.302, issue.4, pp.412-435, 2009.

D. R. Jacobs, I. L. Mebane, S. I. Bangdiwala, M. H. Criqui, and H. A. Tyroler, High density 536 lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: 537 the follow-up study of the Lipid Research Clinics Prevalence Study, Am J Epidemiol, vol.131, issue.1, pp.32-47, 1990538-01.

E. M. Rubin, R. M. Krauss, E. A. Spangler, J. G. Verstuyft, and S. M. Clift, Inhibition of early 540 atherogenesis in transgenic mice by human apolipoprotein AI, Nature, vol.353, issue.6341, pp.265-272, 1991.

G. J. Miller, N. E. Miller, A. Kitamura, H. Iso, Y. Naito et al., Plasma-high-density-lipoprotein concentration and development 543 of ischaemic heart-disease, Lancet Lond Engl, vol.1, issue.7897, p.545, 1975.

M. Nakamura and T. Sankai, High-density lipoprotein cholesterol and premature coronary heart 546 disease in urban Japanese men, Circulation, vol.89, issue.6, p.12, 1994.

A. Wu, C. J. Hinds, and C. Thiemermann, High-density lipoproteins in sepsis and septic 548 shock: metabolism, actions, and therapeutic applications. Shock Augusta Ga, vol.21, p.13, 2004549-03.

G. Theilmeier, C. Schmidt, J. Herrmann, P. Keul, M. Schäfers et al., , p.551

J. Larmann, S. Hermann, J. Stypmann, O. Schober, R. Hildebrand et al., High-density 553 lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against 554 ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor, vol.114, pp.1403-1412, 2006555-09-26.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, Q. B. Dang et al., HDL and endothelial protection, Br 558 J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

M. C. Mcdonald, P. Dhadly, G. W. Cockerill, S. Cuzzocrea, H. Mota-filipe et al., , p.560

N. E. Miller, C. Thiemermann, C. J. Vesy, R. L. Kitchens, G. Wolfbauer et al., Lipopolysaccharide-564 binding protein and phospholipid transfer protein release lipopolysaccharides from gram-565 negative bacterial membranes, Infect Immun, vol.562, issue.20, pp.1025-1035, 1994.

D. M. Levine, T. S. Parker, T. M. Donnelly, A. Walsh, and A. L. Rubin, In vivo protection against 570 endotoxin by plasma high density lipoprotein, Proc Natl Acad Sci, vol.90, issue.24, pp.12040-12044, 1993.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., , p.573

M. Palgunachari, G. M. Anantharamaiah, and C. R. White, The apolipoprotein A-I mimetic peptide 4F 574 prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-2705, 2010.

Z. Zhang, G. Datta, Y. Zhang, A. P. Miller, P. Mochon et al.,

G. M. Anantharamaiah, C. White, H. J. Van-leeuwen, E. C. Heezius, G. M. Dallinga et al., Apolipoprotein A-I mimetic peptide treatment inhibits 577 inflammatory responses and improves survival in septic rats, Am J Physiol Heart Circ Physiol, vol.578, issue.2, p.22, 2003.

M. Trinder, K. R. Genga, H. J. Kong, L. L. Blauw, C. Lo et al., Cholesteryl Ester Transfer Protein 584 Influences High-Density Lipoprotein Levels and Survival in Sepsis, Am J Respir Crit Care, vol.585

. Med, , 2018.

S. Tanaka, J. Labreuche, E. Drumez, A. Harrois, S. Hamada et al., , p.587

J. Duranteau and O. Meilhac, Low HDL levels in sepsis versus trauma patients in intensive care 588 unit. Ann Intensive Care, vol.7, pp.60-589, 2017.

J. Y. Chien, J. S. Jerng, C. J. Yu, and P. C. Yang, Low serum level of high-density lipoprotein 590 cholesterol is a poor prognostic factor for severe sepsis, Critical care medicine, vol.591, issue.8, p.25, 2005.

S. Barlage, C. Gnewuch, G. Liebisch, Z. Wolf, F. X. Audebert et al., , p.593

B. K. Kramer, G. Rothe, and G. Schmitz, Changes in HDL-associated apolipoproteins relate to 594 mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care 595 Med, vol.35, pp.1877-1885, 2009.

S. Tanaka, D. Diallo, S. Delbosc, C. Genève, N. Zappella et al., High-density lipoprotein 598 (HDL) particle size and concentration changes in septic shock patients. Ann Intensive Care, vol.599, p.68, 2019.

J. Tardif, J. Grégoire, L. 'allier, P. L. , I. R. Lespérance et al., , p.601

C. Berry, R. Basser, M. A. Lavoie, M. C. Guertin, J. Rodés-cabau et al., Effects of reconstituted high-602 density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. 603 JAMA, vol.297, pp.1675-82, 2007.

M. N. Wg, B. De-courten, J. M. Forbes, F. Y. Yap, D. M. Kaye et al., High-density lipoprotein modulates 607 glucose metabolism in patients with type 2 diabetes mellitus. Circulation, Nat Protoc, vol.119, issue.15, p.31, 1998.

M. J. O'dwyer, M. H. Starczewska, J. Schrenzel, K. Zacharowski, D. J. Ecker et al., , p.614

D. Brealey, M. Singer, N. Libert, M. Wilks, and J. L. Vincent, The detection of microbial DNA but 615 not cultured bacteria is associated with increased mortality in patients with suspected sepsis-a 616 prospective multi-centre European observational study, Clin Microbiol Infect Off Publ Eur, p.617

F. Sun, X. G. Qu, and Z. Murine-bronchoalveolar-lavage, Soc Clin Microbiol Infect Dis, vol.23, issue.3, pp.208-209, 2017.

R. S. Moreira, M. Irigoyen, T. R. Sanches, R. A. Volpini, N. Camara et al., , p.621

M. H. Shimizu, A. C. Seguro, and L. Andrade, Apolipoprotein A-I mimetic peptide 4F attenuates 622 kidney injury, heart injury, and endothelial dysfunction in sepsis, Am J Physiol Regul Integr, vol.623

, Comp Physiol, vol.307, issue.5, p.34, 2014.

