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I Introduction I

Comme l'indique le titre, les travaux présentés dans ce mémoire constituent une con-
tribution dans le domaine de l’analyse et la mécanique unilatérale. Il s’agit du fruit
de six années de recherches commencées en septembre 1994. La plupart des travaux
présentés portent sur le développement de méthodes d’analyse pour 1’étude théorique
des problémes de la mécanique du contact. Ces problémes sont modélisés sous forme
de systémes d’équations et d’inéquations aux dérivées partielles mettant en jeu plusieurs
sortes de phénomeénes non linéaires tels que les phénomenes de frottement, d’'impact, de
délamination, d’adhérence, d’usure, d’endommagement, etc. L’objectif de ces travaux
est de trouver des formulations faibles pour les modeles étudiés et de procéder a I’étude
théorique de ces formulations sous certaines hypotéses. Les formulations faibles auxquelles
on aboutit dans ces travaux sont en général des couplages entre des équations et des
inéquations variationnelles. Il se peut que l’on aboutisse & une inéquation hémivariation-
nelle comme c’est le cas dans 'un des travaux. Dans les études théoriques menées,
différents outils mathématiques ont été explorés : analyse fonctionnelle, analyse convexe,

théorie des semi-groupes, etc.

Les travaux contenus dans ce mémoire sont soit parus, soit acceptés, soit soumis pour
publication. Ils sont présentés dans l'ordre chronologique de leur réalisation. Chaque
article est présenté dans sa version parue ou acceptée et il est précédé d’un court descriptif
en frangais résumant son contenu technique. On peut regrouper ces articles en trois
catégories de probléemes qui montrent le cheminement progressif que j’ai suivi dans le

domaine.

La premiere catégorie concerne les problemes sans frottement pour les matériaux vis-
coplastiques. Il s’agit d’un premier travail qui consiste & généraliser tout un groupe de
problémes quasistatiques ou dynamiques du type déplacement-traction sous une méme
forme suivi de quelques travaux portant sur des problémes de contact sans frottement

suivant les conditions de Signorini.

La seconde catégorie traite de quelques problémes quasistatiques de contact avec frot-
tement pour les matériaux élastiques, viscoélastiques ou viscoplastiques. Plusieurs types
de contact avec frottement sont considérés : loi de Tresca, loi de Coulomb, compliance
normale, usure, etc. Ce travail a été réalisé pour une majeure partie aprés ma these de

Doctorat.



La troisieme catégorie coincide avec mon arrivée a 1'Université de La Réunion. Les
problémes traités pendant cette période sont divers. Une partie du travail concerne des
problémes quasistatiques ou dynamiques de contact avec frottement pour des matériaux
viscoélastiques tenant compte de lois de phénomeénes plus complexes faisant intervenir
entre autres la température, le dégagement de chaleur au niveau de la surface de contact,
I’endommagement du matériau, le phénoméne d’adhérence, etc. Une autre partie du
travail porte sur des problémes unilatéraux relevant de la mécanique des systémes. Il
s’agit 1& de 'investigation de problémes ponctuels sur lesquels une étude théorique suivie
d’une étude numérique conduisant a des simulations numériques ont été menés. Dans ces
problémes, les phénomeénes de frottement ainsi que d’impact ont été pris en compte en se
basant sur des travaux trés récents dans ce domaine. Les simulations numériques dans ce

cadre ont été concluantes.
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On Rate-Type Viscoplastic Problems
with Linear Boundary Conditions
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| Descriptif I

Dans cet article, on introduit le concept abstrait de “conditions auz limites linéaires” qui
est destiné & généraliser un bon nombre de conditions aux limites classiques telles que celles

de déplacement-traction.

On considére un corps occupant le domaine Q de RY (N = 1,2,3) et on introduit

I’espace H; défini par
My = {a = (03;) € LAQ)YN | 05 € LAV, i =1, ... ,N}.

On note par v la normale unitaire sortante & € et par v : H(Q)N — H3(I')N P'application
trace. On dit que ce corps est soumis & des conditions aux limites linéaires si le champ
de ses déplacements u et le champ de ses contraintes o vérifient les relations

(1) u€Ew+Y,
(2) oceEG+Y,

o & € H'(Q)N et 6 € V ainsi que V qui est un sous-espace fermé non vide de H'(Q)"

sont des données relatives au type de conditions aux limites mécaniques considérées, alors
que V est donné par :

V= {0 € Hi | {ov,yv)

H”f N xH%(r)N

= VvEV}.

Ce travail concerne ’étude du probléme portant sur un milieu continu viscoplastique
ayant une loi de comportement de la forme

o = Ee() + G(o,e(u)),

soumis a des conditions aux limites linéaires. Ici, £ et G sont des fonctions constitutives,
et €(u) est le tenseur des petites déformations linéarisé. Afin de justifier ce nouveau
concept, on commence par citer plusieurs exemples de conditions aux limites mécaniques
concrétes pouvant se mettre sous la forme (1)-(2). On poursuit ensuite avec I’analyse du

1




probléme aux limites en question dans le cas quasistatique. L’existence et 'unicité de
la solution est alors prouvée moyennant une méthode de point fixe. Le cas dynamique
est ensuite considéré et, l1a aussi, I’existence et 'unicité de la solution est établie, en
utilisant des arguments de la théorie des semi-groupes d’opérateurs linéaires. Commme
application des résultats généraux obtenus, aussi bien dans le cas quasistatique que dans
le cas dynamique, des exemples concrets de problémes aux limites sont présentés et des

interprétations mécaniques données.
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On Rate-Type Viscoplastic Problems
with Linear Boundary Conditions

By M. RocHDI and M. SOFONEA of Perpignan

(Received November 27, 1995)

Abstract. In this paper we introduce the abstract concept of “linear boundary conditions” in the
study of deformable bodies. We establish two existence and uniqueness results concerning respectively
quasistatic and dynamic pfoblems involving such type of boundary conditions. We also apply these
existence results in the study of viscoplastic problems involving classical boundary conditions.

1. Introduction

In this paper we consider initial and boundary value problems for rate—type vis--
coplastic models of the form

11 ¢ = E&+G(o,e)

in which o denotes the stress tensor and € represents the small strain tensor. Here
and everywhere in this paper the dot above represents the derivative with respect to
the time variable.

Constitutive laws of the form (1.1) were proposed in order to describe real materials
like rubbers, metals, rocks and so on. Various results and mechanical interpretations
concerning such type of models may be found for instance in [CRISU]J.

Existence and uniqueness results for initial and boundary value problems involving
models of the form (1.1) were given by I. R. IoNEScU and M. SOFONEA [IONSO1],
S. DiABI and M. SOFONEA [DJASO] in the quasistatic case and by 1. R. IONESCU
[IONES] in the dynamic case. A more detailed presentation concerning various func-
tional and numerical methods in the study of the models (1.1) as well as some complete

1991 Mathematics Subject Classification. Primary: 73E60; Secondary: 73E50, 35Q72.
Keywords and phrases. Viscoplasticity, linear boundary conditions, fixed point, semigroups.
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applications in engineering sciences may be found in [[ONSQ2]. In all the above quo-
tated works only problems involving classical displacement —traction boundary condi-
tions were considered, in which the displacement field is imposed on a given part of
the edge of the viscoplastic body and the stress field is imposed on the complementary
part of the boundary (see Example 3.3 in Section 3). o

The purpose of this paper is to study some problems associated to viscoplastic models
of the form (1.1) and involving more general boundary conditions. Both the quasistatic
and dynamic cases are discussed in the context of small perturbations theory. The
paper is structured as follows: in Section 2, we summerize some known facts concerning
Sobolev - type functional spaces including several results on the trace maps; in Section
3, the concept of “linear boundary conditions” is defined and the interpretation of this
concept in the case of some classical examples are considered. The following two
sections are dedicated to the study of initial and boundary value problems involving
linear boundary conditions; so, in Section 4 the quasistatic case is considered and an
existence and uniqueness result is obtained by using fixed point method (Theorem
4.1); in Section 5, the dynamic case is studied and here, the existence and uniqueness
of the solution is obtained by using arguments of semigroups of linear operators theory
(Theorem 5.1). In both these two last sections concrete examples and interpretations
of the linear boundary conditions are presented (Corollaries 4.4 and 5.5).

2. Notations and preliminaries

In all this paper, we denote by Sy the space of second order symmetric tensors
on RY (N =1,2,3) while “-” and |-| will represent the inner product and the
Euclidean norm on Sy and IR™. Let us now consider a bounded domain'Q C R" with
boundary I'. We suppose that Q2 belongs to the class C 1.1 (see for example [NECAS])
and we denote by v the unit outer normal on I'. The following notations are also used:

H = {u=(w)]|u € L*N), i=1,N},

H = {o=(0y) | 0ij =05 € L*(), §,j =L N},
H = {u=(w)|uwe H(Q),i=1,N},

H, = {oeH|oi;;€H, i=1N}.

The spaces H, H, H, and H, are real Hilbert spaces endowed with the inner products
given by

(w,v)g = /u.-v.-dz,
Q

(0’,1')14 = /a,-,-‘r;,-dz,
Q

(u’v)Hl =. (u’ v)u + (e(u),e(v))u )

(0,7)n, = (o,7)n +(Dive,Divr)y,
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where € : H; - H and Div : H; — H are respectively the deformation and the
divergence operators defined by

e®) = (), ey = 3 (s +ui),
Dive = (Uij,j)‘., i,j = l,N.

The associated norms on the spaces H, H, H; and H,; are respectively denoted by

I"Hy|'|H,|'|Hxandl'|‘Hx' _
Let us now denote by R the set of rigid displacements defined by

R = {ueH;|e(u)=0}
and let V be a closed subspace of H,. If
(2.1) _ VAR = {0},
then Korn’s inequality holds:
(22) | le(w)y > Clulg, for all ueV
where C is a strictely positive constant (see for instance [NEHLA] p. 79).
Let Hr = [H 3 (I‘)]N and ¢ € Hr. We define the normal and the tangential compo-

nents of £ by
(23) & = &v and & = €(-&v.
So, denoting by H, the closed subspace of Hr defined by

H, = {(é€Hpr|& =0aeconTl},

it can be proved that the mapping £ — (&,,€,) is an isomorphism from Hr onto
H3(T) x H, (see for example [HUNLI] or [PANAG] p. 32).

In the sequel, we denote by Hf and H] respectively the strong dual spaces of Hr and
H,. We also denote by (-, ‘)r, (-, -)1/2, (-, )+ the duality pairing mappings between
H! and Hr, H-*(T") and H¥(I), H! and H,.

For all ¢’ € Hy the normal and tangential components of £’ are respectively defined
by

(24) (€, &1z = (€,€v)r for all ¢e HY(D),
(2.5) (€.,8, = (¢,&r for all £€H,.

The mapping ¢’ — (£, £!) is an isomorphism from H}. onto H —§(I") x H! (see again
[HUNLI] or [PANAG] p. 32) and using (2.3) — (2.5) it result

(2.6) (glvf)l‘ = (Enln‘fu)l/2 + (6;,£1->‘r for all f' € Hll"’ € Hr.

Let v : Hy — Hr be the trace map. It is well known that v is a linear, continuous
and surjective map and there exists z : Hr — H; a linear and continuous map such

that . : |
(2.7) v(2(¢)) = ¢ for all &€ Hr.
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For all u € H; we define v, u E,H%(I‘) and vy-u € H, given by
| Wwe = (Yu)y, Yru = (2, -
Let us also recall that
(2.8) TO = Up, WU = YoV, YU = - ("lr - v)v |
for all u € Cl(ﬁ)N. For this reason and for simplicity, we shall use sometimes the

notations u, u,, u, instead of yu, 1, u, v,u for all u € H,.
Let now o € H,; there exists an element Jo € Hp such that

(2.9) (Fo,vu)r = (0,e(u))n -_&-(Divo, u)y for all ue H;.

The map ¥ : H; — Hp is linear, continuous, surjective and there exists a linear
continuous map % : Hy — H,; such that

(2.10) ¥(2(Z)) = £ for all ¥ € Ht.
We also define 7,0 € H-{I) and 7,0 € H. by
o = (Yo), ¥.0 = (Fo)r.
Let us also recall that if o € ¢ (11)"*"
(2.11) Yo = o, F,0 = (oY), 7.0 =0 —(oV)v.

- For this reason and for simplicity, we shall use sometimes the notations ov, o, o,
instead of o, ¥,0, ¥,0 for all ¢ € H,. So, using (2.6) and (2.9) we obtain

(ov,yu)r = (Uv,'iv)l/z + (or,ur)r
= (aie(u))ﬂ + (Din’, u)H

then, from (2.9), (2.4) and (2.5), it results

(2.12)

forallu € H; and o € H;.
Let us now consider a partition of I' into two disjoint measurable sets R and S

(T = RUS, RNS = @) and let o € #H,. Everywhere in this paper we use the following
definitions: ' ' . ‘
(2.13) ov=0 on R <= (ov,yu)r = 0 forall ue H, suchthat u=0o0n S.

u, =0on S,

(214) 0, =0 on R <> (ov,yu)r =0 for all u € H; such that { ’
ur=0onT.

ur=0on.S,
(2.15) 0, =0 on R <= (ov,yu)r =0 for all u € H; such that {
' | | . 4, =0onl.
We say that ov = hon R if ov—h = 0 on R and the equalitiess, = hon Rand o, = h
on R are defined in a similar way.

Finally, let us notice that if X is one of the above real Hilbert spaces, 1 < p < oo,
k€ N and T > 0, we use the classical notations L>°(0,T, X), W*?(0,T, X) and we
denote by | * |oo, X, | * |1,00,x the norms on the spaces L*°(0, T, X) and respectively
W1°°(0,T, X). We also recall that if X and Y are two real Hilbert spaces, we denote
by £(X,Y) the space of linear continuous operators from X into Y.
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3. Linear boundary conditions

In what follows, we suppose that a deformable body occupies a bounded domain
N c RN (N = 1,2,3) which is assumed to belong to the class C!"!. The evolution of
this body is modeled by an initial and boundary value problem involving the consti-
tutive law, the strain - displacement relation, the equilibrium or the motion equation
as well as the initial and boundary conditions. The unknowns of this problein are the
displacement field u € H; and the stress field o € H; .

In this section, we present an abstract formulation for boundary conditions which
includes a number of known classical conditions as well as the displacement — traction
conditions already studied in [DJASO] and [IONES] — [IONSO2]. So, we say that
+ the displacement vector u and the stress tensor o are submitted to “linear boundary
conditions” if there exists 4 € Hy, & € H, and a closéd subspace V of H; such that

3.1 | veu+V,

(3.2) . cEG+YV, .

where V is the closed subspace of #; defined by

(3.3) V = {0 €N | (ov,yv)r =0 for all'vEV}.‘

We now study the link between the previous definition and a number of classical
boundary conditions. ‘

Example 3.1. Let I';, i = 1,4, be measurable sets such that I' = I'; UT, UT ULy,
[;NICj =0if i # j and let us consider the following boundary conditions:

(v =g on I,
Jau=h2 on I3,

(3-4) u, = g3, o6 = hg on I3,

\Ur = 94, 0, = hgy on T4.
We suppose that there exists g € Hr and h € L*(T')" such that

(3.5) g =g on I, .gv =93 on I3, g, = g4 on Ty,
(36) h = hg on I‘2, h-,- =h3 on Fs, hy = h4 on F4.

Then, taking 4, 6 and V given by

(3.7) @ = zg,
(3.8) § = zh,
(3.9) V= {veH |v=0onT;, v,=00nTl3, v, =00n Ty},

we have the following result:
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Lemma 3.2. If u and o are regular (say C') functions satisfying (3.4), then (3.1)
and (3.2) hold. Conversely, if (u,0) satisfies the linear boundary conditions (3.1) and
(3.2), then (3.4) holds in the sense of traces given in Section 2.

Proof. Let.(u, o) be a regular couple of functions satisfying (3.4). Using (3.7), (2.7),
(3.5) and (3.4) we obtain u — i € V, i.e., (3.1) holds. In the same way, from (3.8),
(2.10), (3.6) and (3.4) it follows

(ov — 6v,y)r =‘/'(¢w—h)'uda =0 for all veV
: r

hence by (3.3) we get o — e V,i.e, (3.2) holds.
Conversely, let u € Hy, o € H, such that (3.1) and (3.2) hold. Using (3.7) and (3.5)
we obtain

(3.10) u=g¢g on I, u =93 on I3, u, = g4 on Iy
in the sense traces on I. Moreover, having in mind (3.3), (3.8) and (2.10) we obtain
(3.11)  {ov—hyy)r = 0 for all veV.

Taking now v € H; such that v =0 on I'; UT3 U T3, from (3.11) and (2.13) it results
ov —h =0 on I';. In a similar way, using (2.14) and (2.15) we obtain o, — h, = 0 on
I3, 0, — h, = 0 on I'y. Using now (3.6) it results

(3.12) ov =hy on I';, o, = h3 on I3, o, = h4y on T4,

Lemma 3.2 follows now from (3.10) and (3.12). 0

Example 3.3. Let I';, I'; be two measurable subsets of I such that I' = I'; U Ty,
I' NT2 = 0 and let us consider the following boundary conditions:

u =g on [,
3.13
(3.13) {au = h on I,.
We suppose that g € Hr and h € H}.. Then, using the same technique as in the proof
of Lemma 3.2 we obtain that the conditions (3.13) are equivalent to the linear bounda-
ry conditions (3.1) - (3.2) whered = 29, 6 =2h and V={v€ H; |v=0o0nT,}.

Example 3.4. Let I';, I'; be two measurable subsets of I" such that ' = I'; U Ty,
I'; NT2 = 0 and let us consider the following boundary conditions:

3.10
(3.10) ov = hy on TI,.

{uv=y, or = b on Iy,

~ We suppose that g € H¥(), hy € L*(T1)", hy € L3(T2)" and let h € L2(T)V be
a function such that h, = hy on I'y, A = hz on I';. Taking @, 6 and V given by

@=2(gv), 6=zh, V={ve Hi |v, =00nT;}, as in Example 3.1 we obtain that
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if u and o are regular functions satisfying the boundary conditions (3.14) then (u, o)
satisfies the linear boundary conditions (3.1) - (3.2). Conversely, if (u, o) satisfies the
linear boundary conditions (3.1) - (3.2), then (3.14) holds in the sense of traces.

Example 3.5. Let I'y, I'; be two measurable subsets of I such that I' = I'; U T,
'TyNT; =0 and let us consider the following boundary conditions:

poced y =h P,
(311) {“r g9, o, 1 on Iy

ov = hy on Ij.

We suppose that g € H,, hy € L2(T1), hy € L3*({'3)N and let h € L*(T')N be a
function such that h = hyv on 'y, h = hy on I';. Taking 4, 6 and V given by
@=2z29, 6=%2h, V={veH |v, =00nT}, as in Example 3.1 we obtain that
if u and o are regular functions satisfying the boundary conditions (3.15) then (u, o) .
satisfies the linear boundary conditions (3.1) - (3.2). Conversely, if (u, o) satisfies the
linear boundary conditions (3.1) — (3.2), then (3.15) holds in the sense of traces.

Let us finally remark that in the case of evolution problems, the dependence of the
boundary conditions in time is taken into account by considering time dependence
given by the data 4 and 6 while V is a fixed subspace of H; and V is defined by (3.3).
So, in the sequel, the linear boundary conditions (3.1) - (3.2) will be considered for
allt € [0,T), T representing the duration of the evolution processes. :

4. Quasistatic processes for rate—type viscoplastic materials

In this section, we consider the quasitatic evolution of a viscoplastic body submitted
to linear boundary conditions. This evolution is given by the following mixed problem:
find the displacement field u : Q x [0, 7]—=R" and the stress field ¢ : Q x [0, T]—Sy

such that:

(4.1) o0 = Ee(u) + G(o,e(w)) in Qx(0,T),
(4.2) Dive+f =0 in Qx(0,7),

(4.3) v€i+V on (0,7),

(4.4) c€d+V on (0,T),

(4.5) u(0) = o, o(0) = o9 in Q.

The evolution equation (4.1) represents the constitutive law already presented in
Section 1 in which € = ¢(u) is the small strain tensor; (4.2) represents the equilibrium
equation in which f are the given body forces; (4.3) and (4.4) are the linear boundary
conditions discussed in Section 3 and, finally, (4.5) represents the initial conditions.
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* In the study of the problem (4.1) - (4.5) we consider the following assumptions:
[ € : Q) x Sy = Sn is a bounded, symmetric and positively definite tensor,

i.e., _

4.6) { (a) Eijen € L®(R) for all 4, j, k, h=1T,N,

(b)fo-T=0-ET forallo, T € Sy a.e.in N1,

| (c) there exists & > 0 such that £ -0 > a|o|? for all 0 € Sy,

(G : 0 xSy xSy = Sy and

(a) there exists L > 0 such that

. IG(z, 01,61) - G(Z,d’z,Ez)l < L(Ial - 0‘2| + |€1 - 6‘2')

(4.7) < for all 0y, 02, €1, €2 € Sy a.e. in Q,

(b) z— G(z,0,¢) is a measurable function with respect to the Lebesgue
measure on 2 for all o, € € Sy,

\ (c) z ~ G(=,0,0) € H,

(4.8) feWL>=(0,T,H,),

(49) d4e€W'>®(0,T,H,), 6¢€W">(0,T,H,),

(4.10) V is a closed subspace of H; and V is defined by (3.3),
(411) wo€ Hy, oo€ M,

(412) Diveo+ f(0)=0in R, upew(0)+V, oo€d(0)+V.

Moreover, everywheré in this section (as well as in Section 5), we denote by C sttictély
positive constants which may depend on Q, V, £, G, T and do not depend on time or

input data.
The main result of this section is the following:

Theorem 4.1. Let (4.6) — (4.12) and (2.1) hold. Then, there exists a unique solution
u € WH°(0,T, H;), 0 € W(0,T,H,) of the problem (4.1) - (4.5).

In order to prove Theorem 4.1 we need some preliminary results. For this, let
us suppose in the sequel that the assumptions of Theorem 4.1 are fulfilled and let
n € L>(0,T,H). Let also z, € W1>(0,T, ) be the function defined by

(4.13) ' zy(t) = /t n(s)ds + 2z, for all te[0,T],
0

where

(4.14) Zzp = 09 — Ee(ug).

Lemma 4.2. There ezists a unique couple of functions u, € W->°(0,T, H,), oy €
Wt°(0,T,H,) such that '

(4.15) on = Ee(uy) + 2,
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- (4.16) Dive, +f = 0,
n
4.17) up €4 +V,
n
(4.18) opEGT+YV

Jor all t € [0,T]. Moreover,
(4.19) C uy(0) = up, oy(0) =

Proof. Let t € [0,T)]. Using (4.6), (2.2) and Lax-Milgram theorem, we obtain the
existence and uniqueness of an element i,,(¢) such that

uy(t) eV,
(4.20) (Ee(@in(?)),£(0)),, = (F();v)m + (G(t)v, w)r
— (Ee(@), e(v))u — (29(t),e(v))n

forallveV. Taking now
(4.21) un(t) = Gylt) +a(2)

and o,(t) defined by (4.15), we obtain that (u,(t),0,(t)) € Hy x #; and (4. 15) -
(4.18) hold. Moreover, by standard arguments it follows that

I‘“ﬂ(tl) - '“ri(t2)|Hl + Ia'n(tl) - Url(til)"Ml
(4.22) < C(If(t1) = f(t2)lm + la(ts) — a(t2)|m,
+ [6(t1) = 3(ta)laes + |2q(t1) = 24(t2)l20,)

for all ¢, t; € [0,T). Using now (4.22), (4.8) and (4.9) we obtain the regularity
u, € WH°(0,T, H,), ay € W10, T, H,).
The uniqueness part in Lemma, 4.2 follows from the uniqueness of the element i, (%)

solution of (4.20).
In order to prove (4.19) let us remark that from (4.12) - (4.14) we have that (uo,00)
is a solution of the problem (4.15) — (4.18) at ¢t = 0. Since for all ¢ € [0, T'] the problem

(4.15) - (4.18) has a unique solution (u,(t),0,(t)), we obtain (4.19). O

Let us now remark that from (4.7) t = G(o0y(t),e(uy(t))) is a Lipschitz continuous
function on [0, T] with values in #. This property allows us to consider the operator
A:L>*(0,T,H) - W1(0,T,H) defined by

(4.23)  An(t) = G(oy(t),e(uqg(t))) for all te[0,T], nel®(0,T,H).

Lemma 4.3. The operator A has a unique fized point n* € L>°(0,T,H) .

~ Proof. Let M, N2 € L*(0,T,H). For simplicity, we denote z,, = z1, 2,, = 22,
Uy, = U1, Uy, = U, Oy, =01, Op, =03 and let t € [0, T]. Using (4.21), (4.20), (4.15)
and (4.16) we obtain the inequality

Iul(t) - ug(t)IHl + Ial(t) - 172(t)|,ul <C |z1(t) - z2(t)|u
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and, from (4.23), (4.7) it results
|Am(t) — A ()l < Clza () — za(E) e -

Having now in mind (4.13), the previous inequality becomes

t
(4.24) IAm () - Am@)ln <C /0 I () = ma(s)la ds.

By recurrence, denoting by AP the powers of the operator A, (4.24) implies

t prs
jpome) = ol <07 [ [ [*ime) - mndr... ds
(i LA,

p integrals
for all t € [0,T] and p € IN. It results

Fol.
(4.25) |APpy — A"ng|°°’u < rl Im — m2]oo,n for all pe NN,

and, since lim, %’1 =0, (4.25) implies that for p large enough the operator A? is a
contraction in L>(0,T,H). Then there exists a unique n* € L*°(0,T,H) such that
APyp* = 9*. Moreover, 7)* is the unique fixed point of A. 0

" Proof of Theorem 4.1. The existence part. Let n* € L*(0,T,H) be the fixed
point of A and let u,» € W1:%(0, T, H,), o« € W1°°(0, T, H;) be the functions given
by Lemma 4.2 for n = n*. Using (4.15) and (4.13) we have

G = Eclitge) + '
and from (4.23) it follows
n° = Anp* = G(og,e(up)).

So, we obtain
and from Lemma 4.2 it results that (u,+,0y,+) is a solution of (4.1) - (4.5).

The uniqueness part. Let (u,0) be a solution of (4.1) — (4.5) having the regularity
u € Whv*(0,T,H;), 0 € Wh°(0,T,H;). Denoting by n € L=(0,T,#) the function

given by
(4.26) n(t) = G(o(t),e(u(t))) for all te(0,T],

from (4.13) and (4.14) we obtain that (u, o) is a solution of (4.15) — (4.19). Since this
problem has a unique solution denoted previously by (u,, oyp), it results

(4.27) U =u, 0 = 0.
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Using now (4.23), (4.27) and (4.26) we get An = 5 and by the uniqueness of the fixed
point of A it results

(4.28) n=n".
The uniqueness part in Theorem 4.1 is now a consequence of (4.27) and (4.28). O

As an application of Theorem 4.1 let us consider a quasistatic viscoplastic problem
involving the boundary conditions presented in Example 3.1, Section 2. For this, let

us suppose that

there exists g € W°(0, T, Hr) such that
g=gonlix(0,T), go=g3onT3x(0,T), g, =g4 on Tyx (0,7T),

(4.30) { there exists h € W1 (0, T, L3(T)") such that
: h=hy onT3x(0,T), h, =h3 on T3x(0,T), h, = hy on 4% (0,T),

(ug € Hy, 09 €M,

Divoo+ f(0) = 0 in Q,

uw = 91(0) on T4y,

(43) { oo = ha(0) on T,

uo, = g3(0), oo, = h3(0) on Tj,
uo, = 94(0), oo, = he(0) on Ty.

(4.29) {

\

We have the following result:

Corollary 4.4. Let (4.6) - (4.8), (4.29) - (4.31) hold and let measT; > 0. Then
there ezists a solution u € W*(0,T, H,), 0 € WH°(0,T,H,) of the problem

(6 = Ee(B) +G(o,e(u)) in Qx(0,T),
Dive+f =0 in Qx(0,7T),
u =g on I'hx(0,T)),
(4.32) lov = hy on T3x(0,T),
u, = g3, 0r = hg on I3 x(0,T),
Ur = g4, 0, = hy on TIyx(0,7),
\u(0) = u, o(0) =09 in 9.
Proof. Let i and 6 be defined by a(t) = zg(t), 6(t) = zh(t) for all t € [0,T]
and let V, V be defined by (3.9), (3.3). Using (4.29) - (4.31) we obtain that (4.9) -

(4.12) are satisfied and since measT'; > 0 it results that (2.1) also holds. Corollary
4.4 follows now from Theorem 4.1 and Lemma 3.2. O

Remark 4.5. Using again Lemma 3.2 and Theorem 4.1 it follows that if (u;,0;) €
W1(0, T, H; xH,) are two solutions of the problem (4.32) such that u;(t) € C? ()",

ai(t) e C1(Q)™" for allt € [0,T), i =1,2, then u; = up and 0, = 0g5.
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5. Dynamic processes for rate —type viscoplastic materials

In this section, we consider the dynamic evolution of a viscoplastic body submitted
to linear boundary conditions. This evolution is given by the following mixed problem:
find the displacement field u : Q x [0,T]—+R" and the stress field o : 2 x [0,T]>SN

such that:

(5.1) 6 = Ee()+G(o,e(w)) iIn O x(0,T),

(5.2) pii = Dive+f in 2x(0,T),

(5.3) . u€ea+V on (0,7),

(5.4) o€&+V on (0,T),

(5.5) u(0) = uo, #(0) = vo, 0(0) = gp in Q.

Problem (5.1) - (5.5) is similar to the problem (4.1) — (4.5) except for the fact that
the equilibrium equation (4.2) was replaced by the motion equation (5.2) in which p
is the density function and an initial condition for % was added in (5.5).

In the study of the problem (5.1) - (5.5) we consider the follbwing assumptions:

(5-6) p € L°°(N) and there exists 8 > 0 such that p(z) > ﬂ a.e. in 2,
(5.7) fewh(0,T,H),

(5.8) i€ Ws(0,T,H,), &€wWaY(0,T,H,),

(5.9) u€H,, weH, og€H,

(5.10) wew0)+V, weia(0)+V, ooea(0)+V.

The main result of this section is the following:

Theorem 5.1. Let (4.6), (4.7), (4.10), (5.6)—(5.10) hold. Then there erists a unique
solution u € W2°°(0,T, H)n W+*°(0,T, H,), 0 € W1*°(0,T,H) N L*>°(0,T, H,) of
the problem _(5.1) - (5.5).

In order to prove Theorem 5.1 we retake, with some adjustements, the proof given
by I. R. IoNEscu [IONES] in the particular case of the boundary conditions presented
in Example 3.3 of Section 3. We start by homogenizing the boundary conditions
(53)and(54) Let u* =u—1, 0* =0 — &, v* = u—1, uo= - 4(0), v§ =
o — 1i0(0), a3 = gp — &(0). From (5.10) we notice that ug € V, vg € V, a5 € V. Hence
we can easily deduce the following lemma.:

Lemma 5.2. The couple (u, &) is a solution of (5.1) — (5.5) having the regularity
of Theorem 5.1 iff u* € W4°(0,T,V), v* € W1°(0,T,H)Nn L*(0,T,V) and o* €
Wi (0,T,H) N L>°(0,T,V) is the solution of the problem

(5.11) & = v,
(5.12) - 9* = p~'Dive* + f*,
(5.13) o* = Ee(v*) +G*(0*,e*(u*))
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in O x (0,7),

(5.14) w(0) = u, v'0) = v}, 0°(0) = o} in Q,

where f* € W1(0,T,H) and G* : [0,T) x 1 x H — H are given by

f() = M f(8) - E() + o' Diva(d),

| for all te(0,T],
G*(t,0,6) = G(6(t) +a, e(a(t)) +¢) + Ee(a(t)) - &(2),
' ‘ ' for all t€(0,T), o,e€H.

(5.15) -
(5.16)

Let us now consider the real Hilbert space Y = H x H with the inner product

(5.17) ((v1,70)s (v2, 2)ly = (pv1,v2) + (E71m, 2,

which generates an equivalent norm on Y (see (4.6) and (5.6)). In addition, let D(B) =
V xV CY and let B: D(B) - Y be the linear operator defined by

(5.18) B(v,0) = (p~'Divo, e(v)) for all (v,0) € D(B).

With the above notations, we have:

Lemma 5.3. B* = —B where B* denotes the adjoint operator of B.

Proof. Let (v,0) € D(B*) and (v,5) = B*(v, a) For all (u,7) € D(B) it follows
from (5.17) and (5.18)

(5.19) (Divr,v)y + (e('u),a)u = (pu,D) g + (€717, ),y -
Putting 7 = 0 in (5.19), we obtain
(5.20) Dive = —p7

which implies o € H;, and from (5.19), (5.20) and (2.9) we deduce (aru, yu)r = 0 for
all u € V. Hence o € V.
Putting now u = 0 in (5.19), we obtain

(5.21) - elw) = -€7F
which implies v € H;, and from (5.19), (5.21) and (2.9) we deduce
(5.22) (tv,yo)r = 0 for all T€V.

We have now to prove that v € V. Indeed, let us suppose that v ¢ V. Then, there
exists F : H; — IR such that F(v) # 0 and F(w) = 0 for all w € V. Riesz’s
representation theorem implies that there exists g € H; such that

(5.23) Fv) = (g,v)m, # 0, F(w) = (g,w)y, = 0 for all weV.
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But (g9,w)n, = (9, w)nu + (e(g),e(w))x for all w € H;. So, taking 7* =¢(g) € H and
using (5.23) we deduce (g, w)n + (r*,e(w))y =0 for all w € V. It results Divr* = ¢
hence 7* € H;; moreover, using (2.9) we get (r*v,yw)r = 0 for all w € V. Hence
7* € V. Applying now (5.22) for r = 7* and using again (2.9) we have

(5.24) (Divr*,v)g + (r*,e()) = 0.

But 7 = &(g) and Divr* = g. So, from (5.24) we deduce that {g,v)y, = 0 which is
in contradiction with (5.23). So, we proved that v € V.

It results now from (5.20) and (5.21) that B*(v,¢)=—(p~'Dive,Ee(v)) = -B(v, 0).
This last equality implies that D(B*) C D(B) and B* = —B on D(B*).

Finally, if (v,0) € D(B), using (3.3), after a simple calculation it follows that
(B(u, 1), (v,0))y = ((4,7),—B(v,0))y for all (u,7) € D(B). Hence D(B) C D(B*)
and Lemma 5.3 is proved. m)

Let us now consider the real Hilbert space X = VxHxH, D(A)=VxVxVCX
and A: D(A) C X — X the linear operator given by

(5.25) A(u,v,0) = (v, p~'Divo, E(v)) for all (u,v,0) € D(A).

With the above notations, we have the following result:

Lemma 5.4. The operator A is the infinitesimal generator of a Cqy semigroup
(S(t)),>q of linear continuous operators in X .

Proof. Using Lemma 5.3 it follows that B is the infinitesimal generator of a C,
semigroup (T(t)),z., of linear continuous operators in Y (see for example [PAZY)],
Ch. I). For all £ > 0, let S(t) be the operator defined by _

S®)(u,v,0) = (u + [ Tuto)w,0)ds, ) a)) ,
for all (u,v,0) eV XHXxH,

(5.26)

where Ti(t) € L(Y, H), T2(t) € L(Y,H) are the two operators defined by T'(t)(v,0) =
(T1(t)(v,0), T2(t)(v,0)) € H x H. Let, in the sequel, [D(B)] denote the linear space
D(B) endowed with the graph norm of B. Using (5.17), (5.6) and (4.6) we obtain
that [D(B)] is isomorphic to V' x V. Moreover, since the mapping y fot T(s)yds
belongs to £L(Y,[D(B)]) for all t > 0 (see for example [[ONSOZ2] p. 225), it results that
the mapping y fo‘ Ti(s)ds belongs to L(Y,V). Hence S(t) is a linear continuous
operator in X for all ¢ > 0. Now, having in mind (5.25), (5.26) and the fact that B
is the infinitesimal generator of (T'(t)),», we can deduce that A is the infinitesimal

generator of (S(t)),»o - 0

Proof of Theorem 5.1. Let z(t) = (u*(t),v*(t),0*(t)), o = (u§,v3,03) and let
h:[0,T) x X = X be defined by

(527) h(t, (“, v, 0')) = (0 ’ f‘ (t) ’ G* (t) O’,E(U)))
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where f* and G* are given by (5.15), (5.16). Using (5.25) and (5.27), it results that
the problem (5.11) — (5.14) can be written as

(5.28) i(t) = Az(t) + h(t,z(t)) on (0,T),

(5.29) z(0) = =zo.

We shall now use a well known result (see for instance [IONSO2] p. 231) in order to
prove the existence and uniqueness of the solution of (5.28) ~ (5.29). For this, let us
remark that from (5.10) we obtain zg € D (A). Moreover, if (u;,v;,0;) € X, t; € [0,T),
i =1,2, from (5.16), (5.27), (4.6), (4.7) and (5.7), after some algebra it results

'h(tl ’ (ul,vl,al)) - h(tz ’ (‘U2, v2, 02)) lx

< C[lf'(tl) —f*(t2)| g+ |0 (t1) = G(L2) |, + |i(t1) — di(ta) |, + |5(21) = 8(22)],

+ [a(tr) — 6(ta)| . + |wr —ual,, +|os - az|,,]
t2 H e . . .
< G [ [l @l + Bl + 10, + 66y, + [io)] ] ds

+ C[|u1 - 'UzIHl + I'Ul —‘112|H1 + |0'1 —O'QI,H] .
Using now (5.7), (5.8) and (5.15) it results that the function defined by
s +— If‘(s)lH + |5(s)|u + Iﬁ(s)lul + |5(s)|u + |1"1(s)|Hl
belongs to L} (0, T, IR). So, using the above quotated existence result, it results that the
problem (5.28), (5.29) has a unique solution (u,v, o) such that (u(t),v(t), a(t)) €D(A)
for all t€[0,T] and (u,v,0)eW*°(0, T, X) NL*°(0, T,[D(A)]). Here [D(A)] represents
the space D(A) endowed with the graph norm of A, which is in fact isomorphic to
V xV xV (see (4.6) and (5.6)). Hence we deduce that there exists a unique solu-
tion (u*,v*,0*) of the problem (5.11) - (5.14) such that u* € W°(0,T,V), v* €
Wi=(0,T,H)Nn L>(0,T,V), o* € W>°(0,T,H) N L>(0,T, V).
Finally, Theorem 5.1 follows from Lemma 5.2. 0

As an application of Theorem 5.1 let us consider a dynamic viscoplastic problem
involving the boundary conditions presented in Example 3.1, Section 2. For this, we
make the following assumptions:

(5.30) {there exists g € W31(0, T, Hr) such that
g=g1onl1x(0,T), go=g3 onI3x(0,T), g =gsonLyx (0,T),
(5.31) {the_re exists h € W21(0,T, L3(T")") such that
h=hs onT2x(0,T), hy = hg onI3x(0,T), h, =hy on I'yx(0,T),
fup € Hy, vw€H,, o €H,
w = g1(0), v = ¢:(0) on I}
(5.32) { gov = ha(0) on T,
uo, = ¢3(0), v, = §3(0), oo, = h3(0) on T3,
(uor = 94(0), v, = 94(0), 00, =h4(0) on Ty.
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We have the following result:

Corollary 5.5. Let (4.6), (4.7), (5.6), (5.7) and (5.30) - (5.32) hold. Then there ez-
ists a solution u € W2(0,T, H)nW'>~(0,T, H,), o0 € W1(0,T, H)NL>(0,T, H,)
of the problem
[ pii = Dive+f in Qx(0,T),
¢ = Ee(u) +G(oe(w)) in Qx(0,T),

=g on Plx(O;T),
(5.33) { ov =h on T3x(0,T),
uw, = g3, o, = hg on I3x(0,T),
v, = g4, 0, = hy on Ty x(0,T),
 u(0) = up, %(0) = vo, o(0) = g0 in N.

Proof. Let i and & be defined by 4(t) = 2g(t), 6(t) = £h(t) for all ¢t € [0,T] and
let V, V be defined by (3.9), (3.3). Using (5.30) ~ (5.32) we obtain that (5.8) — (5.10)
are satisfied. Corollary 5.5 follows now from Theorem 5.1 and Lemma 3.2. - O

Remark 5.6. Using again Lemma 3.2 and Theorem 5.1 it follows that if (u;, 0;)
are two solutions of the problem (5.33) having the regularity of Corollary 5.5 and such
that u;(t) € C* ()", oi(t) € C(Q)]*" for all t € [0,7), i = 1,2, then u; = uz and
o1 = 02. ) o
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On Signorini’s Contact Problem
in Rate-Type Viscoplasticity

Mohamed ROCHDI

| Descriptif I

Il s’agit dans ce papier de I’étude du probléeme quasistatique de contact unilatéral sans
frottement entre un matériau viscoplastique et une fondation rigide. Ce probleme connu
sous le nom de probléme de Signorini a fait I’objet de plusieurs études pour des matériaux
élastiques.

On considére un milieu continu viscoplastique dont les particules matérielles occupent
un domaine Q de RY (N = 1,2, 3) et dont la frontiere I, supposée suffisamment réguliére,
est divisée en trois parties disjointes I';, I's et I's. On suppose que, pendant l'intervalle
de temps [0, 7], le champ des déplacements s’annulle sur I';, que des forces surfaciques
g s’appliquent sur I'; et que des forces volumiques f agissent dans 2. On suppose aussi
que le matériau peut rentrer en contact avec une fondation rigide par la partie I's de sa
frontiére et que ce contact s’effectue sans frottement. Sous ces considérations, le probléme
quasistatique de contact étudié ici se formule de la fagon suivante :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R¥ et le champ des
contraintes o : Q x [0, 7] — RY*N tels que

o = Ee(u) + G(o,e(w)) dans Qx (0,7),
Divo+f=0 dans x(0,7),

=0 gur . Ty Xy

oY =1 sur s Pax il L

g, <, gkl el ek — 0 gur - Paoaf 0y,

ull) =, o(0) =09 ' dans . L

On note par RY*" I’espace des tenseurs symétriques du second ordre sur R et par e(u)
le tenseur des petites déformations linéarisé. Le point au dessus d’une quantité désigne
sa dérivée temporelle, Div o désigne la divergence de la fonction tensorielle o, le vecteur
v est la normale unitaire sortante a ), ov est le vecteur des contraintes de Cauchy, et u,,




0, et o, représentent respectivement le déplacement normal, les contraintes normales et
tangentielles.

Une fois le probléeme mécanique P posé, on établit deux formulations variationnelles P;
et P». Aussi bien la formulation P, que la formulation P, représentent un couplage entre
la loi de comportement et une inéquation variationnelle elliptique qui englobe 1’équation
d’équilibre et les conditions aux limites. L’originalité de la formulaion faible P; est qu’elle
est exprimée en contraintes alors que la formulation P; est exprimée en déplacements. On
prouve un résultat d’existence et d’unicité pour chacune des formulations et on établit
un résultat d’équivalence entre ces deux formulations faibles. On termine par donner une
interprétation mécanique pour les résultats mathématiques obtenus.
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ON SIGNORINI’S CONTACT PROBLEM IN
RATE-TYPE VISCOPLASTICITY.

_Mohainéd Rochdi

Y o -+ .+ . Abstract - LS

~'This paper deals with'initial and boundary value problems describing
-the quasistatic évolution: of ‘a rate-type viscoplastic material submitted
to frictionless' contact boundary conditions. Two variational formula-
tions of this problem are considered, followed by existence and uniqu-
eness results. An equivalence result between the previous variational
formulations is discussed.

1 Introductlon

In this. paper we: propose to investigate a problem of unilateral contact between
an elastic-viscoplastic body and a rigid frictionless: foundation. Thus, the
- famous Signorini’s problem in linear elasticity already studied in the case of

elastic-plastic or:viscoelastic bodxes in [1] (4] is mvestlga.ted here for rate-type
elastic-viscoplastic models. .

Everywhere in this paper we consider the case of small deformations, we
denote by & = (¢:;) the small strain tensor-and by o = (0;) the stress tensor.
The dot, above will represent the derivative with respect to the time variable.
We consider here constitutive laws of the form

(11) - o=E&é ""f(f” €)

in which £ and G are constitutive functions.

Rate-type viscoplastic models of the form (1.1) are used in order to descri-
be the behavior of real materials like rubbers, metals, pastes, rocks and so on.
Various results and mechanical interpretations concerning models of this form

Mathematical Reviews subject classification: 73E60, 73E50 35Q72
Received by the editors: August, 1996
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may be found for instance in [5] (see also the references quoted there). Exis-
tence and uniqueness results for initial and boundary value problems involving
(1.1) were obtained for instancé in [6}-[12). " T
The aim of this paper is to investigate a quasistatic problem for the elastic-
viscoplastic models (1.1) involving unilateral contact condition. So, it is struc-
tured as follows : in section 2 the mechanical problem P is stated and. some
functional ri6tations are presented. For the problem P, after recalling the
variational formulation Py/given in. [10], we establish inl section 3.another va-
riational formulation P;. Both P, and P, involve a coupling between the
constitutive law (1.1) and a variational inequality including the equilibrium
equation and the boundary conditions. The uhiknowns in the problems P, and
P, are the displacement field u and the stress field o. For the problem P,, we
recall in section 4 the existence and uniqueness result (Theorem 4.1) given in
[10]. In this case the main unknown is the displacement field u. We also prove,
in this section, a similar existence and uniqueness result for the problem P,
(Theorem 4.2). Here the main unknown is the stress field o.. The last section
deals with the study of an equivalence result between the problems P, and P,
(Theorem 5.1). , . - o A

!

2 Problem statement and preliminaries

Let us consider an elastic-viscoplastic body whose material particles fulfil a

bounded domain Q2 ¢ RY (N =1, 2,3) and whose boundary I", assumed to be

sufficiently smooth, is partitioned into three disjoint measurable pats Iy’ ) Y

and I's. Let meas I'; > 0 and let T > O be a time interval. We shall assume

that the displacement field vanishes on I'; :x (0, T"), that surface tractions gact
on I'; x (0, T) and that body forces f act in 2 x (0, 7). We also suppose that
the body rests on a rigid foundation S by the part:T's of the boundary and
that this contact is frictionless, i.e. the tangential movements are completely
free. We shall finally assume the case of quasistatic processes and we shall use
(1.1) as constitutive law. With these assumptions, the mechanical problem
that we study here may be formulated as follows : B .

Problem P. P : Find the displacement field u : 2 x [0,T] & IRV and the:
stress field o : 2 x [0,T] — Sy such that

(2.1) o = Ee(u) + G(a,e(ﬁ)) in Qx (O; T)
22 Divo+f=0 in Qx(0,T)

(2.3) u =d on I'y x(0,T)
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(2.4) . ; ov=g on I'2x(0,T)
(2-5) ! Uy SO ,'0',, $u0,.df =o, Qyuy?gq on F3X(0,T)
(2.6) u(O) =uy , 0(0) =0 in Q

where SN denotes the set of second order symmetric tensors on IRN In (2.1)-
(2.6), Div o represents the divergence of the tensor-valued function o, v = (¥;)
is the umt outwa.rd normal to 1, , OV is the stress vector, u,, o, and o, are

given by’
Uy =UY; , Oy =0Vl , Oroi¥j—ouyy  (i=1,N)

and finally ug and oo are the initial data

We denote in the sequel by « ” the inner product on the spaces ]R.N and
Sy and by | - | the Euclidean norms on these spaces. The following notations

are also used :
H={v=(w)|uel®@),i=TN},
H, ='{v=(v.§)‘|v.-eH‘(n). i=LN},
H={71=(r;) | nj=15 € L}Q), §,j =T, N},
| Hi={reMH|DivreH}.

The spaces H, Hy, H and H, are real Hilbert spaces endowed with the cano-
nical inner products denoted by < -, >y, <:,- >g,, <-,- >y and <-,- >y,
respectively. Let Hp = [H *(I‘)]" a.nd let o : Hy — Hr be the trace map. We
denote by V' the closed subspace of H; given by

@n . V={ueH |yu=0 ol }.
The deformation operator ¢ : H; — H defined by
. 1
e(u) = (6ij(u)) , &j(w)= -(ui,j. + uj)

is a linear and continuous operator Moreover, since meaa I > 0, Korn’s
inequality holds :

(28) le(w)|n > Clv|n, forall veV
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where C is a strictly positive constant which depends only on 9 and I'; (eve-
rywhere in this paper C will represent strictly positive generic constants which
may depend on 2, I';, €, G, T and do not depend on time or on input data).

We now endow V wnth the innér product < -, >y defined by
(2.9) <v,wdy=< e(v), e(w) > WWw,wevV.

We also denote by | - |v the assoclated norm. So, having in mind (2. 8),
deduce-that | - v and | - |y, are equivalent norms on V. Therefore, V endowed
with the inner product defined by (2.9) is a real Hilbert space. -

Let HE = [H-}(I")]V be the strong dual of the space Hr and let < -,- >
denote the duality between Hy and Hr. If T € H; there exists an element
Y7 € Hp such that ) o
(2.10) <HTHw> = <71,e(V) Sy +<Divr,y>g WE H..