L. Guo, A. J. Zheng, Z. Howatt, D. A. Daugherty, A. Huang et al., High density 625 lipoprotein protects against polymicrobe-induced sepsis in mice, J Biol Chem, vol.288, issue.25, pp.17947-53, 2013.

X. Zhang, L. Wang, and B. Chen, Recombinant HDL (Milano) protects endotoxin-628 challenged rats from multiple organ injury and dysfunction, Biol Chem, vol.396, issue.1, p.37, 2004.

N. R. Aggarwal, L. S. King, D. 'alessio, and F. R. , Diverse macrophage populations mediate 633 acute lung inflammation and resolution, Am J Physiol Lung Cell Mol Physiol, vol.306, issue.8, pp.709-725, 2014.

V. Brinkmann and A. Zychlinsky, Beneficial suicide: why neutrophils die to make NETs

, Nat Rev Microbiol, vol.5, issue.8, p.39, 2007.

Y. M. Lo, T. H. Rainer, L. Y. Chan, N. M. Hjelm, and R. A. Cocks, Plasma DNA as a prognostic 638 marker in trauma patients, Clin Chem, vol.46, issue.3, p.40, 2000.

S. Margraf, T. Lögters, J. Reipen, J. Altrichter, M. Scholz et al., Neutrophil-derived 640 circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic 641 development of inflammatory second hit and sepsis, Shock Augusta Ga, vol.30, issue.4, pp.813-835, 2006.

K. Saukkonen, P. Lakkisto, V. Pettilä, M. Varpula, S. Karlsson et al.,

. Finnsepsis-study-group, Cell-free plasma DNA as a predictor of outcome in severe sepsis and 647 septic shock, Clin Chem, vol.54, issue.6, p.43, 2008.

A. Rhodes, S. J. Wort, H. Thomas, P. Collinson, and E. D. Bennett, Plasma DNA concentration 649 as a predictor of mortality and sepsis in critically ill patients, Crit Care Lond Engl, vol.650, issue.2, p.44, 2006.

S. Zeerleder, B. Zwart, W. A. Wuillemin, L. A. Aarden, A. Groeneveld et al., Elevated nucleosome 653 levels in systemic inflammation and sepsis, Crit Care Med, vol.31, issue.7, p.45, 2003.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, and Q. B. Dang, , p.655

E. , M. J. Levoye, A. Martin-ventura, J. L. Meilhac, and O. , HDL and endothelial protection. 656 British journal of pharmacology, vol.169, p.46, 2013.

G. W. Cockerill, K. A. Rye, J. R. Gamble, M. A. Vadas, and P. J. Barter, High-density lipoproteins 658 inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler 659 Thromb Vasc Biol, vol.15, p.47, 1995.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, issue.21, p.48, 2013.

M. A. Matthay, L. B. Ware, and G. A. Zimmerman, The acute respiratory distress syndrome, J 663 Clin Invest, vol.122, issue.8, pp.2731-2771, 2012.

C. Sheu, M. N. Gong, R. Zhai, F. Chen, E. K. Bajwa et al., , p.665

B. T. Thompson and D. C. Christiani, Clinical characteristics and outcomes of sepsis-related vs non-666 sepsis-related ARDS, Infect Immun, vol.138, issue.3, p.51, 2010.

H. Gupta, L. Dai, G. Datta, D. W. Garber, H. Grenett et al., , p.671

S. Handattu, S. H. Gianturco, W. A. Bradley, G. M. Anantharamaiah, and C. R. White, Inhibition of 672 lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide

, Circ Res, vol.97, issue.3, p.675, 2005.

S. J. Deventer and D. J. Gouma, Endotoxin-induced mortality in bile duct-ligated rats after 676 administration of reconstituted high-density lipoprotein. Hepatol Baltim Md, vol.32, pp.1289-99, 2000677-12.

J. Moreno, A. Ortega-gomez, A. Rubio-navarro, L. Louedec, and . Ho-tin,

G. Caligiuri, A. Nicoletti, A. Levoye, L. Plantier, and O. Meilhac, High-density lipoproteins 680 potentiate ?1-antitrypsin therapy in elastase-induced pulmonary emphysema, Am J Respir 681 Cell Mol Biol, vol.51, issue.4, pp.536-585, 2014.

M. Gibson, C. Korjian, S. Tricoci, P. Daaboul, Y. Yee et al., , p.683

P. G. Steg, A. M. Lincoff, J. J. Kastelein, R. Mehran, D. 'andrea et al., , vol.684

M. Zarebinski, T. O. Ophuis, and R. A. Harrington, Safety and Tolerability of CSL112, a 685 Reconstituted, Infusible, Plasma-Derived Apolipoprotein A-I, After Acute Myocardial 686 Infarction: The AEGIS-I Trial (ApoA-I Event Reducing in Ischemic Syndromes I)

A. C. Calkin, B. G. Drew, A. Ono, S. J. Duffy, M. V. Gordon et al., Reconstituted high-density lipoprotein attenuates 690 platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. 691 Circulation, Circulation, vol.134, issue.24, p.693, 2009.

M. A. Lauer, W. S. Sheldon, C. L. Grines, S. Halpern, T. Crowe et al., 694 Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute 695 coronary syndromes: a randomized controlled trial, JAMA, vol.290, issue.17, p.57, 2003.

D. Pajkrt, J. E. Doran, F. Koster, P. G. Lerch, B. Arnet et al., , p.697

S. J. Deventer, Antiinflammatory effects of reconstituted high-density lipoprotein during human 698 endotoxemia, J Exp Med, vol.184, issue.5, p.58, 1996.

D. Pajkrt, P. G. Lerch, T. Van-der-poll, M. Levi, M. Illi et al.,

A. Cate, J. W. Van-deventer, and S. J. , Differential effects of reconstituted high-density lipoprotein 701 on coagulation, fibrinolysis and platelet activation during human endotoxemia. Thromb 702 Haemost, vol.77, pp.303-310, 1997.