Moreover, if 7 is a regular (say C?) function, then
(2.11) T K YT, D> = / Tv-vda, Vv € H;.
r

Finally, for every real Hilbert space X we denote by | * |x the normon X .
and by | - |oo,x the norm on the space L>(0, T, X).

3 Variational formulations

In this section we give two variational formulations for the mechanical problem
P. For this, let us suppose that

8 Q x SN~ SN isa symmetnc and positlvely definite tensor j.e.
(@) Exnim € L2(Q) for all k, A, I, m=1,N

) Eog-T1=0-E1 forall o, 7 € Sy a.e. in N

(c) there exists a >0 such that £o -0 > qlo| for all o € Sy

(3-1)

rG:ﬂ XSN x SN’-H .5:1;} and
(a) there exists L > 0 such that
|G(z,01,61) - G(z, 03,62)| < L(Im — 02|+ a1 - Ez)
3.2) ¢ for all 01,03,61,62 € SN, a.e. in
1 (b) z ~ G(z,0,¢€) is a measurable function with respect to
the Lebesgue measure on Q, for all o, € Sy
| (c) z+ G(2,0,0) € H ’
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(3.3) fe W1'°°(0 T, H)

(3.4) g€ w1-°°(o T, L’(Fg)”)
We denote now by F(t) the element of V' given by |
(3.5) < F(t),v >v=< f(t),v>un + < g(t),7v >p3r,# W€V, t€[0,T].
. So, using (3.3), (3.4) and1(3.5),ﬂ it t:c;i;lows ﬁ
(3.6) F e Wh=(0,T, V).

Finally, let U,4 and Z,q4(t) be the sets given by
(3.7) " Usg={veH; |v=0 on I, ¥, <0 on l"‘3} ‘
(3.8) Zaa(t) = {1' €EH| < r,e(v) >u 2 < F(t),v >y We U..a} Vt e [0 T]
and let us suppose that
(3. 9) Uo € Usd , 00 €Zad(0) , < 00,6(u0) >y=< F(O),uo >y .

Lemma 3. 1 If the couple of funct:ons (u o) is a regular solution of the me-
chanical problem P then :

(3‘10) u(t) € Uad » < d(t)’ E(‘U) - €(‘u(t)) >'H-2<_ I;(t)fv —u(t) >v Vv € Uad'
(311 o) e 2«@ b <T=0(), e(u(®) Su 2 0 Vr € Taalt)
for allte[o T] ' L -

Proof. Let v € Uad and t € [0 ). Usmg (2. 2) (2.5), (2.10), (2.11) and (3 5)
Wehave D e T T : N T

(3.12) < o(t),e(v) - e(u(t)) >u=< F(t),v - u(t) >v + /I: ov(tv.da.

The inequality in (3.10) follows from (3.12), (3.7) and (2.5). Moreover, (2.3),
(2.5) and (3.7) imply u(t) € U,.d | ,
Taking now v = 2u(t) and v = 0 in (3.10) we obtain

(3.13) < o(t),(u(t)) >u=< F(t),u(t) >v,

and using (3.13), (3.10) and (3.8) it follows o(t) € T.a(t). The inequality in
(3.11) follows now from (3.8) and (3.13). O
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The previous results lead us to consider two weak formulations of the pro-
blem P :

Problem P;. Find the displacement field  : [0,7] = H; and the stress ﬁeld
0 :[0,T] = H, such that

619  o(t) = Ee((t) + Glo(t),e(u(®)) ae. te (O,T)

(3 15) | u(t) € Uad :A < O'(t), e(v) -€(ﬁ(t)) >1-¢; > < F(t),v - u(t) >v |
' Yo € Ung, t € [0,T) L

(3.16) u(0) =wo , o(0)=0o ..

Problem P;. Find the displacement field u : [0, 7] ~» H; and the stress field
c: [0, T] — H; such that

(3.17) a(t) Ee(u(t)) + G(a(t),e(u(t))) ae. te (0,7)

(3.18) a(t) € 'L'a'a!(t)T y <T7-=0(t),e(u(t)) > 20 Vr € qu(t)‘,_ te [O;ﬂ

~ ' . . 0 T

(3.19) | u(0)=u , 0(0) =00.

Remark 3.1. The vanatlonal formulation P, was a.lready glven in [10] and
we shall see in the last section of this paper the link between the problems P
and P;. Let us also remark that these two problems are formally equivalent
to problem P. Indeed, if (u,0) represents a regular solution of the variational
problems P, or P;, using the arguments of [6] it follows that (u, or) isa solutlon
of the mechanical problem P.

Under the assumptions (3.1)-(3.4) and (3.9), in the next section, we give
existence and uniqueness results for the variational problems P, and P;.

1

4 Existence and npniqueness results

We start this section by recalhng the existence and umqui;{aess result concer-
ning the problem P,, given in [10].

Theorem 4.1. Let (3.1) — (3 4) and (3.9) hold. Then there erists a unigue
solution of the problem P, having.the reyulanty u € W1'°°(0 T,Hy)), o €
W1’°°(0 T 'Hl) .
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Proof. See for instance [10]. - ‘ O
The maitl result of this section is given by 3

Theorem 4.2. Let (3.1) — (3.4) and (3.9) hold. Then there erists a uni-
que solution of the problem P having the regularity u € W*(0,T,V),
o€ W’*“f(Q, T,H). ._ |

In order to prove Theorem 4.2, let us firstly remark that (3.18) is equivalent
to the nonlinear evolution equation I

@) e +Orw(e®) 50 Vee,T)

vhere 9y, (1) denotes the subdifferential of the indicator function g, (-
Since the set X44(t) depends on time, we shall replace (4.1) by a nonlinear
evolution equation associated to a fixed convex set. For this, let us introduce
the following notations : : ) ' ST :

42) To={reH | <me(@)>n > 0 Yy € Usd}
43 g =¢(F)
44 o=0-0 , 0o'=o0g — d(0).

We can easily verify now that the couple of functmns (u,ai is a solution of
P, having the regularity u € W1*°(0,T,V),0 € W1(0, T, #) if and only if
u € WI*(0,T,V), 7€ W1(0,T, ) and. L

(4.5) e() =E7'T - E71G(F + F,e(w)) +.£7' ae. on (0,T)
(46) "Ft)eTo , <T-7@),c(u®)) > 20 Vre Sy, te,T]

(4.7) u(0) =uo , 7(0) =dp.

Proof of Theorem 4.2. In order to solve (4.5)-(4.7) we shall use again a fixed
point method as follows : ‘. ' B
i) -For every n € L>(0,T, M), let z, € W(0, T, H) be the function defined
by o

(4.8) ‘z,,(t) = / ‘ n(s)ds +e(uo) ~€E~'op YVt € [0,T).
. . Y0 : | '
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We consider the following elliptic problem :

Problem P,,. Find u, :[0,7] <+ Hy and o, :[0,T] = #,; such that
(49) e(ug(t)) = E7"a(t) + 29(t) + £ (2)

(4.10) o,(t) €Do , <T—o0y(t)e(uy(t)) >u 20 VreZ
for all ¢ € [0, 7). ' | o

Using standard arguments of elliptic variational inequalities followed by
orthogonality arguments in the Hilbert space #, it results that the problem
P,, has a unique solution (ug(t), 34(t)). Moreover,

(4.11) o uy(0) =up , 0,(0)=75o.
Having now in mind (4.9), (4.10), (3.1) and (2.8) we obtain

lug(tr) — un(ta)ls, < C (lﬁ(tl) = &(ta)lv + |zp(t1) - Zn(tz)lu)
loa(tr) — on(tdls < C(I(01) = Fta)lv + I2a(tr) - 2n(ta)ln)

for all ¢;,t; € [0,T); and, using (3.6), (4.3) and the time regularity z, €
W10(0, T, H), we deduce u, € W1(0,T, V), 0, € WH(0, T, H,).

i) This last time regularity and the 'ésﬁumption (3.2) allow us to consider the
operator A : L®(0,T,H) — L*°(0,T,#) defined by '

(4.12) ' An = —E71G(oy + G, ¢(uy))

and, computing the difference between two solutions of P, for two elements
m,m € L*(0,T,H), it results

IAm(®) = Am@)ln < Clzm (8) — zm@®ln < /0 I () — ma(8) |t

" which implies, by recurrence, that for p large enough, the power A? of the
operator A is a contraction. Hence, we deduce that A? has a unique fixed
point n°* € L=(0, T, H). Moreover, we can verify that n* € L*(0, T, #) is the
unique fixed point of A. ,

it)) Finally, it can verified that the couple (u4.,0y+) is a solution of the
problem (4.5)-(4.7). Indeed, the equality (4.6) follows from (4.8), (4.9) and
(4.12) since
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e(t;;,. () = E16,. (1) + £ () + s-lz';(t)

@) =0"() = Aﬂ'(f‘) = —E~1G(aye (¢) +&(t),e(un (1))

ae. t€ (0,T). Moreover, the uniqueness part in Theorem 4.2 is a consequence
of the uniqueness of the fixed point of the operator A defined by (4.12). It can
be also proved directly from (3.17)-(3.19), (3.1) and (3.2), using a Gronwall-
type mequallty

5 An equivalence result

* We give in this section, a result concerning the link between the solutions of
the variational problems P; and P : : ;

Theorem 5.1. Let (3.1) — (3.4) and: (3. 9) hold and let u € W(0,T,V),
o € Wh(0,T,H,). Then (u,0) is a solution of the variational problem P, if
and only if (u,0) is a solution of the vanatzonal problem P;.

Proof. Let t € [0,T] and let us suppose that (u, a) is a solutxon of P,. Taking
v = 2u(t) and v = 0 in (3:15) we obtam

(5 1) < a(t), e(u(t)) > = < F(t),u(t) >y .

Using now (3 15) and (5.1) it follows a(t) € L,4(t). The mequalxty in (3.18)
follows from (3.8) and (5.1). _So, we conclude that (u, o) is a solution of the
problem P;.

Conversely, let (u,o0) be a solution of P,. We shall firstly prove that u(t) €
Uad- Indeed, let us suppose in the sequel that u(t) ¢ U,q and let us denote by
Pu(t) the pro_]ectlon of u(t) on the closed convex set U.a C V. We have

< Pu(tu(t)v>v > <Pu(tu(t),Pult) >y > < Pult-u(t)ult) >y

for all v € Usa. Pl-om this mequahtles we obtain that there exlsts a € R such
that

(52) <Pult)-u(),v>v >a> <Pu(t)-u(t),u()>v - Vo€ Um.
- Taking now v= 0 in (5.2), we deduce
(5.3) a<0.
Let now 7 be the function defined by
(5.4) 7(t) = e(Pu(t) —u(t)) e M.



110 - : M. Roenpi

Supposing that there exists w € U,4 such that < 7(t),e(w) >< 0, it follows
from (5.2) and (5.4) since Aw € Uga VA 2.0, A < 7(t),e(w) >y>a YA 0.
Hence, passing to the limit when A = 400, we obtain @ < —oco0 which is in
contradiction with a € R. So, it results < 7(t),e(w) >%> 0 VYw € U,q, which
implies 7(2) € B (see (4.2)). Using (3.8) et (4.2) we obtam r(t)+0'(t) € Tad(t)
and, from (5.2), (5.4) and (3. 18) it follows e

65 . '<a(t) F(8),e(u(®) >u <0.

AN

Moreover, as o(t) — o(t) € o, from (4.4) and (4.6) for 7 = 2(a(t) a(t))
it results I ;
(5 6) - <of(t) - a(t),e(u(t)) >y 2 0

It is clear that (5.5) and (5.6) are in contradiction. Therefore, u(t) € U,,d
Using now (2.9) and (4.3).it follows G(t) € ,4(t) where G is glven by (5 3).
Hence, having in mind (3. 18) and (3.8) we obtain .

(5.7) <o) e(u®) >u = < F(t), u(t) >v .

Fmally, the mequahty in (3.15) i isa conseqnence of (5.7) and (3 10) So, nt
results that (u, o) is a solution of the problem P;. O
References

(1] J. Haslinger and 1. Hlavacek, Contact between elastic 5odm 1. Continuous problem.
Applik. Math. 25 (1980), 324-347.

(2} J. Haslmger and 1. Hla.va.cek Contac& between elastic perfectly plaattc bodzu Apphk
Math. 27 , 1982, 27—45

[3] I. Hlavacek and J. Necas, Mathematacal theory of elamc and elcstoplamc bod:es an
introduction. Blsvier, Amsterdam, 1981. :

[4] 1. Hlavacek and J. Necas, Solution of Signorini’s cantact problem in the deformation
theory of plasticity by secant modules method. Applik. Mat. 28 (1983), 199-214.

{5] N. Cristescu and I. Suliciu, Vucoplastmty Martius thoﬂ' Pubhshers, Edntura Teh-
nica, Bucharest, 1982. )

[6] G.Duvaut and J.L. Lions, Les inéquations en méconique et enphysique. Dunod, Paris,
1972.

(7] P. Suquet, Evolution problems for a class of dissipative materials. Quart. Appl. Maths.
(1981), 391-414.

[8] I.R. Ionescu and M. Sofonea, Quasistatic processes fo} elaatic-vl'aco-plastic materials.
Quart. Appl. Maths. 2 (1988), 229-243.



ON SIGNORINI'S CONTACT PROBLEM IN RATE-TYPE VISCOPLASTICITY 111

(9] LR. Ionescu and M. Sofonea, Functional and numerical methods in viscoplasticity.
Oxford University Press, 1993.

(10) M. Sofonea, On a Contact Problem for Elastic- Viscoplastic Bodies. Nonlinear Analy-
sis, Theory, Methods and Applications (1996), (to appear).

(11] M. Rochdi and M. Sofonea, On Rate-Type Viscoplastic Problems with Linear Boun-
dary Conditions. Mathematische Nachrichten (1996), (to appear).

[12] M. Rochdi, I. Rosca and M. Sofonea, On Ezistence, Behavior and Numerical Approach
of the Solution for Contact Problems in Rate-Type Viscoplasticity. Proceedings of
the “37¢ Biennial Joint Conference On Engineering Systems, Design and Analysis”
(ESDA '96), Montpellier, France. PD-Vol. 738 , Volume 1 , 87-92, ASME, 1996.

Department of Mathematics, University of Perpignan,
52 Avenue de Villeneuve, 66 860 Perpignan, France



On the Existence and Behaviour
of the Solution for a Class

of Nonlinear Evolution Systems

M. RocHDI et M. SOFONEA



On the Existence and Behaviour of the
Solution for a Class of Nonlinear
Evolution Systems

M. ROCHDI et M. SOFONEA

{ Descriptif I

Cette publication est dédiée a I’étude d’un probléme d’évolution abstrait non linéaire
généralisant une classe de problemes de contact avec ou sans frottement entre un corps

viscoplastique et une fondation rigide.

La formulation du probleme étudié est la suivante : soit H un espace de Hilbert
et [0,7] un intervalle de temps. On se donne aussi les opérateurs A : H — H et
B :[0,T) x Hx H — H ainsi que la fonctionnelle ¢ : [0,7] x H —] — 00, +00]. On
considere les probléemes d’évolution de la forme

(1) y(t) = Ai(t) + B(t, z(t), y(t)),
(2) y(t) + dp(t,z(t)) > f(t),
(3) z(0) = zo, y(0) = yo,

ou les inconnues sont les fonction z : [0,7] — H et y : [0,7] — H. Dans (1)-(3), le
point au dessus d’une quantité désigne sa dérivée temporelle et O est le sous-différentiel

classique de la fonction .

Le probleme abstrait (1)-(3) est présenté ici pour unifier et généraliser un ensemble
de techniques utilisées pour I’analyse d’une classe de problémes quasistatiques de contact
entre un milieu continu viscoplastique et une fondation rigide. En effet, les inconnues z et
y représentent respectivement le tenseur des petites déformations et celui des contraintes,
I’équation (1) désigne la loi de comportement viscoplastique, (2) est une inéquation varia-
tionnelle elliptique englobant ’équation d’équilibre ainsi que les conditions aux limites.
La fonctionnelle ¢ est entierement déterminée par le type de conditions aux limites de
contact considérées. Ainsi, aussi bien des conditions classiques de déplacement-traction
que des conditions de contact avec ou sans frottement peuvent étre mises sous la forme
(2) avec un choix approprié de la fonctionnelle ¢.

Cet article est structuré de la fagon suivante : on prouve un résultat d’existence et
d’unicité pour le probléme (1)-(3) en utilisant des arguments sur les inéquations varia-
tionnelles elliptiques suivis d’une technique de point fixe. On poursuit avec un résultat

1



de dépendance continue de la solution par rapport aux données ainsi qu’un résultat de
stabilité. On étudie ensuite la dépendance de la solution par rapport & une petite per-
turbation de 'opérateur B et on prouve alors un résultat de convergence uniforme de
la solution. Finalement, on considére le probléeme (1)-(3) dans le cas particulier d’une
fonction indicatrice ¢ = ¥ ou K est un convexe fermé et non vide de H. La solution
est obtenue, dans ce cas, comme la limite d’une suite de solutions réguliéres de problémes
pénalisés de la forme (1)—(3).



ON THE EXISTENCE AND BEHAVIOUR OF THE SOLUTION
FOR A CLASS OF NONLINEAR EVOLUTION SYSTEMS

MOHAMED ROCHDI and MIRCEA SOFONEA

This paper deals with the study of a nonlinear evolution system arising from rate-type
viscoplasticity. The existence and uniqueness of the solution are obtained by using
standard arguments of the elliptic variational inequalities followed by a fixed point
method. The continuous dependence of the salution upon the input data as well as the
behaviour of the solution with respect to various parameters are also investigated. -

" 1. INTRODUCTION

Let H be a real Hilbert space, A : H— H and T>0. Let also B: [0, T} x HxH—>
> Hand ¢: [0, T}xH—]-»,+»]. We consider evolution systems of the form

(1.1 () =A x(£) + B(t,x(t), y(1)) a.e. te(0,T)
(1.2) » y(®)+o0(t, x(D)> f () forall te [0, 71
(1.3) x(0)=x0, ¥(0)=y0 :

in which the unknowns are the functions x: [0, T}—+>Hand y:[0,T}>H. In
(1.1)~(1.3) and everywhere in this paper, the dot above represents the derivative
‘with respect to the time variable and 8¢ is the subdifferential of the function ¢.

Evolution problems of the form (1.1)—(1.3) arise in the study of quasi-
static processes for elastic-viscoplastic materials in the case of the linearized
theory. In this case, the unknowns x and y are, respectively, the small defor-
mation tensor and the stress tensor, (1.1) represents the constitutive law in -
which the operators 4 and B are given, (1.2) involves the equilibrium equa-
tion as well as the boundary conditions, and, finally, (1.3) représents the ini-
tial conditions. The function @ in (1.2) is determined by the type of the boundary
conditions. So, classical displacement-traction conditions, unilateral boundary
conditions as well as contact conditions with or without friction may be modelled
by (1.2) with an appropriate choice of ¢ (see, for example, [1], [2] and [3]).

The purpose of this paper is to investigate abstract systems of the form
(1.1)-(1.3) in order to unify various results already obtained in [2], [41-16] in
the study of quasis-static rate-type viscoplastic problems. So, in Section 2 we
prove an existence and uniqueness result for (1.1)-(1.3), using standard ar-
guments of elliptic variational inequalities followed by a fixed point tech-
nique (Theorem 2.1). In Section 3 we obtain an estimation of the distance
between two solutions of (1.1)-(1.3) for two different sets of input data

REV. ROUMAINE MATH. PURES APPL;, 42 (1997), 7-8, 659-667
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(Theorem 3.1). This estimation involves, in particular, the continuous de-
pendence of the solution with respect to the data as well as a stability result.
* In Section 4 the behaviour of the solution with respect to a small perturbation
of the nonlinear operator B is studied and a uniform convergence result is
obtained (Theorem 4.1). Finally, in Section 5 we consider (1.1)-(1.3) in the
particular case of an indicator function ¢ =y, and we obtain the solution of

this problem as the limit of a sequence of regular solutions associated to pe-
nalized problems (Theorem 5.1). '

2. AN EXISTENCE AND UNIQUENESS RESULT

Everywhere in this paper we denote by < -.>4 the inner product of H
and by |-|» the associated norm. We also denote by “ —F. , “ 57 respec-
tively, the weak and strong convergences in & and by ©(0, T, H) the space of

continuous functions on [0, 7] with values in H, endowed with the canonical
norm denoted by |- o, H-

In the study of the problem (1.1)(1.3) we denote by Deg(z, -) the effective
domain of the function g(t, -):H—} -, + o] defined by Do(t,)={xe H|p(t,x)<
<+ow} and we consider the following assumptions:

{A:-H—> H is a positive definite and symmetric operator, i.e:
Q.1) (a) there exists m > 0 such that < Ax,x >y nﬂxﬁ, forallxe H
G <Ax,y>H=<x,Ay>H forallx, yc H

(B:(0,T)x Hx H - H and .

| (a) there exists L > 0 such that |B(t, xy, yy) — B(t, x5, y, )} &

2.2) { < L(x - )y +by — yaly) forallt € [0, T, X X%, Yo Yp € H
(®) 1 > B(t,x, ) is a mesurable function forall x, y & H |

[(¢) £ B(tOO) e I°O, T, H)

910,71 x H -] -, 0] and
@Dep(t;)=Kc His independent on ¢t ¢ [0, 7]
®)K =D and forall e [0,7] o(t,-) is a convex and lower
|  semicontimous function on H
(c) there exists L > O such that
- (. 2) - o(t,2)) + 9(tp,2) ~9(f, 1) €
< Z"l - bz — 2y, forally,, ¢, e [0, 7], 7,z e K
SeWLe0,T.H)
Xo, Yo H
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(2.6) Yo +09(0, xp) 3 /(0).

The main result of this section is as follows.

- THEOREM 2.1. Let (2.1)-(2.6) hold. Then the problem (1. l)-(l 3) has
" a unique solution xeW-%(0, T, H), ye W1-°(0, T, H).

Theorem 2.1. may be obtained by using similar arguments than in [2]
and [6]. However, for the convenience of the reader and in order to prepare
the next sections of this paper we summarize heré the main ideas of the
proof. For this, let us suppose in the sequel that the assumptions of Theorem
2.1. are fulfilled and let ne L2, T, H) Let also z, er (0, T, H) be the func-
tion defined by

@2.7) -z = fon(ds+z - VieloT],
where _ .
2.8 . 29=Yo—A4 Xg.

LEMMA 2.1. There exists a unique couple of functzons - wi=@, T, H),
Vn€ wL.=(0, T, H) such that ,

@9 (=42, +2,()
(2.10) (D) +etx, (D)2 1)
Jor all te 0, T] Moreover o , '
(2.11) | % (0)=x5, yy(0)=y,.

Proof. For all t€ [0, T}, using (2.1) and standard elliptic variational argu-
ments, we obtain the existence and uniqueness of the elements x. (t) €H, Vn (HeH
such that (2.9)—-(2.10) hold. Using now (2.3), it results that for all ¢,, tze[O T]

{|x,,(t,) X (0)]; +m ) =y (), <
<C(lzy (1)) -2 (tz)l,, I ACYRFACY MR R

and, having in mind (2.7) and (2.4), we deduce the regularity Xp€ wl=(0, T,H),
Yn€ Ww1.2@0,T,H). (In (2.12) and everywhere in this paper C represents a ge- '
-nenc strictly positive constant, which may depend onA,B,¢ and T and is in-
dependent of time and of the input data.)

Finally, (2.11) follows from (2.5)-(2.8) and the umqueness of the solu-

tion for the elliptic problem (2.9), (2.10) at r=0.
Let us now remark that by hypothesis (2.2) we may consxder the opera-

 tor A:L*°(0,T,H)— L*®(0,T,H) defined by :
(2.13) A =B(t,x (t) yﬂ(t)) VneL>(0, TH) tel0,7].
We have -
LEMMA 2.2. The operator A has a unigue fixed point w*e L*(0,T,H).

Proof. Let 1y, 1, €L°(0, TH) Using (2.9), (2.10), (2.1) and (2 2), after
some algebra, it results

(2.12)
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where AP denotes the powers of the operator A. anee Cv/pl >0 when p—0, it
follows that for p large enough the operator AP is a contraction in L®(0,T,H).
Hence there exists a unique element n*e L*(0,7,H) such that An*=n*.
Proof. of Thearem 2.1. Using Lemmas 2.1 and 2.2, it is easy to see that the
- couple of functions X=Xpe, Y=Yye given by (2.9), (2.10) for n=n*, represents a
‘solution of the problem (1.1)-(1.3). Moreover, the uniqueness part Theorem 2.1
follows from the uniqueness of the fixed point of the operator A defined by (2.13).

3. THE CONTINUOUS DEPENDENCE OF THE SOLUTION UPON THE INPUT DATA

In this section two solutions of the variational problem (1.1)<(1.3) for
two different data are considered. An estimation of the difference between
these solutions is obtained that 'gives the continuous dependence of the solu-

“tion upon the input data.
THEOREM 3.1. Let (2.1)-(2.3) hold and let (x,, y,) be the sohmon of

the evolution problem (1.1)~(1.3) for the data f;, xy;, yo; (i = 1,2) such that
(2.4)~(2.6) hold. Then there exists C>0 which depends on A,B,¢ and T such that

QD) I -2yl gt VPl € CC1%o1~%02 |11 + 1Yo1-Yoa L+ fi~7a | wp0)
| Proof. Let te [0,T] and ie{vl, 2}. Using (1.2), we obtain

(3.2) <y(D),z-x()>p +.1p(t z)- e(t, x(0)><f(), 2=-x()>y V zeH

and, from (1.1) and (1.3), it results - | '

(3.3)  y=Axm+ z,(r),
where 2, is defined by ,

B B 10 I,,B(u.xf(u).y,(u»mzo. Vse[0,T],
(3.3) : - Zg; ™Yoy —A xo;-

stng now (3.2), (3. 3) and (2.1), we obtain
(3-5) | %1 () =% | g + |y, (®) -y,(t) |4 < CCLAH O -1 I at lzl(f)- zy(01| H)
.Moreover, from (3.4), (3.5), (2.1) and (2.2) it results
1) -220)|,, ‘Clxor‘xozlﬂ +[yor - yoal; +
CN [ @-nl d@-n@ k]

The inequality (3.1) follows now from (3.6) and (3.7).
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- 4. A UNIFORM CONVERGENCE RESULT

~In this section we study the dependence of the solution of the evolution
problem (1.1)~(1. 3) with respect to a perturbation of the operator B. For this, let
us suppose that (2.1)~(2.6) hold. For every i1 >0 we consider a perturbation B, of
the operator B which satisfies (2.2). Using Theorem 2.1, we obtain the exxstence
* and uniqueness of the functions x,, € W1-°(0,T,H), y,e W1*(0,T,H), such that

@n = Ax,.(f)+Bu(t,xu(t),yu(t)) 2e.te©T)
(4.2) | y"(t)+6tp(t x, )2/ foralltelo, n
@y 50)=x, 2©@=y.

Let us now consider the following assumptlon

(There exists g:R, - R, such that
- (4.9) ‘<(a)|BM(t x, ) - B(t, x,y){Hsgm) for all ¢ € [0, 7], xyeH
| (b)hmg(u) 0. |

The main result of this section is the followmg

THEOREM 4.1. Let (4.4) hold. Then the solution (x , y ) of the problem
(4.1)-(4.3) umformly converges to the solution (x, y) of the problem (L.1)-(1.3) -

N in €(0, T,H),yu ~>yin 6’(0 T,H) when p -5 0.

Proof. Let t € [0,T] and p > 0. As it results from the proof of Theorem 21, °
(x, y) is the solution of the elliptic problem (2.9), (2.10) for n = n*, where n*
is the fixed point of the operator A : L*(0, T,H) —> L™=(0,T,H) defined by (2.13),-
'whxle (€ yu) is the solut:on of the same problem 2.9), 2.10) forn = 11 , Where

"u is the fixed pomt of the operator A, : L®(0,T, H) ~ L*(0,T, H) .defined by
(4.5) AN =B, (t, x,(0), y,(0)) for all neL=(0,T.H), t<[0,T].
stng this remark from (2.9), (2.10) and (2.1) we obtain
|x W@ =x(@) g+ |y, -y(t)ly €C Iz O -z |y

 and using now (2.7) and (2.8), the previous mequahty _becomes |
(4.6) 1%,0)=3() |+ 13, () =¥z SCJ | % ()=1*(s) |y ds
Since '} = Ay, and n® = An®, from (4.5) and (2.13) we deduce
| 5 () =N*() | g = By (s, x,(5), ¥, (D) - B(s, x(s), YD | Vse[0.7].
Using now (4.4) and (2.2) in the previous equality, it follows
@4.7) 1), () -n*G) L5 €8W) + LU, () ~x() |y + 1y, (5) = y6) | ) ¥ s€[0,T].
So, from (4.6) and (4.7) we obtain
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L d

ENORE]0 MERINOEST) B <Cg)+

+C j: (lx" (s) - j(s)'n + ly.l (s) - y(s)l H )ds.
Theorem 4.1 follows now from (4.-'8) and (4.4).

(4.8)

s, A rnmuzm METHOD

In this sectxon we consider the problem (1. l)—(l 3) in the case when ?
‘is the indicator function of a set X and we study this problem by using a pe-
nalized method. So, let X be a nonempty closed convex subset of H and, for
simplification, let us suppose that 0;; e K. We denote by v, the mdlcator of X
and let 3y, be the subdifferential of y.
Let (2 1), (2.2), (2.4) and (2.5) hold and let us suppose that
-(5.1) Yo + 0w x(xy) 3 R0). '
. Using Theorem 2.1, there exists a unique coupleofﬁmcuonser‘ (0,T,H),
y € W=(0,T,H) such that
(5.2) - o= Ax(0)+ B, x(N (1) ae te(©0,T)
¢3 W)+ dw g (x(6))> £ (1) for all r€[0,7) |
G4 O x(0)=xp,  N0)=y,.
1In order to approach the solution of (5.2)—(5.4) by the solutnon of a pe-
nalized problem, let us consider @ : H— R such that
(@)@ is a convex and lower mwonnmous funcuon on H

(.5) ®e(z)=0 iff zekX
{©e(z) >0 for all z¢ H.

- Moreover, for every h>0 let xg, and y,,, be such that
(5.6) | S xo,,e H,ypeH |
) N - J’oh+—3¢(xoh)af(0)
Usmgagam Theorem 2.1, mobtamthanf(z.l), 2.2), (24), (55)-(57) hold,

_ then there exists a umque couple of fanctions x,,e Wl- (O.T.H), y), € W1-=(0, T,H)
such that

(58) yh(t) =4 xh(t) + B(':xh(t)sJ_’h(‘) ' _a'e te (O,T)
(5.9) o +%a.;._(x,,(z))a S@ for all te[0,T)
(.10) - xp(0)=xq,, V(0)=yq,.

The solution of the evolution problem (5.8)—(5.10) depends on A > 0.
The behaviour of this solution when & — 0 is given by the following.

THEOREM 5.1. Let (2.1), 2.2), (2.4), (2.5), (5.1), (5.5)~(5.7) hold. Let (x;, y;)
be the solution of (5.8)~(5.10) for h > 0 and let (x, y) be the solution of (5.2)(5.4). If
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(.11 - xp—rxy, yu—L>y, when h->0,
then, for all t< [0, T] we have L
(5.12) "k(')-—'**x(f), y;.(t)—->y(t) when h—>0.

- In order to prove Theorem 5.1, we need some prelxminary results. Fora
this, let us suppose in the sequel that the assumptions of Theorem 5.1 are’
fulfilled and let us consider n € L”(0,T,H). We denote by z, the functlon de-
fined by (2.7), (2 8) and, for-every 2>0, let i be gwen by oo

(5.13) z;m(t) [on(s)ds+zo,, Vte[O T],
- where | ’ e - ' : '
(5.14) - S ZOh"yOh'A xo::

From (5. 13) 6. 14) and (5.11) it results that
(5.15) z,,,,(t)-——-sz,,(t) Vte[0,7] when h—>0.

Using now Lemma 2.1, we obtain the existence and umqueness of the
functions x,, € wl.=(0,T,H) and Yim € W2(0,T,H) such that '

(516 Yim(®) = Ax,,,‘(t)+z,m(t) S .
L for all te[0,T]
(53.17) J'hn(t)+‘a¢(xhq(t))9f o S
(5;1:8)" I x,m(O)=xo,,, Vi ©)=Yon-

" Using again Lemma 2.1, we obtain the existence and umqueness of the
functions %, € Wl’“’(o T,H), and y e W1.%(0,T.H) such that :

(5.19) Ya®= Axn(t)+zn ® )
' all 0
(5.20) Yo+ 0y (en @) > f(t)}fo relorl
G21) - x(0)=x;, yn,(0)=y,.
4 We have: . ‘

LEMMA 5.1. If (5.11) holds, then Jor all te [0 T) we have
(5.22) x,,n(t)————)xn(t) y,m(t)-—-—-) Yn(®) when h—0.

Proof. Let te [0,T]. Usmg (5.17), (5.16), (5.5(b)) and (2.1), we obtam~_
(5.23) Cheym (r)],, —:p(x,,,. )< S ()= 3 (D Xy () >3-

Using now (5. S(c)) and (5.15) in (5. 23), it results that p, (D), is a
bounded sequence in H. Therefore, there exists an element xn(t)e H and a

subsequence (x., (1));y < (X (D), such that
(5.24) Xy @ = F (@) when K 0.
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" Moreover, since (x,,.,‘(t)),,. and (z,,,“(t)),,. are bounded in H, from (5. 23)
we obtain

©(5.25) - POy (MSCh  for all k>0,
Passing to the limit when 4'— 0, from (5.5), (5.24) and (5.25) it results
(5.26) - ek |

Using now (5.16), (5.17), (5 24) and (5 15), by standard lower semi-
_continuity arguments we deduce .
(5.27) | AX 1)+ 2, () + 0y £ (5 (D) S (0).
Moreover, by the uniqueness of the solution of the problem (5.19), (5.20),
from (5 26) and (5.27) it results x,,(t) Xy(?). So, having in mind (5. 24), it
follows that :
(5.28) x,,,‘(_t) e x (1) when h—>0.

- In order to obtain the strong convergence, let us remark that from (2.1)
it results . :

CIx,.., =%, Off, < 4xm®, x,..,(r) — %y (> -
-<4 X0 (), X () — 2 (1) > |

and, from (5.16), (5.17), (5.5), we deduce
(5.30) < AXpy (), Xpeyy () — % (O) >y &< [(0), X3y (O) - Jfﬂ(‘) >y +
' . +< Zpy (O, Xy ()~ Xy ) >y -

Lemma 5.2 follows now from (5.29), (5.30), (5.15), (5,28) and (5.16).

Proof of Theorem 5.1. Let h > 0 and ¢ € [0,T). As it results from the proof
of theorem 2.1, (x, y) is the solution of the elliptic problem (5.19), (5.20) for n=n¢,
where n® is the fixed point of the operator A : L*(0,T,H) —L"(0,T,H) defined

by (2.13). Similarly, (x, ;) is the solution of the problem (5.16), (5.17) for n =n3,
where n, is the fixed point of the operator A,: L*(0,7,H) —» L*(0,T,H) defined by

(5.31) A;.,,(t)=B(t,x,.,,(t), Yim(D) Yn el-‘°(0 T.H), te[0,7].
 So, we have

b~ 2O+ )= 0hy SJe - s O, *+ P O e,
- e (=2 O] + e 0= e O,
Using standard arguments, from (5.16) and (5.17) it follows
RN @], + Lv'm; -y @], SCL3 0", ds
and, having in mind (5.31), '(2.13) and (2.2), we deduce

(5.29) {

(5.32)
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1 O~ Zime () ;,*thn; O @), €

<C[; (bn(6) - (g +Du ()= Mgy ) .
Let us now consider ¢ >0. Using'LemmaHS.l, we obtain that there exists $>0
which depends on &, t and n* such that for 0 <A <3 we have
(5.34) %, =2 0] 4] O- @) <
So, if 0<h <3, from (5.32)-(5.34) it results
e @ — (), +pa @O - 1)),, <

<C[ (s 0)- 26, +a©) -2, Bsve

Using now a Gronwall-type inequality, (5.35) implies
. |, () =%(O) | g+ 1Y)~ YD) | < Ce
for all 4 such that 0 <A <&, which proves (5.12). .
Remark 5.1. Concrete examples, applications and mechanical interpre-
tation of the strong convergence result given by Theorem 5.1 in the study of
~ contact problems for elastic-viscoplastic bodies may be found in [2] and [3].

(5.33)

(5.35)
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On Frictionless Contact between
two Elastic-Viscoplastic Bodies

M. RocHDI et M. SOFONEA

Descriptif I

On se propose, dans cette publication, d’étudier un probléme quasistatique de con-
tact sans frottement entre deux matériaux viscoplastiques. Les conditions aux limites de
contact considérées ici sont du type Signorini.

Soient deux milieux continus viscoplastiques occupant deux domaines ! et Q% de RM
(N = 1,2, 3) et dont les frontieres respectives I'! et I, supposées suffisamment réguliéres,
sont divisées en trois parties disjointes I}, T% et I'; (i = 1,2). Pendant I'intervalle de
temps [0, T'], on suppose que des forces volumiques ¢! agissent dans QF, que les parties I'}
sont encastrées dans des structures fixes et que des tractions ¢ s’appliquent sur I'y. On
suppose en outre que les deux matériaux sont en contact permanent sans frottement le long
de la partie I'; commune & leurs frontiéres, notée dans la suite par I's. Ainsi, le probléme
quasistatique de contact sans frottement entre deux milieux continus viscoplastiques peut

se formuler de la fagon suivante :

Probléme P : Pour 7 = 1,2, trouver le champ des déplacements ' : ' x [0,7] — RY
et le champ des contraintes o* : QF x [0, 7] — R¥*¥ tels que

¢* = E'%(W’) + G*(o*,e(v’)) dams QF x (0,7),
Dive*+¢i =0 dans Q' x(0,T),

W =0 gur o PLdl b

olv=gh e TR0

ul +u2 <0, ol =02<0, ¢t =0, ol(ul+u?)=0 gur .- Ta il Ty,

Wi =n},  oOi=0o)  dabs 05

On note par RY*Y I’espace des tenseurs symétriques du second ordre sur RY et par
e(u') le tenseur des petites déformations linéarisé. Le point au dessus d’une quantité
désigne sa dérivée temporelle, Div o* désigne la divergence de la fonction tensorielle o, le
vecteur v est la normale unitaire sortante & Q! ou & Q2 o'v est le vecteur des contraintes



de Cauchy, u?, o? et ot représentent respectivement le déplacement normal, les contraintes

normales et tangentielles.

Il s’agit dans cet article de ’analyse variationnelle du probléme P. On commence
par établir deux formulations faibles P, et P,. La premiére est définie en déplacements
alors que la seconde est définie en contraintes. On poursuit avec un résultat d’existence
et d’unicité de la solution pour chacune de ces formulations. On termine par I’étude de
quelques propriétés de la solution. On prouve ainsi une équivalence entre les formulations
P, et P; et la dépendance continue de la solution par rapport aux données ainsi qu’un
résultat de concergence par rapport a un coefficient de viscosité.
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SUMMARY

A quasistatic contact problem between two elastic—viscoplastic bodies involving
frictionless boundary conditions is considered. Two variational formulations of this
problem are proposed, followed by existence and uniqueness results. An equivalence
result between the previous variational formulations, the continuous dependence of
the solution with respect to the data as well as a convergence result with respect to
a viscosity parameter are also obtained.

-1. Introduction

IN THIS paper we are interested in the study of a frictionless contact problem
for materials whose behaviour may be modelled by a constitutive law of the

form
| o= %c(u) + G(o, e(u)) (1.1

in which o = (oy;) denotes the stress tensor, u = (u;) is the displacement
field, e(u) = (exn(u)) represents the small strain tensor, and € and G are
constitutive functions. In (1.1) as well as everywhere in this paper the dot
above represents the derivative with respect to the time variable.

Rate-type viscoplastic models of the form (1.1) are used in order to
describe the behaviour of real materials like rubbers, metals, pastes, rocks
and so on. Various results and mechanical interpretations concerning models
of this form may be found for instance in (1) (see also the references quoted
there). Existence and uniqueness results for initial- and boundary-value
problems involving (1.1) were obtained in (2, 3) in the case of classical
displacement-traction boundary conditions, in (4) in the case of ‘linear
boundary conditions’ and in (§) in the case of frictionless contact with a
rigid foundation.

The purpose of this work is to investigate a quasistatic problem involving
a frictionless contact between two elastic—viscoplastic bodies, each having
a constitutive law of the form (1.1). So, some results already obtained in
(6 to 9) in the case of two elastic bodies are extended here to the case of

rate-type elastic—viscoplastic models.
[Q. JI Mech. appl. Math., Vol. 50, Pt. 3, 1997] © Oxford University Press 1997
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- This paper is structured as follows: in section 2 the mechanical problem P

is stated and some functional notations are presented. For the problem P we
establish in section 3 two variational formulations P, and P,. Both P, and
P, involve a coupling between the constitutive law (1.1) and a variational
inequality including the equilibrium equation and the boundary conditions.
The unknowns in the variational problems P, and P, are the displacement
field « and the stress field o. . ‘

For the problem P, we prove in section 4 an existence and uniqueness
result (Theorem 1). In this case the main unknown is 4 and the existence of
the solution results from classical elliptic variational inequalities arguments
followed by a fixed-point method. In section 5 we also prove a similar
existence and uniqueness result for the problem P, (Theorem 2). Here the
main unknown is o. The last section deals with the study of some properties
of the solution. So, we prove an equivalence result between the problems
P, and P,, the continuous dependence of the solution with respect to the
input data, and a convergence result with respect to a viscosity parameter
(Theorems 3 to 5). '

2. Problem statement and preliminaries

Let us consider two elastic-viscoplastic bodies whose material particles
occupy the bounded domains Q' and 92 of RY (N =1,2,3) and whose
boundaries I'! and I, assumed to be sufficiently smooth, are partitioned into
three disjoint measurable parts I}, I, and I'} (i = 1,2). Let measT} > 0
and let 7> 0 be a time interval. We shall assume that body forces ¢
act in Q' x (0,T), that the displacement fields vanish on '} x (0, T) and
that surface tractions ¢ act on I'j x (0, 7). We also suppose that, in the
time interval [0, T], the bodies are in contact along the common part Iy
of their boundary which we denote in the sequel by I';. Moreover, we
suppose contact boundary conditions of the Signorini type on I'; x (0, T)
in the form with a zero gap function. We shall finally assume the case of
quasistatic processes and we shall use (1.1) as the constitutive law. With
these assumptions, the mechanical problem we study here may be formulated
as follows.

PROBLEM P For i =1,2 find the displacement field ' : Q x [0, T] - RV
and the stress field o' : Q* x [0, T] — Sy such that

o' =€e@i’) +G'(o', (') in Q' x(0,7T), 2.1)
Dive' +¢i =0 in Q'x(0,T), (2.2)
=0 on Iix(0,7), (2.3)

dv=¢), on [%x(0,7T), (2.4)

T

uy+ul<0, 0y =02<0, 0!, =0, ol(u! +u2)=0 on I3 x(0,T) (2.5)
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W) =u), 0)=o) in @, (2.6)

where Sy denotes the set of second-order symmetric tensors on RN. In (2.1)
to (2.6) Divo' represents the divergence of the tensor-valued function o,
v = () denotes the unit outward normal vector to both Q' and Q?, o'v is
the stress vector, u;, o}, and o}, are given by
U, =UWVy, O, =OlVhVk, O = OV — Oyl

and finally «} and of are the initial data.

We denote in the sequel by - the inner product on the spaces RY and Sy
and by |- | the Euclidean norms on these spaces. The following notation is
also used, fori=1,2:

H = {v= () | w € LX), k=T, N} = L{(Q)",
Hi={v=(n) | v € H(Q)), k=1, N} = H\(@)",
W = (= (t) | Ttn = T € LA, k,h =T, N} = L2(Q)V*N,

% ={re¥ | Divt € H).

The spaces H', Hi, #' and % are real Hilbert spaces endowed with the
canonical inner products denoted respectively by (-, ‘)x, where X is one of
these spaces.

Let H = [H}(I)]Y and let y; : Hi —> Hp be the trace map. We denote
by V' the closed subspace of H: defined by

Vi={ueH | yu=0 on I'}).
The deformation operator £ : Hi —> %' given by
e() = (en(®)),  xn(u) = 3 (uin + uni)

is a linear and continuous operator. Moreover, since measI™ > 0, Kom’s
inequality holds (see for instance (10, p. 79)):

le@)lgp = Cluly  forall veV', i=1,2. 2.7)

Here C is a strictly positive constant which depends only on Q' and I'
(everywhere in this paper C will represent strictly positive generic constants
which may depend on €', I} , %, T3, €, G', T and do not depend on time
or on input data ¢, ¢, uy, 0g, i =1,2).
We now endow V' with the inner product (-, -)y: defined by
(v, wyyi = (e(v), e(w))g  for all v, w € V', (2.8)

We also denote by |- |y the associated norm. So, having in mind (2.7),
we deduce that |- |y and |- | are equivalent norms on V'. Therefore, V'

endowed with the inner product defined by (2.8) is a real Hilbert space.
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Let now A‘Il’,i = [H'% (M)JV be the strong dual of the space Hr and let
(-,-)i denote the duality between H;, and Hy. For all T € %i there exists

an element y,r € Hy, such that
Vit viv)i = (r.e())gp + (Divr,v)y  for allv € Hi. 2.9)

Moreover, if t is a regular (say C!) function, then
Vit )i = / wvda for allve Hi. (2.10)
r‘l

We now define the spaces H, = H] x HZ, % = %' x 32, %, = %! x %2
and V = V! x V2 each one endowed with the canonical inner product and,
for simplicity, we shall use the notation

e(v) = (e(v'), £(v?))

for all v= (v!,v?) € H,.

Finally, for every real Hilbert space X we denote by |-|x the norm on
X and by |- |eo,x the norm on the space L*(0, T, X). Moreover, C(0, T, X)
will denote the space of continuous functions on [0, 7] into X.

3. Variational formulations

In this section we give two variational formulations for the mechanical
problem P. For this, let us suppose that for i = 1,2

¢ :Q x Sy — Sy is a symmetric and positive definite tensor: )

@) €ipm € LO(Q)  for all k,h,l,m =T,N,

®) €o-t=0- €7 forall o,te Sy, ae. in ',  G.D
(c) there exists o' >0 such that €0 -0 = of|o}?
for all o € Sy, a.e. in ', J
G:Q xSyxSy— Sy and
(a) there exists L' > 0 such that _
|G'(x, 0y, 1) — G'(x, 02, £2)| < L' (o) — 03] + |} — &3))
for all 01,02,61,82 € SN, a.e. in ', (3.2
) x> G'(x,0,¢) isa measm_'able function with respect to
the Lebesgue measure on ', for all o, ¢ € Sy,
(c) x> Gi(x,0,0) € ¥, J
¢ € W, T, H'), (3.3)

vy € W (0, T, L*(T)V). (3.9)
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The assumptions (3.1) and (3.2) allow us to consider two operators denoted
again by €' and G’ such that € : #' — %', G' : ' x #' — X' and

(o)) =¥ (-.0()) = (Cpim()om (")) Vo€ ¥, ae. in 2,
G'(0,6)(-) =G'(-,0(-),e(-)) VYo,ee ¥, ae. in Q.
Hence, we may also consider the operators € and G defined by
| Be = (Ble!, €2e2?) Ve = (¢!, e?) e %,
G(o,e) = (G'(d', '), G*(6%,€?)) Vo=(o',0?), e=(e!,e) e ¥.
We also denote by f(¢) the element of V = V! x V2 given by

(F(®), v}y = (@] @©), V") i + (D2 (), v} o
+He2 (0, 11V gy + (@30), v297) 2oy

Yo= (' v*) eV, te[0,T]. (3.5)
So, using (3.3), (3.4) and (3.5), it follows that
| f e Wh(0,T, V). (3.6)

Finally, let U,, and Z,4(t) be the sets given by
Uss ={v = (', v*) e H |
v!'=0 on T}, ¥”=0 on T3 vl+v2<0 on I3}, (3.7)
Zua)={teH | (t,e())ge = (f(),v)v YveUyl Vte[0,T], (3.8)
and let us suppose that
uo=(itg, u3) € Upa, 00=(0p,03) € To4(0), (00, &(u0))x=(F(0), uo)y. (3.9)

LEMMA 1 If the couple of functions u = (u}, u?), o = (¢!, 6?) is a regular
solution of the mechanical problem P then

u(t) € Uaa, (0(t),6(v) —e@(®)))se = (f@),v—u@®))y YveUn (3.10)

- o(t) €Xut), (t—o(t), e®))ye =0 VYreXu) (3.11)
for all t € [0, T).