, High-density Lipoproteins during sepsis: from bench to bedside

T. Sébastien, , vol.1, p.3

, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI)

S. Ap-hp, Anesthésie-Réanimation

U. Inserm, Laboratory for Vascular Translational Science Bichat Hospital

S. Ap-hp, Anesthésie-Réanimation

, Laboratoire d'étude de la Microcirculation, Bio-CANVAS: biomarkers in

, CardioNeuroVascular DISEASES » UMRS, vol.942

U. Inserm, Physiopathologie et Epidémiologie des Maladies Respiratoires

, USA. measured by the uptake of a radiolabeled anti-E-selectin antibody. In this in vivo study, reconstituted HDL infusion significantly inhibited IL-1 ? -induced E-selectin expression

, Another study emphasized the fact that rHDLs attenuated adhesion molecule expression in a rodent model of endotoxin shock whereas pretreatment of LPS-injected rats with rHDL limited the expression of P-selectin and ICAM-1 caused by endotoxin in kidney (69)

, Moreover, Zhu et al. have shown in murine macrophages that human serum amyloid A (SAA) dramatically upregulates, the expression and secretion of a group of phospholipases (sPLA2-IIE and sPLA2-V), which are late pro-inflammatory mediators family (74). In this in vitro study using purified HDL, HDL dose-dependently attenuated SAAinduced secretion of both sPLA2-IIE and sPLA2-V. HDLs were also able to attenuate SAAinduced secretion of TLR4-dependent cytokines and chemokines (IL-6, that HDLs stimulate the transcriptional regulator ATF3, which downregulates inflammatory pathways that may in turn decrease the inflammatory response in case of sepsis (73)

, Microvascular vasodilation and endothelium repair

, HDLs have the property to stimulate the endothelial NO synthase (eNOS), which is involved in inhibiting the adhesion of monocytes to the endothelium and promotes microvascular vasodilation (75). This up-regulation of eNOS expression is dependent on SR-B1 receptor

, HDL particles can also stimulate the production of prostacyclin, which is a powerful vasodilator. Kontush et al. have shown that HDL3 sub-fraction had a better capacity to improve NO production than HDL2 because of its enrichment of sphingosine-1-phosphate (S1P), Specific sub-classes of HDL particles bind with different affinity to SR-B1

. Moreover, HDL binding to SR-BI sequentially activates Src family kinases, PI3K, Akt and MAPK. These events lead to increase Rac activity, lamellipodia formation, and ultimately to enhance endothelial cell migration, which improves endothelial repair and monolayer

, HDLs stimulate the endothelial production of NO and prostacyclin which are inhibitors of platelet activation. Furthermore, HDLs prevent platelet hyper-reactivity by limiting intraplatelet cholesterol overload and the interaction of apoA-1 on platelet ABCA1 and SRB1 receptors (79), vol.81

, Antioxidant properties

, The authors performed a co-culture of human aortic endothelial cells and smooth muscle cells pretreated with HDLs isolated from wild-type or PON1-knockout mice. HDLs isolated from PON1 +/+ mice were able to inhibit lipid hydroperoxide (LOOH) accumulation in human LDLs and greatly reduced the amount and chemotactic activity of MCP-1. HDLs from PON1 -/-mice where dysfunctional in these aspects (90). The global antioxidant effect of HDLs is evaluated via their capacity to inhibit LDL oxidation. This property consists in the transfer of oxidized lipids from oxidized LDL (oxLDL) (hydroperoxides and lysophosphatidylcholine) to HDL particles and by the inactivation of oxidized lipids (91), PON1 is able to hydrolyze lipid peroxides and especially oxidized cholesteryl esters and phospholipids, vol.88, p.92

, Anti-apoptotic properties

, In this study, Muller et al. have shown that pretreatment of HMEC-1 cells with HDLs, followed by co-incubation with oxLDLs significantly reduced the time-dependent phosphorylation of IRE1? and elF2?, two major endoplasmic reticulum stress sensors, HDLs exert a protective effect on endothelial cell apoptosis by interfering with both receptormediated death signaling and mitochondrial apoptotic pathways

R. P. Dellinger and . Foreword, The Future of Sepsis Performance Improvement, Crit Care Med, vol.43, issue.9, pp.1787-1796, 2015.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The Third International Consensus Definitions for Sepsis and Septic Shock

, JAMA, vol.315, issue.8, pp.801-811, 2016.

D. C. Angus, W. T. Linde-zwirble, J. Lidicker, G. Clermont, J. Carcillo et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit Care Med, vol.29, issue.7, pp.1303-1313, 2001.

K. Kaukonen, M. Bailey, S. Suzuki, D. Pilcher, and R. Bellomo, Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, JAMA, vol.311, issue.13, pp.1308-1324, 2000.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.369, issue.21, p.2063, 2013.

M. T. Cooney, A. Dudina, D. Bacquer, D. Wilhelmsen, L. Sans et al., HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk, Atherosclerosis, vol.206, issue.2, pp.611-617, 2009.

J. R. Nofer, B. Kehrel, M. Fobker, B. Levkau, G. Assmann et al., A: HDL and arteriosclerosis: beyond reverse cholesterol transport, Atherosclerosis, vol.161, issue.1, pp.1-16, 2002.

A. Tran-dinh, D. Diallo, S. Delbosc, L. M. Varela-perez, Q. B. Dang et al., HDL and endothelial protection, Br J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

M. M. Wurfel, S. T. Kunitake, H. Lichenstein, J. P. Kane, and S. D. Wright, Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS, J Exp Med, vol.180, issue.3, pp.1025-1035, 1994.

R. P. Dellinger, J. F. Tomayko, D. C. Angus, S. Opal, M. A. Cupo et al.,

, Efficacy and safety of a phospholipid emulsion (GR270773) in Gram-negative severe sepsis: results of a phase II multicenter, randomized, placebo-controlled, dose-finding clinical trial, Crit Care Med, vol.37, issue.11, pp.2929-2967, 2009.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-2705, 2010.

H. Gupta, L. Dai, G. Datta, D. W. Garber, H. Grenett et al., Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide, Circ Res, vol.97, issue.3, pp.236-279, 2005.