Proof. Let v= (v',v?) € U,y and t € [0, T). Using (2.2), (2.9) and (2.10)
we have
2

(@), 5(0) = @Ot = Y [ (W10, ¥ ~w ) + fr o0 (o - u(0)da]

i=l
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and, having in mind (2.3), (2.4) and (3.5), we obtain

2
(0(®), e(@) — @O = (fO), v —u@®)y+ ) _ | d@Ow- (& - ¥ (1)) da.

i=1 YT

Using now (2.5), the previous equality leads to

(o), ev) —e@®))xe = (f(£), v —u(®))y + f o,()(v) +vi)da. (3.12)
r

3

The inequality in (3.10) follows from (3.12), (3.7) and (2.5). Moreover,
(2.3), (2.5) and (3.7) imply that u(r) € U,,.
Taking now v = 2u(t) and v =0 in (3.10) we obtain

(0(0), e@(®)))e = (f(1), u(®))y. (.13

Using now (3.13), (3.10) and (3.8) it follows that o(t) € £,4(t). The
inequality in (3.11) follows now from (3.8) and (3.13).

The previous results lead us to consider two weak formulations of the
problem P.

PROBLEM P, Find the displacement field u : [0, T] — H,; and the stress field
o :[0,T] — %, such that

o(t) = ‘88(&(1)) +G(o(1),e(u(t))) ae. te(0,7) 3.149)

u(t) € Uag, (0(1),(v) — eu(®)))e = (f(t), v —u(@®))v
Vve Uy, tel0,T] (3.15)

u(0) =ug, 0o(0) = o0y. (3.16)

PROBLEM P, Find the displacement field u : [0, T} — H, and the stress field
0:[0,T] — %, such that (3.14) and (3.16), and

o(t) € (1), (t—o0(t),e(u(®)))ee =0 VreX,ui), te[0,T] (3.17)

Let us now remark that the problems P, and P, are formally equivalent to
problem P. Indeed, if (4, 0) represents a regular solution of the variational
problems P, or P,, using the arguments of (11)it follows that (u, o) is a
solution of the mechanical problem P.

Under the assumptions (3.1) to (3.4) and (3.9), in the next two sections
we give existence and uniqueness results for the variational problems P, and

P,.

4. The first existence and uniqueness result
The main result of this section is the following.
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THEOREM 1 Let (3.1) to (3.4) and (3.9) hold. Then there exists a unique
solution of the problem Py having the regularity

ue W0, T, Hy), oeW">®,T,%,).
In order to prove Theorem 1 we need some preliminary results. For this,
- let us suppose in the sequel that the assumptions (3.1) to (3.4) and (3.9)
are satisfied and let n € L*(0, T, ¥). Let also z, € W"*(0, T, %) be the
function defined by

2y () = / n(s)ds + og — Be(uo)  Vt € [0, T]. @.1)
0

We consider the following elliptic problem.
PROBLEM Py, Find u, :[0,T] - H, and o, : [0, T] — ¥, such that
0y (t) = e (uy (1)) + 2, (1) 4.2)
Uy(r) € Usa, (0n(t), 8(v) — ey ()3 = (f (), v —uy(#))v Vv € Ups
for all 1 € [0, T]. @

LEMMA 2 There exists a unique solution of the problem P, having the
regularity u, € W'*°(0, T, H), o, € Wh®(0, T, ¥,). Moreover,

uy (0) = up, 0,(0) = ay. 4.4)

Proof. Let t € [0, T]. Using (3.6), (3.7), (3.1), (2.7) and standard arguments
of elliptic variational inequalities theory, we obtain the existence and the
uniqueness of an element u,(t) = (u} (z), u2(1)) such that
Un(t) € Uaa, (€e(uy(t)), £(v) —&(uy(2)))ge + (2,(1), £(v) — &(uy(t)))3e
2 (f@),v—u,(t))yv VYveUgy. ' 4.5)
Taking now o, (¢) = (0} (), 62(t)) € ¥ defined by (4.2), we obtain (4.3).
Let us remark that taking the functions v = (u)(t),u2(r) £ ¢?) and
v= (u},(t) +y!, u%(t)) where ¥ € D(QF)V, from (4.3) and (3.5) it follows
that ‘
Divoy () +¢i() =0, (4.6)
hence o, (¢) € #,. So, we proved the existence of a couple (u,(t),0,(?)) in
Hy x %, solving the problem Pj,. The initial condition (4.4) follows from

(3.9) and the uniqueness of the solution of the problem Py, for t =0.
Let now #;, 1, € [0, T); using (4.5), (3.1) and (2.7) we obtain

luy (t1) — up(t2)l0, < C(f(01) — f(0)Ny + 12y (t1) — 24(22)13¢) @4.7)
and, using (4.2), (4.6) and (4.7), it follows that
log(t1) = op(2)lge, < C(f(t1) = f(R)IH + 1z7() — 2y (t2)l%e).  (4.8)
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So, having in mind (3.6) and the time regularity 2, € whe(, T, 7€), from
(4.7) and (4.8) we deduce that u, € W (0, T, H;), 0, € W*(0, T, %,).

Let us now remark that by the assumption (3.2) we may consider the
operator A : L*(0,T,¥) — L*(0, T, ¥) defined by

An(t) = G(o, (1), e, (1)) VneLl®©,T,%), te[0,T] (49)

where, for every n € L*(0, T, ), (u,,0,) is the solution of the variational
problem Py,. Moreover, we have the following.

LEMMA 3 The operator A has a unique fixed point n* € L*°(0, T, ¥).

Proof. Let ny,n; € L*(0, T, ) and ¢ € [0, T). Using (4.9), (3.2), (4.2) and
(4.3) we obtain

[An1(£) — An2(D)lse < Clzy, (1) — 25, ()loe < C,/(; Im1(s) — n2(5)lse, (4.10)

using (4.1). By recurrence, denoting by A’ the powers of the operator A,
(4.10) implies that

t ps . q
AP () — APny(@)lse < CP [o /o fo 111 () — 120 sedr ... dis

pintegrals
for all t€[0,7T] and p e_N. Hence

CP
|AP — APn2loo,3e < — I —M2loe VPEN 4.11)
p!

and, since lim,C?/p!=0, (4.11) implies that for p large enough the
operator AP is a contraction in L*(0, T, #). Therefore, there exists a unique
element n* € L*(0, T, ¥) such that APn* = n*. Moreover 5* is the unique
fixed point of A.

Proof of Theorem 1. Let n* € L*(0,T, %) be the fixed point of A and
let uy € W0, T, H,), o, € W'*(0,T,%,) denote the solution of the
problem Py,.. We shall prove that (u,., 0, ) is the unique solution for the
problem P,. For this, we have to prove (3.14) and (3.16). The equality
(3.16) follows from (4.2), (4.1) and (4.9) since

O (1) = Ce(tiye (1)) + 250 (1), 290 (0) = 1" (1) = An* (1) = G(0yp (1), E(uyr (2)))

a.e. on (0,T). Let us also remark that (3.16) follows from (4.4) used for
n=n"

Let now (u,0) be another solution of problem P, having the regularity
ue Wh°(,T H), 0 € Wh*(0, T, %,). It is easy to verify that (u, o) is a
solution of the problem Py, for n € L*(0, T, #) defined by

ni) =G(o(t),e(u(t))) Vtel0,T). 4.12)
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Using Lemma 2 it follows that
U= u,,; o =0, 4.13)

Using now (4.9), (4.13) and (4.12) we deduce An =7 and, by the uniqueness
of the fixed peint of A, _
n=n". 4.14)

The uniqueness part of Theorem 1 is now a consequence of (4.13) and
(4.14).

5. The second existence and uniqueness result
The main result of this section now follows.

THEOREM 2 Let (3.1) to (3.4) and (3.9) hold. Then there exists a unique
solution of the problem P, having the regularity

uewWh®0,T,V), gewWh-*©,T, %).

In order to 'prove Theorem 2, let us first remark that (3.20) is equivalent
to the nonlinear evolution equation

e() + Wr,m©@@®)>0 Vrel0,T] (5.1)

where Y5 ) denotes the subdifferential of the indicator function ¥x,, ().
Since the set T,,(z) depends on time, we shall replace (5.1) by a nonlinear
evolution equation associated to a fixed convex set. For this, let us introduce

the following notation:

So={te# | (t.e(v))g = 0 VveUy} 5.2)
¢ = &(f) (5.3)
0=0-—0, Gg=0y—0(0). 54

We have thé following result.

LEMMA 4 The couple of functions (u,o0) is a solution of problem P,
having the regularity u € W°(0, T, V), o € W'*(, T, ¥,) if and only if
ueWwh®(,T, V), e W-*(, T, ¥#,;) and

e)=%"'0—-6"'6G@+5,cw)) + ¢'G ae on (0,T) (55)
o) e Xy, (t—0@),ew()))e =0 Ve, tel0,T] (5.6)
u(0) =up, o(0) =0y. (5.7)
Proof. Let us remark that from (5.3) and (2.8) we have
@), e = (f(),v)v YveUu, 1€[0,T] (5.8)
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Moreover, using (3.5), Divd’ (f) = —¢i (t) € #' where &(1) = (3 (), 32(r))
and from (3.6) and (3.3) we obtain

e W-®0,T %) (5.9
Let us also remark that from (3.8), (5.2) and (5.8) we have
TE L) < t—-0@)e 2o (5.10)

for all ¢ € [0, T). Lemma 4 follows now from (5.4), (5.9) and (5.10).

In order to solve (5.5) to (5.7) we shall use again a fixed-point method.
For this, let n € L*(0,T, ¥) and let z, € W"*(0, T, %) be the function
defined by

[ 4
() = / n(s)ds+e(up) —€lay Vie [0, T]. 5.1
()}

Let us consider the following variational problem.
PROBLEM Py, Find u,: [0, T] - H, and a,: [0, T] = ¥, such that
e(uy (1)) = € 1o, (1) + 2,(t) + €'5(r) (5.12)
op(t) €Ty, (t—0y(t),eu,()))x = 0 VreX, (5.13)
for all t € [0, T].

We have the following result.

LEMMA 5 There exists a unique solution of the problem Py, having the
regularity u, € W-*(0,T, V), o, € W-°(0, T, %,). Moreover, |

uy(0) =uy, 0,(0) =0,. (5.19)

Proof. Let t € [0, T] and let us remark that ¥, is a closed convex set in %¢.
Using (3.1), (5.9) and classical results of elliptic variational inequalities, we
obtain the existence and uniqueness of a function o, (f) such that

oy() € Do, (t—0,(), € 'oy(t) +2,(1) + €'G(t))x =0 Vre gois)

Moreover, using (5.15) and (3.1) we obtain
loy(t) —oyt)lxe < C(lzy(t1) = z(R2)l3e + [5(21) — GF(t2)l5e) (5.16)

for all #,1; € [0, 7). Let us remark that since o, (r) = (0} (t), 62(t)) € T,
we deduce that

Divo,(t)=0 Vte[0,T), i=1,2. (5.17)
As z, € WL(0, T, ), using (5.9), (5.16) and (5.17), it follows that
0, eWN(O, T, %)
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Using again (5.15), |
(I—O’n(t),s,,(t))gg =0 Vr e Xy, (518)

where

gn(1) =€ o+ 2,1 +€'5¢) Wel0,T).  (5.19)

Let us now introduce the space ¥ (i = 1, 2) defined by
Vi={re¥ | Divr=0 in @, tv=0 on ILuTri},

where tv denotes the normal trace of t (see for instance (3 and 4)). For all
z €V x V2, since o,(t) € Ty, 0,(t) £ z € p. Hence, taking t =0, (f) £z
in (5.18), we obtain (z,£,(t))% =0 VzeV' x¥? t€[0,T] which implies
that (Z',e;(t)ee =0VZ €V, t€[0,T], i=1,2. Since the orthogonal
complement of V# in ¢ is the space £(V'), where V! is defined in section
2 (see for instance (3, p. 34)), we obtain that there exists u, = (), %2) in
Who°(0, T, V) such that

gq(t) = e_(u,, (t) Vveel0,T] - (5.20)

Using (5.18) to (5.20) it follows that (,,0,) is a solution of the problem
Py,. The uniqueness part in Lemma 5 follows from the uniqueness of
the solution of (5.15) and from Komn’s inequality (2.7). Finally, the initial
condition (5.14) follows from (3.9) and the uniqueness of the solution of
(5.12) to (5.13) for t = 0.

Lemma 5 and the assumption (3.2) allow us to consider the operator
A:L*0,T,%) — L*(0, T, ¥) defined by
An = —-€'G(o, + 5, e(uy)) (5.21)
where, for every n € L*(0,T,#), (u,,0,) denotes the solution of the
variational problem P,,. We have the following.
LEMMA 6 The operator A has a unique fixed point n* € L*(0, T, ¥).

Proof. Let my,n2 € L0, T, %) and 1 € [0, T]; using (5.21), (3.1), (3.2) and
(5.11) to (5.13) we obtain

t
ANy (t) — Ana(®)lge < C fo m(s) — na)lseds Ve €[0, T].

Lemma 6 follows now from the same arguments as in Lemma 3.

Proof of Theorem 2. Let n* € L*(0, T, %) be the fixed point of A and let
up € Wh°(0, T, V), 0,0 € W (0, T, %,) be the functions given by Lemma
5 for n = n*. It follows that (u,,0,) is a solution of (5.5) to (5.7) and,
using Lemma 4, we obtain the existence part in Theorem 2.

The uniqueness part follows from the uniqueness of the fixed point of the
operator A defined by (5.21), using the same arguments as in the proof of
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Theorem 1. It can also be proved directly from (3.14), (3.17), (3.21), G.D
and (3.2), using a Gronwall-type inequality.

6. Some properties of the solution

We start this section with a result concerning the link between the
solutions of the variational problems P; and P;,.

THEOREM 3 Let (3.1) to (3.4) and (3.9) hold and, let u € W"=(0, T, V),
o € W-*(0, T,%,). Then (u,0) is a solution of the variational problem P,
if and only if (u,0) is a solution of the variational problem P,.

Proof. Let t € [0,T] and let us suppose that (u,0) is a solution of Pj.
Taking v = 2u(t) and v =0 in (3.15) we obtain

(@), em®))e = (f@),u@®))y. (6.1)
Using now (3.15) and (6.1) it follows that o(t) € £,,(¢). The inequality in

(3.20) follows from (3.8) and (6.1). So, we conclude that (u, o) is a solution

of the problem P,.

Conversely, let (4,0) be a solution of problem P,. We shall first prove
that u(t) € U,q. Indeed, let us suppose in the sequel that u(r) ¢ U,y and let
us denote by Pu(t) the projection of u(r) on the closed convex set U,y C V.

We have
- (Pu(®) — u(t),v)y = (Pu(t) — u(t), Pu(t))y > (Pu(t) — u(t), u(t))y

for all v € U,4. From these inequalities we obtain that there exists o € R
such that

(Pu(t) —u(t), v)y > a > (Pu(t) — u(t), u(t))v> Vv € Uyy. (6.2)
Let 7 be the function defined by
T(t) = e(Pu(t) —u(t)) € %. (6.3)
Using (6.2), (6.3) and (2.8) we deduce that
@@, e())ge > a> (T, et)))ge VYveUy (6.4)
and, taking v =0 in (6.4), we obtain
a<0. (6.5)
Let us now suppose that there exists w € U,; such that
(T(1), e(w))s < 0. (6.6)

Using (6.4), since Aw € U,y for A > 0, it follows that
AT, e(w))e>a VA=0

and, passing to the limit when A — +o0, from (6.6) we obtain & < —0o which
is in contradiction with a € R. So, (7(f), e(w))g = 0 for all w € U,,, which
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implies T(t) € Zo (seeA (5.2)). Using (5.10) we obtain T(t) +6(t) € X,4(t)
where & is given by (5.3) and, from (3.20), (6.4) and (6.5) it follows that

0> (T(t), e(u(®)))g = (o(t) — (1), ((®)))3e
which implies that
(o) —5(®), eu(t)))% < 0. (6.7)

AMoreover, as o(t) —o(t) € Ly, from (5.4) and (5.6) for T =2(o(t) — 5 (t))
it follows that
(o(t) —T(), e(u(t)))y = 0. (6.8)

We note that (6.7) and (6.8) are in contradiction. Therefore, u(t) € U,,.
Using now (2.8) and (5.3) it follows that &(r) € ,4(z). Hence, by (3.20)

we obtain

(F@®), u@))v = (o(t), £ (u(r)))%- 6.9)
As o(t) € Z,9(t) and u(t) € Uyg, from (3.8) it follows that
(0@®),e@®))x = (f@),u@®))y. (6.10)
- So, from (6.9) and (6.10) we obtain
(0@, e@®))x = (f@),u@))v. (6.11)

The inequality in (3.15) results now from (6.11) and (3.8). Hence (u, o)
is a solution of the problem P;.

REMARK 1 Theorem 3 shows that the solutions (u, o) obtained in Theorems
1 and 2 are the same. This result proves the equivalence between the

variational problems P; and P;.

In the sequel we consider two solutions of the problems P, and P, for
two different data and we give an estimation of the difference of these
solutions. More precisely, we have the following.

THEOREM 4 Let (3.1) and (3.2) hold and let (ux, o)) be the solution of the
variational problem Py or P, for the data f, uo, oo such that (3.3), (3.4)
and (3.9) ‘hold_ for k =1,2. Then, there exists C > 0 which depends on
Q, I, €, Gand T (i=1,2) such that

luy — Uzloo, s, + 101 — 02)00, 3%,

< C(luox — u|n, + ooy — ozls, + | i — fZ'oo,V)- (6.12)
Proof. Let t € [0,T] and k € {1, 2}. Using (3.15) we obtain

up(t) € Uga, (0k(r),(v) — S(Mk(f)))se = (fi@®),v—wm())y VYve Uad6
(6.13)
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and, from (3.14) and (3.16),
t
o (t) = Ce(ui(2)) + ‘/(; G(ox (5), e(ui (s))ds + oo — €& (uge). (6.19)

Using now (6.13), (6.14), (3.1), (3.2) and (2.7) we obtain
|y (8) — w2(O)ln, + lo1(2) — 02(8) ]3¢,

< C[I"m — ue2la, + |oor — on2lee, + 1 fi — filoo,v

t
+ [ (16 = 129 +1016) ~ 0261, ds]. 615)

The inequality (6.12) follows now from (6.15), using a Gronwall-type
inequality. :
REMARK 2 The estimate (6.12) gives a continuous dependence result for
the solution of problems P; and P> with respect to the input data. Moreover,
under the assumptions of Theorem 4, if f; = f,,

[41 — U2]o0, 1, + |01 — O], 3¢, < C(luox — uezln, + loo —Uozlsc.)
which represents a finite-time stability result for every solution of the

variational problems P, and P,.

We shall now study the dependence of the solution of the evolution
problems P, and P, with respect to a perturbation of the constitutive
functions G' and G For this, let us suppose that (3.1) to (3.4) and (3.9)
hold. For every ui =0 (i=1,2), let G, be a perturbation of G' which

satisfies (3.2) with the Lipschitz constant L:", and let u = (u!, u?). Let us
also denote

Gu(0,8) = (G,1(0',€").GL:(c?, &*)) Vo =(d',0%),6=(c',6*) e .
We consider the following problems.

PROBLEM P;, Find the displacement field u,:[0,T] - H; and the stress
field o0, : [0, T] - %, such that

6, (8) =Be(Uu (1)) + Gu(0, (2), 6, (1)) ae. te(0,T),  (6.16)

() € Uga, (0,(),£(0) —e(uu(®)))e = (f (1), v —u,(D))y
Yve Uy, t€[0,T], (6.17)

Uy (0) = ug, 0,(0)=oy. (6.18)

PROBLEM P,, Find the displacement field u,:[0,T] - H; and the stress
field o, : [0, T] — 2, such that (6.16) and (6.18) hold, and

0, (1) € Tgy(t), (t—0,(t),e(u,(@)))e =0 VreZIy@®), telo, T26 19)
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Using Theorems 1, 2 and 3 we obtain that the problems Py, and P,
have the same solution (u,,0,) having the regularity u, € W'-*°(0, T, H;),
o, € Wh°(0, T, %,).

Let us now consider the following assumption.

There exist g/ : R, — R, and S’ € R such that

(@) |G, (-, 0,¢) = G'(-, 0,8)| < g'(1*)(lol + le| + B

Vo,s € Sy, ae. on
> (6.20)

(b) limg'(u’) =0.
ui—0

There exists M’ > 0 such that L;", < M'. J

We have the following result.

THEOREM 5 Let (6.20) hold for i = 1,2. Then the solution (u,,0,) of the
problems Py, and P,, converges uniformly to the solution (u,o) of the
problems P, and P»:

u,—> u in CO,T,Hy), o, — 0 in CO,T, %) when pu— 0.

Proof. Let t€[0,T) and p = (u',u?) e R, x R,. From the proof of
Theorem 1, (u, o) is the solution of the elliptic problem Py, for n = n*, where
n* is the fixed point of the operator A : L*°(0, T, #) —> L*°(0, T, ¥) defined
by (4.9) while (,,0,) is the solution of the same problem P, for n =nj,
where 77, is the fixed point of the operator A, : L*(0, T, #) —> L*(0, T, ¥)
defined by

Aun(®) = Gy(oy (1), 6y (1)) VN €L®(O,T,%), te[0,T].  (621)
Using this remark, from (4.2), (4.3), (3.1) and (2.7) we obtain

1) — w®)ls, + 10 1) — 0O, < Clagy () — 2 Ol
t
<c [ e -n"Glds, 622

using (4.1). Since 7}, = A,n}, and 5*= Ap*, from (6.21) and (4.9) we
deduce that

IM6) =1 @l = |G (0 5), 80 (61) — G(0(6), ew(s)) |, Vs [0, 71
Using (6.20) and (3.2), after some algebra, it follows that
In.(6) = 0"l < max(g' (1), 82 w?)) (Itho, 1, + 10T, + B' + B2

+ max(M’, Mz)(lu,,(s) —u(s)\y, + |0, (s) O'(S)|ggl) Vs € [0, T].
| (6.23)
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So, from (6.22) and (6.23) we obtain
4 (6) = U O, + 10 @) ~ (O, < € max(g' (), £2(12))

[ 4
+ max(M", M?) fo (|u“ (s) — u(s)\g, + |0, (s) — a(s)|,,,) ds. (6.24)

Theorem 5 follows now from (6.24) and (6.20).

REMARK 3 The mechanical interpretation of the previous convergence result
is the following: under the assumptions of Theorem 5, for small viscosity
coefficients 41y and u,, the study of the frictionless contact between two
elastic-viscoplastic bodies having the constitutive laws given by

6=%ec@)+G., (0,e() i=1,2

may be replaced by the study of the frictionless contact between two
elastic—viscoplastic bodies having the constitutive law given by

o = €'e(u) + G'(0, £(u)).

In particular, for small viscosity coefficients, the viscoplastic constitutive
laws of the form & = €e(4) + 1 G(o, £(u)) as well as the viscoelastic laws
of the form 6 = €e(4) + w (o — F(e(u))) may be replaced by the elastic law
o = $e(u), in the study of frictionless contact problems.
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Descriptif I

Le but de ce travail est ’analyse variationnelle du probléeme quasistatique de contact
unilatéral sans frottement d’un matériau ayant une loi de comportement viscoplastique a
variable interne d’état avec une fondation rigide.

On considére un milieu continu viscoplastique occupant un domaine 2 de RY (N =
1,2,3) et dont la frontiére I', supposée suffisamment réguliere, est divisée en trois parties
disjointes I';, I'; et I'3. On suppose que, pendant I'intervalle de temps [0, T, le champ des
déplacements s’annulle sur I';, que des forces surfaciques g s’appliquent sur I'; et que des
forces volumiques f agissent dans 2. On suppose aussi que le matériau peut rentrer en
contact sans frottement avec une fondation rigide le long de la partie I'; de sa frontiere.
Les conditions de contact considérées sont celles de Signorini. Le probléme quasistatique

de contact étudié ici est le suivant :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R¥, le champ des
contraintes o : Q x [0,7] — RN*N et la variable interne d’état « : Q x [0,7] — RM

tels que

o= E&e(u) + G(o,e(u),k) dans £ x(0,7),
k= p(o,e(u),k) dans §x(0,T),
Divo+ f=0 dans Qx(0,7),
y=il gur. . Tyl T
gyi=ig sur: | Pox (0.3,
gl O g e e ) gy, e () sur I's x (0,7),

w(0) = wg, ofB)=wp, k(0) =Ky  dans . £,

On note par RV *¥ ’espace des tenseurs symétriques du second ordre sur R et par e(u)
le tenseur des petites déformations linéarisé. Le point au dessus d’une quantité désigne

1




sa dérivée temporelle, Div o désigne la divergence de la fonction tensorielle o, le vecteur
v est la normale unitaire sortante a (2, ov est le vecteur des contraintes de Cauchy, et u,,
0, et o, représentent respectivement le déplacement normal, les contraintes normales et

tangentielles.

On établit pour le probléeme P deux formulations variationnelles P; et P,. La formu-
laion faible P, admet comme inconnues le couple (déplacements, variable interne d’état)
alors que la formulation faible P, admet comme inconnues le couple (contraintes, vari-
able interne d’état). L’existence et I'unicité de la solution pour chacun des problémes
sont établies ainsi que I’équivalence entre ces deux formulations faibles. Un probléme
pénalisé est ensuite introduit et 1’existence et 'unicité de sa solution ainsi qu’un résultat
de convergence sont finalement prouvés.
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Abstract—This paper deals with an initial and boundary value problem describing the quasistatic
evolution of a rate-type viscoplastic material with internal state variables which is in frictionless
contact. Two variational formulations of the problem are proposed, and existence and uniqueness
results established. The equivalence of the variational formulation is studied and a strong convergence
result involving penalized problems is proved. : ‘

' Keywords—Frictionless contact, Viscoplastic material, Internal state variable, Quasistatic
process.

1. INTRODUCTION

The subject of this work is the study of the contact between a body and a rigid frictionless foun-
dation. The contact boundary conditions considered here are the well-known Signorini conditions
which have been studied in the case of elastic, elastic-plastic, viscoelastic, or viscoplastic bodies
(see, for instance, [1-10]).

We consider here materials having an elastic-viscoplastic constitutive law of the form

o = Ee(u) + G (o,e(u),x), (1.1)
k= ¢ (o0,e(u),x), (1.2)

where £, G, and ¢ are constitutive functions. In this paper, we consider the case of small
deformations, we denote by € = (€;;) the small strain tensor and by o = (0i;) the stress tensor.
The function x may be interpreted as an internal state variable. A dot above a variable represents
the time derivative. '

Models of the form (1.1),(1.2) are used to describe the behaviour of real materials like rubbers,
metals, rocks, etc., (see, for example, [11]). Existence and uniqueness results for processes involv-
ing models of this form with classical displacement-traction boundary conditions were obtained
in [12] using a Cauchy-Lipschitz method and in [13] using a fixed-point technique.

The aim of this paper is to investigate a quasistatic problem for the elastic-viscoplastic mod-
els (1.1),(1.2) involving unilateral contact conditions. It is structured as follows. In Section 2, the
mechanical Problem P is stated and some functional preliminaries are presented. We establish
in Section 3 two variational formulations, P, and P, for the model. Both P; and P involve the
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coupling between the constitutive law (1.1) and (1.2) and a variational inequality including the
equilibrium equation and the boundary conditions. The unknowns in Problems P; and P, are
the displacement field u, the stress field o, and the internal state variable x. For Problem Py,
we prove in Section 4 an existence and uniqueness result. In this case, the main unknown is the
displacement field u and the existence of the solution results from classical elliptic variational
inequalities arguments followed by a fixed-point method. In Section 5, we prove a similar exis-
tence and uniqueness result for Problem P;. In this case, the main unknown is the stress field o.
The last section deals with the study of some properties of the solution. In fact, we prove an
equivalence result between Problems P; and P3, and we consider a penalized problem, governed
by a parameter h > 0, for which we prove the existence and uniqueness of the solution as well as

a convergence result when A — oo.

2. PROBLEM STATEMENT-PRELIMINARIES

Let us consider an elastic-viscoplastic body whose material particles occupy a bounded domain
2 C R (N =1,2,3) and whose boundary TI', assumed to be sufficiently smooth is partitioned
into three disjoint measurable parts Iy, I';, and 3. Let measI’; > 0, and let T > 0 be a time
interval. We assume that the displacement field vanishes on I';, that surface tractions gactonrl,
and that body forces f act in 2. We also suppose that the body rests on a rigid foundation on the
part I's of the boundary and that this contact is frictionless, i.e., the tangential movements are
completely free. Finally, we assume the case of quasistatic processes and we use (1.1),(1.2) as the
constitutive law. With these assumptions, the mechanical problem we study may be formulated

as follows.
PrROBLEM P. Find the displacement field u : © x [0,7] — RY, the stress field ¢ : Q x
[0, T]— Sy and the internal state variable x : 2 x [0,7] — RM guch that

6 = Ee(u) + G (0, &(u), K) , in @ x (0, T"), (2.1)

k= p(0,&(u), %), in 2 x (0,T), (2.2)

Dive + f =0, in Q@ x (0,7), (2.3)

u=0, onT; x (0,T), (2.4)

ov=yg, on '3 x (0,T), (2.5)

u, <0, 0,<0, 0,=0, 0,,u, =0, on I'3 x (0,7), (2.6)
u(0) =us, 0(0) =00, (0)=ry, in Q, (2.7)

where Sy denotes the set of second-order symmetric tensors on RY and M € N. In (2.1)~(2.7),
Divo represents the divergence of the tensor-valued function g, ¥ = (14) is the unit outward
normal to 2, ov is the stress vector, u,, 0, and o, are given by

Uy S Wy, Oy =OyV5Vi, Or =(0r), Ori=0yVj — Oy, (t=1,N),

and finally ug, 09, and K are the 1mtml data.
We denote in the sequel by - the inner product on the spaces RV, RM, and Sy and by| - |
the Euclidean norms on these spaces. The following notations are also used:

H={v=(w)|vel’Q),i=1,N}=L*Q)",
Hy={v=(w)|vu € H(Q),i=1,N} = H'(Q)",

H={r =(ry) | 7y = 5 € I*(Q), i, j = TN} = @)V,
H, ={reH| Divr € H},

Y ={r=(x)| ki € L*(R),i =T, M} = L} ()M,
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The spa@ H, Hy, H, H1, and Y are real Hilbert spaces endowed with the canonical inner

products denoted by (,+)x, where X is one of these spaces.
Let Hy = HY2(T")V, and let 4 : Hy — Hr be the trace map. We denote by V' the closed

subspace of H; given by
V={ueH; |yu=00onT,}. (2.8)

The deformation operator € : Hy — H deﬁned by
1
e(w) = (e(w),  €ij(u) = 5 (wij + v50)

is a linear and continuous operator. Moreover, since measI"; > 0, Korn’s inequality holds (see,

for instance, [3, p. 79]):
le()ln 2 Clvla,, Vvev, ’ (2.9)
where C is a strictly positive constant which depends only on © and I'; (everywhere in this
paper C will represent strictly positive generic constants which may depend on 2, 'y, ', I's, £,
G, T, and do not depend on time or on input data).
We now endow V with the inner product (-, -)v defined by

(vw)v = (), e(w)n, VYv,weV, (2.10)
and we denote by | - |v the associated norm. So, from (2.9) we deduce that | - |v and | - |u, are

equivalent norms on V. Therefore, V endowed with the inner product defined by (2.10) is a real

Hilbert space.
Let H: = H-Y/3(T)N be the strong dual of the space Hr, and let (-,-) denote the duality

between H’ and Hyr. If 7 € H;, there exists an element v,7 € Hf such that Green’s formula
holds:

(v, V) = (1,6(V))n + (DivT, V)4, Vv € H,. (2.11)
Moreover, if 7 is a regular (say C!) function, then :
(vwryv) = / Tv - vda, Vv € H;. (2.12)
r .

For simplicity, we shall use the notation v instead of 4,7, and we say that 7 = 0 on I if

(nr,7v)=0,Vv eV,
We also notice that for every real Hilbert spaces X; and X3, we use the notation X; x X3 for

the canonical spaces product.
Finally, for every real Hilbert space X, we denote by | - |x the norm on X and by | - |00, x the

norm on the space L™ (0,T, X).

3. VARIATIONAL FORMULATION

In this section, we present two variational formulations for the mechanical Problem P. We make
the following assumptions on the problem data.
£:0 x Sy — Sy is a symmetric and positive definite tensor, i.e.,
(8) Ekhim € L®(R), VK, hl,m =1, - N;
(b) Eg-T=0-E7,V0, T €SN, ae in ) ' (3.1)
(c) there exists & > 0 such that £d -0 > alo|?, Vo € Sy, ae. in Q.

G:0Qx Sy xSy xRM — Sy and
(a) there exists L > 0 such that |G(:,01,€1, K1) — G(-, 02, €2, k2)| < L(loy —
02| + |e1 — €2) + | k1 — Kal), Vo1, 02, €1, €2 € SN, K1, K2 €RM, ae. in Q;
(b) z— G(z,0,¢,K) iz a measurable function with respect to the Lebesgue (3.2)
measure on {2, Vo, € € Sy, & € RM;
(c) £ — G(z,0,0,0) € M.
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P:Ax Sy XSy XRM L RM and

(a) there exists L’ > 0 such that |o(-, 01, €1, 1) ~ (-, 02, €2, K2)| < L'(jo1 -
dgl + IEl —Egl + |I€1 —l:g'), v o1, 03,€1,63 € Sy, K1,K3 € RM, a.e. in ﬂ;

(b) x > o(z, 0,¢, k) is a measurable function with respect to the Lebesgue (3.3)
measure on {2, Vo, € € Sy, x € RM;

(c) z — ¢(,0,0,0) € Y;

f e Wh(0,T, H), (3.4)
g€ Whe (0,1, I3 (y)V). (3.5)

The assumptions (3.1)~(3.3) allow us to consider three operators denoted again by &, G, and 7
suchthat E: H — H,G: HxHXY — H,p:HxHXxY — Y, and

(€0) () =E(,0()) = (Eisun(-)orn()), Voe€Hae in,
G(o,¢,8)(-) = G(-,a(-),€(-), 5(-)), Vo,eeH,seY ae. in R,
¢(o.6,8)()=w(0()e(),5(-), Vo,e€H, k€Y ae. in Q.

We also denote by F(t) the element of V given by
(F(t),v)v = (F(t),v) 1 + (9(t), 7V) La(ryyn, VveV, tel0,T]. (3.6)
So, using (3.4)—(3.6), it follows that |
7 F e Wi>(0,T,V). (3.7)
Finally, let Uyq and Z,4(t) be the sets given by

Ud ={veH;|v=00nT;, v, <0on T3}, (3.8)
2d(t) = {T €EH I (Ti E(”))'H 2 (F(t)’ u)V Vve Uad} ’ Vte [0:11) (3.9)

and let us suppose that
uo €Upd, 00€Zw(0), Ko €Y, (00,e(uo))n = (F(0),u0)v. (3.10)

Let us remark that assumption (3.10) (which involve regularity conditions on the initial data ug,
a9, and kg as well as a compatibility condition between ug, %9, f, and g) are satisfied if ug € H,,

o9 € H, ko €Y, and if ug and oq verify (2.3)—(2.6) for t = 0.
LeMMA 3.1. If (u,0, k) is a regular solution of the mechanical Problem P, then

u(t) € Vg, (o(t),e(v) — e(u(t)))n 2 (F(t),v ~—u(t))y, Vve U, (3.11)
”(t) € Ead(t)’ (T - o(t),e(u(t)))u 20, VT e Eld(t), (3-12)
for all t € [0, ). |

PROOF. Let v € Upg and t € [0, T). Using (2.3), (2.11), and (2.12), we have
(o(2),£(0) - € (u(t)) = (F(E), v - u(t)mr + / a(tyv- (v - u(t)) da,
and from (2.4), (2.5), and (3.6), we obtain that

(o(8),€(v) — € (u(®))}g = (F(t), v - u(t)hy + /P o(t)v - (v — u(t)) da.
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Using now (2.6), the previous equality leads to
(0(0)£(6) = € u(th)ye = (00— ut))y + [ ouda (3.13)

The inequality in (3.11) follows from (3.13), (3.8), and (2.6). Moreover, (2.4), (2.6), and (3.8)
imply that u(t) € Uag.
Taking now v = 2u(t) and v = 0 in (3.11), we obtain that

(o(t) € (u(t)))y = (F(t),u(t))y (3.14)

and using (3.14), (3.11), and (3.9), it follows that o(t) € L.a(t). The inequality in (3.12) is now
a consequence of (3.9) and (3.14). :
The previous lemma leads us to consider two weak formulations of Problem P.

PROBLEM P;. Find the displacement field u : [0,T] — H, the stress field o : [0,T] — H,,
“and the internal state variable « : [0,7] —> Y such that

6(t) = Ee (u(t)) + G (o(t), £ (u(t)) , x()), ae te(0,T), (3.15)

k(t) = p (a(t), e (u(t) , x(2)), ae. te(0,T), (3.16)

u(t) € Usd, {(o(t),e(v) — e(u(t)))y = (F(t),v — u(t))y, Vve Uy, te[0,T],(3.17)
4(0) = uq, o(0) = ay, k(0) = Ko. (3.18)

PROBLEM P;. Find the displacement field u . [0,T] — H,, the stress field o : [0,T] — H;,
and the internal state variable & : [0,T] — Y such that

a(t) = Ee (u(t)) + G (o(t), e (u(t)), (t)), ae te(0,7), (3.19)

k(t) = p(a(t), (u(t)),x(t), ae te(0,7), (3.20)

o(t) € Tad(t), (r—o(t),e(u(t)))y =0, V7 € Zaat), te[0,7T), (3.21)
u(0) = uy, a(0) =00, K(0) = Ko. (3.22)

Let us remark that Problems P; and P, are formally equivalent to the mechanical Problem P.
Indeed, if (u,0, k) represents a regular solution of the variational problems Py or P2, using the
arguments of [14), it follows that (u,0,x) is a solution of Problem P.

Under the assumptions (3.1)-(3.5) and (3.10), in the next two sections we give existence and

uniqueness results for the variational Problems P; and P;.

4. FIRST EXISTENCE AND UNIQUENESS RESULT

The main result of this section is the following.

THEOREM 4.1. Let (3.1)-(3.5) and (3.10) hold. Then there exists a unique solution of Problem P,
having the regularity ,

u€E Wl,OO(O’ T’ Hl)y g€ Wl.OO(O’ T’ Hl)l K€ WI.OO(O, T1 Y).

In order to prove this theorem, we shall use a fixed-point method. For this, we suppose
in the sequel that the assumptions of Theorem 4.1 are satisfied, and for each 7 = (n*,9?) €
L*°(0,T,H x Y') we introduce the function z, = (z;, z2) € WH(0,T, H x Y) defined by

z(t) = /ot 1(s8) ds + 2o, vtelo,T], | (4.1)
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where
zo = (o0 — E&(uo), ko). (4.2)

We consider now the following elliptic problem.
PROBLEM Pj,. Find u, : [0,T) — H; and oy, : [0,T] — H;, such that

Oq(t) = E& (uy(t)) + z,(2), (4.3)
u(t) € Undy (o9(t)e(v) —€(un(®)))y 2 (F(t)v—up(t))y, VvEUaa,  (44)

for all ¢ € [0, T).

LEMMA 4.2. There exists a unique solution of the variational Problem Py, having the regularity
uy € W1(0, T, H,), 0, € W°(0, T, H,). Moreover,

u(0) =0,  ,(0) = . (45)

PROOF. Let t € [0,7]. Using (3.7), (3.8), (3.1), (2.9), and standard arguments of elliptic varia-
tional inequalities theory, we obtain the existence and the uniqueness of an element u,(t) such

that
: uﬂ(t) € Uld’

(£ (un(2)) 1 €(v) — € (un(t)) 3 + (2p(t),€(v) — £ (un(8))),, 2 (F(t), v — un(t))y, (4.6)
Vv € Upg.

Taking now o, (t) defined by (4.3), we deduce (4.4).
Let us remark that for v = u,(t) + ¥, where ¢ € D(R)" from (4.4) and (3.6), it follows that

Divoy,(t) + f(t) =0, 4.7

hence, oy, (t) € H,. Therefore, the existence and uniqueness of (u,(t), oy (t)) € Hy x H;, solution
of Problem Py, is established. The initial conditions (4.5) follows from (3.10), (4.1), (4.2), and
the uniqueness of the solution of Problem P;,, for ¢t = 0.

Let now t,,%3 € [0,T]. Using (4.6), (3.1), and (2.9), we obtain that

fun(ts) = v, < © (IF(t2) ~ Fltaly +|2(t0) - 2A(eall) (48)
and from (4.3), (4.7), and (4.8), it results that
(0a(t1) = onlEall, < © (IF(tx) — Fitally + |23(e0) — z2eal,,) 49)

So, considering (3.7) and the time regularity z} € W'>°(0,T, M), from (4.8) and (4.9), we deduce
that Uy € W"°°(0, T, H,), op € W1'°°(0, T, Hl)
We denote now by x, € W°(0,T,Y) the function defined by
Ky = z,’,. (4.10)

Using the assumptions (3.2), (3.3), (4.1), (4.2), and (4.10), we may consider the operator
A:L®(0,T,H xY) — L®(0,T,H x Y) defined by

An = (G(0n,E(tn), K1) , 0 (OmrE(Un),Kn)), V€ L2(0, T, H x ), (4.11)

where (uy, 0y) is the solution of the variational Problem Py,,.
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LEMMA 4.3. The operator A has a unique fixed-point n* € L*(0,T,H X Y).
PROOF. Let gy = (n},7?) and 2 = (n,73) € L=(0,T,H x Y), and let ¢t € [0,T]. Using (4.3),
(4.4), (3.2), (3.3), and (4.10), we obtain that
|tn, — vn, |1y + log, — O, bt + g, — K, Iy < |20, — Zny lHxy-
From (4.11), (3.2), (3.3), (4.1), and the last inequality, it results that

t
AT = Am®bexy <O [ @) ~m@hoxr- (412)

Denoting now by AP the powers of the operator A, (4.12) implies by recurrence that

t 3 q
102 (©) ~ Oy <[ [ [ Im) = mlVagey dr... do
0 Jo 0
. pintegrals
for all t € [0,7] and p € N. Hence, it follows that

cr
|APm — AP oo, pxy < Flfh — Mloo,Hxy, VYPEN, (4.13)

and since lim, C?/p! = 0, (4.13) implies that for p large enough, the operator A” is a contraction
in L%®(0,T,H x Y). Therefore, there exists a unique element #* € L*(0,T,H x Y') such that
APq* = n*. Moreover, it can be easily verified that 7* is the unique fixed-point of A. Hence,

from (4.11) it results that for all ¢ € [0, T},
78) = (110,120 = (€ (e 2).€ (e (). 5 (8), @ (- (€1, (e () e (), (410

forall t € [0,T].
PROOF OF THEOREM 4.1. Let n* € L=(0,T,H x Y') be the fixed-point of the operator A, and
let upe € WH(0,T, Hy) and o,» € WH(0,T,H;) denote the solution of Problem Pjy,.. Let,
also, ke € W1(0,T,Y) be the function given by (4.10) for n = n*. We shall prove that
(y+, Oye, Kye) is the unique solution of Problem P;.

The initial conditions (3.18) follow from (4.5), (4.2), and (4.10) for n = n*. Moreover, the
equalities (3.15) and (3.16) follow from (4.1), (4.3), and (4.14) since

Gqe (8) = E€ (e () + 20 (), 23.() = 0" (t) = G (0ye (£), € (un=(t)) , K0~ (£)) ,
Rye () = 22.(8) = 0"2(t) = @ (9= (£), € (une (£)) , Kqe (B))

ae.te (0,T).
Let now (u,a, &) be another solution of Problem P, having the regularity

ue Wh°(0,T,Hy), o€ WbH®(0,T,H;), &€ Wh®(0,T,Y).
We denote by n € L°(0,T,H x Y') the function defined by
n(t) = (G (o(t), & (u(t)) ,&(2)), ¢ (a(t), e (u(t)),x(t))), Vte[0,T), (4.15)

and let z, € W4*°(0,T,H x Y) be the function given by (4.1),(4.2). It results that (u,0) is a
solution of (4.3),(4.4), and using Lemma 4.2 it follows that

U = Uy, o = oy. | (4.16)
Moreover, by (3.16), (3.18), (4.15), and (4.10), we have
| _ K= Ky. (4.17)
Using now (4.11), (4.16), and (4.17), we deduce that An = 7, and by the uniqueness of the
fixed-point of A, it results that '
n=n". (4.18)

The uniqueness part in Theorem 4.1 is now a consequence of (4.16)—(4.18).
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5. SECOND EXISTENCE AND UNIQUENESS RESULT

The main result of this section is the following.
THEOREM 5.1. Let (3.1)—(3.5) and (3.10) hold. Then there exists a unique solution of Problem P,
having the regularity
u € Wh(0,T,V), o € Wh>(0,T, H,), k€ WH=(0,T,Y).
In order to prove this theorem, we suppose in the sequel that the assumptions of Theorem 5.1
are satisfied. Let us first remark that (3.21) is equivalent to the differential inclusion
£(ut)) + Hry(y (¢(1) 30, Vtelo,T], (5.1)

where 8yx,,(¢) denotes the subdifferential of the indicator function y¥g,,(). Since the set T.q4(t)
depends on time, we shall replace (5.1) by a differential inclusion associated to a fixed convex

set. For this, let us denote

To={r € H|(r,e(v))y =0, Vv € Upq}, (5.2)
o =¢(F), (5.3)
o=0-0, g =09 — 5(0). (5.4)

From (3.9) and (3.7), we deduce that

Tud(t) = Lo +3d(t), Vtelo,T], (5.5)
7 € WH>(0,T, H,). (5.6)

Moreover, we may easily verify the following result.

LEMMA 5.2. (u,0,x) is a solution of Problem P; having the regularity u € W(0,T,V),
o € Wh(0,T,H), x € Wh®(0,T,Y), if and only if (u,7, &) is a solution of the variational

problem

e(t) = E76 - £71G(7 + 5,e(u), k) + £717, a.e. an (0,7), (5.7)
k=¢p([@+7,e(u),s), a.e. on (0,T), (5.8)
3() €Bo, (r—T(Whe@®In20, VreTo teoT], (5.9)
w(0) =uo, F(O0)=Fo, K(0) = Ko, (5.10)

having the regularity u € Wh(0, T, V), 7 € W'(0, T, H), x € W(0, T, Y).

In order to solve problems (5.7)—(5.10), we shall use again a fixed-point method. For this, for
each = (n',7%) € L®(0, T,HxY), we denote by z, = (}, 22) € W1°(0, T, H xY) the function
defined by .

wt)= [ neds+m  Vie 0T, (5.11)

where ' :
20 = (£(uo) - €720y, ko) - (5.12)

Let us consider the following variational problem.
PROBLEM P3,. Find u, : [0,T7] — H; and o, : [0,7] — H;, such that

(un(t)) = £~ Yoy (t) + z;(t) + £75(2), (5.13)
oq(t) €To, (T —oy(t)e(un(t))y 20, VTE, (5.14)

for all ¢ € [0, T).
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LEMMA 5.3. There exists a unique solution of the variational Problem Py, having the regularity
u, € WH(0,T\V), 0y € wWhe(0,T,H,). Moreover, ,

Uy (0) = uy, oy(0) = ap. (5.15)

PROOF. Lett € [0,7]. Remarking that Xy is a nonempty closed convex set in H, and using (3.1)
and classical results on elliptic variational inequalities, we obtain the existence and uniqueness

of a function o,(t) such that
oq(t) € Do, (T —0n(t), E  on(t) + 23(t) + £715(t)),, 20, V7 €. (5.16)
This last inequality is equivalent to

(T — oy(t),€9(t))5 2 0, V1€ Xy, (5.17)

where
en(t) = E oy (t) + z,l,(t) +E715(t). (5.18)
Let us introduce the space V defined by
V={reH|Divr=0inQ, r7v=00nT2UT3},

where Tv denotes the normal trace of 7. Since oy(t) € To, it results that o,(t) £z € I,
Vz € V. Hence, taking 7 = g,(t) + z in (5.17), we obtain that (z,&,(¢))» =0, Vz € V. Since the
orthogonal complement of V in H is the space £(V), where V is given by (2.8) (see, for instance,
[12, p. 34]), we obtain the existence of the element u,(t) € V such that

eq(t) = e (uq(2)) . (5.19)
Moreover, from (5.16) and (3.1) it results that
(0altr) = on(ta)lgy < C (J2h(t2) — (el +15(81) —3(t)y),  Vint2€[0,T).  (5:20)

Let us remark that since o,(t) € Xo, we obtain that Divo,(t) = 0. It follows now from
(5.6),(5.20), and the time-regularity z) € W1>(0,T,H) that o, € W"~(0,T,H;). Hence,
using (5.18), (5.19), and (2.9), we deduce that u, € W1*°(0,T,V).

Finally, using (5.17)-(5.19) it results that (uy,,0o,) is a solution of Problem Pa,. The unique-
ness part in Lemma 5.3, follows from the uniqueness of the solution of (5.16) and Korn’s inequal-
ity (2.9). The initial conditions (5.15) are a consequence of (3.10), (5.3), (5.4), and the uniqueness
of the solution of Py, for t = 0.