G. Assmann, R. J. Highet, E. A. Sokoloski, and H. B. Brewer, 13C nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc Natl Acad Sci U S A, vol.71, issue.9, pp.3701-3706, 1974.

G. W. Cockerill and S. Reed, High-density lipoprotein: multipotent effects on cells of the vasculature, Int Rev Cytol, vol.188, pp.257-97, 1999.

L. Camont, M. J. Chapman, and A. Kontush, Biological activities of HDL subpopulations and their relevance to cardiovascular disease, Trends Mol Med, vol.17, issue.10, pp.594-603, 2011.

O. F. Delalla, H. A. Elliott, J. Gofman, A. V. Nichols, R. M. Krauss et al., Ultracentrifugal studies of high density serum lipoproteins in clinically healthy adults, Methods Enzymol, vol.179, issue.2, pp.417-448, 1954.

B. F. Asztalos and E. J. Schaefer, High-density lipoprotein subpopulations in pathologic conditions, Am J Cardiol, vol.91, issue.7A, pp.12-17, 2003.

R. S. Rosenson, J. D. Otvos, and D. S. Freedman, Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial, Am J Cardiol, vol.90, issue.2, pp.89-94, 2002.

S. Lund-katz, L. Liu, S. T. Thuahnai, and M. C. Phillips, High density lipoprotein structure, Front Biosci J Virtual Libr, vol.8, pp.1044-1054, 2003.

M. C. Phillips, New insights into the determination of HDL structure by apolipoproteins: Thematic review series: high density lipoprotein structure, function, and metabolism, J Lipid Res, vol.54, issue.8, pp.2034-2082, 2013.

H. Karlsson, P. Leanderson, C. Tagesson, and M. Lindahl, Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry, Proteomics, vol.5, issue.2, pp.551-65, 2005.

H. Karlsson, P. Leanderson, C. Tagesson, and M. Lindahl, Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry, Proteomics, vol.5, issue.5, pp.1431-1476, 2005.

W. S. Davidson, R. Silva, S. Chantepie, W. R. Lagor, M. J. Chapman et al., Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function, Arterioscler Thromb Vasc Biol, vol.29, issue.6, pp.746-56, 2007.

K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nat Cell Biol, vol.13, issue.4, pp.423-456, 2011.

N. E. Miller, D. S. Thelle, O. H. Forde, and O. D. Mjos, The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study, Lancet Lond Engl, vol.1, issue.8019, pp.965-973, 1977.

T. Gordon, W. P. Castelli, M. C. Hjortland, W. B. Kannel, and T. R. Dawber, High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study, Am J Med, vol.62, issue.5, pp.707-721, 1977.

R. S. Rosenson, H. B. Brewer, B. J. Ansell, P. Barter, M. J. Chapman et al.,

H. Dysfunctional, Nat Rev Cardiol, vol.13, issue.1, pp.48-60, 2016.

N. Wang, D. L. Silver, P. Costet, and A. R. Tall, Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1, J Biol Chem, vol.275, issue.42, pp.33053-33061, 2000.

K. A. Rye, M. A. Clay, and P. J. Barter, Remodelling of high density lipoproteins by plasma factors, Atherosclerosis, vol.145, issue.2, pp.227-265, 1999.

C. J. Fielding, V. G. Shore, and P. E. Fielding, A protein cofactor of lecithin:cholesterol acyltransferase, Biochem Biophys Res Commun, vol.46, issue.4, pp.1493-1501, 1972.

V. I. Zannis, A. Chroni, and M. Krieger, Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL, J Mol Med Berl Ger, vol.84, issue.4, pp.276-94, 2006.

P. J. Barter, H. B. Brewer, M. J. Chapman, C. H. Hennekens, D. J. Rader et al., Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis, Arterioscler Thromb Vasc Biol, vol.23, issue.2, pp.160-167, 2003.

W. Annema and U. Tietge, Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport, Curr Atheroscler Rep, vol.13, issue.3, pp.257-65, 2011.

X. Jiang, Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis, J Lipid Res, vol.59, issue.5, pp.764-71, 2018.

A. Jahangiri, D. J. Rader, D. Marchadier, L. K. Curtiss, D. J. Bonnet et al., Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I, J Lipid Res, vol.46, issue.5, pp.896-903, 2005.

R. Kozyraki, J. Fyfe, M. Kristiansen, C. Gerdes, C. Jacobsen et al., The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein, Nat Med, vol.5, issue.6, pp.656-61, 1999.

L. O. Martinez, S. Jacquet, J. Esteve, C. Rolland, E. Cabezón et al., Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, vol.421, issue.6918, pp.75-84, 2003.

M. Brundert, J. Heeren, M. Merkel, A. Carambia, J. Herkel et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells, J Lipid Res, vol.52, issue.4, pp.745-58, 2011.

C. Alexander and E. T. Rietschel, Bacterial lipopolysaccharides and innate immunity, J Endotoxin Res, vol.7, issue.3, pp.167-202, 2001.

H. W. Harris, C. Grunfeld, K. R. Feingold, and J. H. Rapp, Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice, J Clin Invest, vol.86, issue.3, pp.696-702, 1990.

J. B. Eggesbø, T. Lyberg, T. Aspelin, I. Hjermann, and P. Kierulf, Different binding of 125I-LPS to plasma proteins from persons with high or low HDL, Scand J Clin Lab Invest, vol.56, issue.6, pp.533-576, 1996.

R. I. Roth, F. C. Levin, and J. Levin, Distribution of bacterial endotoxin in human and rabbit blood and effects of stroma-free hemoglobin, Infect Immun, vol.61, issue.8, pp.1313-1337, 1978.

J. C. Mathison, E. Wolfson, and R. J. Ulevitch, Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits, J Clin Invest, vol.81, issue.6, pp.1925-1962, 1988.

R. J. Ulevitch, A. R. Johnston, and D. B. Weinstein, New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides, J Clin Invest, vol.64, issue.5, pp.1516-1540, 1979.