Now let 5, € W1>(0,T,Y) be the function given by
oy = 22. (5.21)

Using the assumptions (3.2), (3.3), (5.11), (5.12), and (5.21), we may consider the operator
A: L0, T,HxY)— L*(0,T,H xY) by

An = (=E71G (o +T,e(uy), £n(1)) , Vne L0, T,H xY), (5.22)

where (uy,0y) is the solution of the variational Problem Py,
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LEMMA 5.4. The operator A has a unique fixed-paint n* € L=(0,T,H x Y).
PROOF. Let m = (n},n]) and 13 = (n3,73) in L*°(0,T,H x Y), and let ¢ € [0, T]. Using (5.22),
(3.1)-(3.3), and (5.11)—(5.14), we obtain that

(Am(5) ~ Mm@l < © | ‘) - m() dss  VEe 0T

Lemma 5.4 follows now from the same arguments a8 in Lemma 4.3.

PROOF OF THEOREM 5.1. Let n* € L*(0,T,H xY) be the fixed-point of A, and let Uys €
W1(0,T,V) and oy € W->(0,T,H) denote the solution of Problem Pay.. Let, also, xy. €
W1(0,T,Y) be the function given by (5.21) for n = n*. Using the same arguments as in
the proof of Theorem 4.1, it follows that (u,s,0y~,%,.) is a solution of (5.7)—(5.10), and using

Lemma 5.2, we obtain the existence part in Theorem 5.1.
The uniqueness part follows from the uniqueness of the fixed-point of the operator A defined

by (5.22). It can also be deduced directly from (3.19)-(3.22), (3.1)-(3.3), using a Gronwall-type
inequality.

6. BEHAVIOUR OF THE SOLUTION

We start this section by the study of the link between the solutions of the variational Prob-
lems P; and Ps.

THEOREM 6.1. Let (3.1)~(3.5) and (3.10) hold, and let be the functions u € Wh(0, T, V),
o € WH°(0,T,M,), and s € W'(0,T,Y). Then (u,0,K) is a solution of the variational
Problem P, if and only if (u,0, k) is a solution of the variational Problem Pj.

PROOF. Let t € [0,T], and let us suppose that (u, o, £) is a solution of P;. Taking v = 2u(t) and
v =0 in (3.17), we obtain that o :

(0(t),e(u(t)))y = (F(2),u(®))y , (6.1)

and using (3.17) and (3.9), it follows that o(t) € Zaq(t)- The inequality in (3.21) follows from (3.9)
and (6.1). Hence, we conclude that (u,0, k) is a solution of Problem P;.

Conversely, let (u,0,) be a solution of P;. We shall first prove that u(t) € Uy, Vt € [0, 7.

Indeed, let ¢ € [0, T}, and let us suppose in the sequel that u(t) ¢ U,q. We denote by Pu(t) the
projection of u(Z) on the closed convex set Usg C V. We have that

(Pu(t) — u(t),v)y 2 (Pult) —u(t), Pu(t))y > (Pu(t) — u(t),u(t))y, VveUu.
From these inequalities, we obtain that there exists a € R such that
(Pu(t) — u(t),v)y > a > (Pu(t) — u(t),u(t))y, Yve Uwm. (6.2)
Now let 7(t) be the function defined by
#(t) —e (Pu(t) — u(t) € H. (6.3)
Using (6.2), (6.3), and (2.10), we deduce that
(F(t)e())y > a > (T(t), e(u(t)))y, Vv € Uag, (6.4)
and taking v = O in (6.4), we obtain that

a<(. : (6.5)
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Let us now suppose that there exists w € Uyg such that
| (7(t), e(w))yy < 0. (6.6)
~ Since Aw € Uyq for A 2 0, it follows from (6.4) that
| A7), e(w))yy >, VAZ0,

and, passing to the limit when A — +oo, using (6.6) we obtain that @ < —oo which is in
contradiction with o € R. Hence, it results that (7(t),e(w))y = 0, Vw € U,q, which implies that
7(t) € o (see (5.2)). Using (5.5), we deduce that 7(t) + &(t) € Taa(t), where 7 is given by (5.3)
and from (6.5), (6.4), (3.21), it follows that

0 > (F(t), e(u(t))y 2 (a(t) — F(2),e(u(t))3

which implies that
(o(t) — o (t), e(u(t)))y <O (6.7)

Moreover, since o(t) — G(t) € To, from (5.4) and (5.9) for 7 = 2(a(t) — 7(t)), it results that
| (0(t) — 5(2), (u(t))) > 0. - (68)

Let us now remark that (6.7) and (6.8) are in contradiction. Therefore, u(t) € Upg. Using (5.3)
and (2.10), it follows that 5(t) € Za4(t). Moreover, taking 7 = &(t) in (3.21), we obtain that

(F(t), u(®))y = (o), e(u(t)))sy - (6.9)
Since o(t) € Saq(t) and u(t) € Upg from (3.9), it results that
(a(t), e(u(t)))yy = (F(t),u(t))y - (6.10)
So, from (6.9) and (6.10), we obtain that
(o(t),e(u(t)))y = (F(2),u(t))y - (6.11)

The inequality in (3.17) follows now from (3.9) and (6.11). Hence, it results that (u,0,x) isa
solution of Problem P;.

‘We shall now introduce a penalized problem of the mechanical Problem P for which we give
again, two variational formulations and two existence and uniqueness results. Moreover, if we
denote by (un, 0k, Kn) the solution of this penalized problem depending on the parameter & > 0,
we obtain a convergence result of (uy, ox, x3) to the solution (u, , k) of Problem P; when A — co.

More precisely, let h > 0. We consider the following mixed problem.

Figure 1. Graphs of the contact boundary conditions of the Problems P and Ph.
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PROBLEM P!. Find the displacement field uy : Q x [0,7) — RY, the stress field oy, : Q x
[0, T] — Sn, and the internal state variable «), : 2 x [0, 7] — RM such that

on = Ee (i) + G(on,e(un), kn), in 2 x (0,7, (6.12)
kn = @ (on, e(un), k), in Q x (0,T), (6.13)
Divoy + f =0, in Q2 x (0, T), (6.14)
up =0, : on T x (0,T), (6.15)
ow=g, on I3 x (0,7), (6.16)
upy >0 =>0p, = —-h,
Up, =0 = ~A <04, <0, o4, =0, onI's x (0,7), (6.17)
Up, <0 =>04,=0, ‘
ua(0) =uo, on(0) =00, Kh=ko, in. (6.18)

Let us remark that Problem P* is similar to Problem P except the fact that the frictionless
contact condition (2.6) on I'; was replaced by (6.17). From the mechanical point of view, (6.17)
means that the body 2 may leave the foundation and in this case the normal stresses vanish
but once there is contact the normal stresses may decrease until a yield which determines the
penetrability of 2 in the foundation.

In order to study the penalized Problem P*, we suppose that (3.1)-(3.5) hold and let us
consider the functions ¢ : R — R and 7 : H; — R given by

¥(z) = { ::ff : : g' VzeR, (6.19)
io)= [ Vo)da,  VeeH | (6.20)

Using the same arguments as in the proof of Lemma 3.1, we can give the following two varia-
tional formulations for Problem P*.
PROBLEM P}. Find the displacement field uj, : [0, T) — Hj, the stress field oy, : [0,T) — H,,
and the internal state variable xj, : [0,7] — Y such that

on(t) = Ee(un(t)) + G (on(t), e (un(t)), sn(t)), ae.te(0,T), (6.21)
An(t) = ¢ (on(t),€ (un(2)) , sn(t)) ae. t€(0,7), (6.22)

un(t) €V, (on(t),e(v) — e(un(t)))5 + hi(v) — hi(un(t)) 2 (F(t), v — un(t))y ,
VoeV, teo,T],
uh(o) = Up, O’h(O) = 0y, "h(o) = Ko. (6.24)

(6.23)

ProBLEM P}. Find the displacement field up, : (0,T) — Hj, the stress field oy, : [0, T} — H;,
and the internal state variable «, : [0,T] — Y such that

on(t) = Ee(un(t)) + G (on(t), e (un(t)), ka(t)), ae.te(0,T), (6.25)

~ Ra(t) = o (on(t), e(un(t)), #a(t), ae. t € (0,T), (6.26)
(on(t) €E8(t), (T —on(t),e(ualt)))p =0, V7TeZh(), te[0,T], (6.27)
un(0)=uo, on(0) =00, &u(0) = ko, (6.28)

where
Zha(t) = {r € H| (r,e(v))yy + hi(v) 2 (F(t),0)y Yv € V}. (6.29)
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Let us remark that similarly to (3.14), it results in this case that
(on(t), e(un(@hag + hi(un(t) = (F(O),un®)y, Ve [0,T]. (6.30)
For the study of Problems P} and P}, let us consider the following assumptionis:
wEV, ooc z:d(d), Ko €Y,  (00,e(u0))s + hi(uo) = (F(0),ua)y. . (6.31)

As in Section 3, we remark that assumptions (6.31) (which involve regularity conditions on
the initial data ug, 0g, and kg as well as a compatibility condition between up, go; f , and g) are
satisfied if ug € Hy, o9 € H, Ko € Y, and if ug and o verify (6.14)—(6.17) for t =0

We have the following result. o :

THEOREM 6.2. Let (3.1)-(3.5) and (6.31) hold. Then there exists a unique solution of Prob-
lem P} having the regularity

up, e WH°(0,T,H;), o € Wh®(0,T,H;), &€ WL®(0,T,;Y).

PROOF. The proof of Theorem 6.2 is similar to the proof of Theorem 4.1 and it can be obtained
in three steps, as follows.
(i) For all n € L*(0,T,H x Y) there exists a umque Upy € W1-°°(0 T, Hl), Ohg € Whoo
(0, T, H;) solution of the variational Problem P A

Oha(t) = Ec(uny(t)) + z,l,(t), ' (6.32)
upy(t) €V, : .
{ona(t), e(v)—e(uny(£)))5, + hi(v)—hi(ung(t)) 2 (F (t).v—um;(t))v ) (6.33)
Vv e v,

for all ¢ € [0, T] where 2, = (2),23) € W1’°°(0 T,H x Y) is given by (4.1),(4.2).
(ii) The operator Ap : L*°(0, T, H x Y) L>(0,T,H x Y) defined by

Ann = (G (Ohys €(hn), Kn) , @ (Tnn, E(Ung) 1 6n)), Y€ L®(O,T,HxY), (634)

where k, € W1*(0,T,Y) is given by (4.10), has a unique fixed-point n;, € L°°(0,

T,HxY).
(iii) ¥ =Uhns Oh = Ohng, Kh = Ky is the unique solution of Problem P}.

THEOREM 6.3. Let (3.1)-(3.5) and (6.31) hold. Then there exists a unique solution of Prob-
lem P% having the regularity

u, € WH(0,T,V), o€ W'2(0,T,H:), #ne€W">(0,T,Y).
PROOF. We use similar arguments as in the proof of Theorem 5.1 replacing Problem P2, by the

following problem.
ProBLEM P},. Find up, : [0,T] — Hj and. Ohy : [0, T] — Hji, such that

& (un(®) = E1on(t) + 23(8) + E715(), (6.35)
Ohalt) € TR, (T —ann(t),e(unn(t))y, 20, VT eEZh (6.36)

Here T} is given by A
Tk = {r € H| (r,€(v))5, + hij(v) 2 OVv € V},

and z, = (z},23) e WH*°(0,T,H x Y) is defined by (5.11),(5.12).

HON 26:12-C
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THEOREM 6.4. Let (3.1)~(3.5) and (6.31) hold, and let be the functions uy € WY(0,T,V),

on € WH°(0,T, H,), and x € W>°(0,T,Y). Then, (up,0n, 51) is a solution of the variational

Problem P! if and only if (u,0n, k4) is & solution of the variational Problem P}.

PROOF. The proof of Theorem 6.4 uses the same arguments as in the proof of Theorem 6.1.
The solution of the variational Problems P? and P2 depends on the parameter & > 0. The

behaviour of this solution when A — oo is given by the following result.

THEOREM 6.5. Let (3.1)~(3.5), (3.10), and (6.31) hold. For all h > 0, let (up,0n,5n) be the
solution of Problems P? and P}, and let (u,0, k) be the solution of Problems P, and P;. Then,

for all t € [0, T), we have
up(t) — u(t) in Hy, on(t) — o(t) in Hi, xi(t) — () inY, when h — +o00. (6.37)
In order to prove Theorem 6.5, we need some preliminary results. For this, we suppose in

the sequel that the assumptions of Theorem 6.5 are satisfied. We first give an estimation of the
difference between the solutions of the variational Problem P'{,, constructed with two different

functions 7.
LEMMA 6.6. Let n; = (n},n?) € L®(0,T,H x Y) (i = 1,2), and let h > 0. Then, denoting by
(Uhn, s Ohn,) the solution of Problem P}, for n = n;, there exists C > 0 such that

[ ) = S, )] 5+, (8) = Oy @), <€ [ (o) = (ol s, VE€ 0,71, (638)

PROOF. Let t € [0,T], and let 2, be defined by (4.1),(4.2) for 7 = n; (i = 1,2). Using (6.32)
and (6.33), we obtain that
uny, (t) €V,
(Ee(hn, (),£(0) ~ elumn, (), + (25, (8), () — elunn, (1)),
+hj(v) — hj (“lm‘ ®) 2 (F (t),v - Uha, (t))v ’
VYveV, i=1,2.

It follows now from (6.39), (3.1), and (2.9) that

|, (8) = Uha, (8)] ;. <C lz,‘,‘ -2 (t)lu . (6.40)

From (6.32) and (6.39), it results that Divoyy, () = Divoag, () = —f(t). Hence, from (6.32),
(3.1), and (6.40), we deduce that

|ha, (&) = O, (8)] g, < Clab, (&) - 22, ®)] - (6.41)

The inequality (6.38) is now a consequence of (6.40), (6.41), and (4.1).

LEMMA 6.7. Let n € L®(0,T, X x Y), and let z, € W(0,T, H x Y), the function defined
by (4.1),(4.2). Let, also, (uy, a,,) be the solution of Problem P\, and for all h > 0, let (upy, Onyn)
be the solution of Problem P},. Then, for all t € [0,T], we have

Upg(t) — uy(t) in Hy, ony(t) — ay(t) in My, when h — +00. (6.42)

(6.39)

PROOF. Let t € [0,T). From (6.32) and (6.33), we obtain that
u;.,,(t) eV,
(Ee(unn(t)), (v) — e(urn(t)))ye + (2(2), €(v) — E(unn(t))),,
+hj(v) — hj(ung(t)) 2 (F(t),v — ung(t))y ,
VveV. :

(6.43)
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Taking v = 0 in (6.43) and using (6.19), (6.20), (3.1), and (2.9), it results that
Cc Iuhn(t)ﬁ:, + hj(unn(t)) < (F(t), “hn(t))v + (zvly(t)v 5(“hn(t))>1.¢ 1 (6.44)

and after some algebra, we deduce that (up,(t))s is a bounded sequence in H;. Therefore, there
exists an element iiy,(t) € H; and a subsequence (upy(t))n C (Uny(t))n such that

upry(t) — Up(t) in Hy,  when b’ - 0. (6.45)

Moreover, since (upy(t))s is a bounded sequence in Hj, it follows from (6.44) that there exists

a constant C > 0 such that

i (unn()) < C= = VK >o. (6.46)

The lower semicontinuity of j, (6.45) and (6.46) imply that j(i,(t)) = 0 and by (6.19), (6.20),
and (3.8), we obtain that
Up(t) € Ung. (6.47)

Using (6.43),(6.45) and standard lower semicontinuity arguments it results that

(B¢ (@lt) £(0) — & (T8 + (5300 €(0) —€ (Bn(®)y 2 (FOL0=Ta@ys 0
Vv € Uag. )
We remark now from (6.47) and (6.48) that #,(t) is a solution of (4.6) and from the uniqueness
" of the solution of this variational inequality we obtain that iiy(t) = uy(t). Hence, u,(t) is the
unique weak limit of any subsequence of (upy(t))n. We deduce, therefore, that the whole sequence
(uny(t))n is weakly convergent to uy(t) in H:

Upy(t) — uy(t) in Hy,  when h — 0. - (6.49)

In order to obtain the strong convergence, let us remark that from (3.1) and (2.9), it follows
that

C unn(t) — un(®)lzr, < (Ee(unn(t)), e(unn(t)) — e(un(t)))y,
— (€e(un(2)), e(unn(t)) — e(un(t)))s, (6:50)

and putting v = u,(t) in (6.43), we obtain that

(E2(unn(t)), e(thn(t)) — £(un(t))) 4
< (F(2), tng(t) — ug(t))y + (25 (t),(uq(t)) — (unn(t))),,- (6.51)

Lemma 6.7 follows now from (6.50), (6.51), (6.49), and (6.32).
PrOOF OF THEOREM 6.5. Let h > 0 and t € [0,T]. As it results from the proofs of Theorems 4.1
and 6.2, we have that 4 = Uy, 0 = Gpe, K = Kpe, Up = 'u.;.,,,-‘, Oh = Ohq, a0d Kp = Kqp , Where n*
is the fixed-point of the operator A defined by (4.11) and #j, is the fixed-point of the operator Ap
defined by (6.34). Then, denoting by (u.h,,-,ah,,-) the solution of Problem P}, for n = %°, it

results that
|un(t) — u(t)l g, + |on(E) — o (), + lkn(t) — K(E)ly
< o (6) = s () | g, + [hng ) = O B, + [ = ke By, (652)
+ lunns (£) — vy (&)l g1, + |ORne (8) — g (), -

From (4.10), (4.1), and (4.2), it follows that

lone(®) = ke )y < [ |mi?(s) = 07%(0)| , ds. (6.53)
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Moreover, using Lemma 6.6, we obtain that

|tthai (8) = Bhne (8)] y, + |onnz (8) — Onne (D)}, < © /o it e) - (e 0 35 (6.54)
Therefore, (6.53) and (6.54) imply that
|8nog () = thae ()| 7, + lonng (2) — onn= ()],
+ g = Oy S [ 08) =1 Oy ds. (655)
Using the equalities |

7';5 = A'l'h.s = (G(ah’ e(u;.), "h)r ‘P(ahv e(uh)r Kh)) ’
n* = An* = (G(0,&(u), 5), p(0,(u), K)),

in (6.55), by (3.2) and (3.3) it results that
|wng (8) = wnns (2)| g, + lonng (€) = Onne (€)], + [z (8) — e ()],

4
¢ /o (lun(8) — u(8)lg, + lon(s) — o(s)lyy, + Ixn(s) — K(s)ly) ds. (6.56)

Let us now introduce the following result: let m € W (0,T,R) such that m(0) = 0 and
m(t) >0Vt € [0,T)], and let a > 0 and b > 0 be two constants. If ¢ € L*°(0,T,R) is such that

¥(t) Sa+m()+b /o ‘We)ds, vte[o,T],

then
¥(t) < m(t) + (a + b/o‘ m(s) dt) e, Vte[o,T).

Hence, using (6.56) in (6.52) and this last result, we obtain that

lun(t) — u(®)lg, + lon(t) — o)y, + |mn(t) — s(t)ly
< |thn+ (t) — un+(O)| g, + |Ohye(t) — Ope (g,

t (6.57)
+ C./o (|u;.,,. (8) — un+(5)|py, + lony+(8) — oge (s)|H‘) ds.

Moreover, from (6.50), (6.51), (4.3), and (6.32), we deduce that

|unne (3) — ne (3)| g, + |Thn=(8) = One ()3, S IF(S)lv + 250 (3)],, + lume (), Vs [0,TY,

and using (6.42), by Lebesgue’s Theorem, it follows that
L
C [ (1tar-(6) = i @, + I (o) = o)) ds — 0, whem b~ 400, (658)

Theorem 6.5 is now a consequence of (6.57), (6.42), and (6.58).
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| Descriptif I

11 s’agit dans ce papier de ’étude du probleme statique de contact bilatéral avec
frottement entre un matériau ayant une loi de comportement élastique non linéaire et une
fondation rigide. Le contact et le frottement sont modélisés par la loi de Tresca.

On considére un milieu continu occupant un domaine Q de RY (N = 1,2, 3) et dont
la frontiére I', supposée suffisamment réguliere, est divisée en trois parties disjointes I'y,
Iy et I's. On suppose que le champ des déplacements s’annulle sur I';, que des forces
surfaciques f, s’appliquent sur I'; et que des forces volumiques f, agissent dans 2. On
suppose aussi que le matériau en contact bilatéral avec frottement par la partie I'; de sa
frontiere avec une fondation rigide. Le probléme statique de contact étudié se formule
mathématiquement de la fagon suivante :

Probléme P : Trouver le champ des déplacements u : & — RY et le champ des
contraintes o : Q — RY*N tels que

o= Flelw)) . dans. 9,
Dive+ f=0 dans (,

u=U sur
oV =g sur- Da,
U= sur I's,
loelt g mur o Ty,

lorl < g = u, =0,
oplice @ == g =i, N2

On note par RY*" I’espace des tenseurs symétriques du second ordre sur RY et par e(u)
le tenseur des petites déformations linéarisé. Div o désigne la divergence de la fonction
tensorielle o, le vecteur v est la normale unitaire sortante a €2, ov est le vecteur des
contraintes de Cauchy, et u,, g, et o, représentent respectivement le déplacement normal,
les contraintes normales et tangentielles. Le réel positif g désigne le seuil de frottement.

i




On prouve I’existence ainsi que ’unicité de deux solutions faibles relatives & deux for-
mulations variationnelles du probleme P. On établit aussi un résultat d’équivalence entre
ces deux formulations. On introduit ensuite, pour tout paramétre u > 0, un probléme
régularisé P* du probléme P et on démontre un résultat de convergence forte de sa so-
lution vers la solution du probléme P quand le parametre u — 0. Une interprétation
mécanique de ce résultat de convergence est finalement donnée.
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FRICTIONAL CONTACT PROBLEMS FOR
NONLINEAR ELASTIC MATERIALS

MOHAMED ROCHDI‘, BoubpJEmMAA TENIOU**

We are interested in the static problem of modelling the frictional contact be-
tween an elastic body and a rigid foundation. We assume that the elastic con-
stitutive law is nonlinear, that the contact is bilateral and that the friction is
described by Tresca’s law. Two equivalent weak formulations of the problem
are established and the existence of a unique solution is proved in each case.
A regularized problem is also studied and a strong convergence result is proved.

1. Introduction

Only recently progress has been made towards the modelling and analysis of contact
processes between deformable bodies. This is due to the considerable difficulties that
the process of frictional contact presents in the modelling and analysis due to the
complicated surface phenomena involved. Contact problems with or without friction
were already studied for instance in (Burguera and Viafio, 1995; Drabla et al., 1998;
Duvaut and Lions, 1972; Haslinger and Hlavacek, 1980; 1982; Hlavacek and Necas,
1981; 1983; Kikuchi and Oden, 1988; Licht, 1985; Shillor and Sofonea, 1998), see also
the references therein, in the case of elastic or viscoelastic materials. The case of
elasto-visco-plastic materials was considered for instance in (Amassad and Sofonea,
1998; Drabla et al., 1997; Rochdi, 1997; Rochdi and Sofonea, 1997; Sofonea, 1997)
and the works cited therein.

In this work, we consider the process of frictional contact between an elastic body
which is acted upon by volume forces and surface tractions, and a rigid foundation. '
We assume that the forces and tractions change slowly in time so that the accelerations
in the system are negligible. Neglecting sufficiently the inertial terms in the equations
of motion leads to a static approximation of the process. The material’s constitutive
law is assumed to be nonlinear elastic. The same constitutive law was recently used
in (Drabla et al., 1998) for the study of a frictionless contact problem with Signorini’s
contact conditions. The contact is modelled here with a bilateral condition and the
friction with the associated Tresca law. These contact and friction conditions were
considered for instance in (Duvaut and Lions, 1972; Licht, 1985) in the case of linear
elastic or viscoelastic bodies and in (Amassad and Sofonea, 1998) in the case of elasto-

visco-plastic bodies.

* Laboratoire de Théorie des Systémes, University of Perpignan, 52 Avenue de Villeneuve, 66860
Perpignan Cedex, France, e-mail: rochdi@univ-perp.fr.
** Institute of Mathematics, University of Constantine, 25000 Constantine, Algeria.
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This paper is organized as follows. Section 2 contains the notations and some
~ preliminary material. Section 3 deals with the description of the model for the process
and the mathematical statement of the problem. In Section 4, we list the assumptions
on the data and set the problem in two variational forms. These are two elliptic
variational inequalities: Problems P; and P,. The unknown in the first problem
is the displacement field and in the second one it is the stress field. The existence
of a unique solution to each problem (Theorem 1, Theorem 2) as well as an equivalence
result between the problems P, and P, (Theorem 3) are established in Section 5.
In the last section, we introduce for each nonnegative parameter u a regularized
problem P# of Problem P; and we prove a strong convergence result of its solution
to the solution of Problem P, when x4 — 0 (Theorem 4).

The purpose of this work is to extend some known results in linear elasticity
to the nonlinear case and to point out the second variational formulation which is
important in engineering since it is related to the stress field. Moreover, it deals with
a regularization of the problem considered, which is of interest from the numerical

point of view.

2. Notation and Preliminaries

In this short section, we present the notation we will use and some preliminary ma-
terial. For further details we refer the reader to (Duvaut and Lions, 1972; Ionescu
and Sofonea, 1993; Kikuchi and Oden, 1988; Panagiotopoulos, 1985). Sy represents
the set of second-order symmetric tensors in RY. We denote by “-’ and |-| the
inner product and the Euclidean norm on Sy and RV. We also use the following

notations:
H= {v =(w)|ve€ Lz(ﬂ)} = L} ()N

Hy={o=(w)|u e H'(®)} = (@)
H={r = (r5) Iy = e € L@} = 2@

’H1={1'€’H|Div1'€H}

where §,5=1,...,N. H, H, H, and #, are real Hilbert spaces endowed with the
inner products given by '

(u, ‘U)H =/ UsV; dz
n .

(a, T)-H =./n a;,-‘r,-,- d:t

(u’ v)Hx = (u’ U)H_ + (e(u),e(v))u

{0, 7Y%, =(0,7)3 + (Div 0,Div 1)y
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respectively, where € : Hy — H and Div: H; — H are the deformation and the
divergence operators, respectively, defined by

e(v) = (€¥j(v)): gij(v) = -;—(v.-,,- +vj:), Div o= (i)

The associated norms on the spaces H, H, H; and #, are denoted by |-|x, |- |4,
||, and |- |3,, respectively.

Let Hr = HY?(T)N and let v: Hy — Hr be the trace map. Let also »
be the outward unit normal to I'. For every element v € H; we use, when no
confusion is likely, the notation v for the trace yv of v on I'. We denote by v,
and v, the normal and the tangential components of v on I' given by v, = v-v
and v, = v — v, v, respectively. Let Hp be the dual of Hr and let {-,-) denote the
duality pairing between Hyp and Hr. For every o € }; let ov be the element of
Hj. given by

(ov,v) = (0,€(v)),, + (Divo,v)g VYveH (1)

We also denote by o, and o, the normal and tangential traces of o (see e.g. Kikuchi
- and Oden, 1988; Panagiotopoulos, 1985). We recall that if o is a regular function

(say C'), then
(ov,yv) = /I:au -vda VveH (2)

where da is the surface measure element, o, = (ov)-v and o, = ov —o,v.

3. Problem Modelling

We model the static process when a nonlinear elastic body is being acted upon by
forces and surface tractions and as a result it contacts a rigid foundation. The elastic
body occupies a domain Q of RV (N = 1,2,3) with surface I'. A volume force of
density fo is applied on 2. We assume that I' is Lipschitz and is divided into three
disjoint measurable parts I';, I's and I3, such that measI'; > 0. We assume that
the body is clamped on I'; and thus the displacement field vanishes there and that
surface tractions f, act on I'2. The solid is always maintained in frictional contact
with a rigid foundation on I';, which means that the body and the foundation have
a compliant shape on I's.

We denote by u the displacement vector, o the stress field and € = g(u) the
small strain tensor. The elastic constitutive law that we consider is 0 = F(e(u)),
in which ¥ is a given nonlinear constitutive function. The condition of bilateral
contact between the body and the foundation along I'; is given by u, = 0, where u,
represents the normal displacement. The associated friction law is the static Tresca

law:
lor|<g on I3 ' .
lorl<g=>u,=0
lorl=9g=0r=-Xu,, A2>0
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Here, o, represents the tangential force on the contact boundary I';, g denotes
the friction yield limit and u, represents the tangential displacement. This friction
law, which was already considered by Duvaut and Lions (1972), Licht (1985) and
Panagiotopoulos (1985), states that the tangential shear cannot exceed the maximal
frictional resistance g. Then, if the inequality holds the surface adheres completely
to the foundation and is in the so-called stick state, and when the equality holds there
is relative sliding, the so-called slip state. Therefore, at each time instant the contact
surface I'; is divided into two zones: the stick zone and the slip zone.

The mechanical problem of frictional contact between a nonlinear elastic body
and a rigid foundation may be formulated classically as follows:
Problem P: Find a displacement field u: 2 — RN and a stress field o: 2 — Sy
such that

o=F(e(w)) in Q (3)
Dive+fo=0 in 0 (4)
u=0 on T} ' » (5)

ov=fa on I'p : (6)

(u.,=0 on I'3

lo]<g on T3 | o .

o] <9 =u, =0 @
5 lorl=9 =0r=-Auy, A>0

To study Problem P, we need the following additional notation. Let V denote
the closed subspace of H; given by ‘

V={vEH1|v=0 onT;, v, =0o0n I‘3}
Now, Korn’s inequality holds, since measI’; > 0. Thus (Duvaut and Lions, 1972;
Hlavadek and Netas, 1981)

le(v)l.u > Clvln, VveV (8)

Here and below C' denotes a positive generic constant which may depend on §, Iy,
I'2, I's and F, but does not depend on the input data f,, f2, g, and whose value
may vary from place to place.

We consider the inner product (-,:)y on V, given by
(v, whv = (g(v),e(w)),, (9)

It follows from (8) that ||y, and | |v are equivalent norms on V. Therefore
(V,| - |lv) is a Hilbert space.
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4. Variational Formulations

In this section, we give two variational formulations to Problem P. For that purpose,
we assume that the elasticity operator

» F:OxS N — Sn
satisfies the following set of conditions:

[ (a) there exists L > 0 such that
|F(-,e1) — F(-,€2)| < Ller —€2| V €1,€2 € Sn, ace.in

(b) there exists M > 0 such that :
\ (F(-,e1)-F(-,€2)) - (e1—€2) > Mler—€2|> Ver,e2 €Sy, ae.in 2 (10)

(c)  — F(z,e) is Lebesgue measurable on ! Ve € Sy

| (@) 51— F(z,0) €.

The forces and the tractions satisfy _
fo€ H, fr€L*T2)" (11)

Moreover, the friction yield limit satisfies
g>0 | | (12)

Remark 1. Using (10) it is straightforward to show that for all 7 € H, the function
z — F(z,7(z)) belongs to H. Consequently, it is possible to consider F as an
operator from H into #H. Moreover, F : # — H is a strongly monotone and
Lipschitz operator (Sofonea, 1993, p.53). Therefore F is invertible and its inverse
operator F~': H — H is also strongly monotone and Lipschitz.

Next, using (11) and the Riesz representation theorem, we may define the element
feV by :

(fivyv = (fo,v)a + (fo,W2eyy  YvEV (13)
Let also j: V — Ry be the functional

jv) = g/r lvr{da, veEV | (14)
Finally, we define the se: of “statically admissible stress fields’ ¥,4 by .

Tad = {z €M (z,e('v))u +j() > (f,v)y Vwve V} (15)

Lemma 1. If (u,0) ts a regular solution to Problem P, then
ueV, (Fle)), e(v) —e(w)),, +i(v)—j) > (f,v-u)y VYveV (16)

0EBw, (F o)y T—0), >0 V7€ Zu an
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Proof. First, from (5) and (13) we deduce that u € V. Let v € V. Using (4), (1)
and (2), we have

(o, €(v) - e(u))u = (fo,v—u)g + /rau -(v—u)da
and, from (5), (6) and (11), we obtain

(0, (v) = (W), = (f,0 — uy + /P - (v — w)da
Using now (3) and (7), the previous equality leads to

(Flew), elv) —e(w)),, = (fiv —uy + /r 0r(v; ~ ur)da (18)
The inequality in (16) follows from (18) and (14) since (7) implies that

o7(vr — ) 2 ollurl=|vr]) ae.on Ty

Putting now v = 2u and v =0 in (16) and taking (14) and (3) into account, we
obtain

(0,€(w)),, +i(u) = (f,u)y | (19)
Hence, by using (16), (3), (19) and (15) it follows that o € T,q. The inequality
in (17) is now a consequence of (19) and (15) since u € V and F is invertible. n

Lemma 1 leads to the following weak formulations for Pfoblem P.

Problem P;: Find a displacement field u: 2 — RY such that
ueV, (F(e(u), e(v) —ew)), +iv) —iw) > (fv—u)y VieV (20)

Problem Pj: Find a stress field o: Q2 — Sx such that
0€Za, (F'(0), 7-0); 20 Vre€Za (21)

Remark 2. Let us remark that Problems P, and P, are formally equivalent to
Problem P. Indeed, if u represents a regular solution to the variational problem P
and o is defined by o = F(e(u)), using arguments in (Duvaut and Lions, 1972) it
follows that {u,o0} is a solution to Problem P. In a similar way, if ¢ represents a
regular solution to the variational problem P; and u € V is given by o = F(e(u))
then, using the same arguments, it follows that {u,o} is a solution to Problem P.
For this reason, we may consider Problems P, and P, as variational formulations to
Problem P.

Under the assumptions (10)-(12), in the next section we give the existence and
uniqueness results for the variational problems P, and P, followed by an equivalence
result between these two problems.
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5. Existence and Uniqueness Results

Theorem 1. Let (10)-(12) hold. Then there erists a unique solution to Problem P, .

Proof. Using the Riesz representation theorem, we may consider the operator A:
V — V defined by

(Av,w)y = (.F(E(v)),e(w))u Vv, weV

Theorem 1 is now a consequence of the theory of elliptic variational inequalities
(Brezis, 1968; Kikuchi and Oden, 1980), since (10) and (8) imply that the opera-
tor A is strongly monotone and Lipschitz and, since the functional j defined by (14)
is proper, convex and lower semicontinuous. |

Theorem 2. Let (10)-(12) hold. Then there ezists a unique solution to Problem P,.

Proof. Using (9) and the fact that the functional j is nonnegative, we deduce that
£(f) € Zag. Thus, Taq given by (15) is a nonempty convex subset of H. Moreover,
from Remark 1 we obtain that F~! is a strongly monotone and Lipschitz operator.
Hence, using arguments of the theory of elliptic variational inequalities, it follows
that Problem P; has a unique solution ¢ € X,q9. Let us prove now that o € ;.
Indeed, since g € Z,4, it results from (15) that (o,e(v))x + j(v) > (f,v)v for all
v € V. Putting in this inequality v = +¢p where ¢ € D(?)V and using (13), we
obtain that (o,e(0))p (@yvxp@n = (fo,¥)n for all ¢ € D). Thus using (1)
yields Div o + fo = 0 a.e. in (). Finally, the regularity of o € H; is a consequence
of the last equality and (11). ]

The following result deals with the study of the link between the variational
problems P;, P, and the constitutive law (3).

Theorem 3. Let (10)-(12) hold and let (u,0) be such that u € V and o € H,;.
Consider the following properties:

(i) u is the solution to Problem P, given in Theorem 1,
(it) o is the solution to Problem P, given in Theorem 2, and
(i) u and o are connected with the elastic constitutive law o = F(e(u)).

Then two among these properties imply the third one.

Proof. We start by proving that (i) and (iii) imply (ii). Putting v = 2u € V and
v=10¢€V in (20) and using (14) and (iii), we deduce that

(0,6(w)),, +i(u) = (f,u)v - (22)
Therfore, (20), (22) and (iii) imply that
0 € Xag | ' (23)
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Let now 7 € Xaq. From (iii) it follows that
(F o), T=0)y = ((T e(u))y, +J(u)) ((o, £(u)),, +j(u)) (24)

Property (i) is now a consequence of (15) and (22)-(24) since u € V.

Let us prove now that (i) and (ii) imply (iii). For this, let & € #H be the function
o = F(e(u)). Using now the previous step of the proof, it follows that & is a solution
to Problem P,. The uniqueness of the solution o to this problem yields Property (iii).

Finally, we will establish that (ii) and (iii) imply (i). For that purpose, we
introduce the spacu W and W defined by '

W={v€H1|v=0 on rl}a-V

W={zeH|Divz=0in Q, zv=0 on [ UTs}
Using (1), it is stralghtforward to show that the orthogonal complement of Win H
is the subspa.ce e(W), ie. _ o
=¢eg(W) in H . (25)

Thus it follows. from (15) and (25) that o+ z € )3,4 for all z € W. Consequently,
taking 7 = 0 £z in (21), it may be concluded that (z,F~1(c))» =0 for all z € W.
This implies, by using (25), that there exists & € W such that

Flo)=e@ o (26)

Let us prove that 4 € V. For this, let us suppose that u ¢ V. Hence, since V
is a closed subspace of W, there exists 7 € # such that

(’i",e(v))u =0 VYveV (27)
(7, e(”)),n < 0 _ (28)

Since the functional j is nonnegatwe, it follows from (9) that AT + &( f) € Xag for
all A > 0. Therefore, if we set 7 = AT + €(f) in (21) and use (26), we obtain

Ao —e(f), (@), < MToe(@),, - VA20

Passing to the limit as A — +00, it follows from (28) that (o —e(f), e(“'))u < -00
which is absurd. Consequently, % € V. Assertion (iii) and (26) yield ¢ = F(e(u)) =
F(e(w)). Hence, using (10) and (8), we obtain

0= (F(e)) ~ F(e@), e(u) — @), 2 Cle(w) — @[}, 2 Clu— iy,

Thus we deduce that u=u € V.
Let us establish now the inequality in (20). Since the functional j is subdiffer-
entiable, there exists 7 € H such that

(7, e(v) —£(w)),, + i) — (W) > (fy—uw)y VveV (29)
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Taking v=2u €V and v =0 € V in this inequality, we have

(T.e(w)),, +i(w) =(fu)y ' (30)
and, from (29), (30) and (15), we deduce that 7 € L,q. Takingnow 7 =7 in (21) and,
using Assertion (iii) and (30), it follows that

(F(e(u),e(w)),, +i(w) < {f,u)v | (3
Moreover, since o = F(e(u)) € Laq, we have

(F(e(w),e(w)),, +iw) 2 ({f,u)v (32)
and .

(Fe(w),e()),, +iv) 2 (fiv)y  YveV (33)

The inequality in (20) is finally a consequence of (31)—(33). This concludes the proof
of Theorem 3. m

Remark 3. A mechanical mterpretatlon of the result obtained in Theorem 3 is the
following:

1. If the displacement field u is the solution to Problem P, then the stress field
o connected to u by the elastic constitutive law o = F(e(u)) is the solution

to Problem P,.
2. If the stress field o is the solution to Problem P;, then the displacement field

u connected to o by the elastic constitutive law o = F(e(u)) is the solution
to Problem P, .

3. If the displacement field u is the solution to Problem P; and the stress field
o is the solution to Problem P, then u and o are connected by the elastic
constitutive law o = F(e(u)).

6. A Regularized Problem

Due to the nondifferentiability of the functional j given by (14), we introduce a
regularized problem P* of Problem P,, depending on a nonnegative parameter u.
We prove the existence of a unique solution u, to this problem and we obtain a
convergence result of u, to the solution of Problem P1 as u—0.

Indeed, for every parameter 0 < pu < 1, let j,: V — Ry be the functional
defined by

Julv) = l_i_#/r lv-|'t*da VveV (34)
3

Replacing the functional j by j, in Problem P, we obtain the following regularized
problem:

Problem P*: Find a displacement field u, € H; such that
uy €V, <-7:(€("'p)): g(v) - 5(“#))»" + Ju(v) — ju(uy)
| 2 (f,v_uu)V VveV (35)
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Since the functional j,, is proper, convex and lower semicontinuous, using the
same arguments as those used in the proof of Theorem 1, we have
Theorem 4. Let (10)-(12) hold. Then there exists a unique solution to Problem P*.
~ Our main interest in this section lies in the behaviour of the solution u, of
Problem P* as p — 0. This is the subject of the following result:
Theorem 5. Let (10)-(12) hold. Then the solution u, of Problem P* converges in
V' to the solution u of Problem P, as p— 0, i.e.

u,—u inV as u—>0 (36)

-Pmof. If v=20 in (35), then |
_ <f(5(“u)): 5(“#));; + Ju(uy) _S (frup)y forall 0 < n< 1

and, using (10), (9) and the nomegatiﬁty of the functional j,, we deduce that the
sequence (u,), is bounded in V. Thus there exist a subsequence denoted again by
(44), and an element @ € V' such that ' |

u, — 4 weaklyin V as u—0 " (37)
In order to pass to the limit in (35) as u — 0, we remark that using (37), (34) and (14)
we have - ' ,

lim (fv - uay = (f0 - Wy VoeV (38)
and
lim ju(v) =j(v)  VveV (39)
We will prove now that
liminf ju(u,) > §(3) | (40)

Due to the differentiability and the convexity of the functional Ju given by (34), it
follows that ‘

iutun) =@ 2 g [ Yol - 2)da (41)

Consequently, taking v = i = in (39) and using (41), we deduce that in order to
establish (40) it suffices to prove that
g/ firl (4 — G)da —> 0 as p— 0 (42)
Is

Indeed, since the trace map is linear and continuous from H; into L?(T")", one can
easily deduce from (37) that

uy, — @ weaklyin L2(I'3)V as p—>0 (43)
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Moreover, from the Lebesgue theorem we obtain
| |* —1 in L2(3)N as p—o0 (44)

Therefore, using (43) and (44), we establish (42) and consequently (40). In order to
pass to the limit in (35) as p — 0, we need to prove that

li’r‘n_)igf (F(e(uy)), e(v) — e(uy)),, < (F(e(@), lv) - (@), Ve V (45)

For this, taking v = @ in (35) on the one hand and using the monotonicity of the
operator F (see (10)) on the other hand, we obtain .

('7:(5(“#))’ (@) — e(“n»u > Ju(uy) = Ju(@) + (f, G—uu)v

and |
(-7:(5(“#)): Vs(ﬁ)_- 5(“#))-H < (7(5('&)): 5.({‘) - E(ﬁn))u

Passing to the limit in these inequalities as px — 0, from (37)-(40) we see that
lim inf (.7-' (e(un)), (@) — e(u,)),, >0

and

lix‘l‘l 1sup (F(e(up)), e(@) —e(up)),, <0

Therefore _
lim (T(e(u,,)), e(z) — e(u,,_))u =0 ‘ | (46)

Let v € V and 6 € (0,1). The monotonicity assumption in (10) applied thh u,
and w € V given by

w = (1 - 0)i +6v | - (47)
implies that : |
(Flewa)s @) — eun))y, +0(F(e(w), e(v) - e@),,

< (Fle), e@) — ew,))y, +6(F(cw), c() —e(@),, (48)
Using now (46), (37) in (48), we obtain

liminf (F(e(wa)), €() — @), < (Flw)), e) —e@),,  (49)
Moreover, since

(F (), ) ~e(ua))y = (Flew), @ - e(u)y,

| (), 6v) — (@),
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from (46) and (49) it follows that
liminf (F(e(ws), &(v) — e(wa))y < (Flew)), ev) —e(@),,  (50)

The inequality (45) may be deduced by introducing (47) in (50) and passing to the
limit as 6 — 0.

Using now (38)—(40) and (45), we may pass to the limit in (35) as u — 0 and
obtain that 4 is a solution to the variational problem (20). Therefore, from the
uniqueness of the solution to this problem (see Theorem 1) we deduce that % = u.
Thus u is the unique weak limit of any subsequence of (u;),. Consequently, the
whole sequence (u,), is weakly convergent in V to u, i.e. )

u, —u weaklyin V as u—0 (51)
In order to obtain (36), let us remark that from (10) and (8) it follows that
Cluy —ul} < (F(e(w), e(u) - e(uu))y, — (F(e(wn)), e(u) - elu,)),, (52)

where C > 0 is a positive constant independent of p. The strong convergence (36)
is finally a consequence of (51) and (46) since @ = u. | ,

Remark 4. Let u and u, be the solutions to the problems P and P* given in
Theorems 1 and 4, respectively. We define the associated stress fields by

o=F(e(w) (53)
and
| 0w = Fle(uy) (54)
Then we have

oy — o in H as p—0 (55)
Indeed, it follows from (53), (20) applied with v = +p € D(2)" and (1) that

Dive+ fo=0 ae.in Q (56)
A similar argument used for (54) and (35) implies that

Divo, + fo=0 ae.in Q (57)
Therefore, by (53)-(54) and (56)-(57) we deduce that

low — b, = loy — olu = |F(e(w,)) — Fle(w))],, (58)

The strong convergence (55) is finally a consequence of (58), (10) and (36).

Remark 5. Let us consider the following contact and friction conditions:

u,=0 on I3, |o;|=—glu,/*u, on I (59)
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Using arguments similar to those used in the proof of Lemma 1, one can prove that the
solution u, to Problem P, and the associated stress field o, given by (54) represent
a weak solution (in the sense of Lemma 1) to the frictional contact problem (3)-

(6), (59).

Remark 6. The strong convergence (36), (55) may be interpreted as follows: the weak
solution {u,s} to problem (3)—(7) modelling the frictional contact between an elastic
body and a rigid foundation may be approximated by the weak solution {u,,0,} to
problem (3)—(6), (59) which models the frictional contact between the elastic body
and the rigid foundation using a more regular friction law. The regularization used
here may be of a strong interest in the numerical study of such a type of contact

problems.
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|Descriptif I

Cet article concerne I’étude du probleme quasistatique de contact d’un matériau ayant
une loi de comportement viscoélastique avec une fondation rigide. Les conditions aux lim-
ites de contact considérées obéissent & un modele général du type conditions de compliance

normale.

On considere un milieu continu viscoélastique occupant un domaine 2 de R3 et dont
la frontiere I', supposée suffisamment réguliére, est divisée en trois parties disjointes I'y,
I'; et I'3. On suppose que, pendant 'intervalle de temps [0, T, la partie I'; est encastrée
dans une structure fixe, que des forces surfaciques f, s’appliquent sur I's et que des forces
volumiques f agissent dans 2. On suppose aussi qu'un écart g, sépare la surface de
contact potentielle I's d’'une fondation indéformable et que cette distance est mesurée le
long de la normale unitaire sortante v & 2. Le probléme quasistatique de contact qu’on
se propose d’étudier se formule de la fagon suivante :

Probléme P : Trouver le champ des déplacements u :  x [0,7] — R3 et le champ des
contraintes o : 2 x [0,T] — R3*3 tels que

o=Ae(u) +Ge(u) dans Qx(0,7),
Divo+ fo=0 dans Qx(0,7),
u=0 sur R i8N

ov = fo sur . Pax (0Tl

—0, = Pty — ga) sur - Py {0, T,
lo7| < pr(uy — ga) giar i Taod (0. T,
lo-| < pr(uy — ga) = 4, =0,
2] = pr(tty — ga) == 07 = =Xy, A0,

il =2y - dang ' ()

On note par R3*3 I’espace des tenseurs symétriques du second ordre sur R? et par
g(u) le tenseur des petites déformations linéarisé. Le point au dessus d’une quantité

1



représente sa dérivée temporelle, Div o désigne la divergence de la fonction tensorielle o
et v la normale unitaire sortante a Q. ov est le vecteur des contraintes de Cauchy, et u,,
ur, 0, et o, représentent respectivement le déplacement normal, la vitesse tangentielle,
les contraintes normales et tangentielles. Les fonctionnelles p, et p, sont données. La
fonctionnelle p, représente la pénétration du corps dans la fondation, s’il y a contact,
alors que la fonctionnelle p, désigne le seuil de frottement.

Il s’agit dans cette publication de I’analyse variationnelle du probléme P pour lequel on
commence par donner une interprétation mécanique des conditions de compliance normale
considérées ici. On poursuit avec une formulation variationnelle du probléme P ainsi que
de I'existence et 1'unicité de la solution. L’étape suivante concerne ’étude de la stabilité
du probléme par rapport a une perturbation des fonctions de compliance normale p, et p,.
Ceci est tres important du point de vue des applications. On s’intéresse aussi & I’étude du
probleme de contact avec glissement entre un corps viscoélastique et une fondation rigide
en mouvement. L’usure du matériau due aux frottements est prise en compte et elle est
modélisée par la loi d’Archard. Ce probléme se formule de la maniére suivante :

Probléeme PW : Trouver le champ des déplacements u : Q x [0,7] — R3, le champ des
contraintes o : Q x [0,T] — R3*3 et la fonction usure w : I's x [0,T] — R, tels que
o= Ae(u) + Ge(u) dans Qx (0,7),
Divo+ fo=0 dans §Qx(0,7),
u=0 ghre . T £0. 1)
ov=f, C TR R
-0y, =py(u, —w — g,) sur I3x(0,7),
lor| = pr(uy — w — g,) sur I'sx(0,7),
Or = =M, A20 sur I3 x(0,7),

W= —k,v'o, gur:-. Py (0,T).

u(0) =up, w(0)=wo dans Q.