D. P. Rall, J. R. Gaskins, and M. G. Kelly, Reduction of febrile response to bacterial polysaccharide following incubation with serum, Am J Physiol, vol.188, issue.3, pp.559-62, 1957.

T. S. Parker, D. M. Levine, J. C. Chang, J. Laxer, C. C. Coffin et al., Reconstituted highdensity lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood, Infect Immun, vol.63, issue.1, pp.253-261, 1995.

J. Levels, P. R. Abraham, A. Van-den-ende, and S. Van-deventer, Distribution and Kinetics of Lipoprotein-Bound Endotoxin, Infect Immun, vol.69, issue.5, pp.2821-2829, 2001.

R. L. Kitchens, P. A. Thompson, R. S. Munford, and G. E. O'keefe, Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins, J Lipid Res, vol.44, issue.12, pp.2339-2387, 2003.

D. M. Levine, T. S. Parker, T. M. Donnelly, A. Walsh, and A. L. Rubin, In vivo protection against endotoxin by plasma high density lipoprotein, Proc Natl Acad Sci, vol.90, issue.24, pp.12040-12044, 1993.

C. J. Kirschning, J. Au-young, N. Lamping, D. Reuter, D. Pfeil et al., Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins, Genomics, vol.46, issue.3, pp.416-441, 1997.

P. S. Tobias, K. Soldau, and R. J. Ulevitch, Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum, J Exp Med, vol.164, issue.3, pp.777-93, 1986.

C. J. Vesy, R. L. Kitchens, G. Wolfbauer, J. J. Albers, and R. S. Munford, Lipopolysaccharidebinding protein and phospholipid transfer protein release lipopolysaccharides from gramnegative bacterial membranes, Infect Immun, vol.68, issue.5, pp.2410-2417, 2000.

N. Lamping, R. Dettmer, N. W. Schröder, D. Pfeil, W. Hallatschek et al., LPSbinding protein protects mice from septic shock caused by LPS or gram-negative bacteria, J Clin Invest, vol.101, issue.10, pp.2065-71, 1998.

B. J. Van-lenten, A. M. Fogelman, M. E. Haberland, and P. A. Edwards, The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide, Proc Natl Acad Sci, vol.83, issue.8, pp.2704-2712, 1986.

K. Brandenburg, G. Jürgens, J. Andrä, B. Lindner, M. Koch et al.,

, Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins, Eur J Biochem, vol.269, issue.23, pp.5972-81, 2002.

S. Morath, S. Von-aulock, and T. Hartung, Structure/function relationships of lipoteichoic acids, J Endotoxin Res, vol.11, issue.6, pp.348-56, 2005.

F. C. Neuhaus and J. Baddiley, A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria, Microbiol Mol Biol Rev MMBR, vol.67, issue.4, pp.686-723, 2003.

S. J. De-kimpe, M. Kengatharan, C. Thiemermann, J. Vane, P. R. Abraham et al., The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure, Proc Natl Acad Sci U S A, vol.92, issue.22, pp.3280-3284, 1995.

C. Grunfeld, M. Marshall, J. K. Shigenaga, A. H. Moser, P. Tobias et al., Lipoproteins inhibit macrophage activation by lipoteichoic acid, J Lipid Res, vol.40, issue.2, pp.245-52, 1999.

C. Parent and P. Q. Eichacker, Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules, Infect Dis Clin North Am, vol.13, issue.2, pp.427-474, 1999.

K. Reinhart, O. Bayer, F. Brunkhorst, and M. Meisner, Markers of endothelial damage in organ dysfunction and sepsis, Crit Care Med, vol.30, issue.5, pp.302-312, 2002.

D. E. Joyce, D. R. Nelson, and B. W. Grinnell, Leukocyte and endothelial cell interactions in sepsis: relevance of the protein C pathway, Crit Care Med, vol.32, issue.5, pp.280-286, 2004.

G. W. Cockerill, K. A. Rye, J. R. Gamble, M. A. Vadas, and P. J. Barter, High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules, Arterioscler Thromb Vasc Biol, vol.15, issue.11, pp.1987-94, 1995.

G. W. Cockerill, T. Y. Huehns, A. Weerasinghe, C. Stocker, P. G. Lerch et al., Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation, Circulation, vol.103, issue.1, pp.108-120, 2001.

M. C. Mcdonald, P. Dhadly, G. W. Cockerill, S. Cuzzocrea, H. Mota-filipe et al., Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock, Shock, vol.20, issue.6, pp.551-557, 2003.

S. Park, J. Park, J. Kang, and Y. Kang, Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression, Int J Biochem Cell Biol, vol.35, issue.2, pp.168-82, 2003.

M. Suzuki, D. K. Pritchard, L. Becker, A. N. Hoofnagle, N. Tanimura et al.,

, High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation, vol.122, pp.1919-1946, 2010.

C. Mineo and P. W. Shaul, Novel biological functions of high-density lipoprotein cholesterol, Circ Res, vol.111, issue.8, pp.1079-90, 2012.

D. De-nardo, L. I. Labzin, H. Kono, R. Seki, S. V. Schmidt et al., High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3, Nat Immunol, vol.15, issue.2, pp.152-60, 2014.

S. Zhu, Y. Wang, W. Chen, W. Li, A. Wang et al., High-Density Lipoprotein (HDL) Counter-Regulates Serum Amyloid A (SAA)-Induced sPLA2-IIE and sPLA2-V Expression in Macrophages, PloS One, vol.11, issue.11, p.167468, 2016.

Y. Zhao, P. M. Vanhoutte, and S. Leung, Vascular nitric oxide: Beyond eNOS, J Pharmacol Sci, vol.129, issue.2, pp.83-94, 2015.

K. N. Liadaki, T. Liu, S. Xu, B. Y. Ishida, P. N. Duchateaux et al., Binding of high density lipoprotein (HDL) and discoidal reconstituted HDL to the HDL receptor scavenger receptor class B type I. Effect of lipid association and APOA-I mutations on receptor binding, J Biol Chem, vol.275, issue.28, pp.21262-71, 2000.