Ici, ky > 0 est le coefficient d’usure supposé constant et v* > 0 est la vitesse de la
fondation rigide. A la suite de I'interprétation mécanique des conditions aux limites de
frottement avec usure, on établit une formulation variationnelle du probléme PW suivie
d’un résultat d’existence et d’unicité.
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Abstract. We prove the existence of a unique weak solution for the quasistatic problem of frictional
contact between a deformable body and a rigid foundation. The material is assumed to have nonlinear
viscoelastic behavior. The contact is modeled with normal compliance and the associated version of
Coulomb’s law of dry friction. We establish the continuous dependence of the solution on the normal
compliance function. Moreover, we prove the existence of a unique solution for the problem of

sliding contact with wear.

Key words: viscoelastic material, nonlinear constitutive law, frictional contact, normal compliance,
sliding friction, wear.

1. Introduction

Frictional contact between deformable bodies can be frequently found in industry
and everyday life such as train wheels with the rails, a shoe with the floor, tectonic
plates, the car’s braking system, etc. Considerable progress has been made with the
modeling and analysis of static contact problems. The mathematical, mechanical
and numerical state of the art can be found in the recent proceedings Raous et
al. [22]. Only recently, however, have the quasistatic and dynamic problems been
considered. The reason lies in the considerable difficulties that the process of fric-
tional contact presents in the modeling and analysis because of the complicated
surface phenomena involved. General models for thermoelastic frictional contact,
derived from thermodynamical principles, have been obtained in [12], [27] and
[28]. Quasistatic contact problems with normal compliance and friction have been
considered in [15] and [4], where the existence of weak solutions has been proven.
The existence of a weak solution to the, technically very complicated, problem with
Signorini’s contact condition has been established recently in [7]. The quasistatic
frictional contact problem for viscoelastic materials can be found in [25] and the
one for elastoviscoplastic materials in [3], [23], [24] and [26]. Dynamic problems
with normal compliance were first considered in [19]. The existence of weak so-
lutions to dynamic thermoelastic contact problems with frictional heat generation
have been proven in [5] and when wear is taken into account in [6].



106 M. ROCHDI ET AL.

In this work we consider the process of frictional contact between a viscoelastic
body, which is acted upon by volume forces and surface tractions, and a rigid
foundation. We assume that the forces and tractions change slowly in time so that
the accelerations in the system are negligible. Neglecting the inertial terms in the
equations of motion leads to the quasistatic approximation for the process. The
material’s constitutive law is assumed to be nonlinear viscoelastic. The contact is
modeled with a normal compliance and the friction with the associated Coulomb’s
law of dry friction. The normal compliance contact condition was proposed in [19]
and used in [13], [14], [16] and [5], see also the references therein. This condition
allows the interpenetration of the body’s surface into the foundation. In [19] and
[14] normal compliance was justified by considering the interpenetration and de-
formation of surface asperities. It was assumed to have the form of a power law. In
[2] and [18] it was obtained, via homogenization, from a three-body setting in the
limit when the thickness of the thin body situated between the other body and the
foundation vanishes. On occasions, it has been employed as a mathematical reg-
ularization of Signorini’s nonpenetration condition and used as such in numerical
solution algorithms. We refer to [11] or [20] for the existence of static problems
with Signorini’s and Coulomb’s conditions. We use a general expression for the
normal compliance, similarly to the one in [5] and [6]. In part, the introduction of
the normal compliance contact condition, in evolution problems, is motivated by
the observation that Signorini’s condition, while elegant and easy to explain, leads
to discontinuous surface velocities which are associated with infinite tractions on
the contact surface. This clearly is physically unrealistic; it leads to severe mathe-
matical and numerical difficulties which do not necessarily represent the physical
process. The normal compliance condition predicts large, but finite, contact forces.
At any rate, we do not have a completely satisfactory contact condition yet, and
maybe it is unrealistic to expect one single condition to model the wide variety of
phenomena encountered in frictional contact.

In this paper we establish the existence of a unique solution to the problem, us-
ing fixed point arguments. Then we prove the stability of the problem with respect
to perturbations of the normal compliance function, which is important from the
point of view of applications. We also establish the existence of a weak solution to
the problem of sliding contact between a viscoelastic body and a moving rigid body
involving the wear of the contacting surface due to friction. The wear is modeled by
a version of Archard’s law. General models of frictional wear were derived from
thermodynamical considerations in [27] and [28] and the dynamic thermoelastic
contact problem with surface wear has been analysed in [5].

The paper is organized as follows. Section 2 contains the notations and some
preliminary material. In Section 3 we describe the model for the process, set it in
a variational form, list the assumptions on the problem data and state our main
results. These are the existence of a unique weak solution, Theorem 3.1, and the
continuous dependence of the solution on the normal compliance function, The-
orem 3.2. The proof of Theorem 3.1 is given in Section 4 and is based on the
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theory of elliptic variational inequalities and application of fixed point theorems.
Theorem 3.2 is established in Section 5, based on the necessary apriori estimates.
In Section 6 we describe the contact problem with sliding friction and wear. The
existence of a unique weak solution to the problem is stated in Theorem 6.1 and

proved using fixed point arguments.

2. Notations and Preliminaries

In this short section we present the notations we shall use and some preliminary
material. For further details we refer the reader to [8], [10], [13] or [21]. We denote
by Sy the space of second order symmetric tensors on RN (N = 2, 3), while ‘-’ and
| - | will represent the inner product and the Euclidean norm on Sy and RV . Let
Q c R¥ be a bounded domain with a Lipschitz boundary I'" and let v denote the
unit outer normal on I'. We shall use the notations

H={v=®)veL¥Q),i =1,..., N} = LA(Q)",

H ={v= @)l e H(R),i =1,..., N} = H'(Q)",

H={r= ()t =r1;€L*Q),i,j=1,..., N} = L2 @),
H, = {tr € X|Divt € ¥}, |

where, i, j = 1, ..., N and summation over repeated indices is implied. H, #, H,
and J¢; are real Hilbert spaces endowed with inner products given by

(v, v)n =/uiv.- dx,
Q

(o, T)Je=/0ij'¢'ij dx,
Q

(w, V), = (u, V) g + (e(u), €(V)) s,
(0, )3, = (0, T) 3¢ + (Divo, Divr)y,

respectively, where &: Hy — J€ and Div: #; — H are the deformatlon and the
divergence operators, respectively, defined by

s(v) = (&ij(v)), gi;(v) = 3 (vij +vj;),
Dive = (O’,‘j j)

The associated norms on the spaces H, #, H, and .’r'(l are denoted by |- |H, |- | 3 |
|1, and | - | 3¢, , respectively. .
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Let Hr = H i(l‘)” and let y: Hy — Hr be the trace map. For every element
v € H; we use, when no confusion is likely, the notation v for the trace yv of v
on I"'. We denote by v, and v, the normal and the tangential components of von I"

given by
Vy=V-V, Ur = U — V0.

Let H. be the dual of Hr and let (-, -) denote the duahty pairing between HF and
Hr. For every o € J, let ov be the element of H{. given by

(ov, yv) = (0, e(v)) % + (Divo,v)y Vv € H;.

We also denote by o, and o, the normal and tangential traces of o (see, e.g., [13]
or [21]). We recall that if o is a regular function (say C!), then

(ov, yv) =/av-vda Yv € H,,
r

where da is the surface measure element, and
= (ov)-v, O; =0V — OV

Finally, let (X, | - |x) be a real normed space, then C(0, T'; X) and C!(0, T; X)
denote the spaces of continuous, and continuously differentiable functions from

[0, T] to X, with norms

xy = max | F(H)lx,
| flcw.T:x) max [f)lx

and

| flcro,r;x) = max | f®)|x + max £ ®lx,

respectively, where the dot represents the time derivative.

3. The Model and Statement of Results

In this section we describe a model for the process, present its variational formula-
tion, list the assumptions on the problem data and state our main results.

The setting is as follows. A viscoelastic body occupies the domain Q C R3
and is acted upon by volume forces and surface tractions. We are interested in the
resulting process of evolution of the mechanical state on the time interval [0, T].
We assume that a volume force of density fg acts in 2. I', the boundary of Q, is
assumed to be Lipschitz, and is divided into three disjoint measurable parts I'y, I',
and I's, such that means I'y > 0. The body is clamped on I"; x (0, T') and so the
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displacement field vanishes there and surface tractions f, act on I'; x (0,T). A
gap g, exists between the potential contact surface I's and the foundation, and is

measured along the outward normal v.
| We denot by u the displacements vector, o the stress field and £ = &(u) the
linearized strain 'iensor. The viscoelastic constitutive law of the material is chosen

as )
o = A(, &) + GG, €), f G.1)

in which 4 and G are given nonlinear constitutive functions. Here and below a dot

above a variable represents the time derivative.
We recall that in linear viscoelasticity the stress tensor o = (g;;) is given by

0ij = aijne @ + dijue @,

where A = (a;;x) is the viscosity tensor and G = (djju) the elasticity tensor, for
i, j,k,l=1,...,N.
Next, we describe the conditions on the potential contact surface I';. We assume
the the normal stress satisfies the normal compliance condition
—oy = pu(-; Uy — 8a)s (3.2)
where u, represenfs the normal displacement, p, is a prescribed function, such that
pu(-,r) = 0forr < O, and u, — g,, when positive, represents the penetration of
the body’s surface asperities into those of the foundation. Such contact condition
was proposed in [19] and used in a number of publications, see, e.g., [13], [14],
[16], [5] and references there. In this condition the interpenetration is allowed but
penalized. In [19] and [14], the following form of the function was employed

pu(,r) =, (N},

where c, is a positive constant, m, is a positive exponent and (r); = max{0, r}.
Formally, Signorini’s nonpenetration condition is obtained in the limit ¢, — oo.
Here we allow for a more general expression, similarly to the one in [5] and [6].
The precise assumption on p, will be given below. The associated friction law is

chosen as

loz] < P (-, uy — 8a)s
lor| < P (-, uy — 8a) = U =0, (3.3)
log) = p: (-, uy — ga) = 0 = —All;, A 20.

Here, p. is a nonnegative function, the so-called friction bound, which satisfies
p:(-,r) = 0 for r < 0, and additional conditions listed below; u, denotes the
tangential velocity and o, represents the tangential force on the contact boundary.
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This is an appropriate version of Coulomb’s law of dry friction. It states that the
tangential shear cannot exceed the maximal frictional resistance p,. When inequal-
ity holds the surface adheres to the foundation and is in the so-called stick state, and
when equality holds there is a relative sliding, the so-called slip state. Therefore, at
each time instant the contact surface I'; is divided into three zones: stick, slip and
the zone of seperation, in which u, < g,, i.e., there is no contact. The boundaries
of these zones are free boundaries since they are unknown a priori, and are part of
the problem. There is virtually no literature dealing with these free boundaries. In
[19] and [14] the following form was used

p:(-r) = o ()Y

We remark that recently a modified version of Coulomb’s law of friction has been
derived in [27] and [28], and it is in the form

Pr = upy(l —ap,),,

where « is a small positive material constant related to the wear and penetration
hardness of the surface, and u is the coefficient of friction. The condition (3.3)

accomodates such a law.
The mechanical problem of frictional contact of a viscoelastic body may be

formulated classically as follows:
Find a displacement field u: 2x [0, T] — R" and a stress field o : Q% [0, T] —

S such that

o = A(-, (@) + G(, e(u)) in Q x (0, T), 3.4
Dive + fo=0 in Q x (0, 7), | 3.5
u=0 on T} x(0,7), (3.6)
oo=/f onT; x(07T), 3.7
[ —0, = Pv(', Uy — ga) on T x (0, T),
loe| < Pe(c, ey — 8a),
4 ] (3.8)
loe| < pe(- 4y — 82) = U =0,
| |oel = pe (- up — 83) D 0 = A, =0,1 >0,
u(0) =up in Q. (3.9)

To obtain a variational formulation for problem (3.4)—(3.9) we need the follow-
ing additional notations. Let V denote the closed subspace of H; given by

V={veHjlv=0 on I'}
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Now, Korn’s inequality holds, since meas I'; > 0, thus
le@)lse 2 Cluly, Yu eV, (3.10)

see, e.g., [8] or [9]. Here and below C denotes a positive generic constant which
may depend on £, I'y, I'2, '3, A, G and T, but does not depend on # nor on the
input data fo, f2, 8 or uo, and whose value may vary from place to place. The
inner product (-, -)y on V, is chosen as

(u, U)V = (e(u), 8(”))1(’ (3.1 1)

and it follows form (3.10) that |- | 4, and |- |y are equivalent norms on V. Therefore
(V, | - |v) is a Hilbert space.
In the study of the mechanical problem (3.4)—(3.9) we assume that the viscosity

operator
A Q x Sy = Sy,

satisfies

[ (a) there exists L > O such that

|AC-, €1) — A(-, £2)] < Lle; — &3]
Vg1, &5 € Sy, a.e. in Q;

(b) there exists m > 0 such that
4 (A, &1) — A, £2)) - (61 — £2) = m|ey — &) (3.12)
Ve, &2 € Sy, a.e. in Q;

(c) x > A(x, €) is Lebesgue measurable on €2
for all € € Sy;

| (D) x> A(x,0) € F.
The elasticity operator
G:Q x Sy — Swn,

satisfies

[ (a) there exists L’ > 0 such that
|G(:, €1) — G(-, £2)| < L'|ey — &3]

Ve1, &2 € Sy, a.e. in Q;
4 . (3.13)
(b) x = G(x, ) is Lebesgue measurable on €2

forall € € Sy;

| © x> G(x,0) e .
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The normal compliance functions
prl3xR—->R, (r=v,1),
satisfy

[ (a) there exist L, > 0 such that
|pr (-, 1) = pr(-, u2)| < Lyluy — uz|

Vu,,u; € R, a.e.onrl's;
1 . (3.14)
(b) x = p,(x, u) is Lebesgue measurable on I';

forallu e R;

| () x> p,(x,u) =0 u<0O.
Examples used in the literature can be found above. The forces and tractions satisfy
fo€CO,T; H), f,e€CQ,T; L T)"). (3.15)

Moreover, the gap function satisfies

g8 €L®(T3) and g, >0 ae.onlj, (3.16)
and, finally,
upeV. (3.17)

Next, we denote by F(¢) the element of V'’ given by
(F(), v)v = (fo(®), v)u + (f2(0), Y V) L2(r v (3.18)
forallv € Vandt € [0, T], and we note that the conditions (3.15) imply
FeC@OT;V). (3.19)

Letj:VxV—>R j:VxV—>Rand j;:V x V —> R be the functionals

Jv(v, w)=/r pv(-, v, — g)w, da,
3

{ Je(v, w) = / P:(-, vy — ga)lw,|da, (3.20)
I

| j(v, w) = ju (v, w) + j (v, w).
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It is straightforward to show that if {, o'} are sufficiently regular functions satisfy-
ing (3.4)~(3.8) then

(0 (), e(w) — e@(t))) g + j(u(t), w) — ju), u))
> (F@O),w—u®)))y YweV, (3.21)

for all t € [0, T). Thus, by (3.4), (3.9) and (3.21) we obtain the following varia-
tional formulation of problem (3.4)—(3.9)

Problem P: Find a displacement field 4:[0,7] — V and a stress field
o:[0, T] — #, such that

o (t) = A(, e@(1)) + G(, e(u(1)), (3.22)
(@), e(w) — @)}z + ju@), w) — j@@), u(t))

> (F@t),w—u(t))y YwelV, (3.23)
u(0) = uo, (3.24)

for all ¢ € [0, T]. A pair of functions {u, o } which satisfies (3.22)—(3.24) is called
a weak solution of problem (3.4)—(3.9). Our main result, which we establish in the
next section, is the following:

THEOREM 3.1. Assume that (3.12)—(3.17) hold. Then, there exists a unique so-
lution {u, o'} of problem P. Moreover, the solution satisfies :

ueCl,T;V), o e€C@,T; 36).

We conclude that {u, o'} is the unique weak solution to problem (3.4)—3.9).

Next we investigate the behavior of the weak solutions to problem (3.4)—(3.9),
with respect to perturbations of the normal compliance functions p, and p.. To this
end, we suppose that (3.12)—(3.17) hold. For every a 2 0, let pf be a perturbation
of p, which satisfies (3.14) with the Lipschitz constant L}(r = v, 7). Let us
introduce the functionals j<, j* and j* which are obtained from j, j, and j, by
replacing p, and p, with p® and p? respectively. We consider now the following
problem:

Problem P®: Fora > 0, find a displacement field u* : [0, T] — V and a stress
field o®: [0, T] — #; such that

o%(t) = A(, @ (®))) + G(, e(u® (), (3.25)
(% (t), e(w) — @™ (@)))a + J* W (), w) — j*W* (), u* ()
>2(F@),w—u*@®)y YwelV, (3.26)
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forall t € [0, T], and
u®(0) = uy. (3.27)

We deduce from Theorem 3.1 that foreacha > 0 problem P has a unique solution
{u®, o*} satisfying

u® € CY0, T; V), c® € C(0, T; 7¢,).

Let us suppose now that the normal compliance functions satisfy the following
assumptions: there exist 8, € R M, > 0, o:R, — [0,M,] r = v,7) and
M > 0 such that '

[ (@) Ip7C.w) — pr(w)) < pr(@)(Jul + B;) Yu €R,ae. onl;,
{ () lim g, () =0, (3.28)

[ () L7 <M VYa>0.
Under these assumptions, we have the following stability result:

THEOREM 3.2. The solutions {u®, ®} of Problems P® converge uniformly to the
solution {u, o} of Problem P:

u® - u in C(0, T, V), 6® — o in C(0, T, 3¢)
when a — 0. (3.29)

The proof will be given in Section 5. In addition to the mathematical inter-
est in this result, it is of importance in applications, since it indicates that small
inaccuracies in the condition lead to small inaccuracies in the solutions.

The problem with sliding frictional wear is described and analysed in Section 6
where we establish, in Theorem 6.1, an existence and uniqueness result.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on fixed point arguments, similar to those used
in (3], [25] or [26], but in a different setting and different choice of the operators. It
will be carried out in several steps. We assume that (3.12)—~(3.17) hold. To simplify
the notation, we shall not indicate explicitly the dependence on ¢.

In the first step we assume that the contact displacements are given and so is
the elastic part of the stress field. Let n € C(0, T; #) and 8€COT;V), and
consider the following variational problem:
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Problem P,,: Find vy,: [0, T] — #, such that
Gng(t) = A(-, S(vng(t))) + n(1), 4.1)

(O’,,g(t), e(w) — S(U,,g(t))),;{ + j(g@®), w) — j(g), vr)g(t))

, ? (F(t)v w - vng(t))Vv (4'2)

forall w € V and ¢t € [0, T]. Clearly, we solve the problem for the velocity and
stress fields. We note that the use of given g can be found in [11] and [20]. We have

the following result:

PROPOSITION 4.1. There exists a unique solution to problem Py, such that
Ve €CO, T; V), one € C(0, T; 7).

Proof. It follows from classical results for elliptic variational inequalities, see,
e.g., [8, 10, 21] that there exists a unique pair {v,, Oy}, Vye(t) € V and 0, () €
¢, which is a solution of (4.1) and (4.2). Choosing w = v, (f) ¢ in (4.2), where
¢ € D(Q)V, we find

(aﬂg(t), 8((0))3( = (F(t)’ ‘p)V-
Using (3.18) we deduce
Div g,,(t) + fo(1) =0 in £, “4.3)

and then assumption (3.15) and equation (4.3) imply that a,,(¢) € #;.

Now, let 4,2, € [0, T] and for the sake of simplicity we denote v, (f;) =
Vi, Og(t;) = 03, 8(t:) = gi, n(t;) = mi, F(t;) = F;, fori = 1,2. Using (4.1) and
(4.2), and algebraic manipulations we find

(A, (1)) — A(, £(v2)), (V1) — £(v2)) s

S (Fi1 — F2,v1 —v)y — (m — n2, (v1) — €(v2)) 3

+j (g1, v2) — j(g1,v1) + j(g2, v1) — j(g2, v2). 44
Moreover, it follows form (3.10) and (3.12) that
(AC, (1) — A, £(2)), e(V1) — £(W)) 2 > Cluy — v} 4.5)

Now,

j(gla v2) h j(gl» vl) + ]'(82, vl) - j(321 U2)

= A (pv(-, 81v — 8a) — Pv (-, 82v — 84))(V2y — V1) da
3

+ (p< (-, 81v — 8a) — P (-, 820 — 8a))(|V2e| — [v1¢]) da,

Iy
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and by using (3.14), we see that
Jj(g1,v2) — j(g1,v1) + j(g2, v1) — j(ga, v2)

< Clg1 — &lviv — valy. (4.6)
Using now (4.4)(4.6) we find
i — w2y < C(|Fi — Falv +Im — mlz + 181 — 821v). 4.7)

Moreover, we obtain from (3.12) and (4.1)
lo1 — 2|5 < C(lvr — valv + M1 — 72l 2). 4.8)

We obtain from (3.19), (4.7) and (4.8) that v,, € C(0, T'; V) and o,,, € C(0, T'; ¥¢),
and then it follows from (3.15) and (4.3) that 0,, € C(0, T'; #;). This concludes

the proof.
Let us consider now the operator A,: C(0, T; V) — C(0, T'; V) defined by

Ag=gy 8§€CO,T;V), 4.9
where
t
&n(t) = up + f Une(s)ds te€[0,T] 4.10)
o .
We have

PROPOSITION 4.2. The operator Ay has a unique fixed point g; € C(0,T; V).

Proof. Let g1,8, € C(0,7T; V) and let n € C(0, T; ). For the sake of sim-
plicity we denote by {v;, 0;}, i = 1, 2, the solutions of problems P, i.e., v; = Ung;
and 0; = o,,,. Using (4.9) and (4.10) we have

A1) — Apg2Dly < fo () —w@)lyds Ve[0Tl  @11)

Using estimates similar to those in the proof of Proposition 4.1 (see (4.4)14.7))
we see that

[vi(s) — v2(8)lv < Clg1(s) — g208)|v.

Taking into account (4.11) we obtain

|An81(1) — Aqga(®lv < C/O lg1(s) — g2(s)lvds vt [0, T). (4.12)
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Reiterating this inequality n times we are led to

n

n _A® < AT
|A781() — Ajg2®)lcorivy < pr l&1 — &2lco.1;v)

which implies that for a sufficiently large n the operator A7 is a contraction on
C(0, T'; V). Thus, there exists a unique g,",‘ € C(0, T; V) such that A:‘,g;'; = g,";, and
then, g; is the unique fixed point of A, too.

In the sequel, for n € C(0, T'; #), we denote by g; the fixed point given in
Proposition 4.2. Let v, € C(0, T'; V) and o, € (0, T; #)) be the functions given

by
Uy = Ungss Oy = Opgs- (4.13)

Moreover, using (4.10) and (4.13), we let u,,: [0, T] — V be the function

t
u,(t) = gp(1)* = uo + [.. v, (5) ds, (4.14)

fort € [0, T], and we define the operator A: C(0, T; #) — C(0, T; 7€) by
An(@t) =G(,e(u,())) neC@OT;H#), tel0,T] (4.15)
We have
PROPOSITION 4.3. The operator A has a unique fixed point n* € C(0, T; ¥€).
Proof. Letny,m € C(0, T; #) and let v; = vy, 07 = Oy, Ui = Uy, i = g,*,‘i,

fori = 1,2. Using (4.10), (4.13) and (4.14) we have g; = u; and from (4.1) and
(4.2) we obtain

o;(t) = A(, (v (1)) + n:(2), 4.16)
(0i (1), e(w) — eV (1)) e + j (ui(t), w) — j(ui(t), vi (1))
> (F(t),w — v;()y VYweV, 4.17)

where i = 1,2 and ¢t € [0, T]. It follows from (4.14), (4.16), (4.17) and the
estimates in the proof of Proposition 4.1 (see (4.4)—(4.7)) that

(0 — Oy < /0 1(5) — 12(8)ly ds

< C/O |n1(S)—nz(S)|JedS+Cf0 lur(s) — ua(s)lv ds,
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for ¢ € [0, T). Using now a Gronwall-type inequality we obtain

2(6) — w2y < C fo M) = m@)lseds Ve € [0, T,

and taking into account (3.13) and (4.14) we are led to

t
1Am® = 2Ol < € [ 1) = 16, @.18)
0
Vvt € [0, T}, which together with Banach’s fixed point theorem implies the Propo-
sition.
We have now all the ingredients needed to prove the theorem.

Proof of Theorem 3.1.
Existence. Let n* € C(0, T; ¥) be the fixed point of A and let v,+, and Uy« be

the functions given by (4.13) and (4.14) for n = n*. We show that {u,., op)is a
solution of probelm P. Indeed, choosing n = n*, g = gy in (4.1) and (4.2) and
using (4.13) we obtain

Ope = A, £(Vy0)) + 17, (4.19)
(ope, E(W) — e(vye))ae + j (8, w) — j(8he, Vpe)
2(F,w—vp)y Ywey, (4.20)
forall ¢ € [0, T). Now, equality (3.22) follows from (4.14), (4.15) and (4.19), since
Upe = llye, n* = An* = G(-, e(uy)),
while the inequality (3.23) follows from (4.10), (4.14) and (4.19), since

* _
gnt — u"‘ .

The equality (3.24) results from (4.14), and the regularity u,» € C'(0, T; V) and
o € C(0, T; J) is a consequence of Proposition 4.1, (3.17) and (4.14).

Uniqueness. To prove the uniqueness of the solution let {u,s, 0,+} be the solution
of (3.22)-(3.24) obtained above and let {k, o} be another solution such that ¥ &
CY(0,T;V)ando € C(0, T; #6;). We denote by n € C(0, T; #) the function

n(t) = G(., e(u(®))), 4.21)

fort € [0, T], and let
vV=u. (4.22)
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Using (3.22) and (3.23) we obtain that {v, o'} is a solution of the variational prob-
lem Py, and since this problem has a unique solution vy, € C(0,T; V), 0y €
C(0, T; #,), we conclude that .

V= VU, O =0y (4.23)

Moreover, from (3.24), (4.22) and (4.23) we obtain

u(t) = uo+/ U (5) ds,
0

t € [0,T], ie., u is a fixed point of A,, given by (4.9). It follows from Proposi-
tion 4.2 that u = g, and by (4.23) we have

U = Upgs, O = Opgs. 4.249)
Then, (4.13) and (4.24) imply

V = Uy, o = 0oy. | (4.25)
Moreover, it follows from (3.24), (4.14), (4.22) aﬁd (4.25) that

U =u,. ‘ (4.26)

Using now (4.15), (4.21) and (4.26) we obtain that An = n and by the uniqueness
of the fixed point of A we have

n=n". : 4.27)

The uniqueness of the solution is now a consequence of (4.25)-(4.27). The proof
of Theorem 3.1 is complete.

5. Continuous Dependence on Contact Conditions

In this section we prove Theorem 3.2. Let o > 0. To simplify the notations, we
shall not indicate explicitly the dependence on ¢. Everywhere below C will repre-
sent a positive constant which depends on the data but is independent of . Using
(3.22), (3.23), (3.25) and (3.26), we obtain

(AC, £()) — A, @), e(i) — (™))
—(G(, ) — G(-, e(®)), e() — e(@™)) 5
+j(u, 0®) — j(u, u) + j*(@®, 0) — j*(*, u%). G.D
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Moreover, it follows from (3 10) 3. 12) and (3. 13) that

(AC, 8@) — AC, 86), £(@) — %) s > Clie — P, 52
 —(G(-£W) = G(, 6@), £(&) — £(i)) 3¢ < Clu — u®ly it — |y

We note that
Qi) — i, ) + O, ) — W, 4

r (pv(" u, — ga) - Pf.'(‘, uf,' - ga))(lz: - 12‘,) da

r(17z( Uy = 8a)—P( uy — 8a))(lu3| — lu.1) da,

and, using (3.14) we find
J(u, u®) — j(u, ) + j*@®, @) — j* W, u%)
S Clpo(-yuy — 8a) — Py (-, uy — ga)lL2rylis — 4%y
+Clp<(:, 4y — 8a) — P (. Uy — 8a)lL2(rylid — i |y. (5.3)
Now (5.1)~(5.3) imply '
e —aly < Clu—u®ly +Clpu(-, uy — ga) — P§ (-, U5 — 8a)lr2(ry)
+CIpe(, 4y — 8a) = PAC, 43 = ga)liacry. (54)
Let now r = v or t. Then ' |
|Pr (- uy — 8a) — P74 — ga)lLz(ry)
< 1pr Gty = ga) — P7 (5 4y — 8a)li2(ry)
Hpr (- uy — ga) — Py C, uy — 8a)lL2rs)s
and, taking into account (3.14) and_,(3.28), we obtain
|Pr (-, uy — a) — 7 (-, 4y — 8a)li2(ry) < Clu — u"‘lv + Cor(a). (5.5)
Combining now (5.4) and (5.5), we deduce |
lie — ily < Clu —u®ly + C(py(@) + ¢ (). (5.6)

Integrating over (0, ¢) and using (3.24) and (3.27) we find

t t
Iu—u"lvsf Ili—li“lvdssCfo lu — u®ly ds + C(pv (@) + ¢, (@),
A .
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and, using a Gronwall-type inequality, we get

lu — u®ly < Clpy(@) + ¢ (). (5.7)
Moreover, we obtain from (3.12), 3.13), (3.22) and (3.25) that

lo — 0% 3 < C(lut — u%|v + |u —u®|y),
and, since by (4.3) Divo = Divo®* = — fy, we obtain that

o = %3, < C(lis —a®lv +u —uly). 6
Usiﬁg now (5.6)—(5.8) we find |

lo —0%3 < Clpv(@) — ¢ (@), - (5:9)
and finally, it follows from (5.6), (5.7) and (5.9) that

lu —u®|cro,1;v) + |0 — 0%co.ra) < Clpv(@) + ¢ ().

Theorem 3.2 is now a consequence of this inequality and assumption (3.28).

6. The Problem with Wear

In this section we study the problem of wear of the contact surface due to friction.
‘We consider the process as described in Section 3 but, now, the foundation is
assumed to move steadily and only sliding contact takes place. :

Let Q be the reference configuration of the body. We use the notations as given
above; in particular, I'; represents the contact surface, # denotes the displacements
and o the stress. In addition, we introduce the wear function w: '3 x (0, T) - R,
which represents the accumulated wear of the surface, the evolution of which is
governed by a modified version of Archard’s law (see, e.g., [27], {28] or [5] and
references therein) which we now describe. The rate form of Archard’s law is

W = —Kkyo, it — v,
where k,, is the wear coefficient (very small in practice), v* is the velocity of the
foundation and |i, — v*| is the relative velocity between the contact surface and
the foundation. Thus, the rate of the wear depends linearly on the contact stress
and the slip. We also suppose that on the time scale of the quasistatic process, the
surface rearranges itself in such a way that the velocity #, is negligible and so, the
slip is just v*, which for the sake of simplicity is assumed to be a positive constant.
Thus, we employ the following version of the wear law

'Lb = —ka*O'v,
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where k,, = const. > 0 and v* = const. > 0. The case when k,, is a sufficiently
smooth function can be considered, but for the sake of simplicity we keep it a
constant. Now, o, < 0 and therefore w > 0, which is needed if we are to interpret
w as the wear of the surface. We replace the contact conditions (3.8) with

-0y, = py(-, Uy — W — &),
Iafl = pt(" u, —w — ga)’ O = _lv*) A > 0’ (6.1)
w = —k,v*o,, :

on I'; x (0, T). Note that the wear appears in the normal compliance condition. In
this way we take into account the material removal that takes place on the surface,
but it makes the problem coupled, i.e., more complicated. We remark that from the
mathematical point of view we could use Coulomb’s condition (3.3) in (6.1) and
obtain the same results, but, then the physical interpretation of the problem would

not make much sense. ‘
The classical formulation of the problem of sliding frictional contact with wear

is given by:

Find a displacement field u: 2 x [0, T] — RV, a stress field 0: 2 x [0, T] — Sy

and a wear function w: I'3 X [0, T'] — R such that (3.4)—3.7), (6.1) and (3.9) hold.
Let F be the function defined by (3.18) and let h: V x V x L2(I'3) — R, h,: V x

V x L}*(I’3) > Rand h;: V x V x L}(I"3) — R be the functionals

By, £, w) = fr PuCy y — W — gty da,

(6.2)

he(u,€, w)= fr P, uy — w — g,)|&: | da,

and
h(u,&,w)="h,(u, &, w) +h,(u, &, w).

It is straightforward to show that if {«, o, w} are sufficiently regular functions
satisfying (3.5)—(3.7) and (6.1) then

(0(t), e(§) — £(u(1)))3e + h(u(), &, w(t)) — h(u(), u(r), w(®))

forall e € V and t € [0, T]. Thus, by (3.4), (3.9) and (6.3) the variational
formulation of the problem with wear is:

Problem PW: Find a displacement field u: {0, T] — V, a stress field o -
[0, T] — #; and a wear function w: [0, T]) — L2(I"3) such that

o (1) = AC, @) + G(, e(u(®))), - (6.4)
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w(t) = —kyv'o,(t), (6.5)
(o). &) — e@))se + h(u@), § w(t)) — h(u@), u(?), w))

2(F(@),& —u(@))v, (6.6)
u(0) = uo, w(0) =0, 6.7)

forallé € Vandr € [0, T]. A triplet {u, o, w} which satisfies (6.4)—(6.7) is called
a weak solution of the problem of sliding frictional contact with wear.
The main result in this section is:

THEOREM 6.1. Assume that (3.12)—(3.17) hold. Then, there exists a unique so-
lution {u, o, w} of problem PW. Moreover, the solution satisfies

ueCl,T:V), o€ CO,T; ##), w e CY0, T; L3(y)).

The proof of Theorem 6.1 will be carried out in several steps. In the first step
we assume that the wear is known. Thus, let « € C(0, T; L3(I'3)), and consider
the following variational problem:

Problem PW,:Find u,:[0, T] — V and o,: [0, T] — #, such that
oc(t) = A, e (1)) + G(-, e(ue (1)), (6.8)

(0 (1), (§) — e (D)) e + h(uc(2), §, k(1)) — h(ui(t), i (1), k(1))

2 (F@), & —uc(®)v, (6.9)
U (0) = uo, (6.10)

forallé e Vandt € [0, T].
As a consequence of Theorem 3.1, we have

PROPOSITION 6.2. There exists a unique solution {u,, o,} of problem PW, such
that

u, € CH0, T; V), o, € C(0, T; 76,).

Let us consider now the operator £: C(0, T; L*(I'3)) - C(0, T; L*(T3)) de-
fined by

Lx(t) = —ku,v*f (0)v(s)ds Vit el0,T]. 6.11)
0
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The second step in the proof of Theorem 6.1 is given in the following result:

PROPOSITION 6.3. The operator £ has a unique fixed point k* € C(0,T; L?

(I'3)).
Proof. Let ky, k3 € C(0, T; L%(I'3)). For simplicity we denote by {u;, 0;}, i =

1, 2, the solutions of problems PW,,, ie., v; = u,, and 0 = o,;. Moreover, we
shall not indicate explicitly the dependence on ¢ and the constant C may depend
on k,, and v*. Using (6.11) we have

t
IeCIC] - £K2|L2(r3) < C/o‘ IU] - 0'2';(1 ds Vte [O, T]. (6.12)

Using estimates similar to those in the proof of Proposition 4.1 (see (4.4)-(4.7))
we are led to

ity —ualy < C(luy — uzly + I — K2l 12(ry))- (6.13)

Integrating over (0, ¢) and using (6.10) we find

t
luy —uzly < / |y — uzly ds
0

< ¢ [ m—umyas+c [ 10— maley b
and, using a Gronwell-type inequality, we deduce that
luy — uzly < Cfot lky — K2l L2(py) ds, 6.19)
for all ¢ € [0, T]. It follows now from (6.13) and (6.14) that
l4) —uz2ly < Cley — k2lp2(ry) + C./o-' lkcr — K2| L2y ds. (6.15)

On the other hand, (6.8) and (6.9) imply, taking into account (3.12) and (3.13), that
lo1 — 023, < C(liy — 2|y + luy — ualy),

and, using (6.14) and (6.15), we are led to
1
lo1 — 02]3, < Clir — k2l2ry) + Cf lkr — K2l p2(r,) ds. (6.16)
()}

Combining now (6.12) with (6.16), we obtain

| Ly — LK 12(ry)

t t 5
< Cf IIC] - IC2|L2(|"3) ds + C-/o\ / |IC1 - K2|L2(l‘3) dr ds. (617)
0 0
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Finally, Proposition 6.3 is a consequence of (6.17) and the Banach fixed point

theorem.
Proof of Theorem 6.1. Let k* be the fixed point of L. Usmg (6.8)—(6.11), it is

easy to verify that {u,+, o+, £*} is the unique solution of Problem PW satisfying
the regularity given by Theorem 6.1.
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A Quasistatic Contact Problem with
Directional Friction and Damped Response

M. RocHDI, M. SHILLOR et M. SOFONEA

Descriptif I

On introduit dans ce travail les notions de conditions aux limites de contact lubrifié et
de frottements directionnels et on étudie le probléme quasistatique de contact suivant de
telles conditions entre un matériau viscoélastique non linéaire et une fondation rigide.

On considére un milieu continu viscoélastique occupant un domaine 2 de R3 et dont
la frontiére I', supposée suffisamment réguliere, est divisée en trois parties disjointes I';,
I'; et I's. On suppose que, pendant l'intervalle de temps [0, 7], la partie I'; est encastrée
dans une structure fixe, que des forces surfaciques f, s’appliquent sur I'; et que des forces
volumiques fy agissent dans §2. On suppose aussi que la surface de contact potentielle
I's de la fondation est couverte d’un lubrifiant et que les frottements se font suivant
deux directions orthogonales du plan tangent & I'3. Le probleme quasistatique de contact
proposé peut se formuler de la fagon suivante : :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R3 et le champ des
contraintes o :  x [0,7] — R3*3 tels que

o=A(e(uw))+G(e(u)) dans Qx(0,7),
Divo+ fo=0 dans Qx(0,7),

uw=0 gur - By X 40 F).

on = f, gur ' Pooe (0. T}

—0n = B(uy)+ +po  sur T3 x(0,T),
|U'1;‘| = /,L,;IO'nl, (Z = 1,2) sur F3 X (O,T),
ol ilond = (ul) =0,
loi] = milon] = ot = —X(ul), X 20,

u(0) =wuy dans Q.

On note par R3*3 I'espace des tenseurs symétriques du second ordre sur R? et par
g(u) le tenseur des petites déformations linéarisé. Le “prime” au dessus d’une quantité



représente sa dérivée temporelle, Div o désigne la divergence de la fonction tensorielle o,
n est la normale unitaire sortante a {2 et on est le vecteur des contraintes de Cauchy.
u, et o, représentent respectivement le déplacement normal et les contraintes normales
alors que o, = o}y + 027 et u. = (ul)'m + (u2)'r, sont respectivement les contraintes
et la vitesse tangentielles ou1 (77, 72) est une base orthonormale du plan tangent a I's. Les
fonctions 3 et py désignent respectivement le coefficient de lubrification et la pression du
lubrifiant alors que p; et pg sont les coefficients de frottement suivant les directions 7 et

T2.

Pour I’étude du probleme P, on commence par donner une interprétation mécanique
des conditions aux limites de contact lubrifié et de frottements directionnels. Une fois les
hypotheses nécessaires faites, on donne une formulation variationnelle du probléme P. On
établit ensuite I’existence et I'unicité de la solution quand les coefficients de lubrification
et de frottement 3, u; et ps sont suffisamment petits. On s’intéresse aussi & ’étude du
probléme de contact lubrifié avec glissement entre un corps viscoélastique et une fondation
rigide en mouvement. L’usure du matériau due aux frottements est prise en compte et
elle est modélisée par une variante de la loi d’Archard. Ce probléme est formulé de la
maniere suivante :

Probléeme PW : Trouver le champ des déplacements u : 2 x [0,7] — R3, le champ des
contraintes o :  x [0,7] — R3*? et la fonction usure w : I's x [0,T] — R, tels que

o= A(e(v)) + G(e(uw)) dans Qx(0,7),

Divo+ fo=0 dans x(0,7),

u=0 sur 1 (0, ),

on = fy sur Ty x(0,7),

—0n = Pul, sur I3 x (0,7),

ok = wilon|, (i=1,2) sur . D3 x(0,T),

o = =N(ud), >0 sur I3 x(0,7),

W= —Uy, W =—kyl|v*|o, Ut By X (L T)

80 =g = ‘dans -4,

Ici, ky > 0 est le coefficient d’usure supposé constant et v* est la vitesse de la fondation
rigide. A la suite de l'interprétation mécanique des conditions aux limites de contact

lubrifié et de frottements avec usure, on établit une formulation variationnelle du probléme
PW suivie d’un résultat d’existence et d’unicité.
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Abstract

The quasistatic contact of a viscoelastic body with a rigid foundation is studied. The material
behavior is modeled by a general nonlinear viscoelastic constitutive law.- The contact is with
directional friction and the foundation’s resistance is proportional to the normal velocity. The
existence of a unique weak solution to the problem is proved. The sliding frictional contact
problem with wear is introduced, too, and the existence of its unique weak solution established.
The proofs are based on fixed point theorems and elliptic variational inequalities, and the
results hold when the friction and damping coefficients are small.
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1. Introduction

This paper deals with a model for the quasistatic frictional contact of a viscoelastic body
with a rigid foundation. It is set as a family of variational inequalities parametrized with
time. The contact is modeled with damped response and the friction with a directional
version of Coulomb’s law. Using fixed point arguments and the theory of elliptic variational
inequalities we establish the existence of the unique solution to the problem. We also model
the process when there is sliding contact with wear and prove.the existence of a unique weak
solution in the same way.

The quasistatic bilateral contact problem for viscoelastic materials with a nonlocal ver-
gion of Coulomb’s law has been studies recently in [13]. The sliding problem with wear was
considered there, too. The results have been established using fixed point theorems, but for
different operators, since the contact conditions, and therefore the settings, there and here

409
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are different. Such problems are common in industrial settings that involve slowly rotating
parts. :

There has been considerable interest in the study of quasistatic contact problems recently,
see, e.g., [8, 3, 5, 1, 2, 10, 11, 12, 13] and references therein. The quasistatic approximation
is obtained when the applied forces in the system vary slowly with time and then the inertia]
terms in the equations of motion can be assumed negligibly small.

In this paper we invesigate the process of quasistatic frictional contact between a de-
formable body and a rigid foundation, thus contributing to the theory of quasistatic contact.
The body is assumed to be viscoelastic with a nonlinear constitutive law. The contact is
modeled with normal damped response, which represents the behavior of a layer of lubricant
on the contact surface which supports load via pressure and offers resistance proportionally
to surface velocity. In addition, the contact surface may have groves or is corrugated which
leads to directional friction, which we model with a version of Coulomb’s law with two
different friction coefficients in the two principal directions. Thus, the model allows for the
possibility of sliding taking place in one direction while the surfaces stick in the other one.
Directional friction, in addition, is important in every system where the relative motion of
the parts or components is restricted directionally. Then, because of the wear, the surfaces
develop directional microstructure which can be described by directional friction.

The model is set as a family of time parametrized elliptic variational inequalities. In a
number of steps we establish the existence of a fixed point to an appropriately constructed
abstract operator. This holds only when the product of the L norms of the friction
coefficients and the damping coefficient function is small. It is interesting to note that in
[11], where the normal compliance contact condition was employed, we did not need such a
restriction although a similar method was used.

The rest of the paper is organized as follows. Some preliminary material and notation
are given in Section 2. The physical setting and the classical model for the process are
presented in Section 3. The assumptions on the problem data are given and so is the weak
formulation. Then, our main result, the existence of a unique weak solution, is stated in
Theorem 3.1. The proof is given in Section 4. It is based on the theory of elliptic variational
inequalities and the Banach fixed point theorem, which requiers the smallness of the product
of the coefficients. In Section 5 we model and analyze the process when the body is sliding
on the foundation and the wear of the contact surface is taken into account. The structure
of this problem is similar to the one in Section 3, and a similar existence and uniqueness

-result is obtained for it.
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2. Notation and preliminaries

In this short section we present the notation we will use and some preliminary material, for
further details we refer the reader to [6] or [7). We denote by Sy the space of second order
symmetric tensors on RN (N = 2,3), while “-” and |- | will represent the inner product and
the Euclidean norm on Sy and RV, respectively. Let 2 C R be a bounded domain with a
Lipschitz boundary I' and let n denote the unit outer normal on I'.

In the sequel we will use the following real Hilbert spaces H = L}(Q)V, H, = H}(Q)V,
H={= ()| & = & € LP@)}, (i,J = 1,..N) and H; = {¢ € H | Div¢ € H},
endowed with their canonical inner products and the associated norms denoted by (-,-)x
and |- |x, respectively, where X represents any one of these spaces.

Let v, and v, denote the normal and the tangential components of a vector function v on
T given by v, = v-n, v, = v — v.0 = v!7; + v27y, where {7y, 72} represents an orthonormal
basis on the tangent plane. We also denote by o, and o, the normal and tangential traces
of o (see, e.g., [7]) given by

op=(om)'n, 0, =0n—0,n=0.7+072

We also introduce the deformation operator ¢ : H; — H and the divergence operator
Div : H;, — H defined by

1
() = (e5(v),  &5(v) = 5w + i),
Diveo = (aij,j)-
Finally, let (X, |- |x) be a real normed space. We denote by C(0,T; X) the space of contin-

uous functions from [0, 7] to X and by C(0,T; X) the space of continuously differentiable
functions from [0, 7] to X endowed with their canonical norms.

3. Model and statement of results

We model the quasistatic contact process of a viscoelastic body with a rigid foundation as
a result of forces and surface tractions which act on it. We set it as a variational inequality,
state the assumptions on the data and the existence and uniqueness theorem.

The physical setting is as follows. A viscoelastic body occupies the domain 2 with
surface I' = 99, which is Lipschitz and is divided into three disjoint parts I';, I'; and T,
such that measI’; > 0. The body is clamped on I'; and so the displacement field vanishes
there; surface tractions f, act on I'y; it is in frictional contact with a rigid foundation on
I'3. Moreover, volume forces of density fy act in Q2.
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Let u denote the displacements vector, crthestressﬁelda.n_de=e(u) the small strain
tensor. The viscoelastic constitutive law that we consider is

o = A() + G(e), (3.1)

in which \A and G are given constitutive nonlinear functions, which will be described below.
The prime denotes time derivative.

The potential contact surface I'y is assumed to be covered with a lubricant that contains
solid particles, such as one of the new smart lubricants, or with worn metallic particles. The
resistance of the foundation, actually of the oil layer, is taken proportional to the normal
velocity, i.e.,

—0Op= ﬁ(u:l)+ -+ po, (32)

where § is the damping resistance function, assumed positive, (1), = max{0, -} is the
positive part and py is the oil pressure, which is given and nonnegative. The oil layer
presents resistance, or damping, only when the surface moves towards the foundation, but
does nothing when it receeds. We remark that all the results below hold unchanged when
t, is used in (3.2). But then we need to assume that the lubricant layer is thick and its
supply is slow, since in such case partial voids would develop. .

Assuming that the contacting surfaces have conforming grooves with well defined direc-
tions, we use a directional version of Coulomb’s law of friction, where the friction coefficients
are different in two directions. Let 7;, 7; be two orthonormal tangential vectors on I's, then

la“ < I‘il”n' (i =1, 2)1

o] < pilon] = (u,) =0, (3.3)

lo7] = pilon| = o} = ~Xi(', ), A >0.

Here, 0, = olm + 0?73 represents the tangential traction on the contact boundary, us
are the friction coefficients and (u',)’ are the tangential velocities in the directions of n
and ;. Thus, in each direction 7, or 7;, the tangential shear cannot exceed the maximal
frictional resistance, u1|0|. or pg|o,|, respectively. Then, when the inequality holds the
surface adheres to the foundation and is in the so-called stick state. When the equality
holds there is relative sliding, the so-called slip state. The novelty in this directional friction
law is that the surface may be sliding in one direction and in a stick state in the other.
Therefore, at each time instant the contact surface [y is divided into three zones: the stick
zone, where there is no sliding in either direction; the slip zone where there is slip in both
directions; the mixed zone where the surface slides in one direction but not in the other.