A. Kontush, P. Therond, A. Zerrad, M. Couturier, A. Négre-salvayre et al., Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities, Arterioscler Thromb Vasc Biol, vol.27, issue.8, pp.1843-1852, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409657

C. Mineo and P. W. Shaul, Role of high-density lipoprotein and scavenger receptor B type I in the promotion of endothelial repair, Trends Cardiovasc Med, vol.17, issue.5, pp.156-61, 2007.

H. Imachi, K. Murao, W. Cao, S. Tada, T. Taminato et al., Expression of human scavenger receptor B1 on and in human platelets, Arterioscler Thromb Vasc Biol, vol.23, issue.5, pp.898-904, 2003.

M. Van-der-stoep, S. Korporaal, V. Eck-m-;-viswambharan, H. , M. Zhu et al., Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase, Cardiovasc Res, vol.103, issue.3, pp.918-943, 2004.

M. Riwanto and U. Landmesser, High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease, J Lipid Res, vol.54, issue.12, pp.3227-3270, 2013.

R. W. James and S. P. Deakin, The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med, vol.37, pp.1986-94, 2004.

M. I. Mackness, P. N. Durrington, B. Mackness, A. Tward, Y. Xia et al., Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice, Curr Opin Lipidol, vol.11, issue.4, pp.484-90, 2000.

M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-parmo et al.,

A. D. Watson, J. A. Berliner, S. Y. Hama, L. Du, B. N. Faull et al., Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions, vol.101, pp.2882-91, 1995.

M. Aviram, E. Hardak, J. Vaya, S. Mahmood, S. Milo et al., Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities, Circulation, vol.101, issue.21, pp.2510-2517, 2000.

J. Yan, J. Lee, J. Lee, J. Huh, S. Kim et al., Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis, Nat Med, vol.10, issue.2, pp.284-291, 1998.

J. K. Christison, K. A. Rye, and R. Stocker, Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein, J Lipid Res, vol.36, issue.9, pp.2017-2043, 1995.

S. Kopprasch, J. Pietzsch, and J. Graessler, The protective effects of HDL and its constituents against neutrophil respiratory burst activation by hypochlorite-oxidized LDL, Mol Cell Biochem, vol.258, issue.1-2, pp.121-128, 2004.

H. F. Galley, Oxidative stress and mitochondrial dysfunction in sepsis, Br J Anaesth, vol.107, issue.1, pp.57-64, 2011.

I. Suc, I. Escargueil-blanc, M. Troly, R. Salvayre, A. Nègre-salvayre et al., ApoA prevent cell death of endothelial cells induced by oxidized LDL, Arterioscler Thromb Vasc Biol, vol.17, issue.10, pp.2158-66, 1997.

M. Sugano, K. Tsuchida, and N. Makino, High-density lipoproteins protect endothelial cells from tumor necrosis factor-alpha-induced apoptosis, Biochem Biophys Res Commun, vol.272, issue.3, pp.872-878, 2000.

C. Muller, R. Salvayre, A. Nègre-salvayre, and C. Vindis, HDLs inhibit endoplasmic reticulum stress and autophagic response induced by oxidized LDLs, Cell Death Differ, vol.18, issue.5, pp.817-845, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02352448

J. A. De-souza, C. Vindis, A. Nègre-salvayre, K. Rye, M. Couturier et al.,

, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I, J Cell Mol Med, vol.14, issue.3, pp.608-628, 2010.

J. R. Nofer, B. Levkau, I. Wolinska, R. Junker, M. Fobker et al., Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDLassociated lysosphingolipids, Crit Care Med, vol.276, issue.37, pp.584-593, 1996.

B. R. Gordon, T. S. Parker, D. M. Levine, S. D. Saal, J. C. Wang et al., Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients, Crit Care Med, vol.29, issue.8, pp.1563-1571, 2001.

H. J. Van-leeuwen, E. C. Heezius, G. M. Dallinga, J. A. Van-strijp, J. Verhoef et al., Lipoprotein metabolism in patients with severe sepsis, Critical care medicine, vol.31, issue.5, pp.1359-1366, 2003.

S. Barlage, C. Gnewuch, G. Liebisch, Z. Wolf, F. X. Audebert et al., Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation, Intensive Care Med, vol.35, issue.11, pp.1877-1885, 2009.

R. Shor, J. Wainstein, D. Oz, M. Boaz, Z. Matas et al., Low HDL levels and the risk of death, sepsis and malignancy, Clin Res Cardiol Off J Ger Card Soc, vol.97, issue.4, pp.227-260, 2008.

J. Y. Chien, J. S. Jerng, C. J. Yu, and P. C. Yang, Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis, Critical care medicine, vol.33, issue.8, pp.1688-1693, 2005.

M. Cirstea, K. R. Walley, J. A. Russell, L. R. Brunham, K. R. Genga et al., Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis, J Crit Care, vol.38, pp.289-94, 2017.

S. Tanaka, J. Labreuche, E. Drumez, A. Harrois, S. Hamada et al., Low HDL levels in sepsis versus trauma patients in intensive care unit. Ann Intensive Care, vol.7, p.60, 2017.

S. H. Lee, M. S. Park, B. H. Park, W. J. Jung, I. S. Lee et al., Prognostic Implications of Serum Lipid Metabolism over Time during Sepsis, p.789298, 2015.

A. Lekkou, A. Mouzaki, D. Siagris, I. Ravani, and C. A. Gogos, Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis, J Crit Care, vol.29, issue.5, pp.723-730, 2014.

A. Pirillo, A. L. Catapano, and G. D. Norata, HDL in infectious diseases and sepsis, Handb Exp Pharmacol, vol.224, pp.483-508, 2015.

M. Trinder, K. R. Genga, H. J. Kong, L. L. Blauw, C. Lo et al., Cholesteryl Ester Transfer Protein Influences High-Density Lipoprotein Levels and Survival in Sepsis, Am J Respir Crit Care Med, 2018.

C. L. Vermont, M. Den-brinker, N. Kâkeci, E. D. De-kleijn, Y. B. De-rijke et al., Serum lipids and disease severity in children with severe meningococcal sepsis, Crit Care Med, vol.33, issue.7, pp.1610-1615, 2005.

M. Tsai, Y. Peng, Y. Chen, L. Tian, Y. Fang et al., Low serum concentration of apolipoprotein A-I is an indicator of poor prognosis in cirrhotic patients with severe sepsis, J Hepatol, vol.50, issue.5, pp.906-921, 2009.

R. Genga, K. Lo, C. Cirstea, M. Zhou, G. Walley et al., Two-year follow-up of patients with septic shock presenting with low HDL: the effect upon acute kidney injury, death and estimated glomerular filtration rate, J Intern Med, vol.281, issue.5, pp.518-547, 2017.

C. Pierrakos and J. Vincent, Sepsis biomarkers: a review, Crit Care Lond Engl, vol.14, issue.1, p.15, 2010.

W. Khovidhunkit, M. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser et al., Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host, J Lipid Res, vol.45, issue.7, pp.1169-96, 2004.

W. Khovidhunkit, R. A. Memon, K. R. Feingold, and C. Grunfeld, Infection and inflammationinduced proatherogenic changes of lipoproteins, J Infect Dis, vol.181, issue.3, pp.462-472, 2000.

K. Sammalkorpi, V. Valtonen, Y. Kerttula, E. Nikkilä, and M. R. Taskinen, Changes in serum lipoprotein pattern induced by acute infections, Metabolism, vol.37, issue.9, pp.859-65, 1988.

M. De-la-llera-moya, F. C. Mcgillicuddy, C. C. Hinkle, M. Byrne, M. R. Joshi et al., Inflammation modulates human HDL composition and function in vivo, Atherosclerosis, vol.222, issue.2, pp.390-394, 2012.

D. R. Van-der-westhuyzen, F. C. De-beer, and N. R. Webb, HDL cholesterol transport during inflammation, Curr Opin Lipidol, vol.18, issue.2, pp.147-51, 2007.

A. Jahangiri, M. C. De-beer, V. Noffsinger, L. R. Tannock, C. Ramaiah et al., HDL remodeling during the acute phase response, Arterioscler Thromb Vasc Biol, vol.29, issue.2, pp.261-268, 2009.

M. Hacquebard, A. Ducart, D. Schmartz, W. J. Malaisse, and Y. A. Carpentier, Changes in plasma LDL and HDL composition in patients undergoing cardiac surgery, Lipids, vol.42, issue.12, pp.1143-53, 2007.

F. Novak, L. Vavrova, J. Kodydkova, F. Novak, M. Hynkova et al., Decreased paraoxonase activity in critically ill patients with sepsis, Clin Exp Med, vol.10, issue.1, pp.21-26, 2010.

M. Kotosai, S. Shimada, M. Kanda, N. Matsuda, K. Sekido et al., Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability, Lipids, vol.48, issue.6, pp.569-78, 2013.

B. J. Van-lenten, S. Y. Hama, F. C. De-beer, D. M. Stafforini, T. M. Mcintyre et al., Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures, J Clin Invest, vol.96, issue.6, pp.2758-67, 1995.

T. Vaisar, C. Tang, I. Babenko, P. Hutchins, J. Wimberger et al., Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity, J Lipid Res, vol.56, issue.8, pp.1519-1549, 2015.

N. K. Sharma, A. K. Tashima, M. Brunialti, E. R. Ferreira, R. Torquato et al., Proteomic study revealed cellular assembly and lipid metabolism dysregulation in sepsis secondary to community-acquired pneumonia. Sci Rep, vol.7, p.15606, 2017.

N. K. Sharma, B. L. Ferreira, A. K. Tashima, M. Brunialti, R. Torquato et al., Lipid metabolism impairment in patients with sepsis secondary to hospital acquired pneumonia, a proteomic analysis, Clin Proteomics, vol.16, p.29, 2019.

F. C. Mcgillicuddy, M. Moya, C. C. Hinkle, M. R. Joshi, E. H. Chiquoine et al., Inflammation impairs reverse cholesterol transport in vivo, Circulation, vol.119, issue.8, pp.1135-1180, 2009.

P. Malik, S. Z. Berisha, J. Santore, C. Agatisa-boyle, G. Brubaker et al., Zymosanmediated inflammation impairs in vivo reverse cholesterol transport, J Lipid Res, vol.52, issue.5, pp.951-958, 2011.

K. A. Smoak, J. J. Aloor, J. Madenspacher, B. A. Merrick, J. B. Collins et al., Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation, Cell Metab, vol.11, issue.6, pp.493-502, 2009.

F. W. Guirgis, C. Leeuwenburgh, V. Grijalva, J. Bowman, C. Kalynych et al., Older Patients with Early Sepsis: A Subanalysis of a Prospective Pilot Study. Shock Augusta Ga, 2017.

G. Ortiz-munoz, D. Couret, B. Lapergue, E. Bruckert, E. Meseguer et al., Dysfunctional HDL in acute stroke, Atherosclerosis, vol.253, pp.75-80, 2016.

F. W. Guirgis, S. Dodani, L. Moldawer, C. Leeuwenburgh, J. Bowman et al., Exploring the Predictive Ability of Dysfunctional High-Density Lipoprotein for Adverse Outcomes in Emergency Department Patients with Sepsis: A Preliminary Investigation, Shock Augusta Ga, vol.48, issue.5, pp.539-583, 2017.

F. Zimetti, D. Vuono, S. Gomaraschi, M. Adorni, M. P. Favari et al., Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction, J Lipid Res, vol.58, issue.10, pp.2051-60, 2017.

S. Tanaka, D. Diallo, S. Delbosc, C. Genève, N. Zappella et al., Highdensity lipoprotein (HDL) particle size and concentration changes in septic shock patients. Ann Intensive Care, vol.9, p.68, 2019.

K. El-harchaoui, B. J. Arsenault, R. Franssen, J. Després, G. K. Hovingh et al., High-density lipoprotein particle size and concentration and coronary risk, Ann Intern Med, vol.150, issue.2, pp.84-93, 2009.