Since we are interested in slow evolution we neglect the inertial terms in the equations of
motion. The classical formulation of the gquasistatic contact problem with directional friction
and normal damped response is:
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Find a displacement field u : Q x [0, T} — R" and a stress field ¢ : Q x [0, T] —» Sy such
that

o =A(e(w)) +Ge(w)) in Qx(0,7T), (3.4)
Divo+fo=0 in 0x(0,T), (3.5)

§= 0 on I x(0,7), (3.6)

on=f; on I2x(0,T), (3.7)

—0n =P(u)+ +p0 on T3 x(0,7T), (38)

|oi| S pilon], (i=1,2) on Tyx(0,7T),

0| < palon| => (w'r) =0, (3.9)
o Sl 2 52 ey o
u0)=up in Q. (3.10)

To obtain a variational formulation for problem (3.4)—(3.10) we need additional notation.
Let V denote the closed subspace of H, given by '

V={v'€ H1|v==.0 on 1‘1}.
Now, Korn'’s inequality holds, since measT; > 0, thus
le(w)l > Cluly, VueV, (3.11)

see, e.g., [6]; here and below C denotes a positive generic constant which may depend on
Q, T and A, but does not depend on G, T nor on the input data fo, fa, Po, B, o, K1 OT Hg,
and whose value may vary from place to place.

We consider the inner product (-, -)y on V, given by (u, v)v = (e(u), e(v))», and, it follows
from (3.11) that |- |, and |- |v are equivalent norms on V. Therefore (V, |- |v) is a Hilbert
space. _

To study the contact problem (3.4)—(3.10) we assume that the viscosity operator

4 A:QXSN—DSN,
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satisfies

()).  there exists L > 0 such that
lA(' ,El) - A(',Ez)l < Llel - 52' VE], €2 € SN) a.e. in n:

(i6). there exists m > 0 such that
(A(-,e1)) ~ A(-,e3)) - (e1 - €32) > mle, — €2|2 Vey,e2 € Sy, ae. in Q,

(#i). z+— A(z,€) is Lebesgue measurable on 2 Ve € Sy, (312
(iv). z+— A(z,0) € H.
The elasticity operator G:Qx Sy — Sy satisfies
(i)-  there exists L > 0 such that
IG(-,&1) = G(-,€2)| < Lley — 2] Ve en€ Sn, a.e. inQ,
(). 2+ Gz,e) is Lebesgue measurable on Ve € Sy, (3.13)
(). z+— G(z,0) € M.
The forces and the tractions satisfy
| foe CO.T;H), f,€C(0,T;L*T,)"). (3.14)
The directional coefficients of friction satisfy (i=1,2)
wi € L*(T3), 4 =>0 ae only; (3.15)
the damping function § and the oil pressure py satisfy
B € L™(T3), B(-)=26>0, ae. onT;, (3.16)
Do € L™(T), Po =0, ae. on Ty, (3.17)
and, finally,
ueV. (3.18)

We denote by f(t) the element of V' given by

(f(t)v)y = (fo(t), v)ur + (f2(t)|W)L3(l'z)Nr (3.19)

foralveVandte [0, T), where yv denotes the trace of v on I'. We note that conditions
(3.14) and (3.17) imply

f€CE,T;V). (3.20)
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Let j: V x V — R be the functional
i@ u)= [ (Blm)e +0) (wn+ bl + palul)da. - (321)

It is straightforward to show that if {u, o'} are sufficiently regular functions saﬂisfying (3.5)-

(3.9) then .
(o(t), e(w) — (v ()2 + 5(v'(t), w) — 5 (w'(2), w'(t))

2 (f(£), w—' (), (3.22)

for all w € V and ¢ € [0, T]. Thus, by (3.4), (3.10) and (3.22) we obtain the following weak
formulation for Problem (3.4)—(3.10):

Problem P: Find a pair {u, ¢} : [0,T] — V x H, such that
a(t) = A(e(w'(2))) +Gle(u(t)), (3.23)
(o(t), e(w) — (' ()2 +3('(£), w) — 5(v (2), w'(2))

> (f(t), w—v'())v, (3.24)

u(O) = ug, (3.25)

foralweV and t €[0,T].
The main result of this paper, which we establish in the next section, is

Theorem 3.1. Assume that (3.12)—(3.18) hold. There erists ag > 0, which depends only
on Q, I and A, such that if

1Blreo(rs) (|#1|Lw(ra) + |pa| Lo (rs) + 1) < ay, (3.26)
then, there erists a unigue solution {u,c} to Problem P. Moreover, the solution satisfies
u € CY(0,T;V), g€ C(0,T;H,). (3.27)

We conclude that, when 8(u; + u2 + 1) is “sufficiently small,” Problem (3.4)—(3.10) has
‘a unique weak solution {u,c}.
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4. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on fixed point arguments, similar to those used in
1, 10, 11, 12] but for a different choice of the operators. It will be carried out in several
steps. We assume that (3.12)-(3.18) hold. To simplify the notation, we will not indicate

explicitly the dependence on t.

In the first step we assume that g, the contacting surface velocity, is given and so is the
elastic part of the stress field . Let g € C(0,T;V) and 5.€ C(0,T; H). We consider the
following variational problem:

Problem Fog: Find a pair {vyg, oy}, tyg : [0,T] — V and gy : [0, 7] — H,, such that

Ong(t) = A(e(vny(1))) + n(2), (41)
(ong(2), €(w) — E(vng(2)))3e + i(9(t), w) — 5(9(2), vy (£))

2 (f(£), w—vog(t))v, (4.2)
for all w € V and t € [0, T]. We have the following result:
Proposition 4.1. There ezists a unique solution to Problem P,y such that
vy € C(0,T; V), a,,; € C(0,T; H,).

Proof. It follows from classical results for elliptic variational inequaliﬁ that there exists
a unique pair {vyg,0pg}, tng(t) € V and o,y(t) € H, which is a solution to (4.1)(4.2).
Choosing w = vpy(t) & ¢, where ¢ € D(Q)", in (4.2) yields

(ong(t), ()2 = (£(2), )v.
Using (3.19) we deduce
Divoy(t)+ fo(t)=0 in Q, (4.3)

and then assumption (3.14) and equation (4.3) imply that One(t) € H;.
Now, let t,,2; € [0, T] and for simplicity we denote uny(t;) = u;, oy(t:) = 03, g(t) = g;,
n(t) =, £(t) = fi, for i = 1,2. Using (4.1) and (4.2) we obtain

(A(e(n1)) — Ale(va), e(vi)—e(va)In < (fimfrr vi—ta)y — (M=, &(vr)—€(va))ay

+ 7(91,v2) — 3(91,%1) + 562, v1) — 5(g2, va). (4.4)
Moreover, it follows from (3.11) and (3.12) that
(A(e(n1)) —A(e(va)), e(vr) — (v > Clor — w3 (4.5)
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Now

J(g1,v2) = j(g1,v1) + §(g2,v1) = 5(92,v2)
1= [ Bl(g1n)+ — (o2)4] (o ~ i) + ps(fu] = Ik 1) + (o] ~ o )]

and, therefore
3(g1,v2) — j(gr,v1) + 5(92,%1) — 5(g2, v2)

< CB|r(rs) (lllllz.w(r,) + |B2lL=rs) +1) 91 — galvivr — valv. (4.6)
Using now (4.4)-(4.6) yields

vy —valy £ C(|f1 = falv +|m — mln

(4.7)
+1Blems) (B1lzmcra) + Ba2lioqrs) + 1) lor — yzlv)-
Moreover, (3.12) and (4.1) imply
jo1 = ozl < C(fos — valy + I — mab). (48)

Then, it follows from (4.7) and (4.8) that v,, € C(0,T;V) and o, € C(0,T;H), and from
(3.14) and (4.3) that o,y € C(0,T;H,). This concludes the proof. '

We define now the operator A, : C(0, T; V) — C(0,T;V) By
Arg=vy g€ C(0,T;V). (4.9)
Proposition 4.2. There ezists a; > 0, which depends only on Q, I and A, such that if
" |Ble=(rs) (l#llz.w(r,) + |p2lLe=(rs) + 1) <o, (4.10)
then the operator A, has a unique fized point g, € C(0,T; V).

Proof. Let g, g2 € C(0,T;V) and let n € C(0,T; H). For simplicity we denote by {v;, 0;},
i = 1,2, the solutions to problems P, ie., ¥ = vy and o; = 0,,. Using (4.9) and
estimates similar to those in the proof of Proposition 4.1 (see (4.4)—(4.8)) yields

IAag1(t) = Aaga®)lv < ClBlLeoqrs) (IB1loners) + aleoers) + 1) 191(2) — galt)lv.
t € [0,T). Hence, we deduce

|An — Angalcrvy < ClB|Le=(rs) (|l-l1|t.w(r,) + | 2| (rs) + 1) I = g2lecorv)-
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Proposition 4.2 follows now from this inequality and the Banach fixed point theorem.

In the sequel we assume that (4.10) holds. For every n € C(0,T;H), we denote by
9y the fixed point given in Proposition 4.2. Let v, € C(0,T;V), o, € C(0,T; H,) and
u, € C'(0,T;V) be the functions given by

W= tagy Oy =y (t)=t0+ [ oy(s)de, (4.11)
for all ¢ € [0, T]. We define the operator A : C(0, T; H) —» C(0, T; H) by
An(t) =G(e(uy(t))) n€C(0,T;H), telo,T) (4.12)

Proposition 4.3. There ezists ap > 0, which depends only on Q, T' and A, such that if
Blams) (lalmrs) + lialiemiry + 1) < 0, (4.13)
then the operator A has a unique fized point n° € C(b, T; H).

Proof. Let m, 7, € C(0,T;H) and let v = vy, 0; = 0, w; = Ui, Gi = gy, for i =1,2,
Using Proposition 4.2 we have g; = v; and from (4.1) and (4.2) we obtain

oi(t) = A(e(wi(t))) + m(2), (4.14)
(0i(t), £(w) — e(vi(t)))a + 5 (wilt), w) — 5(vi(2), v:(t)
> (O w-ul)y VweV, (4.15)

where i = 1,2 and ¢ € [0, T]. It follows from (4.14) and (4.15) and the estimates in the
proof of Proposition 4.1 (see (4.7)) that :

oa(t) - va(t)lv < Clm(t) — M)l + ClBlioo(ry) (|Balieoqrs) + lp2lzoogrsy + 1) for(8) — wa(®)ly -

Hence,
[1 = ClBleo s (Im1lzoers) + lalimry) + 1)] loa () — va(®)lv

< Clm(t) — ma(t)|n- (4.16)
Choosing ag < min(ay, &) we deduce from (4.10) and (4.16) that
[1(t) —va(t)lv < Clm(t) ~m(t),  te[0,T). (4.17)

Using now (3.13), (4.11) and (4.12) we obtain

Am(t) - Al < I [ s - walv ds, e 0,7,
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and recalling (4.17) it follows that

-~ [t
|Am(#) - Ama(®)bn < CL ['im(s) - m(slnds, € (0,T]
Reiterating this inequality yields

c LT
n!

|A™m — A™nalcorag < Im —nelcorsy Vn€EN,

which implies that, for n sufficiently large, a power A" of A is a contraction on C(0, T; H).
Thus, there exists a unique #* € C(0, T'; H) such that A®p* = n*. Moreover, 7" is also the
unique fixed point of A.

Proof of Theorem 3.1.

Ezistence. Assume that (3.26) holds. Let #* € C(0,T;H) be the fixed point of A and let

Upe, Oy~ and uy- be the functions given by (4.11) for » = n*. We show that {u,.,0,.} is a

solution to Problem P. Indeed, by choosing n = %*, ¢ = g, in (4.1) and (4.2) and using
(4.11) we obtain

oy = Ale(vy)) + 17, (4.18)
(s £(1) = E(tg= e + 3G+ ) = (g )
>(fiw—vp)y VweV, (4-19)
for all £ € [0, T]. Now, equality (3.23) follows from (4.11), (4.12) and (4.18), since
U= o= A = Gle(ue),
while inequality (3.24) follows from (4.9), (4.11) and (4.19), since
O = Ay = Vyegen = Uy,

Now, (3.25) results from (4.11), and (3.27) is a consequence of Proposition 4.1, (3.18) and
(4.12).

Unigueness. Let {uy., a,-} be the solution to (3.23)-(3.25) obtained above and let {u, o} be
another solution such that u € C*(0,T;V) and ¢ € C(0, T; H;). We introduce the function
n € C(0,T; H) given by

n(t) = Gle(u(t))), (4.20)

for t € [0,T), and let v’ = v = g. Using (3.23) and (3.24) we obtain that {v, o} is a solution
to the variational problem F,, and since this problem has a unique solution v,, € C(0,T; V),
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e € C(0,T;H,), we conclude that v = vy, 0 = Oy9. Moreover, since g = v = v’ we have
from (4.9) that Ayg = vy =v =g, ie, g is a fixed point of A,. It follows from Proposition
4.2 that g = g, and then v = v,,,, ¢ = g,,,. Then (3.25) and (4.11) imply

v=t, o0=0, u=u, (4.21)

Using now (4.12) and (4.20) we obtain that An = n and by the uniqueness of the fixed point
1 = 1. The uniqueness of the solution is now a consequence of (4.21). This completes the
proof of Theorem 3.1.

5. Sliding frictional contact with wear

In this short section we study the problem of the wear of the contact surface due to sliding
friction. We consider the process described in Section 3 when the foundation moves with
a steady velocity »*, and when sliding contact takes place. Recently a similar problem has
been analyzed in [13].

We use the setting and notation as above. In addition, we introduce the surface wear
function w : T’ x [0,T] — R, which represents the accumulated wear of the surface, the
evolution of which is governed by a modified version of Archard’s law (see, e.g., [14] or [4]
and references therein) which we now describe. The rate form of Archard’s law is

W = —kutalu, ~ v’

where k,, is the wear coefficient (very small in practice) and u/, — v*| is the relative velocity
between the contact surface and the foundation. Thus, the rate of the wear depends linearly
on the contact stress and the slip. We also suppose that on the time scale of the quasistatic
process, the surface rearranges itself in such a way that the velocity «., is negligible and so
the slip is v*, which for the sake of simplicity is assumed to be a constant vector. Thus, we
employ the wear law

o = —kulv®|on, (5.1)

where k,, =const.> 0. Now, o, < 0 and therefore w’ > 0, which allows us to interpret w as
the wear of the surface, since the wear of the surface cannot decrease.

Over short periods of time the wear is small, thus, we could assume that u, = 0 on I,
in which case the resulting problem is uncoupled. Here we represent the accumulated effects
of wear as the recession of I's and, since the condition u, = 0 means that the body in its
reference configuration is in contact with the foundation, we impose the condition

t = —w, | (5.2)
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on I's x (0,T). Consequently, the position of the contact evolves with wear. This in turn
leads to the following interesting mathematical problem. Let a = k,|v*|, which is a positive
function, and let § = 2. Now, it follows from (5.2) that u, = —w' and then (5.1) yields
uy, = aoy. Therefore, instead of (3.9) we consider the following contact conditions

On =ﬁu:u on P3 X (O,T),
'a“rl = —[4i0y, OL P3 X (0’ T)! (53)

O'i = "A'i(ui‘r)’: Ai 20.
Here, for the sake of simplicity, we set p = 0, which means that the contact does not
support any load, say the foundation is a vertical wall that acts as an obstacle to the body’s

expansion.
The classical formulation of the sliding frictional contact problem with wear is:

~ Find a displacement field u :  x [0,T] — R¥, a stress field ¢ : 2 x [0,T] — Sy and a

wear field w : ['3 % [0, 7] — R, such that (3.4)-(3.7), (5.2), (5.3) and (3.10).

Using the same notation and assumptions as above, it is straightforward to verify that
this problem has the weak formulation (3.23)-(3.25), when the functional j given by (3.21)
is replaced by j: V x V — R, defined by

j(v,w) = /r’ﬂlv,,l (w,. + pifwi| + y?lwfl) da.
This implies that

Theorem 5.1. Assume that (3.12)—(3.18) hold. There ezists ag > 0, which depends only
on Q, I' and A, such that if

B (II‘I'L“(I‘;) + piz|Le(ry) + 1) < ao,

then, there exists a unique solution {u, 0, w} to the sliding problem. Moreover, the solution

satisfies
u€CY(0,T;V), 0e€C(0,T;H,), weCY0,T;L¥T,)).

If we assume that k,, is a positive function of time and location on the surface we have
to repalce 8 with |B|L(r,) in the condition.

We conclude that when 8(u: + p2 +1) is “sufficiently small” the sliding frictional contact
problem with wear has a unique weak solution.
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' Descriptif I

L’objet ce travail est ’étude d’un probléme d’évolution abstrait proposé dans un cadre
hilbertien général afin d’unifier I'étude d’une classe de problemes de contact avec frotte-

ment entre un matériau viscoélastique et une fondation rigide.

Soit H un espace de Hilbert, V un sous-espace fermé de H, et A et G deux opérateurs
de H dans H. Soit aussi [0,7] un intervalle de temps, f: [0,7] — Vet j: Hx H —
] = 00, 4+00]. On considere le probléme d’évolution abstrait suivant :

Probléme P;: Trouver z : [0,7] — H tel que
Az + Gz + 05j(z, ) 3 f,
kDY = 1.
Le point au dessus d’une quantité représente sa dérivée temporelle et 0pj désigne le
sous-différentiel de la fonction j par rapport au second argument. L’originalité et la

difficulté de ce probléme résident dans la double dépendance de la fonction j par rapport

a l'inconnue z et par rapport a sa dérivée z.

Sous certaines hypothéses faites sur les données, on prouve que le probleme P; admet
une solution unique z € C*(0, T} V). La preuve de ce résulat utilise des arguments sur les
inéquations variationnelles elliptiques suivis d’une technique de point fixe. On introduit
ensuite une formulation “duale” du probléme P;. Il s’agit du probleme suivant :

Probléme P,: Trouver y : [0,7] — H tel que
d
y(t) €S(y), 2 (Ty)(E) + ey (y(t) 3 0.
Pour tout y € C(0,T; H), on a

£t,9) = {= € H| (z.0)m +3(Ty(t),0) 2 (fO, 0 eV},

¥sy) est la fonction indicatrice de X(t,y) et 7 est l'opérateur 7 : C(0,T;H) —
CY(0,T; H) défini par
Ty =z,

1




ou z € C'(0,T; H) 'unique solution du probléme suivant :
y = Az + Gz,
z(0) = zo.

On établit alors le résultat d’équivalence entre les problémes P; et P, dans le sens

suivant :
1) Siz € CY(0,T;V) est solution du probléme P, alors y = Ai + Gz est solution du
probléme P;.
2) Réciproquement, siy € C(0,T; H) est solution du probléme P, alors z = T y est

solution du probléme P,.

La derniere partie de ce travail est consacrée & I’application des résultats obtenus dans
le cadre abstrait pour I’étude de quelques problémes de contact avec frottement entre un

matériau viscoélastique et une fondation rigide.
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Abstract. We analyze a nonlinear abstract evolution problem describing a class of frictional
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1. Introduction

Let H be a real Hilbert space, V a closed subspace of H, A and G two operators
from H into H. Let also T >0, f: [0,7] — V and j : H x H — ] — 00, +00].
We consider the following abstract evolution problem :

Problem Py: Find z : [0, T] — H such that

A% () + Gz(t) + Baj(x(t), 5() 3 F(t),  Vte[0,T), (1.1)
2(0) = zo. (1.2)

Here the dot represents the time-derivative, 827 is the subdifferential of the func-
tion j with respect to the second argument and zg is the initial data.

Evolution problems of the form P, arise in the study of quasistatic processes
modeling the frictional contact between a viscoelastic body and an obstacle. In
this case, the unknown z is the small strain tensor, A and G are operators related
to the viscoelastic constitutive law, and (1.1) involves the equilibrium equation
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as well as the boundary conditions. Here the data f is related to the given body
forces and tractions and the function j is determined by the type of the contact
boundary conditions. Finally, the initial data zp in (1.2) represents the initial
strain. Examples of contact problem which may be formulated in the form (1.1)-
(1.2) can be found for instance in [15] and [5] (see also the references therein).

Situations which involve frictional contact processes are very common in indus-
try and everyday life such as train wheels with rails, braking pads with the wheel,
tectonic plates, etc. The classical formulation of such problems consists of a sys-
tem of elliptic or evolution equations with a frictional boundary condition on the
contact surface. Since, generally, such problems do not have classical solutions, the
model is usually restated in a variational formulation. The mathematical analysis
of frictional contact problems including existence and uniqueness results has been
considered for instance in [6], [13], (8], [7]. New results concerning the modeling
and the numerial analysis in contact mechanics can also be found in the recent
proceedings [14]. Often, in practice, the main interest lies in the contact stress,
since the behavior of the system and especially the surface integrity and wear de-
pend on it. For this reason, in most engineering applications the distribution of
the contact stress is of greater importance than the displacements or strains.

The aim of this paper is to study the evolution problem P in order to obtain
abstract results which may be applied in the variational analysis of quasistatic
viscoelastic problems with friction. As noted above, Problem P; represents a
variational model for the small strain tensor £ and our interest lies also in the
stress field. For this reason we propose and analyze a formulation in terms of the

stress, the so-called “dual formulation”.

The paper is structured in the following way. Section 2 deals with an existence
and uniqueness result to problem (1.1)-(1.2). It is based on standard arguments
for elliptic variational inequalities followed by two applications of Banach's fixed
point theorem. In Section 3, the dual formulation of the problem is presented
and an equivalence result is established. Finally, in the last section we consider
three concrete examples of viscoelastic frictional contact problems. We prove that
the variational formulation of these problem are of the form (1.1)—(1.2) and we
apply the abstract results of Sections 2 and 3 in order to study these mechanical

problems.
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2. An existence and uniqueness result

We denote in the sequel by (-,-)y and | - |g the inner product and the associated
norm on H, respectively. Let us remark that V is a real Hilbert space endowed
with the inner product of H; thus, we will use sometimes the notation (u, v)v, |u|y
instead of (u,v)y, |u|ly when u,v € V. We denote, for all z € H, by Dzj(z,-)
and 89j(2,) the effective domain and the subdifferential of the function j(z,-),

defined by

Dyj(z,-) = {u € H| j(z,u) < +oo},
dj(z,u) = {w € H| j(z,v) - j(z,u) > (w,v—u)gy WWwE€ H} Vu € H,

respectively. In the sequel C will represent a positive generic constant which may
depend on A, G, j and T. Finally, C(0,T; H) and Cc1(0,T; H) will represent the
spaces of continuos and continuously differentiable functions from [0,T] to H with

norms

1Zlc(o,r;H) = gé'[‘é‘,’}]'””(t)l"’ lz|lc1(0,751) = é’f&’f}]'x(t)'” +tgfg:§]lw(t)ln,

respectively. The spaces C(0,7T’; V) and C(0,T; V) are defind in a similar way.

In order to study Problem Pj, we assume that the operator A : H — H is
Lipschitz continuous and strongly monotone, i.e.,

(a) there exists L > 0 such that
|Auy — Aug| < Ljug — ug|sr Vui, up € H, (2.1)
(b) there exists M > 0 such that )
(Au; — Aug,uy — u2)g = Muy — ugl% Vuy, ug € H.

The operator G : H — H is Lipschitz continuous, i.e.,

there exist L > 0 such that (2.2)
|Gu; — Gualy < Liuy —ugly  Vup, uz € H. .
The function j : H x H — ] — 00, +00] satisfies
(a) D2j(z,) =V, Vz € H,
(b) j(z,-) is a continuous seminorm on V, Vze H,
(c) there exists M > 0 such that (2.3)
j(z1,v2) — §(21,v1) + §(22,v1) — §(22,v2) <
Mz — zo|ulvr w2y Va1, 22 € H, v, 12 € V.
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Finally, we assume that
fe C(0,T;V) (2.4)

and
9 € V. (2.5)

The main result of this section is the following.

Theorem 2.1. Let (2.1)«2.5) hold. Then there exists a unique solution = €
CY(0,T;V) to Problem P;.

The proof of Theorem the 2.1 is based on fixed point arguments similar to those
used in [2], [15]. It will be established in several steps. We assume in the sequel
that (2.1)—(2.5) hold and, to simplify the notation, sometimes we will not indicate

explicitly the dependence of various functions on t.
For each n € C(0,T; H) and g € C(0,T'; V), we consider the following problem.
Problem P,,: Find x,,4 : [0,T] — V such that

Adng(t) + 1(t) + 825(9(t), 2ng(t)) 3 f(£),  Vte[0,T], (2.6)
Zpg(0) = zg. (2.7)

Lemma 2.2. Problem P,y has a unigue solution z,, € C1(0,T;V).

Proof. Using (2.1) and (2.3) it follows from classical results for elliptic variational
inequalities that there exists a unique function z,, : [0, 7] — V such that

(Azng(t), 2 — zng(£)) 1t +3(9(2), 2) — 3(9(2), 20 (2)) 2 (2.8)
(f(t)z = zg(O))v — (0(t), 2 — )y~ VzeEV, te[0,T].

Let t1, t3 € [0,T). For the sake of simplicity, we use the notation z,4(t;) = z;,
g(t;) = g, n(t:) = ni and f(t;) = fi, for i = 1,2. Using (2.8) after some algebra

yields
(Azy — Azg,21 — 29)n < (i — fa, 21 — z2)v — (M — 2,21 — 22)m
. . . - (2.9)
+ j(g91, z2) — 3(91, z1) + 3(g2, 21) — 5 (92, 22).

From (2.9), (2.1) and (2.3.c), it follows that
|21 — z2lv < C(lf1 — folv +Im — m|u + o1 — g2lv), (2.10)

and using (2.4) it follows that 2,4 € C(0,T;V). Taking (2.8) into account, one
can easily verify that the function z,, € CI(O, T;V) given by

Tng(t) = zo + /t Zng(s)ds, te[0,T), (2.11)
. 0o
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is the unique solution to Problem F,,. This completes the proof of Lemma 2.2.
Let us consider now the operator A, : C(0,T;V) — C(0,T; V') defined by
Apg = x4, g€ C(0,T;V). (2.12)
We have the following result.

Lemma 2.3. The operator A, has a unique fized point g, € C(0,T;V).

Proof. Let g1, g2 € C(0,T;V) and 1 € C(0,T; H). For the sake of simplicity, we
set T; = Zpg,, Zi = Ing; Where Ty, is the solution to Problem P, ¢ =1,2. We
obtain using (2.12) and (2.11) that

t

|Ang1(t) — A,,gz(t)lv < /0 |z1(s) — z2(s)|vds vt € [0,T). (2.13)

Using estimates similar to those in the proof of Lemma 2.2 (see (2.8)—(2.10)) yields
|z1(2) — z2(t)lv < Cla1(t) —g2(t)lv  VE€[0,T).

When applied in (2.13) this implies
: t
|Ang1(t) — Apga(t)lv < C/o l91(s) — g2(s)lvds Vvt € [0,T).

Reiterating this inequality n times, results in
|1A791(t) — Apg2(t)lc(o,r;v) < g,:'!:lgl - 92lc(o,T;v)-
The last inequality shows that for a sufficiently large n, the operator A7 is a

contraction on C(0,T; V). Thus, there exists a unique g, € C(0,T; V) such that
Apgy = gn- Then it is easy to verify that g, is the unique fixed point of A, too.

For each n € C(0, T; H), let z, € C1(0,T;V) be the function given by

Tp(t) = Ty, (t) = 0 + /Ot Zng, (8)ds, telo,T), (2.14)

where gy, is the fixed point of the operator A, given in Lemma 2.3. Let us remark
that from (2.12) and (2.14) it results that

Ty = Gn. (2.15)
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We define now the operator A : C(0,T; H) — C(0,T; H) by
An = Gz,, ne C(0,T; H). (2.16)
We have the following result.
Lemma 2.4. The operator A has a unique fized point n* € C(0,T; H).
Proof. Let m1,m2 € C(0,T; H). We use the notation z; = z,,, 2; = i,, and

9i = gn; for i = 1,2. Using estimates similar to those in the proof of Lemma 2.2
(see (2.8)—(2.10)) and (2.15) it follows that

t
1) = 220l < [ 11(6) — a0l
t t
<C /o Im(s) - m(s)|luds + C /0 |z1(s) — z2(s)| mds,

for all ¢t € [0, 7). Then, using a Gronwall-type inequality yields

t
21 =220l < [ Ima(s) - m(ellmds Ve e (0,7}
Taking (2.2) and (2.16) into account, the last inequality leads to

t
Am(®) - Am@la <C [ Im() -m()lads Ve 0T (217)
Lemma 2.4 is finally a consequence of (2.17) and Banach’s fixed point theorem.

Proof of Theorem 2.1.
Eristence part. Let n* € C(0,T; H) be the fixed point of the operator A defined

by (2.16). Let also z,» € C1(0,T; V) be the function given by (2.14) for n = n*
and let z,» = & . We show that z,. is a solution of Problem P;. Indeed, choosing
n =1n*, g = gy~ in (2.8), we obtain that

(Azqe(t), 2 — zgo () + (0" (), 2 — 20 (W) i +

| 3(9n(£), 2) = 5(gn- (), 29+ (t)) = (£(2), 2 — 2 (B)}v,
forall z€ V and t € [0,T]. Since 2y« = &+, 7* = GTy+ and g« = T+ (see (2.15),
(2.16)), the last inequality implies that
(A (8)2 = O + (G (1) 2 — e (D) + 019
J(@n- (2), 2) = 5(2n+ (), Z- () 2 (F(t), 2 = Epe (D))v, '
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for all z€ V and t € [0, T]. Finally, it results from (2.18) and (2.15) that z,. is a
solution to Problem P;.

Uniqueness part. Let z € C1(0,T; V) be another solution to Problem P;. Intro-
ducing the function n € C(0,T; H) given by

n=Gz (2.19)

and using (2.1), (2.6), it results that z is a solution to Problem P,;. Since by
Lemma 2.2 this problem has a unique solution denoted z,;, we conclude that

Tpz =T. (2.20)

Consequently, (2.20) and (2.12) imply that z is the fixed point of the operator A,,.
It follows then from Lemma 2.3 that £ = g,. Moreover, by (2.15) and the last
equality, we deduce that

T =2xy. (2.21)
Using (2.16), (2.19) and (2.21) we obtain An = 5 and by the uniqueness of the
fixed point of A we have

n=n". (2.22)

The uniqueness of the solution to Problem P is finally a consequence of (2.21)-
(2.22).

3. A dual formulation of the problem

In this section we introduce and analyze a new formulation of the Problem P,
the so-called “dual formulation”. To that end, we need the following preliminary

result.

Lemma 3.1. Let (2.1), (2.2) and (2.5) hold. Then, for ally € C(0,T; H), there
exists a unique function z € CY(0,T; H) such that

y(t) = Ai(t) + Gz(t) vt € [0, T, (3.1)
z(0) = zg. (3.2)

Proof. Let y € C(0,T; H). It follows from (2.1) that the operator A is invertible
and that its inverse A~1 is also a Lipschitz continuous operator. Thus, we may
consider the operator ¢ : C(0,T; H) — C(0,T'; H) defined by

dz(t) = A7 1y(t) - A_IG(zo +/0 z(s)ds) vt € [0,T). (3.3)
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Let now 21, z2 € C(0,T; H). Using (2.1), (2.2) and (3.3) we obtain
t
|pz1(t) — dz2()|lw < C /0 |z1(s) — z2(s)lwds ¥Vt € [0,T]. (3.4)

Reiterating this inequality n times yields

|¢™ 21 (t) — ¢"Z2(t)|é(o,T;H) <G|z - 23 c(0,1;H) -
The last inequality implies that for n sufficiently large a power ¢™ of ¢ is a con-
traction on C(0,T; H). Thus, " has a unique fixed point z* € C(0,T; H) which

is also the fixed point of the operator ¢. Finally, it is straightforward to see that
the function = € C1(0, T; H) given by

z(t) = zo + /Ot z*(s)ds, t € [0,T),

is the unique solution to problem (3.1)—(3.2).
The previous lemma allows us to define the operator 7 : C(0,T;H) —
C'(0,T; H) by
Ty =z, (3.5)

where z is the unique solution to problem (3.1)—(3.2).

In order to establish an equivalent formulation of Problem P;, we introduce
the subset $(t,y) of H given, for all y € C(0,T; H) and t € [0,T], by

S(t,y) = {a € H | (0,2)m +3(Ty(t),2) > (f(t),2)y Vze v}.

We also denote by 5y, ,) the indicator function of ¥(t,y) defined by

" () { 0 if o € (¢, y)
g)=
=(t,v) +00 ifo & L(t,y)
for all ¢ € H, and let 8ysy(, ,) represent in the sequel the subdifferential of this
function.

Let us consider now the following problem.

Problem Ps: Find y: [0,T) — H such that

YOSt T +0se)u)20  WeDT.  (39)
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The connection between Problems P; and P, is given by the following result.

Theorem 3.2. Let (2.1)—2.5) hold.
1) Let z € CY(0,T;V) be the solution to Problem P;. Then the element y €

C(0,T; H) given by y = Ax + Gz is a solution to Problem P;.
2) Conversely, let y € C(0,T; H) be a solution to Problem Py. Then the element
z =Ty 1s the solution to Problem p.

Smlg;. z e Cl (0,T; V) be the solution to Problem Pj given in Theorem 2.1. Let
also y € C(0,T; H) be the function defined by
y(t) = Ai(t) + Gz(t) vt € [0,T]. (3.7)
It results from (1.1), (3.7) and (2.3.a) that
(Y(t), z — () u + 5(z(t), 2) — 5(=z(t), 2(2)) = (f(t), 2 —2()v,  (3.8)

for all z € V and t € [0, T]. Taking z = 2i(t) and z = 0 in (3.8) and using (2.3.b)
we deduce that

(w(t), 2(8) a + 3(z(t), £(t)) = (f(2), £())v, (3.9)

for all t € [0,T]. By (3.7) and (1.2) we deduce that £ = Ty and using (3.8) and
(3.9) we obtain that y(t) € L(¢,y) for all ¢t € [0,T]. Moreover, since i(t) € V for
all t € [0,T], we have

(2, 2(E))a + 3(Ty(t), £(t)) = (f(¢), 2(t)v  Vz € T(t,y). (3.10)

Then by (3.9) and (3.10) it results that
d
(- y®), STO 20 VzeT(ty), t 0T,

which concludes the first part in Theorem 3.2.

2) Conversely, let y € C(0,T; H) be a solution to Problem P;. Since z = Ty, it
results from (3.6) that

(z —yt),z(t))g =20 VzeX(ty), te(0,T). (3.11)

Let t € [0,T). Since y(t) 2z € Z(t,y) for all z € VL, it follows from (3.11) that
(z,&(t)) = 0 for all z € VL. This implies that &(t) € V*+ =V, and using (2.5)
yields z(t) € V. Thus, since z € C1(0, T; H), we obtain that z € CL0,T; V). Let
us prove now that z is the solution to Problem P;. Due to the subdifferentiability
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of the function j(z(t),-) in £(t) € V, it results that there exists a function Z :
[0,T) — H such that

J(z(2), 2) - 5(=(2), £(8)) = (2(t), z — &(t),
for all z € V. Therefore, the previous inequality leads to
(F#) - 58), 2 — () 1 +3((8), 2) — 3(a(t) £(0) = (F(B).z— W), (3.12)
for all z € V. Taking z = 2i(t) and z = 0 in (3.12), using (2.3.b) we obtain
(f() — 2(t), 2(t))mr + 5(z(2), £(2)) = (F(2), 2(t))v- (3.13)

From (3.12) and (3.13), it results that f(t) — 2(t) € I(t,y). Therefore, using
f(t) — %(t) as a test function in (3.6) and keeping in mind (3.5), it follows that

(F(t) — 2(t), 2() 1 = (y(2), £(2)).
Adding j(z(t), £(t)) to this inequality and using (3.13) we find
(F(£), 2()v 2 (y(t), £())nu + 5 (z(¢), £(2))- (3.14)
On the other hand, since y(t) € I(t,y), Z(t) € V and Ty = z, we obtain that

(W), 2())n + 3 (=(2), £(8)) = (F(£), 2())v, - (3.19)

and
(y(t), 2)u +3(z(t),2) > (f(t),z)v  VzeV. (3.16)

It follows now from (3.14)—(3.16) that
(y(t),z - () m + i(z(2), 2) - 5(z(t), £(8)) 2 (f(t),z —E(@))v  VzeV. (3.17)

Finally, (1.1) is a consequence of (3.17), (3.1) and (2.3.a) and since the equality
z = Ty implies (1.2), we conclude that z is the solution to problem P;.

Remark 3.3. Having in mind the mechanical examples (see Section 4) as well
as Theorem 3.2, it is natural to qualify Problem P, as a “dual formulation” of
the evolution problem P;. Moreover, Theorems 2.1 and 3.2 imply that under the
assumptions (2.1)-(2.5) Problem P, has a unique solution y € C(0,T; H).
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4. Applications in contact mechanics

In order to apply the previous results, we will present in this section a number of
quasistatic viscoelastic contact problems with friction which may be formulated in
the form P; or P, and such that (2.1)-(2.5) hold.

The physical setting is as follows. A viscoelastic body occupying the domain
Qin RN (N = 2,3) is acted upon by volume forces and surface tractions. We are
interested in the resulting quasistatic evolution process of the mechanical state of
the body on the time interval [0, T]. We assume that a volume force of density fg
acts in Q % (0,T). The boundary I" of 2 is assumed to be Lipschitz, and is divided
into three disjoint measurable parts I'y, I'2 and I, such that measI’; > 0. The
body is clamped on I'; x (0,T) and so the displacement field vanishes there, and

surface tractions of density fz act on I'p x (0,T).
This mechanical setting may be formulated mathematically as follows :

o = Ae(u) + Ge(u) in Qx (0,T), (4.1)
Divo + fo=0 in Qx(0,T), (4.2)
u=0 on I'; x(0,T), (4.3)

ov=fa on I'2 x(0,T), (4.4)

u(0) =ug in Q, (4.5)

where the unknowns are the displacement field v : 2x [0,T] — RY and the stress
field o : 2 x [0,T) — Sn. Here €(u) denotes the small strain tensor, v represents
the outward unit normal to , ug is the initial displacement and Sy denotes the
set of second order symmetric tensors on R”. The viscoelastic constitutive law of
the material is given by (4.1) where A and G are nonlinear constitutive functions.
Next, we present some additional notation and list the assumptions on the
data. Let “-” be the inner product on RY and Sy and let | - | represent the
Euclidean norms on RY and Sy. We denote by H the real Hilbert space

H= {T= (Tij) I Tij = Tji € LZ(Q) V’i,j= 1,...,N}
endowed with its canonical inner product given by

(O',T)Hz/na,;jrij dz.
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We assume in the sequel that:

 A:QxSy—> Sy and
(a) there exists L > 0 such that
|A(z,e1) — A(z,e2)| < Lle; —e2| Vei,e1 € Sy, a.e. z €,
J (b) there exists M > 0 such that
(A(z,61) — A(z,€2)) - (€1 —€2) > M ey —€3® Vey,e1 € S,
ae.z €N,
(c) for any € € Sy, z — A(z,¢) is Lebesgue measurable on (2,
{ (d) the mapping z — A(z,0) € H;

(4.6).

f G:0Qx SN — SN and

(a) there exists an L > 0 such that

J |G(z,e1) — G(z,e2)| < Lley —e2] Ve, e2 € Sy, ae.inQ, (47)
(b) for any € € Sn, z — G(z,€) is measurable,

| (¢) the mapping =z — G(z,0) € H.

Then, we may consider A: H — H and G : H — H such that assumptions
(2.1) and (2.2) are satisfied. We also assume that the body forces and tractions
satisfy ,
fo€ CO,T; LX),  f2€C(O,T; LA(T2)Y) (48)

and, finally, we consider a function g : I'3 = R such that
ge€L>®(T3) and ¢g>0 ae onlj3. (4.9)

In order to complete the mechanical setting of the problem, we assume that the
viscoelastic body may come into frictional contact with an obstacle along the part
I'3 of its boundary. Everywhere in the sequel u, represents the normal displace-
ment, %, denotes the tangential velocity, o, represents the tangential force on the
contact boundary and o, is the normal stress. Moreover, for every vector field
v € HY(Q)V, we denote by v, and v, the normal and the tangential components

of v on the boundary given by
‘Uy=‘U'V, v1-='U—‘U,,V,

respectively. Finally, € : H}(Q)V — H will represent in the sequel the linearized
deformation operator given by

ew) = (e, eylo) = 5 (vss + v
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for all v € HY(Q)", where a subscript that follows a comma indicates a partial
a'v,'

derivative, i.e. v; ; =

The examples of frictional boundary conditions are the followings.

Example 4.1. Bilateral contact with Tresca’s friction law.

This contact condition can be found in [6], [13] and more recently in [1], [2]. It

18 in the form :
u, =0 on F3 X (O,T),

IUT|S!] on F3X(0,T), (4 10)
lor] < g = %, =0, '
lo;|=9g=>0,=-Atu,, X220

where g is the friction bound, i.e. the magnitude of the limiting friction traction
at which slip begins. The contact is assumed to be bilateral, i.e. there is no loss

of contact during the process.
It is straightforward to see that if {u,o} are regular functions satisfying (4.2)—
(4.4) and (4.10) then u(t) € U and :

(o(t),e(v) — e(u(t)) mr + p(v) — p(i(t)) > L(t,v — u(t)) VweU,te[0,T] (4.11)

where
U={v eH' ()N |v=0 on Ty, v,=0 on I‘3},

p: U— Ry, w(v)=/P glv-| da,
3

L: [0,TI|xU —R, L(t,v):/ﬂfo(t)-v d$+/1" fa(t) - v da.

Using (4.1), (4.5) and (4.11) we obtain the following weak formulation of the
mechanical problem (4.1)-(4.5), (4.10) : find a displacement field u : [0,T] — U

such that

(Ae(u(t)),e(v) — e((t)))u + (Ge(u(t),e(v) —e(u(t)))n+ (4.12)
p(v) — p(a(t)) > Lt,v - u(t)) WVveU, te[0,T], '

u(0) = up. (4.13)

Let V denote the subspace of H given by

V= e(U) = {e(v) | ve U}. (4.14)
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We recall that U is a real Hilbert space endowed with the inner product of H1(Q)".
Moreover, using Korn’s inequality (see for instance [12] p.79) it follows that V is
a closed subspace of H and the deformation operator ¢ : U — V is a linear
and continuous operator. Denoting by ¢! the inverse of ¢, we also obtain that
el : V — U is a linear and continuous operator. This property allows us to
restate (4.12)-(4.13) in an equivalent form, by considering as unknown the strain
tensor €(u). Thus, with the previous notation, it results that the variational

problem (4.12)-(4.13) is of the form (1.1)—(1.2) where

z = e(u), zg = €(ug) (4.15)
(f(1),2)v = L(t,e'(2)) VzeV, te[0,T] (4.16)

) _ w(e~1(2)) if zeV
j(w,z) = { oo iz gV Vw € H. (4.17)

We remark that in this example the function j7 depends only on the second ar-
gument, and we denote in the sequel j(z) = j(w,z) for all w,z € H. Moreover,
using (4.8) and (4.9) it is straightforward to see that the assumptions (2.3)-(2.4)
are satisfied, and, if the initial displacement satisfies

ug €U, (4.18)

using (4.14) and (4.15) we deduce that z satisfies (2.5). Therefore, by Theorem
2.1 we obtain the existence and the uniqueness of the solution of the problem

(4.12)—(4.13) such that u € C}(0,T; U).
We denote in the sequel by X(t) the set

20 ={r e H|(n2)u +i(2) 2 (FW, 2y Vzev)  (419)

for all t € [0,T). The problem (4.12)—(4.13) is formulated as an evolution varia-
tional inequality for the displacement field u. It represents the primal formulation
of the mechanical problem (4.1)-(4.5), (4.10). It follows from Section 3 that the
dual formulation of this problem, in terms of the stress, is given by: find a stress

field o : [0,T] — H such that
o(t) € (t), (%(Ta)(t),r —o@)u>0 VreX(@), te[0,T]. (4.20)

Here, for every o € C(0,T; H), To denotes the unique function 7 € C1(0,T; H)

which satisfies
a(t) = A7(t) + G7(t) vt € [0,TY, (4.21)

7(0) = €(up)- (4.22)
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Using now Remark 3.3 we obtain that the dual formulation (4.20) has a unique
solution o € C(0,T; H).

We conclude that under the assumption (4.6)—(4.9) and (4.18), the mechanical
problem (4.1)—(4.5), (4.10) has a unique weak solution {u,o} which satisfies u €
Cl(0,T;H), ¢ € C(0,T; H). More results concering the study of this problem
using the primal variational formulation (4.12)-(4.13) and the dual variational
formulation (4.20) were obtained recently in [5].

Example 4.2. A simplified version of Coulomb’s friction law.

We consider now the problem for a viscoelastic body with the following friction
boundary conditions:

oo=f3 on I3x(0,T),

lo-| < ploy| on I's x(0,7), (4.23)
lo-| < ploy| = i, =0, '
lor| = plov]| = 0, = =i, A2>0.

Here f3 is a given function which satisfies f3 €L2(I'3) and p is the coefficient of
friction which satisfies (4.9). The friction law (4.23) represents a simplified version
of Coulomb’s friction law and is was already used in [6], [13], [7] in order to model
friction problems for elastic, viscoelastic or viscoplastic materials.

The primal variational formulation of the mechanical problem (4.1)—(4.5), (4.23)

is given by (4.12)-(4.13) where

U={veH1(Q)N|v=O on Pl}:
0: U— Ry, <P(v)=/F plfallv| da
3

L:[0,T]xU —R L(t,v)::/nfo(t)-vda:+/f fz(t)-vda+/r f3v, da.

Using again Korn’s inequality and notation (4.14)—(4.17) we deduce that this
variational formulation is of the form (1.1)—(1.2), in which j depends only on the
second argument. Therefore, under the assumptions (4.6)-(4.9), (4.18), Theorems
2.1 and 3.2 may be applied. It results that the dual formulation of the problem is
given by (4.20) where for every o € C(0,T; H), To denotes the unique function
7 € CY(0,T; H) such that (4.21) and (4.22) hold and X(t) is defined by (4.19),
with the corresponding j and f. We conclude that the mechanical problem (4.1)-
(4.5), (4.23) has a unique weak solution {u,c} which satisfies u € Cc(0,T;U),

o € C(0,T; H).
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Example 4.3. Normal Compliance contact conditions with friction.

We assume that the normal stress on I's satisfies a general form of the so-called
normal compliance condition used for instance in [8]-[11], [3], [4] and [15]. The
associate friction law is an appropriate version of Coulomb’s law of dry friction.
More precisely, we assume the following boundary conditions:

-0, =p(uy—g) on T3x(0,7T),

lor| < pr(u, — g) on I3 x(0,T), (4.24)
los| < pr(u, — g) =>4, =0, '
lUrl =pr(uv—g)=>ar =-Mi,, A2>0.

Here g represents the gap function between I'3 and the obstacle and p, : '3 xR —»
R+ (r = v,7) are the normal compliance functions which satisfy

(a) there exists L, > O such that

|pr (-, u1) — pr(u2)| < Lejuy —ug] Vuj,uz € R, a.e. onlj, (4.25)
(b) z+— p.(z,u) is Lebesgue measurableon I's forall ue€R,
(c) zrp(z,u)=0 for u<O.

It was proved in [15] that problem (4.1)-(4.5), (4.24) has a variational formulation
of the form: find a displacement field u : [0, T] — U which satisfies (4.13) and

(Ae(u(t)), e(v) — e(u(t))m + (Ge(u(t)), e(v) — e((2)) + w2
e(u(t),v) — p(u(t), u(t)) > L(t,y—u(t)) WweU, tel0,T] '

where
U={veHl(Q)N|v=0 on I‘l},

0: UxU—Re,  owo)= [ [plus = 9ol + polun — gllu,] da

L:[0,T]xU —R L(t,v)=/ﬂfo(t)-vdx+/r fot) - vda.

As usual, we now reformulate the problem (4.26), (4.13) in terms of strains. Thus,

using Korn’s inequality and notation (4.14)-(4.16) we deduce that the variational

formulation (4.26), (4.13) is of the form (1.1)—(1.2) where the function j is given

b ,

¢ ) pleYw),e 1(2)) if zeV
o= .

+o00 if z¢gV

We remark that in this example the function j depends on both arguments. More-
over, the assumptions (4.25) for r = v, 7 and (4.9) imply (2.3). Therefore, under

Yw € H.
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the assumptions (4.6)—(4.9), (4.18) and (4.25), Theorems 2.1 and 3.2 may be ap-
plied. Thus the dual formulation of the mechanical problem (4.1)-(4.5), (4.24) is
given by: find a stress field ¢ : [0,T] — H such that

o) €5(60),  (F(TO)D.T—o()r 20  VreSto), tel0,T) (427)

which represents a variational formulation in terms of the stress. We recall that in
(4.27), for every o € C(0,T'; H), To denotes the unique function 7 € C1(0,T; H)
which satisfies (4.21) and (4.22) and the set X(t,0) is given by

£(t,0) = {r € H | (r,2)u +§(To(®),2) > (f®), 2)v VzeV},

for all ¢t € [0,T]. We conclude that problem (4.1)-(4.5), (4.24) has a unique weak
solution {u,o} which satisfies u € C1(0,T;U), ¢ € C(0,T; H). More results
concerning the study of this problem using the primal formulation (4.26), (4.13)
were obtained recently in [15].
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| Descriptif I

Cet article concerne la présentation de méthodes qui permettent d’étudier des systémes
unilatéraux du second ordre mettant en jeu des masses singulieres, des amortisseurs et
des matrices de raideur. Des méthodes de réduction sont utilisées pour transformer des
inclusions différentielles du second ordre en inclusions différentielles du premier ordre puis
des résultats d’existence classiques sont utilisés afin d’obtenir des solutions. Pour illuster
cette approche théorique, des applications en mécanique unilatérale sont présentées en
faisant intervenir des problemes avec frottement et impact.