R. K. Mutharasan, C. S. Thaxton, J. Berry, M. L. Daviglus, C. Yuan et al., HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the Chicago Healthy Aging Study, J Lipid Res, vol.58, issue.3, pp.600-606, 2017.

C. Ditah, J. Otvos, H. Nassar, D. Shaham, R. Sinnreich et al., Small and medium sized HDL particles are protectively associated with coronary calcification in a crosssectional population-based sample, Atherosclerosis, vol.251, pp.124-155, 2016.

E. E. Morin, L. Guo, A. Schwendeman, and X. Li, HDL in sepsis -risk factor and therapeutic approach, Front Pharmacol, vol.6, p.244, 2015.

L. Dai, G. Datta, Z. Zhang, H. Gupta, R. Patel et al., The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats, J Lipid Res, vol.51, issue.9, pp.2695-705, 2010.

M. Navab, G. M. Anantharamaiah, S. T. Reddy, S. Hama, G. Hough et al.,

, Apolipoprotein A-I mimetic peptides, Arterioscler Thromb Vasc Biol, vol.25, issue.7, pp.1325-1356, 2005.

G. Datta, D. W. Garber, B. H. Chung, M. Chaddha, N. Dashti et al., Cationic domain 141-150 of apoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo, J Lipid Res, vol.42, issue.6, pp.959-66, 2001.

Z. Zhang, G. Datta, Y. Zhang, A. P. Miller, P. Mochon et al., Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats, Am J Physiol Heart Circ Physiol, vol.297, issue.2, pp.866-873, 2009.

G. Datta, H. Gupta, Z. Zhang, P. Mayakonda, G. M. Anantharamaiah et al., HDL Mimetic Peptide Administration Improves Left Ventricular Filling and Cardiac output in Lipopolysaccharide-Treated Rats, J Clin Exp Cardiol, vol.2, issue.172, 2011.

R. S. Moreira, M. Irigoyen, T. R. Sanches, R. A. Volpini, N. Camara et al., Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis, Am J Physiol Regul Integr Comp Physiol, vol.307, issue.5, pp.514-524, 2014.

X. Zhang, L. Wang, and B. Chen, Recombinant HDL (Milano) protects endotoxinchallenged rats from multiple organ injury and dysfunction, Biol Chem, vol.396, issue.1, pp.53-60, 2015.

P. G. Lerch, V. Förtsch, G. Hodler, and R. Bolli, Production and characterization of a reconstituted high density lipoprotein for therapeutic applications, Vox Sang, vol.71, issue.3, pp.155-64, 1996.

W. Y. Kwon, G. J. Suh, K. S. Kim, Y. H. Kwak, and K. Kim, 4F, apolipoprotein AI mimetic peptide, attenuates acute lung injury and improves survival in endotoxemic rats, J Trauma Acute Care Surg, vol.72, issue.6, pp.1576-83, 2012.

O. F. Sharifov, X. Xu, A. Gaggar, W. E. Grizzle, V. K. Mishra et al., Antiinflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis, PloS One, vol.8, issue.5, p.64486, 2013.

A. T. Casas, A. P. Hubsch, B. C. Rogers, and J. E. Doran, Reconstituted high-density lipoprotein reduces LPS-stimulated TNF alpha, J Surg Res, vol.59, issue.5, pp.544-52, 1995.

A. T. Casas, A. P. Hubsch, and J. E. Doran, Effects of reconstituted high-density lipoprotein in persistent gram-negative bacteremia, Am Surg, vol.62, issue.5, pp.350-355, 1996.

M. Navab, S. T. Reddy, B. J. Van-lenten, and A. M. Fogelman, HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms, Nat Rev Cardiol, vol.8, issue.4, pp.222-254, 2011.

H. Gupta, L. Dai, G. Datta, D. W. Garber, H. Grenett et al., Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide, Circ Res, vol.97, issue.3, pp.236-243, 2005.

A. T. Casas, A. P. Hubsch, and J. E. Doran, Effects of reconstituted high-density lipoprotein in persistent gram-negative bacteremia, Am Surg, vol.62, issue.5, pp.350-355, 1996.

S. Patel, B. G. Drew, S. Nakhla, S. J. Duffy, A. J. Murphy et al., Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes, J Am Coll Cardiol, vol.53, issue.11, pp.962-71, 2009.

J. Tardif, J. Grégoire, L. 'allier, P. L. , I. R. Lespérance et al., Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial, JAMA, vol.297, issue.15, pp.1675-82, 2007.

B. R. Gordon, T. S. Parker, D. M. Levine, S. D. Saal, L. C. Hudgins et al., Safety and pharmacokinetics of an endotoxin-binding phospholipid emulsion, Ann Pharmacother, vol.37, issue.7-8, pp.943-50, 2003.

B. R. Gordon, T. S. Parker, D. M. Levine, F. Feuerbach, S. D. Saal et al., Neutralization of endotoxin by a phospholipid emulsion in healthy volunteers, J Infect Dis, vol.191, issue.9, pp.1515-1537, 2005.

W. W. Winchell, J. Hardy, D. M. Levine, T. S. Parker, B. R. Gordon et al., Effect of administration of a phospholipid emulsion on the initial response of horses administered endotoxin, Am J Vet Res, vol.63, issue.10, pp.1370-1378, 2002.

R. D. Goldfarb, T. S. Parker, D. M. Levine, D. Glock, I. Akhter et al., Proteinfree phospholipid emulsion treatment improved cardiopulmonary function and survival in porcine sepsis, Am J Physiol Regul Integr Comp Physiol, vol.284, issue.2, pp.550-557, 2003.

D. Pajkrt, J. E. Doran, F. Koster, P. G. Lerch, B. Arnet et al., Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia, J Exp Med, vol.184, issue.5, pp.1601-1609, 1996.

D. Pajkrt, P. G. Lerch, T. Van-der-poll, M. Levi, M. Illi et al., Differential effects of reconstituted high-density lipoprotein on coagulation, fibrinolysis and platelet activation during human endotoxemia, Thromb Haemost, vol.77, issue.2, pp.303-310, 1997.