Une inclusion différentielle du second ordre peut étre formulée de la maniere suivante :

Trouver une fonction ¢ : [0, 7] — RY, t — ¢ (¢) telle que

Mi(t)+Cq(t)+ Kq(t) € f(t) + F(t,q(t),4(t), p-p- t€O,T], (1)
q(0)=q0, ¢(0)=q (2)

ol M est une matrice de masse, C est une matrice d’amortissement, K est une matrice
de raideur, f : [0,7] — RY est une fonction vectorielle associée aux forces agissant sur
le systéme et F : [0,7] x RY — P (RY) est une fonction multivoque, c’est-a-dire une
fonction de [0,7] x RY dans I’ensemble P (R¥) de toutes les parties de RY, qui définit,
pour tout t € [0,T], un graphe dans RY utilisé pour exprimer les forces de réaction
unilatérale. La formulation du systéme (1)—(2) peut étre complétée par des lois d’impact
s’il y a présence de phénomenes de collision entre corps rigides.

Le but de ce travail est discuter des stratégies d’étude de systémes du type (1)—(2) pour
des matrices M, C et K singulieéres. En particulier, il s’agit de développer des techniques
de réduction de telle sorte que les systémes réduits obtenus puissent étre étudiés (résolus)
grace aux méthodes standard dont on dispose. Plus précisément, I’objectif principal est
de développer des modeles de réduction de fagon & ce que des systémes du type (1)-(2)
puissent étre écrits sous la forme du premier ordre suivante :




y(t) € @(t,y(t)), p.p. t€0,T], (3)
y(0) = wo, (4)

ou go € R™ et @ est une application de [0, 7] x R" dans I’ensemble de toutes les parties
de R™.

Les inclusions différentielles de ce type ont fait I'objet de plusieurs études (cf. références
de Particle).

La premiére partie de ce travail concerne la méthode de réduction de Jordan pour
les inclusions différentielles du premier ordre. Cette méthode est appliquée & la fin de
cet article pour étudier un probléeme en biomécanique. Dans une deuxiéme partie, on
étudie une condition nécessaire pour utiliser le résultats précédents pour les inclusions
différentielles du second ordre. Des modeles de réduction sont ensuite étudiés et des
résultats qu’on trouve dans la littérature sont établis ici dans un contexte plus général
sous des conditions affaiblies. Ces résultats sont d’une importance particuliére pour la
réduction de problémes en Economie puisque les matrices rencontrées dans ce domaine
n’ont souvent pas les mémes bonnes propriétés que celles rencontées en Mécanique. Dans
la derniére partie de cet article, trois problémes intéressants en ingénierie sont revisités
par le biais des méthodes de réduction établies. Il s’agit de systémes mécaniques mettant
en jeu des corps rigides sujets & des contraintes unilatérales.
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The aim of this paper is to discuss the mathematical strategies permitting the treatment of second order unilateral
systems involving singular mass, damping, and stiffness matrices. Reduction methods are used here to transform second
order differential inclusions in first order ones and classical results on differential inclusions are considered in order to
obtain solutions. Friction and impact problems arising in Unilateral Mechanics are studied so as to illustrate the theore-

tical approach. )
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1. Introduction

Many mechanisms consist of parts that can be considered as perfectly rigid bodies. Some of these parts may come into
contact or separate from each other, however they do not penetrate each other. That means that forces of constraints
or reaction need to be included in the formulation of mathematical models for such processes. The use of forces of
‘constraints to specify the contact phenomena introduces serious mathematical difficulties into these models. This is the
reason why the place of unilateral constraints received in publications in classical mechanics is very modest in compar-
ison with the abundance of unilateral constraints in engineering systems.

Using modern tools of convex analysis, MOREAU [16], [17] has recently proposed rigorous mathematical expres-
sions of normal contact laws, Coulomb’s friction law, shock laws, etc., which lead to differential inclusions.

A second order differential inclusion model can be formulated as follows:

Find g: [0,T] — R¥, t+— ¢(t) such that

Mi(t) + Cq(t) + Kq(t) € f(t) + F(t,q(t).4(t)), ae. te€(0,7), L (1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f:[0,7] — RY is avector-valued
function related to the given forces acting on the system, and F: [0,T] x R¥ — ’P(R" ) is a set-valued function, ie. a
function from [0, 7] x R¥ onto the set P(R¥) of all subsets of R¥, that defines, for each ¢ € [0, 7], a graph in R" used
to express the unilateral reaction forces. Usual initial conditions such as

90 =@, §0)=aq,
and impact laws (provided that the system under consideration involves rigid body collisions) are generally introduced
to complete the formulation of the model.

Until now only some special cases of second order differential inclusions have been studied. See for example the
works of CHOLET [5], FREMOND {10}, MARQUES [15], and MOREAU (16}, [17]. However, various problems formulated as
in (1.1) cannot be studied using the current theoretical results in the mathematical literature. In particular, if the
matrices M, K, and C involved in the model (1.1) are singular, then most of the known results do not apply.

However, singularities occur frequently in models of the dynamics of muilti-body systems. Indeed, most problems
in Mechanics are formulated in terms of parameters qy,...,qy making the element q appearing in (1.1). The formula-
tion of usual damped spring-mass systems lead to the so-called mass matrices, damping matrices, and stiffness matrices
that are inparts determined by the physical characteristics of the rigid bodies, springs, and dampers involved in the
system. This part of the matrix formulation of the whole model is rarely the cause of singularities. However, a whole
model may encompass the matrix formulation of bilateral constraints whose geometric or kinematical effects are ex-

pressed by equalities of the form
Alq + A2q =b )
with A;, Ay € RN (M < N), b€ R This last first order system introduces a zero matrix block in the whole mass
matrix that can be the cause of the singularities of this last one (see e.g. [3)).
The use of zero-mass points for example to denote a connection between two springs or two dampers may also be
the cause of singularities in the resulting models (see e.g. [1]). The treatment of some forces like reaction forces or friction

forces as unknows of the problem may also introduce singularities in the whole model. Problems of the form (1.1) with
singular matrices M, C, and K, and F = 0 occur also informulating the dynamic of various problems in Economics.
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The aim of this paper is to discuss the mathematical strategies permitting the treatment of the model (1.1) for
matrices M, C, and K allowed to be singular. In particular, we develop reduction techniques in such a way that the
resulting reduced model can be studied by means of standard arguments. More precisely, the main goal of this paper is
to develop reduction model strategies so as to rewrite second order singular differential unilateral systems in the follow-

ing first order form:

Wt) € o(t,y(t)), ae te(0,T), .
(1.2)
¥(0) =1,
where yp € R® and @ is a map from [0, 7] x R™ into the set of all subsets of R".
Differential inclusions of this type have been the subject of many papers and, for more details, we refer the read-

er to the book of FILIPPOV [9], the survey of DONTCHEV and LEMPIO 7] and the paper of LEMPIO and VELIOV {14].
The following theorem (see {7], [19], and [9]) gives sufficient conditions for existence.

Theorem 1.1: Suppose that P satisfies the conditions
(i) ® is nonempty, compact, and convez-valued on [0,T] x R,
(ii) D(¢,-) is upper semicontinuous, for all t € [0,T),
(iii) ®(-,z) is measurable, for all z € R*,.
(iv) there ezist constants k, and k; such that
|2l < kllzl + k2, Vzed(t,z), . zeR*, te0,T).
Then Problem (1.2) has a least one solution, i.e. an absolutely continuous function y that satisfies (1.2).
If, in addition, the map P possesses the decomposition
o(t, z) = 0(t,z) - B(x),
where 8: [0,T] x R* — R" is a single-valued function satisfying the one-sided Li'pschitz condition
(0(t, z1) - 6(¢, 22))” (21 ~ %2) < Lllmy — zalf? ,
uniformly for all t € [0,T] and B: R" — P(R") is a monotone set-valued mapping, then the solution of Problem (1.2) is
necessarily unigue.

Models as the one formulated in (1.2) can be solved by means of appropriate set-valued version of classical

difference methods like Euler’s method and 4-stage Runge-Kutta method.
The Euler Method is here outlined. For g€ N\{0}, a grid 0 = ¢y < ¢; < ... < t; =T is chosen with stepsize

h=(T-t)/g=tj—t;y (i=1,...,q). Let

o = Vo,
and, for j=0,...,q~ 1, the vector n;,, is computed by the formula

w1 € u;+ h®(t,m;). (1.3)
Then one sets

7(t)=n;+ % (¢ = t;) (W41 —m;)s (1.4)
for t;<t<tjs1,5=0,...,9— 1. The piecewise linear function #? yields an approximation of the solution of Problem
2 A 4-Stage Runge-Kutta scheme can be outlined in a similar way:

7o =%,

{ i =9+ % (kjy + 2k + 2kj3 + ku) , (1.5)

with

h ki h ki
k11€¢(tj,7]j), kp€¢(t,'+—2-,’]j+%). kjge¢(tj+7, 7lj+—2]—), (1_6)

kj( € ¢(t,'+ h, n; + k)a) .

The convergence properties of these schemes are overviewed in [7]. Various problems in Unilateral Mechanics have

been recently treated in {19].
Theorem 1.1 can be applied to study a great variety of models of unilateral phenomena like dry friction, debond-

ing effects and delamination effects. However, the assumptions required on @ are too strong to encompass frictionless
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normal contact laws expressing non-penetration constraints and reactions. Indeed, simple dynamic models or reduced
dynamic models involving such unilateral constraints are generally governed by a system of differential inclusions of

the type

§€ f(t,0,9) +Owi(a), - (16)

where f:[0,T) x R¥ x R¥ — RY" is a single-valued function and 8y denotes the convex subdifferential of the indi-
cator function of some nonempty closed convex set K C RY defined by the geometric constraints imposed on g. Impact
Jaws are also usually considered so as to complete the formulation of the problem in consideration. In practical situa-
tions, the set K can also be nonconvex, but the theory we use here apphes only in the convex case.

The differential inclusion (1.6) reduces to (1.2) by setting y = (g §)7, n=2N and

¢(t! y) = (ny(t, ", yﬂ) + a'pK(yl))T .
It is clear that @ does not satisfy the sublinear growth condition (iv) in Theorem 1.1. We have indeed

Ok (z) = Nk(z),
where Ng(z) denotes the normal cone of K at z, that is

Ng(z) = {w e RV : wT2<0, Vz € Tx(z)},
where

Tk(z) = U MK - z).

>0

In the following, we remind a result proved by PAOLI and SCHATZMAN [18]. It gives a weak solution to Problem (1.6)
coupled with the impact law

g(ts) = —egn(t-) + ¢r(t-),  Vt€[0,T]: o(t) € 9K,
where gy and ¢r denote the projection of ¢ onto Rv(q(t)) and (Rv(q(t)))", respectively. The parameter e lscalled the
recovery coefficient.

Theorem 1.2: Let K be a closed convex subset of R™ with nonempty interior and o regular boundary 0K of

class C? in the sense that there exists a unique mapping v: 8K — RY of class C! such that

Nk (z) = Ryv(z), Vx € OK.
Let
(i) £:[0,7] xRY x RY — R" continuous,
(ii) f(t,-,) Lipschitz cantinuous for all t € [0,T].
Let also q € K, i € Tk(qo), and e € (0,1] be given. Then there ezists g: [0, T] — R¥ Lipschitz continuous such that

(a) ¢ has bounded variations,
(®) 90) =@, _
(c) ¢(0+)=ay
(d) q(t) € K, ¥t € [0,T),
(e) (q - f(t: q, Q): P - q) 2 0$ Vq, € C‘o([OrT]:K)r
) a(ty) = ~egn(t-) + qr(t-), vt € [0,T] such that ¢(t) € K.
Note that the expression (G — f(t, g,9), ® — q) > 0 (considered in the sense of distributions) constitutes a weak formula-
tion for (1.6).
The solution outlined in Theorem 1.2 is obtained as the limit (in W'?(0,T;R"), for all p € [1,400[) when 4 — 0
of a subsequence of the solutions of the system

dx +—2— (—M—> G(aa—Pr(q), ) +ﬁ—:ﬂ= £(t, g ),

v 2 2
n 1
V22 + (in(e)) )
2:(0) = q,
2(0)=q,
where
Clu) = (uTv) w/juf® if u#0,
0 if u=0,
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and Py is the projection map on K. Note also here that the operator (u — Pxu)/A is the Yosida approximant of the

operator .
In the case of elastic impact, i.e. e = 1, the first equation in (1.7) reduces to

6z+q‘+"(q‘)=f(t,qa,da)- (1.8)

This case will be considered later in this paper.

In this paper, three interesting engineering problems are revisited by means of advanced mathematical tools in
unilateral analysis. We show how matrix-reduction methods can be used together with Theorem 1.1, Theorem 1.2 and
the difference methods outlined in this introduction to provide a complete analysis of these problems.

Jordan’s reduction method for first order differential inclusions is outlined in Section 2 and used in Section 5 to
discuss a problem in biomechanics. In Section 2, we discuss a mathematical condition that is required to specialize the
result of Section 2 to the second order differential inclusions. Model reduction techniques are studied in Section 4. The
results proved in 1] are established here in a more general framework. Symmetry and positive semi-definite properties
assumed in [1] on the involved matrices have here been relaxed. The generalized results developed in Section 4 are of
particular interest to reduce problems in Economics because they often do not present the “nice” properties encoun-
tered in most problems of Mechanics (see [8]). Limitated in space, problems in Economics are not discussed in this
paper. The theoretical results discussed here are however illustrated in this sense in [8]. Note also that not-necessarily
symmetric matrices appear in the mathematical formulation of electric power systems [2]. In Section 5, we present
some examples of mechanical systems involving rigid bodies subject to unilateral constraints. These examples illustrate
the methodology developed in this paper to study unilateral problems in Mechanics.

2. Jordan’s reduction of first order differential inclusions

Let us first discuss the first order model:
Find
z:[0,T] —R", t— z(t),
such that
Ei(t) € Az(t) + H(t) + G(t,z(t)), ae te€(0,7), 2.1)
where E, A € R™*" are singular matrices, H: [0, 7] — R" is a given vector-valued function and G: [0, T] x R" — P(R")
denotes a set-valued function. Together with (2.1), we may consider some initial condition like

z(O) =c. (2.2)
Definition 2.1: One says that the pair (E, A) € R™" x R"*" forms a regular matrix pencil provided that there
exists 4 € R such that
rank(AE — A) =n.
Remark 2.2: Assume that (E, 4) € R*" x R™*" is a regular matrix peucil. If
G(t,y) = —O,W(t, ), Vie [0,1'] ’ yER",
where ¥: [0,T] x R" —+ RU {+00} is a proper convex and lower semicontinuous functional in the second variable for
any t € [0,T] and J, denotes the convex subdifferential operator with respect to the second variable, then (2.1) is
equivalent to the variational inequality
(Bi(t) - Az(t) - H))T (v—-=z(t)) + P(t,v) — ¥(t,z(t)) >0, VveR".
Setting z = € u, we see that (2.1)—(2.2) reduces to

Ei(t) € (A — AE) u(t) + e H(t) + e % G(t,eM u(t)), ~ 23)

u(0) = c. )
The matrix 1E — A is regular and the matrix £ = (1E — A)™! E is well defined. The relation (2.3) may be formulated
as

—Eu(t) = u(t) + h(t) + §(t), ae te(0,7T),

(2.4)

u(0) =c,

where
h(t) = (A-AE) e H(t),
000224 ZAMM (Heft 10/2000) 3B2 Art.-Nr. 520/Dumont y:/p_5/2am/1000/4912/2am4912u.3d

" insgesamt 27 Seiten {Diskette) Stand: 15. 6. 2000 SIGNA Bearb.: Ha.



DuMoONT, Y. et al.: Second Order Unilateral Singular Systems

and
a(t) € (A — AE)™' 7 G(t, e u(t)).
Set p:= dim(ker(E';)). The Jordan form J of the singular matrix E; = TJT! has the structure
=(5 %)
where W € R®-P)*("~P) contains all the jordan blocks corresponding to the nonzero eigenvalues of Ej and N e RP*? is
nilpotent of order k < p (see e.g. [4]). From (2.4) we deduce that
—JT Y =T u+ T h+ T,
{u(()) =c.
Setting v = T~ lu, we get
{ -Jo=v+h+g,
v(0) =T ¢,
with
9(t) € T"Y (A - AE) ™ e G(t, M Tu(t)) ,
and
h(t) = T (A—-AE)" e H(t).
Let us nov define the .rectangular block matrices
Ay = (Tn—p)x(n-p) | On—p)xp) »
Az = (Opx(n-p) | Zoxp)
and set
w=Aw, h=Ah, g=Ag and ¢ =AT'ec, i=12.
We see that
{—Wﬁ1=vl+h1+yh —Niy =v2 + hy + g2, 25)
1n(0)=aqa, 12(0) =c2.-

System (25) is coupled through the relation

("‘) eETWA-AE) e G (t, T ("‘)) .
92 vz

If G = 0 then System (2.5) is decoupled since in this case, it reduces to

"= -—W'lvl - W—lhl ,

{‘01(0) =0, (2}
Nig = —vy — by, 2.7)
1)2(0) =Ca. ( '

System (26) can be solved by means of standard methods. Remind that
¢
u(t) = e - J’e-W"(t—r) W_lhl(‘l') dr,
0

provided that h, is continuous on [0, T]. Under the additional smoothness assumption, that h; is of class C*-! on [0,T),
the system (2.7) is solved by
va(t) = ~ha(t) + Nho(t) = N2ha() + ... +(=1)* N D(e).

That means that the initial condition of the initial value ¢ cannot be chosen arbitrarily since ¢; = /3¢ is determined by

hy = Azh and its derivatives ha, ..., hg‘—l). The initial condition needs indeed to satisfy the consistency condition
AT e = —hg(0) + Nha(0) + ... + (-1)* N* 18 (0). : (2.8)
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Remark 2.3: If hy = 0, then it is clear that if ce R(E‘f) then the consistency condition (2.8) is satisfied.

Indeed
0 O v
and if ¢ € R(E¥), then c = E¥z for some z € R@and clearly

k
AzT-lC=A2 (v:)’ (0)) le=0.

Assume now that T-1(A - 1E) e % G (t,e‘“ T (2)) is decoupled as

T A-AE)'e ™G (z,e“ T (”‘)) = ('p(t'”‘)) ,
v Opxr

where @: [0,T] x R"* — P(R"*) is some set-valued function. Such reduction may be expected for various problems
in mechanics since the unilateral forces are introduced in the formulation of the usual equations of motions that are in
fact not the cause of the singularities occurring in the whole model. Then the systems (2.6) and (2.7) reduce to

v € —W‘lv, — Wk ~ W“‘D(t,vl) .

(2.9)
vl(O) =,
N'l.h=-”2-h2, (210
»(0) =c. . -10)

The differential inclusion (2.9) reduces now to a standard one that has been studied in the mathematical literature
while (2.10) can be solved as described here-above. '

3. Second order differential inclusions with singular matrices

We consider in this section a second order system:
Find ¢: [0,T] — R¥ such that
Mij(t) + Cg(t) + Kq(t) € f(t) + F(t,q(t),q(t)), ae te(0,T),
9(0) = 0,
40) =q,
where M, C, K € R"*N denote mass, damping, and stiffness matrices, respectively, and f: [0,7] — R¥ denotes a

vector-valued function while F: [0,T) x RY x R¥ — P(R¥) is a set-valued function.
This system can be rewritten in the first order form (2.1) by defining

z=(;>, E= ((I) :{ , A=(_(;{ —Ic) (32)

0 0 @
H(t) = , Gt,:c=( ) c=( )
0=(10) = (r,m, 20 o
Note that if the matrix M is singular then. E is singular, too. On the other hand, if K is singular then A is also
singular.
Let us define by
P(A) = det(A’M + AC + K)

the characteristic matrix polynomial associated to the second order system in (3.1).
It is clear that the approach stated in the previous section can be specialized to the second order differential
inclusion (3.1) as soon as the matrices E and A in (3.2) forms a regular matrix pencil. The following theorem provides

a general result in this sense.

Theorem 3.1: There ezists A € R such that P(A) # 0 if and only if rank(AE — A) = 2N, i.e., the matrices E and
A form a regular matriz pencil.

(3.1)
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Proof: Suppose that there exists 4 € R such that P(A) # 0. If 1 #0 then
Al I AL -1
det(AE — A) =det = det
HAE-4 e(x AM-i-C) aE o

I I
N _ 3N ikl 2 .
=1 det(T AM + C) =1 det(AM+C+IA() det(A*M +AC + K)

It results that there exists 1 € R\{0} such that P(4) # 0 if and only if det(AE — A) # 0.
If 1= 0 we have

det(—A) = det ( IO( CI ) P(0).

Thus P(0) # 0 if and only if K is regular. 0

Remark 3.2: Condition P(1) # 0 is more general than the one (discussed in [1]) requiring the invertibility of
M + C +K. For example, if

w53 e (5 7)== d)

we see that

2 -2\
M+C+K_(_2 _2)

¢

is singular, while

5 -6
wrwvr= (5 )

is regular, that is P(2) # 0.
Wedefine M; =AM +AC + K and E; = (AE - A)™' E. Note that

B MM +C) MM
re MK AM'M )
Indeed, asume that A # 0. Then we check that

1 o\ (a4 I M'AM+C) MM
0o M) \K iM+C —-M 'K AMM )
Only the relation 0 = KM (AM + C) — (AM + C) M{'K needs some attention. We have indeed

KMA—I(}-M+C)—(}.M+C) M[‘K =K}\:f;1 (}_M_,_C_l._llf) —-KM[I _I;_

-If) MK + KM;! ——KMA L My My M'K =0.

- (4043 : L

If A = 0 then K is regular and we check that

(0 3)= (e ) (57 0):

The following two propositions give few properties of the matrix E;ina general framework. The approach used here is
similar to the one developed in [1].

Proposition 3.3: Let A € R such that P(A) # 0. Then the matriz Ey satisﬁes the following properties:
(i) rank(E?) = rank(M) + rank( AC;) ,
(i) ind(£;) < 1 if and only ifrank(ﬁ) =N,

(iii) ind(£) = 0 if and only if M is invertible.
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8 ZAMM - Z. Angew. Math. Mech. 80 (2000) I

Proof: (i) Let

e = Y
va )’

and yes1 = Eyye where g, w2 € RY for k = 1, 2. We suppose that

Ely =0.
Using the notation above, we may write

»=Eu=En=0 '
Let us first check that ker(E$) Cker(ﬁ ‘;’) Reminding the definition of £, we obtain Eyy = (AE — 4) g = 0
and EE;y = By;. It results that

ya1 = M [(AM + C) yn + Myna] =0, (3.3)
and

My = MM [- Ky +AMyp] = 0. ' (3.4)
Then, using (3.3) and (3.4), we see that

AMyz — My = My,
and, since AMyz, — My = 0, we deduce that My, = 0. Then from (3.3), we obtain

Cyu + My =0.
Consequently, we have i

(5 ¥)n=(% 9)(&)=0

_f{wn C M
Convasdy.asmethaty—(w)eka(u 0),wehave

By= (H:'[(AM+ C) 1 + M
M (—Ky +AMy)
Using the fact that Cy, + My = 0 and My, = 0, we deduce

N 0
By=1{ . .
o (M;'(-Kyl +1Mm))

By = B, ( ) 0 ) _ ( M MM (~Kn + M) )
, M7 (— Ky +AMy,) ) AL MM (— Ky + AMy)

Using the fact that —K =A*M +1C - M;, we obtain

MMM (— Ky + AMy,) = M{* MM (A*M +AC) 1 + AMy — Mayy)

= M7 M(M; ' (A2 Map + M(Cy + Mypn))) — M My -

Reminding that Cy; + My, = 0 and My, =0, we see that

M7 MM (—Ky + AMy;) =0,
which implies that

Ejy=0.
Finally, we deduce that

. cC M
ker(E?) = ker(M 0 ) ,
and
. c
rank(E2) = rank(M) + rank Ml
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(ii) Recall that ind(E}) < 1 if and only if rank(E;) = rank(Ef). Since
rank(E;) = rank(E) = N + rank(M),
and then rank(E;) = rank(Ef) if and only if

rank(M) +rank(;;) = N 4+ rank(M),

C
rank.(M) =N,

which implies the desired result.
(iii) Finally, ind(E) = 0 if and only if rank(E;) = 2N. Since

rank(£};) = rank(E) = N + rank(M),
it follows that rank(E;) = 2N if and only if Mis invertible.

that is

Definition 3.4: We say that a matrix 4 € RV has Property (K) if
{z e RV : 2T Az = 0} C ker(A).

The next proposition gives further information on the matrix E;.

Proposition 3.5: Let 2 € R such that P() # 0. Then the matriz E, satisfies the following properties:

(i) ker(AM + C) C ker(M), then
rank(E2) = rank(M) + rank(AM + C).
@) I
(a) My has Property (K),
(b) C has Property (K),
(c) ker(C) = ker(CT),
(d) ker(M) = ker(M7),

then N
ind(E;) < 2.

Proof: (i) It is clear that

ker(l.c;) = ker(M) Nker(C) C ker(AM +C).

Then, if we suppose z € ker(AM + C) C ker(M), it follows immediately that z € ker(C), which implies ker(AM + C)

C ker(M)nker(C). Hence

c
ker(M) = ker(AM + C).

We also deduce
rank(AC';) = rank(AM + C),
and thus by (i) in Proposition 3.3, we get
rank(E2) = rank(M) + rank(AM + C).
(ii) We know that if ker(E}) C ker(£32) then ind(E}) < 2. Let
Yo = (ykl) ,
Yk2
and Y41 = Ejyk, where yu, yrz € RY for k =0, 1. We suppose that
Ei'y() =0.

000224 ZAMM (Heft 10/2000) 382 Art-Nr. 520/Dumont
insgesamt 27 Seiten {Diskette) Stand: 15. 6. 2000

y:/p_5/2zam/1000/4912/zam4912u.3d

SIGNA

Bearb.: Ha.
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Since 3 = E‘,um, we have
v = M7(AM +C) you + Myoa) | (35)
yi2 = M7 (— Ky + AMye) . :

Morever, 3 belongs to ker(E'f) and thus

Cyn + My;; =0, _
' | (36)
My, =0.
Fron (3.6);, we get
vHhCynu + v My12 = 0. .

Since ker(M) = ker(MT) and C has Property (K') we obtain y;; € ker(C) = ker(CT) and then by (3.6) it results that
My ;= 0. Using (3.5), we get

My = y§,(AM + C) yor + ¥1,Myea,

and wve obtain
M =0.

Assunption (ii)e{a) together with the regularity of M, yields
yu =0.

Then, using the fact that My, = 0, we deduce
AMyy — My = MM (A*M 4 AC + K) yo, = My, =0,
and, from (3.5);, we obtain

Cyn + My =0.
Finally, we have
Cyn + My =0,
Myn =0,
which yields y € ker(EJ). 0

Remark 3.6: i) If C is positive semi-definite and M is symmetric and positive semi-definite then
ker(AM + C) C ker(M), VA>0.

Indeed, if z € ker(AM + C) then zT(AM + C) z = 0. However z7 Mz >0, zCz > 0 and thus 2T Mz = z7Cz = 0. The

matrix M being symmetric, it results that z € ker(M).
ii) More generally, if C is positive semi-definite and M is cocoercive (see e.g. [12]), i.e., there exists a > 0 such
that 27 Mz > af|Mz|)?, then

ker(AM + C) C ker(M), VA >0.

As sbove, we see that if z € ker(AM + C), then in particular 27 Mz =0. It results that ||Mz}| =0 and then
z € ker(M).

4. Model reduction

The aim of this section is to present a mathematical approach allowing the reduction of the second order system (3.1).
, Define I = {A € R: P(4) # 0}, Ni(4) := def(AM + C), N»(1) := def(M) — Ny(4) for all A € I", and N3 = rank(M).
Here, for a matrix A, def(A) := dim(ker(A4)). It is clear that Ny(4) + N(1) + Ny = N. We assume that M is singular
but ron-zero. In the rest of this section, we note for simplicity Ny = N;(1) and N = Na(1).
Theorem 4.1: Let the following assumptions hold:
ker(M) = ker(MT), , (4.1)
There exists A € I' such that (i) ker(AM + C) C ker(M),
(ii) ker(AM + C) = ker(AM + CT), (4.2)
(lll) N1>0, N2>0.
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Let U ={,...,zn} be an orthonormal basis for RV suck that {z1,...,Zx4n,} i an orthonormal basis for ker(M)
and {z1,...,7y,} is an orthonormal basis for ker(AM + C). Then we have

00 0 0.0 o0
UTMU=(0 0 o0 ) UTcU={0 Cyp Cau]l,
0 0 My 0 Cy2 Cs

where Msz € RM*M 45 regular and Cj; € RN Ni, 4,5 =2,3.

Proof: Under the previous notation, we get the scheme

l”
Z1, T2, - - s TNy TN 41 - T ENia s TNyt Notdr o .'-'i_n? .
_ kes{AM+C) )
ker(M)
We have
TMz;=0, 1<i<N, 1<j<Ni+N,,
and

FCrj=2T(AM+C)z; =0, 1<i<N, 1<j<N.
Thus, we may write
0 0 My 0 Ci2 Cis Kn K K
UT™™U = (o 0 M,,.,) , UTcu= (o Cn C,;) , UTKU = (K21 Kn K,;)-‘i
0 0 M 0 Cp Csn Kn Ki Kgs
Moreover, using assumption (4.1), we obtain
TMz;j=(MTz) 2;=0, 1<i<Ni+N, N+N+1<j<N,
so that
Mz = My = 0. ‘
Consequently, we deduce that the matrix Ma; is regular since rank(Ms;) = rank(M) = N3. On the other band, using
assumption (4.2), we see that
aTCz; = (CTz)T zj= (AM + CT) )T z; =0, 1<i<MN, M+1<ji<N,
and thus
Cin=Cj3=0. a

Remark 4.2: i) Condition ker(M) = ker(MT) is for instance satisfied in the following cases: a) M symmetric, b) M

skew-symmetric, ¢} M positive semi-definite.
ii) Condition ker(AM + C) = ker(AM + CT) is for instance satisfied in the following cases: a) C' symmetric, b) M

symmetric and AM + C positive semi-definite.
To go further, we suppose now that the matrix UTM,U has all leading principal minors non-zero. We will refer

to this assumption as Condition (Hy). Note that this property is for example ensured as soon as we suppose that M, is
positive definite.

Theorem 4.3: Let assumptions (4.1) and (4.2) hold together with
ker(A2M + K) L ker(AM +C),

(4.3)

ker(A*M + K) @ ker(AM + C) = ker(M),

ker(A2M + K) = ker(A*M + KT). (4.9)
Then

UTRU={ 0 0 0 ].

K3 0 K

Moreover, if M, satisfies Condition (Hy), then Ky € RM*M gnd Cy, € RV*M: gre regular.
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Proof: Assumption (4.3) yields ker(A*M + K) C ker(M) and thus

Kzj=(MBM+K)z;=0, N +1<j<N+N,.
Then it results that

Kp=Kp=Kp=0.
On the other hand, we have

o Kzj= (K'z) 2, =(A’M + KT) z)" z;, M +1<i<M+MN, 1<j<N,
and thus, by assumption (4.4), we get

TKzj=0, N +1<i<Ni+MN,, 1<j<N.
Then it results that :

Ky =Kn=0.
Moreover, ([;" lg'n is a principal submatrix of UTM,U so that K;, and Cx are regular. 0O

The special case N> = 0, i.e. kex( M) = ker(AM + C), is now treated.
Theorem 4.4: Let the following a.s.;umpﬁom hold:
ker(M) = ker(M"), (4.5)
There exists A € I such that (i) ker(AM + C) C ker(M),
(ii) ker(AM + C) = ker(AM + CT), (4.6)
(iii) M =N +N,;>0.
Let U= {z,...,zxn} be an orthonormal basis for R¥ such that {z1,...,zn,} is an orthonormal basis for ker(M). Then

we have
0 0 0 0
T — -
UMU—(O Mu)' UTCU.(0 Cn),
where My € RM*M s reqular, Cy € R [f in addition,

M, satisfies Condition (Hy), 4.7)

then K3 € RM*M s regular.
Proof: Under the previous notation, we get the scheme
R'
ﬁ,mz,---,zu..3N.+h---.xh7 .
N, s
k()
ker(AM+C)

As in Theorem 4.1, we check that

UTMU=(° M") UTCU=(° C") UTKU=(K“ K")

0 My 0 Cn Ky Kop
Moreover, using assumption (4.5), we obtain
TMz;=(MTz)T z; =0, 1<i<N,, MN+1<j<N.
T £ ]

Then it results that M;; = 0. Consequently, we deduce that the matrix My, is regular since rank(M2z2) = rank(M) = Nj.
On the other hand, using assumption (4.6), we get

10 = (CTz) z;= (AM +CT) z)T z; =0, 1<i<MN, MNM+1<j<N,

and thus Cj; = 0. .
If condition (4.7) holds then K}, is regular as a principal submatrix of U7 M,U. a
The following corollary shows that under assumptions of Theorem 4.3 System (3.1) can be reduced to a regular

second order system of differential inclusions.
Corollary 4.5: Assume that assumptions (4.1)—(4.5) hold and let S € RV*M pe the matriz defined by

-K, l_llK 13
S=U —C;leu
I
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Then the matriz STMS is regular.
Proof: Using the results of Theorem 4.3, it easy to check that
STMS = Ms;,  STCS=Cs - CuCylCn,  STKS=Ku— KuKkij ' Kis.
Consequently, using the transformation ¢ = Sg, System (3.1) reduces to
Mas5 + (Cas — C2C5lCo) § + (K3 — KKy Kus) G € ST f + STF(t, 53, 50)- 0

The following corollary which follows from Theorem 4.4 gives another case in which a reduction in the number of
degrees of freedom can be achieved.

Corollary 4.6: Assume that assumptions (4.5)—(4.6) hold and let S € RN*M pe the matriz defined by

P U(-—K{;‘Klz) _

Then the matrix STMS is regular.
Proof: Using the results of Theorem 4.4, it easy to check that
STMS = My, STCS8=Cn, STKS=Kn-KuKj'kKys.
Consequently, using the transformation g = S§, System (3.1) reduces to
Mz + Cni+ (Kn — KnKiy'Ku) § € STf + STF(t, 53,59). O

5. Applications

We present in this section some mechanical applications of the theoretical results given previously. Examples 5.1 and
5.3 are dedicated to illustrate the results of Section 4 while Example 5.4 illustrates the Jordan reduction technique

presented in Section 2.

Example 5.1: Consider the spring mass system of Fig. 5.1. The mass m is constrained to move only in the
vertical direction. The design of the system invokes two linear springs with positive spring constants k; and k; and twe

6 s

AVAVAVAVAVAVAAW WALV WA WA Y

Fig. 5.1

PP AV L L A L A PPl
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14 ZAMM - Z. Angew. Math. Mech. 80 (2000) 8

linear viscous dampers with positive damping coefficients ¢; and c;. The mass m has displacement g3, the massless
joint between the springs has a displacement ¢, while the massless joint between the dampers has a displacement g;. In
such machinery, the rigid body of mass m denotes a machine while the rest of the system models a vibration absorber
that is installed between the machine and the supporting ground in order to reduce the effect of vibrations induced for
example by a force of excitation Fy sin upt (Ey, wy € R). The machine slide yields a total friction force t(gs). Here we
postulate the following relation between t and the velocity gs:

if ¢>0 then 7=-a,
{if @B <0 then =0,
if =0 then t€([-a,b],
with a, b > 0. Equivalently, we write
ter(-é;),
where I is the set-valued function
-a if u<0,
m——-»l'(u)={[—a,b] if u=0,
b if u>0.
The equationgof motion are

0 =-ha+kia—-a),
{ 0 =—-ap+a(s-@),
mis = —ka(gs — 1) — ca(gs — ¢2) — mg + Eq sin wot + 1(4s) .

This system can be written under the form
Mii(t) + Cq(t) + Kq(t) € f(t) + F(t, q(t),4(¢)) ,

000 0 0 0 ky+ka 0 -k
M=(00 01}, C=(0 o+ —q), K=( 0 0 0),
00 m 0 -a g —-k2 0 Kk

0

aQ 0
q= (92) ,  f®)= ( 0 ) y  Flt,q(t), 4(t)) = ( ) .
o Eq sin wot — mg I(—g(t))

The matrix M +C+ K is symmetric and positive definite. Moreover the matrices M, C, and K satisfy the assump-
tions of Corollary 4.5. Indeed, it is easy to remark that

ker(M) =ker(MT),  ker(M +C)=ker(M +CT),  ker(M + K) = kee(M + KT),
since the matrices M, M + C, and M + K are symmetric. Moreover, it is clear that
def(M) > def(M + C) >0 with ker(M + C) C ker(M).

On the other hand, we have
ker(M + C) @ ker(M + K) = ker(M) with ker(M + C) 1 kex(M + K),

B e ]
e )]

Hence, we apply Corollary 4.5 to construct the orthogonal matrix U € R%*? and the matrix S € R®*! as follows:
100 -Ki' Ky
U= (o 1 o), s=vu| -cicn |,

0 01 I

with

(=]

and
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respectively, where Ky, = ky + ky, K13 = —k2, Ca = ¢ + ¢; and Cy3 = —¢3. This implies that
ka/ (k1 + k2)
§= (Cz/(cl +Oz)) .
1
Then we obtain STMS = m, STCS = cic/(c1 + ¢3) and STKS = kyka/(ky + kz). Finally, setting ¢ = 5g, we see that

g (= gs) is the solution of

X ac: = ki Kz
t {4
my(t) + =~ 10+

Remark 5.2: From the mechanical point of view, the system described in this example can be immediately
reduced to (5.1) by setting 1/k := 1/k1 + 1/ky and 1/c:=1/c; + 1/c;. But here the goal is just to illustrate simply the
mathematical reduction technique presented in Section 4. A more complicated and realistic example (Example 5.3) is

given below.
Setting y = (, ), we obtain from (5.1) the first order system

i(t) € (¢, u(t)),

g(t) € Eo sin wot — mg + ['(—g(t)) . (5.1)

where

Y2
(t,y(t)) = (_l a1 _kk 1eg o+l (- ) .
ma+c 2 mk1+kgyl+mE°smw°t g+m[‘( ()

The systen is now studied on the time interval [0,T), with the initial conditions ¥(0) =0, i.. G(0) = §(0) = 0. The
existence of a solution follows from Theorem 1.1. Moreover,

['(z) = 8hg s(x),
where h, ; is the convex function

" (). —-az if <0,
=Y b i z>o0.

X 104

0 T T T 0.02
-0.5 &
0
-1t 4
-0.02
-1.5 1
o
= &
g k]
o -2 1 2-0.04 .
[+] (43
9 o
Fy s
o
-25 1
-0.06 b
-3H ]
-0.08 1
35 -
_4 'l Il ' -0.1 (1 '] A
0 0.5 1 15 2 0.5 1 15 2
time time
Fig. 5.2
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16 ZAMM - Z. Angew. Math. Mech. 80 (2000) &

It results that I is monotone. We have
D(t, y(t)) = 0(¢, y(t)) - B(w(t)),

with
Y2
o(t,y(t)) = 1 cae 1 kikp 1 . )
_ mq+q”’ mk‘+hy1+ml.%smwot g
and

0
86 = _(y/m 1t -
The application 6 is Lipschitz continuous uniformly for all ¢ € [0,T) and f is monotone. The monotonicity of 8 follows
from the one of I". We have indeed
(B(2) - Bw))” (- w) = (1/m) (~[(~2)) = (~L(~wa)) (22— ws),
= (1/m) (([(~2) = [(~w)) (-2 - (-w2)),
>0.
The uniqueness of the solution follows. The Euler method was applied to the problem with the following data:

m k ky a a E [ b (0) as(0)
25 25 x 104 10 x 104 2500 2000 50 10 29.43 22075 0 0

The displacement g3 of the machine and its velocity ¢s are depicted in Fig. 5.2. Stick-slip phenomena appears clearly.
In Figs. 5.3, 5.4 we further illustrate the model by means of some additional numerical simulations. We present,
in each case, the data chosen and the graph representing the displacement gy as well as the phase portrait.

m k k a c2 B a b «(0) 4s(0)
1 100 25 6 4 0 1 1 2 0
2 L} L LI L) 4 Ll 1
15 1
2r i
1H 4
or 4
2@ 0.5} . o
<
g k]
2 L
§ ]
2 of s
©
4r 4
0.5+ 3
6 L -
1 = -
1.5 A L L 8 . A
0 2 4 6 8 10 2 1 0 1 2
time displacement q,
Fig. 5.3
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m ks ks a o Ey a b q3(0) 43(0)
1 100 25 0 4 0 12 12 2 0
2 L] Ll 4 A L] L)
1.5 T ol
14+ -
o -
. 0'5 - -
& ol
F 3
E i i >
g 0 g
K 9o
g e 4l
k-]
os} i 1
6 -
1 L -
1.5} 1 8r
2 . L 10 1 N N
0 2 4 6 1 0 1 2
time displacement q
Fig. 5.4

Example 5.3: Fig. 5.5. depicts a model of a shock absorber supported vehicle traveling over a road. The shock
absorber involves a linear spring with a positive spring constant &; and a linear viscous damper with a positive damp-
ing coefficient ¢;. The tire is modeled through a mass m. The rigid body of mass M denotes the vehicle. The mass M
is topped by a system constituted by a chain of springs and dampers that can be used to model the spinal column of a
" driver. Here three parts of the column are considered. It is clear that a complete system of vertebrae could be formula-
tedin a similar way. Here B denotes the mass supported by the spinal column. The road is modeled through the

function h. The displacement coordinates are go, g1, @2, 93, G4, @5, g5, ¢7- Let us denote by N the normal reaction force
occurring as soon as the tire is in contact with the road. It is clear that A > 0. On the other hand, we must impose

the nonpenetration condition gg > h. If gy > h, then the tire and the road are not in contact so that A = 0. Otherwise,
if N > 0 then the tire and the road are in contact and, consequently go = h. This normal contact force-displacement

relation is depicted in Fig. 5.6.
It is known that the relations

@w>h, N20,
@o>h=N=0,
N>0=q=nh,

are equivalent to the set-valued relation
N € -3¥cu(m),

where ¥ denotes the indicator function of the convex set
C(t) = {v e R:v > h(t)},
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18 ZAMM - Z. Angew. Math. Mech. 80 (2000) 1

a] _

that is

0 if ze C(t),

+00 otherwise .

Yeou(2) = {

The deformation of the tire is here neglected, so that gy = q;. Consequently, we may assume that the transmitted part
of the normal reaction N through the tire spring which is applied on the mass m is equal to N. Therefore, the equa-

N |
- Fig. 5.6. The normal contact force-displacement graph
0 h q,
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tions of motion are

(Mm@ = k(g - q)+alk—q)+N -mg,

Mgy = k(g2 — ¢1) — c1(de — @1) + k2(g3 — q2) + c2(da — &) — Mg,
0 = —ki(gs ~ @) + k(g5 — @),

$ 0 = —cqu —~ G2) + calds — G4),
0 = —ki(gs — g3) + ka(a7 — @5),
0 = —ca(ds ~ ga) + caldr — ge)

\ Bir = —ki(gr — g5) — ca(dr — ds) — By.
We get the system _ .
Mg(e) + C4(t) + Kqlt) € f(2) + F(t, g(t), 4(2)) ,

where
(m 0 00 0O 0\ (cl - 0 0 0 0 0 \
0O M 0OGOU OO - a+a 0 - 0 0 0
0 0 0000 O] 0 o 0 O 0o 0 0
M=}l0 0 00000}, C=]0 -6 0 ca+ec 0 - 0|,
0 0 000000 0 0o 0 0 o0 O 0
0 0 0 0 0 00 0 0 0 - 0 c34+c4 —-cq
\0 0 000 0 B \0 0 0 0 0 -a o)}
(kl —ky 0 0 0 0 0)
-k ki+kr -k O 0 0 O
0 —ko ka+ky O —k3 0 0
K=]| o (] 0O o o o o},
0 0 —~ks 0 ks+ks O —kg
0 0 6 0 o0 0 0
\ o 0 0 0 —ki O k)
and
( a ( -mg' ( —0¥ (@) )
[ -Mg 0
Qs 0 0
9=1 9 |, f(t)= 0 ’ F(tr q(t)r q(t))= 0
gs 0 0
5 0 0
\qv) \ -Bg U,

The matrix M + C + K is symmetric and positive definite. Moreover the matrices M, C and K satisfy the conditions
of Corollary 4.5. Indeed, it is easy to remark that

ker(M) = ker(MT),  ker(M + C) =ker(M +CT),  ker(M + K) = ker(M + KT),
since the matrices M, M + C and M + K are symmetric. Moreover, it is clear that
def(M) > def(M + C) >0 with ker(M + C) C ker(M).

On the other hand, we have
ker(M + C) @ kex(M + K) = ker(M) with ker(M + C) 1 ket(M + K),

F(O\ /0\‘ '(0\ (0\‘
0 0 0 0
1 0 0 0
ker(M +Cj=span{ | 0 0]}, ker(M+K)=span{]|1 o>,
0 1 0 0
0 0 0 1
\ \0) \o/ ) \0/ \0) J
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20 ZAMM - Z. Angew. Math. Mech. 80 (2000) §

and
( (0 0 0\ /0\)
(o\ (o\ (o\ (0\
1 0 0]|o
ker(M)=spanJ 0 0 1 0}
0 1 offo
0 0 0|1
N0/ \o/ o/ \o/.
Here the matrix U € R" is given by
(oooo 100\
0000010
1000000
U=|00100 00
010000 O
0001000
\0 0000 0 1)
Then we obtain
(ooo 0 0 0 0)
00000 0 O
000O0O0 O O
UMU=|0 0 0 0 0 0 O],
000O0m 0 O
0000 0 MO
\0 0 0 0 0 0 B/
(oo o 0 0 0 0\
00 O 0 0 0 0
00 g+ -—o 0 ~0 0
UTctU=|{0 0 —-c3 ca+cg O 0 - |,
00 0 0 a - 0
0 0 - 0 -a at+c 0
\ 00 0 - 0 0 «)f
(h,+k, ks 00 0 -k 0
—ks ka+ks 0 0 O 0 —k4
0 0 00 0 0 0
UTKU = 0 0 00 0 0 0
0 0 00 k -k O
~ky 0 00 -k ki+k 0
\ 0 ks 00 0 0 ki)
Moreover, the matrix S € R is given by
-K{ Kis
S=U| -Cz!Cn |,

Iy

ky + k3 —kj ) (0 —ky 0 )
K = K = .
. (—h ki+ks)’ "T\o 0 -k/°

2 +c3 —C3 0 - 0
C = y C = .
z ( -3 c3tey ) B (0 0 -—c )
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This implies that
( 1 0 0 \
0 1 0
(ks + k3) k2 kaky
kaks 4 kaks + kska  kako + kaks + kaka
(c3+ci) csca
S= 3+ 204 +cacy  Cc3 + caca + C3c
0 ksk; (k2 + k3) kg ’
keky + kaks + kskz  Kakz + kaks + ksks ‘
ac (c2 +c3) e
cc3 + ey + 364 0C3 + €264 + C3c4
Ko 0 1 )

It results that

m 0 O
ST™MS={0 M 0],
0 0 B
( a - 0
o o+ c4C2C3 _ C4C2C3
sTcs = cicr +ccz ey cacr+cxc3 +cacy |,
0 _ €4C2C3 €4C2C3
\ cqcz + cpc3 + c3¢4 csc + 203 + cacy
( ky -k 0
kakaks kykoks
T '-kl kl + -
S'KS = kiky + kpks + ksks  kaka + kaks + ksk
0 _ kaky ks kekaks
\ Keks + Foks + kska ke + kaks + Kokq
Finally, setting ¢ = S, we see that g is the solution of
C -C1 0
m 0 0 c4C203 c402C3
= - ¢+ - =
0 M 0{q+ caca +CaCc3 +C3c4 €40z + 03 + c3cy §
0 0 B 0 - C4C2C3 €402C3
cicp +Caca+ €364 €40 + a3 + C3c4
k; -k 0

ki ki + kqkaky ksko k3 —-myg _awC(t) (&l )

+ | T M T kakg + kaky + ksky  kaky + koks + kske | GE | —Mg | + 0
kakaks kakaks -Bg 0

ksky + kaky + k3ky

0 _
kqka + kaks + kskq
Note here that STCS and STKS are singular and that § = ¢, = ¢, § = g2 and G = ¢7. The contact is supposed

elastic so that the recovery coefficient takes value 1 and ¢, satisfies the impact law

qi{ts) — A(ty) = —(qr(t-) — h(t-)),

for all ¢ € [0, T] such that g, = 0 (see for instance [18]). Setting now
a-h
qg= ) )
gs
y:/p_5/2zam/1000/4912/2zam4912u.3d
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and assuming that h is Lipschitz continuous and A has bounded variations, we obtain the system

( a _a 0
m m
. e a, oG _ ca02c3 .
I+ | "M M Mlag+an+aa) Mco + o0y +acr) | 7
0 _ C40203 C4C203
k Blao +acs+aa)  Blae + o +c3cy)
k _h 0
L, m m
bk, kb kb _
| TM MMk + hks + kske)  Mkakz + kaks + Kskq) | 9
A kakaks
\ Blkeks + ks FFoks)  Blkaks + boky ¥ ko)
(i +% h+ -fn—‘ h+g
+ a ., k € —0yP(3), (5.2)
\ --};f_ h- ﬁ h+g
g

where K = R x R. Note that
9 vp,. (@)
Oyk(d) = ( 0 ) .
0

System (5.2) is considered with the initial conditions
J0)=n€eR,, §0,) = €T, (),

and the impact law, as used in [18],
a(t+) = —an(t-) + ar(t-),

flor all £ € [0, T such that §(t) € 3K, i.e. §i(t) =0. The last formulation of the impact law follows from the fact that

ere

6N = 0 ’ 61‘ =
0

It is now easy to remark that all assumptions required in Theorem 1.2 are here satisfied. Therefore, the existence of a
solution in the sense of Theorem 1.2 is ensured. To solve Problem (5.2) a Yosida approximant (ig — Pg(y)/A of Mg
with 4 small has been considered (see also (1.8)). Note here that we have

z — Poyyz _ x — max{z, h(t)}

A . a )

The following technical data were considered:

S o

M m B ky ks ks ky a a2 o [
1460 35 25 95 x10° 20 x 10° 15 x 10° 100 21700 - 20000 15000 10000

and displacements ¢, ¢; and g; have been simulated for the following type of road:
max{0, 0.05sin(10xt)} if 0.2<t<03,

Figs. 5.7, 5.8:
'8 { 0 otherwise .

The difference between ¢, and g¢; cannot be really distinguished for the previous data. For this aim, let us end this
section with data leading to displacements ¢; and ¢; whose relative changes are appreciable (see Fig. §.9.). The data
that we consider are:
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0.3 T T 0.3 v
0.25¢ E 0.25}
0.2} 0.2t
- o
T 015} . I 015t
5 g
g &
b 8
& o} 2 o1}
° ©
0.05t+ 005}
o ob
0.05 L L : 0.05 L
0 1 2 3 0 2
time time
Fig. 5.7
03 T T 0.3 T
— q2
0.25r . 025}
0.2} -1 0.2}
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@
©
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Fig. 5.8
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M m B ky k; ks ky a a a ©
1460 35 25 35x10° 20000 15000 10000 21700 2000 1500 1000
0.25 L 1 T T L
q2
* * q7
0.2} qt | J

displacement

Fig. 5.9

Example 5.4: Reduction methods are of great interest in the mathematical treatment of models of skeletal
muscle. The approach discussed in Section 2 is illustrated here. The system displayed in Fig. 5.8. is formed by a model
of a fiber of some skeletal muscle and a device of mass m used to simulate the fiber response to external forces. The
symbols Tp and Ty denote the tendinous fiber parts. A linear model for the force across the tendinous part is

(i=0,N)
Fr, = kid; + cid; (5.3)

where J; denotes the relative elongation of the element T; and ki, ¢; are positive constants. The symbols T;
(i=1,...,N —1) denote the Z-disks marking the boundaries of the muscle fiber. The linear model (5.3) is also considered
fori=1,...,N—1. The symbols F; (i =1,...,N — 1) are used to represent the fibril substructure. The springs of con-
stant K; (i=1,...,N—1) are introduced to model the i-th sarcomere within the fiber. The symbols B;
(i=1,..., N — 1) denote the cross-bridges. The force across the cross-bridges is defined by the relation (i = 1,...,N — 1)

Fg, = yidi + 6:ds,

where 4; is the relative elongation of the element B; and y;, 6; are positive constants. The “boxes” C; (i=1,...,
N — 1) are pure contractile elements. These elements are active component in the fiber model. The force output of the
i-th-contractile machinery is denoted by d¢,(6;), where 8; is the relative elongation of the element C;. For further
details about the functional characteristics and models of muscle elements, we refer the reader to [13]. The machine
slide yields a total friction force that can be written as follows:

ter("éﬂ):

where I is defined as in example 5.1.
For example, in the case N = 2, the dynamic of the model is described by the system

MQ(t) + CQ(t) + KQ(t) € F(Q(2)),
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Fig. 5.10
where
M= (Oﬁxﬁ Oﬁxl) ,
Oi1x¢ m
( ko + K 0 -K; 0 0 0 0\
0 " - 0 0 0 0
0 -n-Ki yn+h+K ~k 0 0 0
K= 0 0 —ky k + K, 0 -K» o |.
0 0 0 0 Y2 72 0
0 0 0 0 ~ys— Ko yo+Ka+ka —ka
\ o 0 0 0 0 —kg k)
[ O 0 0 0 0 0 ) (@) ( Fo(zo— )
0o 6 -6 0 o0 0 0 T —Fe,(zo — @)
0 -0, i+ - 0 0 0 Yo 0
c=|0 o a4 ¢ 0 0 0|, Q={al, F(Q)=| Fg(z1—-a)
0 o0 0 0 6, -6, ] Y —Fg,(z1 —q1)
0 o 0 0 -0, 6h+c; —o n 0
\o 0 0 0 0 - al \ e/ \ I-a) )

Setting Xy =q, Xa=%0, Xa=w, Xs=q, Xs=11, Xe =%, X1 =¢, Xs=qd, Xo=120, X10=750, Xu=4a,
X2 = 21, X13 = 1h, X14 = ¢a, we rewrite the systern as the first order differential inclusion

EX e AX +G(X),
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where
( °1xl \
FC:(X2—X1)
—Fe, (X3 — X,
Iz Oie Ona Orr s CI( 02 1)
E = | O« x x1 |+ A= x x G=
g“ g” O:nl (‘K *C) Fgy(Xs — X4)
o —Fe,(Xs — X4)

- \ r(-(;fu) J

Let us consider now our problem with the following data:

m k o Ki nn 6 k aq Kx vy 62 kv on
1 2 2 1 } } 1t 1 1 } 1} 1 1

Applymg the method discussed in Section 2 with 2 = 1, we check that ) := (E — A)™! E has a normal Jordan form
=TJT"! where
0

(=)
——”
-
o

(4 3) v

OO O O O
[~ - T — T — I - — ]
(=~ I — I - I ~ Y - = ]
[~ B — A~ I — I —~ I -}
[ — B — Y — Y )

SO QO OO m™
(= — T — I — I~ I

(=2 — B - B — T - BN )
QO O O - = o
©C O OO0 OO
O OwH ~ OO0 O
Q- O O 0 0 O
N -0 0 00
2
]
(= I — I I - I — ]

S—
—
(=]

\0
Using the notation of Section 2, we see that

g=TYA- E)! e G(e'T¥(t))-

Let us recall that v:=T"'u and u = e~*Q. The explicit computation of g shows that the first system in (2.5) consists
in two differential inclusions and five ordinary differential equations. On the other hand, the second system in (2.5) is
formed by one differential equation and six algebraic equations.
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] Descriptif I

L’étude concerne, dans ce travail, la description et I’analyse d’un probléme dynamique
avec frottement pour un systéme contenant un ressort comprimé qui se comporte comme
s’il a une constante de raideur négative sur une partie de sa phase d’extension.

On considére un ressort comprimé positionné verticalement dont I’extrémité supérieure
est fixe alors que ’autre extrémité est fixée & une masse m qui est susceptible d’osciller le
long d’un rail horizontal. Le frottement de la masse avec le rail est modélisé par la loi de
Coulomb avec un coefficient de frottement réel fixe. Le systéme est illustré par la figure
ci-dessous. Il se comporte comme un oscillateur non linéaire.

o

Quand la masse est perturbée de sa position verticale (z = 0), le ressort se détend vers
sa longueur au repos Lg. Quand on tire sur le ressort au dela de sa longueur au repos, il
se comprime. Soient z = z(t) la position du centre de masse de m qui représente aussi
'extrémité inférieure du ressort, L la longueur du ressort en compression, kg la constante
de raideur du ressort et z = +! les points sur ’axe des z ol le ressort est & sa longueur au
repos. Il résulte ainsi trois points critiques pour le systéme z = 0, z = —[ et z = +1 autour
desquels se constituent trois régions d’adhérence de la masse au rail. Le phénoméne est
gouverné par une équation différentielle avec un second membre dicontinu.




Deux autres problémes associés sont étudiés : pour un coefficient de frottement vari-
ant de sa valeur statique vers sa valeur dynamique et pour un coefficient de frottement
dépendant de la vitesse de glissement de la masse sur la rail.

Dans la derniere partie de ce travail, on décrit I’algorithme numérique utilisé (Euler
et Runge-Kutta) puis on donne plusieurs simulations numériques pour différentes valeurs
des parametres.
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Abstract—We describe and analyze a frictional problem for a system with a compressed spring
which behaves as if it has a spring constant that is negative over a part of its extension range. As
a result, the problem has three critical points. The friction is modeled by the Coulomb law. We
show that there are three separate stick regions for some values of the parameters, centered on the
critical points. We model three other versions of the process. Then we describe a numerical scheme
for the models and present a number of computer simulations. (© 2000 Elsevier Science Ltd. All

rights reserved.

Keywords—Nonlinear spring, Negative spring constant, Friction.

1. INTRODUCTION

‘We model, analyze, and simulate the process of frictional contact of a mass which moves on a
rail under the influence of a compressed spring. The mechanical behavior of the system is that of
a spring which has a negative spring constant over a range of its displacements. This behavior,
which is similar to that of the “Duffing Oscillator”, introduces a strong nonlinearity into the
model. Our main interest is the motion of the mass when it is subject to friction.

The mechanical device, without considering frictional contact, was proposed recently in [1} as a
practical means for controlling and stabilizing car suspensions. He showed that a low energy active
suspension control can be realized by maintaining the control within the range of displacements
where the constant is negative. The mathematical analysis of the frictionless problem in [2] shows
that the system has three critical points: two stable and one unstable one.

In this paper, we investigate the problem of friction between the mass and the rail and model
it with the Coulomb law. The problem has an unusual structure, and indeed, we show that there
may exist three separate stick zones centered on the critical points. If the mass is at rest in any
one of these zones, it remains at rest, i.e., it is stuck, because of the frictional resistance force.
Thus, these regions are the steady states of the system.

Although the mechanical setting is simple, the problem is interesting and has properties that
are not obvious. It gives insight into the behavior of frictional contact that is easy to analyze

and simulate.

0895-7177/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. Typeset by AA4S-TEX
PII: S0895-7177(99)00225-3
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The model is derived in Section 2. In Section 3, we analyze the problem and obtain the
characterization of the stick zones in terms of the system parameters. We also show, as expected,
that the energy dissipates, and therefore, in the absence of external forces, each trajectory ends
in one of the stick zones. Then we obtain an estimate on the initial velocity needed to cross the
stick zone which is centered on the origin. We present three variants of the problem in Section 4.
First, we model the case when the friction coefficient has different values depending on whether
the mass is pushed towards or pulled away from the rail. Secondly, we describe the model when
the static friction coefficient is larger than the dynamic one. Finally, we model the frictional
problem when the spring is under tension. Then, there is only one stick region, and the system
behaves as a nonlinear spring with positive spring constant. In Section 5, we describe a numerical
algorithm for the problem based on the Runge-Kutta scheme, and present the results of some of

our simulations. Section 6 provides a short summary.

2. THE MODEL

We model the dynamic behavior of a mechanical system which consists of a vertically positioned
compressed spring attached to a horizontally moving mass. The system, depicted in Figure 1,
behaves as a nonlinear oscillator, similarly to the so-called “Duffing Oscillator”.

o

Figure 1. The setting.

A vertically positioned compressed spring is pinned at the pivot O and has a rigid body of
mass m attached to its lower end. The mass is attached to a rail, and can move horizontally
along the z-axis. When the body is perturbed from the vertical position (z = 0), the spring
expands to its natural length Lo. When it is stretched beyond its natural length, it contracts.
Let z = z(t) denote the position of the center of mass of the body, which is also the end of the
spring; L the compressed length of the spring; ko the spring constant. Next, let £ = 4! be the
points on the z-axis where the spring is at its natural length, thus, L2 = {2 + L2

It follows from the geometry in Figure 1 that the force the spring exerts on the body has a
horizontal component Fr and a vertical component Fy, which at position z are given by

__ o
Fr= k:z:(l m)

and

Ly )
Fy=kL{(1- —==}.
N ( Vz?+ L2
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Here, k = ko/m and the forces are scaled with m. It follows now from Newton’s second law that
in the absence of applied forces or damping the motion of the body is determined by

Ly
" + kz (1 - ——_) —o. 2.1
vz + L2 (2.1)

When simple horizontal damping and external forces are taken into account, the equation reads

. . Lo
1" / P

where the coefficient of damping c and the force h are scaled with m.
Full analysis of this problem can be found in [2]. It is shown there that the system has three
critical points £ = 0 and 2 = +l. The first is unstable and the other two are stable equilibrium

points.
The problem has the basic structure of the “Duffing Oscillator” which has been dxscussed in

the literature, see, e.g., [3,4] and references therein. However, in the Duffing Oscillator case the
force is given by " '
Fp = kx — 6238,
for some § > 0, whereas, in our case it is given by Frp.
We remark that if a damper with damping coefﬁclent cp is added to the system in parallel
with the spring, the resulting equation is

‘ %z "Lg |
k — === | =0.
" +cp 22 L2+ z(l a;2+L)
This is an unusual equation, and will be investigated elsewhere.
In this paper, we extend the analysis in [2] to include the friction force which arises from the

contact with the rail. Now, the body moves horizontally under the influence of the tangential
spring force Fr and the frictional resistance force Fy,, and the total horizontal force acting on it

is

‘ fr = Fr + F,. (2.3)
The friction force depends on the total vertical force fy exerted by the mass on the rail, given
by ,

Ly
=Fy-g=kL{1-—2=)-9g, 2.4
fn=Fn-—g ( R w2) g (24)
where g is the weight (we recall that the scaling is such that m = 1). Next, let z = +l, be the

points where fy changes its direction from pointing down (fn < 0) to pointing up (fnx > 0).
If kL < g, such points do not exist and fxv < O for all z. Otherwise, +l, are the roots of the

equation fn(l,) = 0, thus,

L3k2L2?
L=y 2 —_ — 2 .
"L —g)? L » (2.5)
It is easy to verify that | < [,. Below, we assume that kL > g, since the other case is simpler to

analyze.
We model the frictional resistance of the rail by the classical Coulomb law. Let p be the

coefficient of friction, assumed to be a positive constant. Then we have two cases: either the
body is at rest and the tangential force satisfies | fr| < u|fn|, where p|fn| is the so-called friction
bound, in which case the friction force Fy; exactly opposes the tangential force, i.e., Fy, = —Fr.
Or the body is in motion, the friction force is |Fy| = p|Fy — g| and acts in opposite direction to

the motion. Thus, ,
Fy, = —p|Fn — g] sgn(z’). (2.6)
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Here, we used the following definition of the sgn function:

1, r>0,
sgn(r) = 0, r=0,
-1, r<o.

The Coulomb condition can be written as follows:
ifz’=0and |Fr| < p|Fy —g|, then F; = —Fr; (2.7)
if z/ # 0 or |Fr| > p|Fn — g, then z” = Fr — p|Fy — g|sgn(z’). (2.8)
It follows from (2.7) that in the so-called stick region
=0, (2.9)

. and therefore, when the mass is in this region and has zero veloéity, it will remain motionless.
To complete the model, we assume that z satisfies the initial conditions

z(0) = z,, z'(0) = vo. (2.10)

To summarize, the problem of the horizontal motion with friction of a mass attached o a
vertically compressed spring consists of finding the displacement function z : [0,7] — R such

that (2.7), (2.8), and (2.10) hold.
More generally, when in addition a horizontal force h acts on the mass, the problem may be

written as

ifz’=0and |Fr+h| < pu|lFv —g|, then Fg =—(Fr+ h); . (211)
ifz' #0 and |Fr + h| > u|Fy —g|,  then 2 = Fr + h — p|Fy — g sgn(z’). (212)
Our interest lies in the case when the driving force is periodic,
h = h(t) = Acos(wt),
where the amplitude A and the frequency w are given.

3. STICK REGIONS AND ENERGY DISSIPATION

This section deals with the stick regions and the behavior of the solutions.
First, we investigate the stick regions of the problem. These are the regions where the equality
Fg = —Fr holds when 2’ = 0. From this condition and from |Fy| = B|FN - g|, we can find the

boundary points of these regions.
We show that there are two possibilities.

(i) There exists one point z = I3, such that ! < I3 < I,, and an extended stick region which
includes the origin and the two equilibrium points z = +I,

So = {—l3 S z S 13}.
(ii) There exist three stick regions

So={-L<z<h}, S;= {a<z< I3}, and S_ = {-la<z< ~l3}.
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The boundary points of the stick regions satisfy
O<lhi<ly<l<lz«l,.

Thus, Sp has the origin at its center, S; has the point £ = [ at its center, and S_ the point

z=-l.
The Is are obtained by solving the following nonlinear equations. When 0 < z < [, they satisfy
. Lo _
k(L —z) |1 - == | = ug, 3.1
i) (1= ) = 1)
since Fr > 0 and |Fy — g| = —Fn + g. First, we note that the smallest solution has to satisfy
uL < I, since the term in the second brackets on the left-hand side is negative. Now, let

Ly Hg
¥(r) = (1 /r +L2) ’ 2e = 2£(r) = k(uL£7r)
Then, condition (3.1) reads

K9 '
1] =—" =z (). .
@) = frpegy = @ (3:2)
On the interval pL < z < I, the function z_(z) is negative, increasing and satisfies
i = - - M
rgTL z_(r) = —oo0, z-() PYEAK

Also, U(0) =1 — LoL~! and ¥(Z) = 0. As can be seen from Figure 2, equation (3.2) may have
two solutions, z = l; and z = I3, or one solution = = l; = l3, or no solutions.
The case of one solution means that l; = [, and effectively, this and the case of no solutions
form Case (i) above. Then the interval [, ] lies in Sp. _
When equation (3.2) has two distinct solutions pL < I3 < Iz < I, we obtain Case (ii) above.

0.5 T T T T

u=0.5
k=100
L0=2
2} L=1 i
-25— — 1 ]
0.566 1 1.5 1.635 2

Figure 2. The points {; and I2.
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A sufficient condition for the nonexistence of two roots or one root of (3.2) is obtained when
the minimum of ¥ is larger than the maximum of z_ over uL < z <. Thus,

b (3.3)

L
Ly1+p2 = k(- pL)

A precise condition for the existence or nonexistence of solutions may be obtained by solving for
the single point z* = I} = I, such that

| ¥(z*) =z-(z*) and ¥'(z*) =2 (z*).

This is the point where ¥ touches z_ tangentially, and there can be only one such point since ¥
is convex on uL < x <l and z_ is concave.

Next, we investigate the solutions for { <  <1,. Then Fy >0 and |Fy —g| = g — Fy by the
definition of l,. Thus, z = I3 satisfies

V(z) = 24 (z) = k—(ﬂgg—m. (3.9)

¥(x) is now positive and increasing with ¥(!) = 0 and ¥(l,) = /kL by the definition of I,. The
right-hand side of (3.4) is positive, decreasing and

Then there exists one and only one solution z = I3, since

g

¥(l,) = > z4(l.) = m.

Finaily, for I, < z, we have |[Fy — g| = FN — g and it is easy to see that the condition
|Fr| = —Fr = p|Fy — g| = Fn — g reads k(x — pL)¥(x) = —pug, and since z > uL and ¥ > 0,

it follows that there are no solutions.
This establishes the claims above. We stress the unusual structure of the problem when there

are three separate stick regions.
We obtain now an energy estimate on the solutions of (2. 7), (2.8), and (2.10). Let z = z(t),
for 0 <t < T, be a solution of the problem. Let E = E(t) be the total energy of the system, i.e.,

E(t) = 5(-’='(t))2 + §’=(-’C(t))2 — kLo (z(t))2 + L% 4+ kLLo, (3.5)
scaled so that E =0 when £ =0 and 2’ = 0. Then

B(t) = E(0) - /0 - 9| |#'(7)| dr. (36)

Lo
""(l \/W)

It follows, as expected, that the frictional force causes energy dissipation. And as longasz #1
and z’ # 0, the frictional energy dissipation term is nonzero. Moreover, it follows from (3.6) that
the trajectories in the phase plane remain in bounded sets. The points z = %! are the attractors
of the frictionless system. However, the system with friction has the sets Sy, Sy as steady states.
Indeed, any trajectory in the phase plane which reaches the z-axis in any one of the sets So, S+
ends there.

We conclude that the set

=(SoUS-US,) x {0} (3.7)
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in the phase plane is the set of all limit points of the system. Actually, we have a stronger result:
for any solution z = z(t), there exists a time ¢ = ¢., which depends on the solution, such that
z(t) = z,, = const. € {2 for all t; < t. The solution reaches its steady state in finite time.

To show (3.6), we multiply equation (2.8) by z’ and integrate over 0 < 7 <tfor0 <t < T.
Using straightforward manipulations, we obtain (3.6).

Next, we provide an estimate on the initial velocity vy needed for the mass starting at zg = —{;
to cross the stick region Sy, assuming that Case (ii) holds. Clearly, we need to guarantee that
at the time t* when the mass reaches the position z(t*) = l;, its velocity is positive, that is,
' (t*) > 0.

We assume that z(0) = zo = —I;, z’(0) = vo and are interested in the case 2’ > 0, thus (2.8),
after an integration over [0, ], can be written as

: ¢
z'(t) = vg + k/o (L — z(7)) ¥(z(7)) d — pgt.

Here we used the fact that |Fy — g| = —Fn + g. Clearly, it is sufficient to obtain the estimates
for
t‘

vo > —k A (L - z(7)) ¥(x(7)) d7 + pugt™.

P

We note that the integral is nonnegative and we estimate it from below. First, we note that the
travel time ¢* is necessarily longer than that without any forces, thus t* > 2!, /vp. Next let #;
and t; be the times such that z(t,) = —(1/2)uL and z(t;) = (1/2)uL. Then t; —¢; > (1/2)t* >
pL/ve. Now, for t; <t < t,, we have |uL — z(t)| > (1/2)uL. Next, for —uL < z < pL,

Lo

Collecting the estimates above, we obtain |
o> shul [ —2 1 /hdt+2 !
0>3 H I ,——1+#2 " vo”g 1-

Noting that the integral is estimated from below by t3 — t; > uL/vp, we finally obtain the
following sufficient condition for crossing the stick zone Sp:

L
v > k(pL)? (L\/l-—:_—#; - 1) + 2ugl;. (3.8)

Clearly, this estimate is not optimal, and better estimates may be obtained using a more refined
analysis. One may obtain similar estimates for the other stick regions.

Lo

> ——1.
T L1+ pu?

1-—

¥ (z(r) =

4. RELATED PROBLEMS

In this short section, we describe three related problems.

First, we model the case when the friction coefficient depends on whether the mass is pushed
against the rail or is pulled from it. Let y; be the friction coefficient when fy < 0 and puy when
fn > 0. We define the friction coefficient function by

#, =< l*)

n(z)v={

Ua, x> 1.

Then, the dynamic problem consists of (2.7) and (2.8) where u has been replaced with u(z),
together with (2.10). '
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The discussion and results above carry over to this case with minor, rather obvious, modifica-

tions.
The second version of the problem is obtained when the friction coefficient Jjumps from the static

value 419 to a smaller dynamic value ug. The problem. now is to find a function z : 0,7 - R
such that _ . A

if 2’ =0and |Fr| < po|Fy —g|, then Fy = —Fr; S (4.1)
if ' # 0 or |Fr| > po|Fy — gl, then 2" = Fp — py|Fyy — g|sgn(z’), (4.2)
z(0) ==zo,  z'(0) = vp. (4.3)

This problem has the same structure as the one with constant friction coefficient. The points
+l and !, are the same. The difference is in the size of the stick regions. The conditions defining
the stick sets Sp, S, 54 are as in Section 3 with ug replacing 4. On the other hand, the sufficient
condition for transit, (3.8), holds with y4 replacing u. The energy estimate (3.6) holds with p 4

replacing u as well.
Furthermore, we may consider the problem with slip-dependent friction coefficient. Let e =

#4(|z’|) be a positive smooth function such that
O<p. <p(r)Su*<po, r€R,,
where u, and u* are constants. Let 8y be the graph

[/‘d(o)’l“_olv r=0,

Br(r) = { Ba(r), r>0.

Then the modified problem is to find two functions z : [0,T] — R and p : Ry — R, such
that u is a selection out of the graph 8y and :

if 2’ = 0 and |Fr| < uolFn — 9|,  then Fy = —Fr; (4.4)
if z’ # 0 or |Fr| > polFn — g|, then 2 = Fr — u(|2’|)| Fnx — g|sgn(z’), (4.5)
I(O) = T, I’(O) = Vg. (46)

This case covers (4.1)—(4:3) when the yq is a constant and the vertical segment in By is missing.
General contact problems with slip-dependent friction coefficient were considered recently in
[5-7).
The final version of the problem which we describe is obtained when the spring is under tension
and not under compression. Thus, the stretched length L satisfies L > Ly. Then the origin is
the unique equilibrium point, and it is stable. It is easy to see that the force acting on the mass

'has the same tangential and normal components

Fr=-kz{l- ——— ), Fy=kL{1 - —— ).
T ( vzZ+ L2 N V22 + L2

However, now the expression in the brackets is positive, since Ly < vIZ + z2. It is straightfor-
ward to show that there is only one stick zone

So = {-pL <z < puL}.

This problem is simpler than the one in Section 2.
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Figure 3. Decay to a steady state and the trajectory in phase plane.

5. NUMERICAL ALGORITHM AND SIMULATIONS

In this section, we describe a numerical algorithm for the problem (2.10)-(2.12). Then we
present a number of computer simulations. We use both the Euler method and a Runge-Kutta
method to obtain numerical approximations of the solutions.

Our problem consists of a differential equation with a discontinuous right-hand side. Let I
* represent the stick region(s), i.e., either I = Sp or I = Sp U 54 US_ (cf. Section 3). Using
Filippov’s regularization [8], we reformulate our problem as the following initial value problem

for a first-order differential inclusion, where y = (z,z’) = (y1, ¥2).

Find an absolutely continuous function y : [0,T] — R? such that
. yi (t) =0,
if y(t) = (y1,0) and y, € I, then {

| ¥2(t) =0

else ¥} (t) =12 (t),
vz (t) = —ky (2) (1 - ﬁ) + h(t) - (5.1)
1
KL (1 - \/T‘f(%"ﬁ) —g|Sen (3 (1)),
1

for almost all ¢ in [0,T). Here Sgn is the multivalued function
| -1, <0,

Sgn(z)=¢ [-1,1], z=0,

1, >0,

—-p




92 Y. DUMONT et al.

0.6

04

0.2}

velocity
(=]
1

S
S

) 1

L [ ] 1 ' i
1.64 1.66 1.68 1.7 - 1L72 1.74 1.76 1.78 1.8 1.82 1.84
displacement

Figure 4. Trajectories starting at I3.

which is the set-valued extension of the “sgn” function used in (2.11),(2.12). Thus, the problem
is in the form of a differential inclusion, say y’ € ®(t,y).

For numerical purposes, we replace the differential inclusion y’ € ®(t,y) on [0, T) by a sequence
of discrete inclusion on the subintervals t9p =0 < t; <ta < --- <ty =T for N > 0, with a
constant step-size At = T/N. Let a;, b e Rfori = 0,...,r, with a, # 0 and lag| + |bo| > O.
We are given the starting values y; € R™ for j = 0,...,r — 1, and the corresponding starting
selections §; € ®(t;, y:) out of the graph, for i =0,...,r — 1. These may be computed by a linear
p-step method with p < r or by a one-step method.

Then, for j =r,...,n, we compute y; from

1 . .
h D GiYiorti = Y bifirsi,  With & € O (ti,u).

i=0 i=0

When b, # 0, the method is implicit. '
The following convergence result for these methods can be found in [8,9].

THEOREM 5.1. Let D € R" and @ : D x [0,T] — P(R") be a set-valued map. Let the following
assumptions be satisfied.

(i) ® is a nonempty closed and convex-valued function.
(i) ® is upper semicontinuous in D x [0,T) and verifies

ISl < e (1 + li=l)

for all ( € ®(z,t), t € [0,T) and = € D with constant C > 0.
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(iii) All the zeros A of the polynomial Y _, a;\* have absolute value |A] < 1 except for the

simple zero A = 1.
(iv) The following consistency conthxons are satisfied:

Za,-:(), Zia,-=‘zr:b,-.

i=0 - i=0 i=0

(v) The coefficients b; are ﬁonnegative fori=0,...,r.
(vi) The starting values satisfy

vt - 93| < MAL,  (j=0,...,r—2).

(vii) The approximations of the initial value yo satisfy lim,—, 00 Y§ = Yo.

Then, the sequence (y")nen of piecewise linear and continuous interpolants of the grid values
(v8,...,y}) contains a subsequence which converges uniformly to a solution of the initial value

problem.

REMARK. We note that the theorem establishes the convergence of the numerical approxima-
tions; however, it provides neither the order of convergence nor any qualitative properties of the

limit functions:
Problem (5.1) can be written as

Yo = Yo,
y1+l € yl + Atd (t‘l v Yi )
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Figure 6. Eventual periodic oscillations.

In our numerical simulations, we used the explicit Euler method, in which the coefficients were

chosen as
r=1 a=-1, bp=1 a=1, b =0.

This scheme verifies the assumptions of the preceding theorem, and therefore, it is convergent.
In problem (5.1), the set of multivalued points reduces to the one line y3 = 0, which may be
“neglected” during computations. However, starting with zero velocity one has to decide which
value of the vertical segment of the graph Sgn to choose. In our case, since in the original problem
the single-valued sgn function was used, we numerically choose 0.

In addition to the Euler method, we used a more consistent one, the fourth-order Runge-Kutta
method. However, we found that there was no noticeable improvement in the accuracy of the

solutions..
The classical fourth-order Runge-Kutta scheme applied to the differential inclusion yields

Yo = Yoi
ag € ®(t7,97),

At . At
a}, €® (t;' + o+ —2—0{,‘,,-) ,

2
' At At
aieo (e G+ o),

a3; € ® (thy,,v! + Ata3,),

At
Vi =y + r (a&i + 2a7; + 203; + a{;’i) .
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Figure 7. High frequency force h = 40 cos(200t).

This scheme is often used to solve differential inclusion even though it does not verify the as-
sumptions of the preceding theorem (see also [8] for further details). '

We now present a number of numerical experiments showing the behavior of the solutions. We '
begin with a typical behavior depicted in Figure 3.

The initial conditions are o = 0.1098, vg = —10.0. The position of the mass as a function of
time and phase portrait are shown in Figure 3. As expected, the trajectory decays to the steady
solution z = [. However, first it travels once around the origin and both points £ = +[ and then
it spirals inward to its steady state. In this simulation, the time interval is 0 < ¢ < T = 25 and
the time step is At = 0.001, so the graph represents 2.5 x 10* time steps. Also, u = 0.05 and
k = 100. _

In Figure 4, we show the trajectories in phase plane starting at zp = l3 = 1.7181 and initial
" velocities vp = 0.6,0.65,0.7,...,1.0. The trajectories are clockwise and all end in S,. Clearly,
once the trajectory reaches the z-axis in the phase plane at a point in Q, it stops there. In this
simulation, the time interval is 0 < t < T = 10, the time step is At = 0.001, p = 0.1, and
k = 100.

In Figure 5, we show the motion of the mass, given by (2.10)—(2.12), when a horizontal periodic
force h = cos(10t) acts on it. Clearly, the force is insufficient to overcome the friction. Both the
motion in time and the trajectory in the phase plane are depicted. In this simulation, the time
isT =15, At = 0.0001, x = 0.1, and k = 100.

The phase plane trajectory with force h = 2 cos(10t) is depicted in Figure 6. Here, the force is
sufficient to move the mass periodically, after a period of adjustment. In this simulation, zg = I,
v = 1, T = 15, and the time step is At = 0.0001, and g = 0.1, k = 100.
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Figure 8. The initial oscillation.

Finally, in Figure 7, we show the trajectory with high frequency force h = —40cos(200t) in the
case of different static and dynamic friction coefficients, here u, = 0.4, ug = 0.2. In Figure 8, we
show the expanded view of the motion at the beginning to show the steep oscillations.

In this simulation, 2o = l;, vo =0, T = 10, At = 0.0001, and k = 100.

6. CONCLUSIONS

We present a model for the motion accompanied by friction of a mass acted upon by a com-
pressed spring. The problem can be formulated as a system of ordinary differential inclusions.

We derive some of the properties of the model and its solutions. We establish that there exist
three separate stick regions in the model for certain values of the system parameters. These
regions are centered on the three critical points of the frictionless problem. Otherwise, there
exists one extended stick zone which includes all three points. Each of the stick zones is a set of
steady solutions. We also present three related versions of the model. '

The model is simulated numerically using the Euler and the Runge-Kutta methods. The
simulations show the behavior of the solutions, which in the absence of applied forces approach
the stick regions in finite time.

The question of existence and uniqueness of solutions is open. Moreover, there seems to be
some interest in more detailed analysis and simulations of the main problem and of its variants.
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| Descriptif I

On présente un modele général pour les problémes dynamiques de contact avec frot-
tement et adhérence entre un matériau viscoélastique et une fondation rigide. Ceci peut
modéliser 'interaction entre des couches rocheuses. Vu le phénomene d’adhérence, la
relation contraintres-déplacements normaux est non monotone et non convexe ; ce qui
conduit & une formulation faible présentant une inéquation hémivariationnelle.

On considére un milieu continu viscoélastique occupant un domaine 2 de R™ (m =
2,3), et dont la frontiere I', supposée suffisamment réguliére, est divisée en trois parties
disjointes I'p, I'y et 'c. On suppose que, pendant I'intervalle de temps [0, 7], des forces
volumiques f, agissent dans 2, que la partie I'p est encastrée dans une structure fixe,
que des forces surfaciques f, s’appliquent sur I'y. La partie I'c de la frontiere représente
la partie potentielle de contact du matériau avec une fondation indéformable se trouvant
4 une distance g. Le phénomeéne d’adhérence est supposé obéir a une relation générale
qui lie les contraintes normales aux déplacements normaux sous la forme suivante :

—0n(Un, ) € Pr(tn,:) sur Te.
Pour presque tout z € ', P,(:, ) est un graphe tel que

Pn(-7) =0 sur | — oo, —g(z)],

Pn(—g(2), w) = [-p*(=),0],

Pn(-,z) est une fonction de Lipschitz strictement monotone sur | — g(z), 0],
Pol0:z) =
Pl

z) est une fonction de Lipschitz strictement monotone sur [0, oo[.

La fonction p* modélise le seuil maximal que la réaction normale o, peut atteindre avant la
séparation compléte des deux surfaces adhérentes. La portion [0, oo[ du graphe représente
la compliance normale des surfaces. Ce graphe n’est pas convexe ce qui conduit a une
formulation du probléme en une inéquation hémivariationnelle.




Le probléme mécanique considéré ici se formule de la maniére suivante :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R™, le champ des
contraintes o :  x [0,T] — RT**™ et la température 6 : 2 x [0,7] — R tels que

Oij = Qijkuky + bijuuy,;  dans  Q x (0,7), (1)
u” —Divo=fp dans Qx (0,7), (2)
u=0 sur TIpx(0,7), (3)
o-n=Ffy sur TI'yx(0,7), (4)
~Onltn;*) € Palth,:)  sur  Te'x (0,7), (5)
lor] S u(—0n), sur T¢x(0,7), (6)
/
u, #0 and oy, <0 = IZZ| = —MIUUTn| sur I'¢ x(0,7), (7)
u(-,0) = u, u'(-,00=vy dans Q. (8)

On note par RT"™*™ I’espace des tenseurs symétriques du second ordre sur R™. Le
“prime” au dessus d’une quantité représente sa dérivée temporelle, n est la normale
unitaire sortante a {2 et o - m est le vecteur des contraintes de Cauchy. u,, u,, o, et
o; représentent respectivement le déplacement normal, la vitesse tangentielle et les con-
traintes normales et tangentielles. Le réel p représente le coefficient de frottement. Les
relations (6)—(7) représentent la loi de frottement de Coulomb modifiée vu la prise en
compte du phénomeéne d’adhérence.

On commence tout d’abord par donner une interprétation mécanique de chacune des
équations et des termes cités dans le probléme P. On insiste tout particuliérement sur les
conditions aux limites considérées sur la partie de contact potentielle I'c pour chacunes
des inconnues. On introduit ensuite les hypothéses utilisées suivies d’une formulation
faible du probléme P. Le systéme est formulé ensuite en terme d’opérateurs. Un résultat
d’existence est alors établi en utilisant une méthode de régularisation suivie d’estimations
a priore puis de passages a la limite.
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Dynamic frictional contact with adhesion of a viscoclastic body and a foundation
is formulated as a hemivariational inequality. This may model the dynamics of rock
layers. The normal stress—displacement relation on the contact boundary is non-
monotone and nonconvex because of the adhesion process. A sequence of regular-
ized problems is considered, the necessary a priori estimates are obtained, and the
existence of a weak solution for the hemivariational incquality is established by
passing to the limit as the regularization parameter vanishes.  © 2000 Academic Press
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1. INTRODUCTION

The aim of this paper is to study a dynamic contact problem involving
the unilateral phenomena of coupled adhesion and friction. The setting we
employ and the result we obtain are very general, but our particular
interest lies in the frictional contact between rocks which involves adhe-
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sion or bonding. Adhesion and friction are highly nonlinear processes due
to the nonmonotone stress—strain relationship which contains vertical
jumps that correspond to abrupt stiffness changes. To accommodate such
stress—strain laws, the theory of generalized gradients of Clarke [2] has
been recently extended and applied in contact mechanics by Panagiotopou-
los [15). This approach allows for the rigorous formulation of mathematical
models for these phenomena through variational and hemivariational
inequalities, which we use in this work.

Contact problems involving both adhesion and friction effects have been
studied mostly in special cases: in problems involving constitutive relations
with uncoupled shear and normal stress, or in problems with given normal
stress. However, interactions between normal and tangential contact forces
are often present in problems arising in applications, such as in contact of
rocks. A general static problem of frictional contact with adhesion of rocks
has been recently studied in [5]. There, a model for the process has been
developed and the existence of its weak solutions established by using the
theory of hemivariational inequalities. Here we extend their results to the
dynamic case.

In this paper we establish the existence of weak solutions for a specific
problem. However, the constitutive relation which we employ is not
convex, and this approach can be extended to other dynamic problems in
mechanics with nonmonotone and nonconvex constitutive relations.

General problems of adhesion were considered by Frémond and co-
workers in [3, 4, 16] where the model was derived from thermodynamical
considerations. Friction, however, was not taken into account. There, a
bonding field was introduced to describe the adhesion and an equation for
its evolution was derived. A one-dimensional, quasi-static, and frictionless
contact problem with adhesion, using the bonding field, has been investi-
gated in [6]. The quasi-static problem with friction and adhesion, using the
bonding field, has been modeled and investigated recently in {17, 18].

Recent results on dynamic frictional problems without adhesion can be
found in [1, 9-11, 13] and in the references therein.

We use a graph to model the contact. It describes the adhesion and
allows for interpenetration of surface asperities, as in the normal compli-
ance condition, see, e.g., [1, 7, 8, 10, 13, 19]. The graph has a vertical
segment related to the sudden debonding when all the bonds are severed.
This leads to the use of the generalized subgradient theory, since the graph
is not convex. The rest of the paper is structured as follows. The classical
model, its weak formulation, and the statement of our results are given in
Section 2. The material is assumed to be viscoelastic and linear, for the
sake of simplicity. We employ the normal compliance condition for the
compressive part of the contact, and model the adhesion with a graph
which has a vertical segment at the yield point where debonding takes
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place. In Section 3, we consider a sequence of approximate problems in
which the vertical segment in the adhesion condition is replaced with a
tilted segment. This approximation may be useful in constructing numeri-
cal algorithms for the problem. We use the recent theory of [9] to obtain
the existence of the unique solution for each approximate problem. A
priori estimates on the approximate solutions are derived in Section 4.
Using these estimates allows us to pass to the limit and obtain a solution
of the original problem.
It may be of interest to investigate the dynamic problem when the
adhesion is modeled by the bonding function, following Frémond, instead
of having one graph for contact and adhesion.

2. CLASSICAL MODEL, WEAK FORMULATION
AND RESULTS

In this section, we present the physical setting and formulate the model
as a system of differential equations and initial and boundary conditions.
Then we introduce a weak formulation, state the assumptions on the data
and our main result. Because of adhesion, the contact condition is noncon-
vex and, therefore, the problem is formulated as a hemivariational inequal-
ity (see, e.g., [14] and references therein). For the sake of simplicity, the
bulk material is assumed to be linear; the nonlinear effects arise from the
contact with the foundation.

The physical setting is depicted in Fig. 1. A viscoelastic body, the rock,
occupies (in its reference configuration) the region () in R™ (m = 2,3). Its
boundary is divided into three disjoint parts. On I}, the body is clamped;
known tractions act on Iy; and on I, the body may contact a foundation.
We assume that the foundation is soft, of the Winkler type, or is rigid but
has a layer of deformable asperities. The reference configuration is as-
sumed to be stress-free and the process isothermal.

Let fz = (fa1(x,1),..., [zm(x,?)) be the (dimensionless) density of ap-
plied body forces acting in @ and let fy, = (fy(x,1);..., fym(x, 1)) be the

I'p

e
Foundation jn

FIG. 1. The physical setting; I'- is the contact surface.
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tractions applied on Iy. For the sake of simplicity, we assume that the
density of the material is constant equal to 1. Let u = (u(x, ?),...,u,(x,t))
and o = (0y(x,t)) for i,j=1,...,m, represent the dimensionless dis-
placement vector and stress tensor, at location x and time ¢, respectively.
The equations of motion take the (dimensionless) form

« —Dive=f, in0,. (2.1)

Here and below, i,j = 1,...,m; the repeated index convention is em-
ployed; the prime represents the time derivative; the portion of a subscript
prior to a comma indicates a component and the portion after the comma
refers to a partial derivative. We use the Kelvin—Voight stress—strain

relation

Oy = Qs + bytty ;. in Q. (2.2)

Here, a = (a;;,) and b = (b;;,,) are the tensors of elastic and of viscosity
coefficients, respectively. This relation holds within linearized elasticity,
and we assume small displacements and strains.

The initial conditions are

u(-,0) =uy, w'(-,0)=vp, inQ. (23)

To describe the boundary conditions, we introduce the unit outward
normal » = (n,,...,n,) on I. We assume that T is Lipschitz, hence n
exists at almost every point. We then let g, = o;;n;n; and u, = u-n be
the normal components of o and u on I, and let o,=o-n — o;n,
u,=u — u,n be the tangential vectors. We use the following boundary
conditions:

u=0 onI,, (24)

a-n=fy onl,. (2.5)

We turn to consider the conditions on the potential contact surface I,
which is where our main interest lies. Physically, the contact surface is
assumed to be covered with adhesive material, such as liquid glue, or there
is a weak chemical bonding between the materials. This implies that for
small tensile contact force there is resistance to separation. Let g > 0 be
the bond length, and then u, = —g denotes the maximal distance for
which bonding still holds, and let p* > 0 denote the tensile yield limit, i.c.,
the maximal tensile force that the bonds can support. For —g < u, <0,
there is tensile traction 0 < g, < p* on I,. However, when the pulling
force at a point exceeds the threshold g, = p*, the surfaces debond, the
connections snap, and the contact at the point is lost. When the normal
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traction is negative, i.e., compressive, the penetration of the body’s surface
asperities into the outer surface of the foundation takes place. This
represents a foundation with soft surface or the deformation of surface
asperities. We assume a general relationship between the normal stress
and normal displacement

- n(un") eg’n(un") on I¢. (2‘6)
Here, for almost every x € I, the graph (-, x) is such that

Zy(-»x) =0on (-, —g(x)],

Z(—8(x),x) = [-p*(x),0],

2 (-, x) is an increasing Lipschitz function on ( —g(x),0], (2.7)
£,(0,x) =0,

2 (-, x) is an increasing Lipschitz function on [0, ®).

The portion of the graph on [0, ) represents the normal compliance of the
surfaces (see, e.g., [1, 7, 8, 10, 13, 19] and references therein). The graph is
nonconvex, which leads to a hemivariational inequality formulation of the

problem.
We note that the dependence of #, on x is via g, and below we denote

£+, x) by #,. A possible choice of the graph, depicted in Fig. 2, is

3 if £20,
_ a¢ if —g(x) <€és0,
gn( g; x) - [“ag(x),O] if £= _g(x), (2.8)
0 if €< —g(x).

Here, a > 0 is the slope for —g(x) < ¢ < 0, and in the normal compliance
portion of the graph the penetration of the foundation is penalized with
the coefficient 1/, for & positive and small. Then, p*(x) = ag(x) is the
tensile yield limit.

The following graph has been used in [S], where the contact was between
two deformable bodies,

(0 if €] > g(x),
B aé lfIEISg(x)’
Fu(6:2) =\ [—ag(x),0] if £= —g(x),
[0, ag(x)]  if £=g(x).

(2.9)

Similar graphs can be found in [14] (and the references therein).
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Pn(f- 3)

—9(z)

r —ag(z)

FIG.2. Normal stress—displacement relationship (2.8).

We note that a different approach to modeling adhesion can be found in
[3, 4] (see also the references therein) where a new dependent variable, the
bonding function, which describes the ratio of active bonds at each point on
the surface, was introduced. A differential equation for this variable was
derived from a virtual power argument. The steady problem was analyzed
in [16].

We turn to the tangential frictional contact condition. The usual
Coulomb friction law is

lo;| < plo,|  onTg,

(]

u, o,
u,#0 = — .
e | ula,|

Here p is the friction coefficient. By convention, o, = 0 when there is no
contact (g, = 0) and «, remains undetermined. In the case of adhesion,
this condition needs to be modified, since when g, is positive the body is
pulled away from the foundation and we assume that there is no friction.
Therefore, we use the following friction law:

oyl < w(—a,) on I,

u a,
W,#20and o, <0 = o= ——'_ (2.10)
ploy|

When the tangential stress is less than the limiting value p(—g;),, the
boundary sticks to the foundation: the part of the boundary where it takes
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place is called the stick zone; when the tangential stress reaches its limiting
value, the boundary slips: this is the so-called slip zone. The slip is opposite

to the shear stress a. :
The classical formulation of the dynamic viscoelastic frictional contact
problem with adhesion is to find a function u such that (2.1)-(2.6) and

(2.10) hold.
It is well known that, generally, there are no classical solutions for the

problem because of the regularity ceiling related to possible jumps in the
velocity. Therefore, we turn to the weak or variational formulation of the
problem. To this end we introduce the following Hilbert spaces:

E={weH'(Q)":w=00n FD], (2.i1)

V={neH!(Q): p=00nT, UTy}, (2.12)

H=L*Q), H"=(L*Q))", E=L*0,T;E), (2.13)
V = I1%(0,T; V). '

Below, we use |||l and || lly to denote the norms of E and V, respec-
tively, and |- |4 and |- |z~ denote the norms of H and H™. Also, {-,-)
denotes the duality pairing between E’ and E, or V' and V, where the

meaning is evident from the context.
We now describe the assumptions on the data.
The coefficients of elasticity and viscosity satisfy

@ € L°(R), by € L7(Q),
Qijk1 = Bjiki» Qijxi = Briij» Qijkt = Fijix>
Bijs Xij Xna = a,l x,-jlz for all symmetric tensors x = ( x;;); (2.149)
bijts = bjira> bijkr = brsijs bijkr = byjux»
bijts Xij X1 = @3l )(,-,-I2 for all symmetric tensors x = ( x;;)-
Here a; and a, are positive constants.

The body forces satisfy
fsEFE. (2.15)

The friction coefficient satisfies
p:Te > (0,+o0) and O<p, sp<p* ae.onl;, (2.16)

where p, and p* are constants.
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The boundary and initial data satisfy
fv € L*(0,T; (LX(Ty))); (2.17)
uo€E, vy€H™ (2.18)

We conclude this section with a brief description of a hemivariational
formulation of the problem, similar to the one in [5]. For almost every
x € I, let B,(-, x) be the function given by

B,,(f,X) = n(fix) iffaﬁ -1
B.(—8(x),x) = 0.

The graph of B is the one depicted in Fig. 2, but without the vertical
segment at x = —g. Let @,(-, x) be the function ¢,(¢, x) = [§ B,(s, x) ds
for £ € R. We define the functional ®,: L(T;) > Ras

®(2) = fr _eu(z(x), %) d,

where dI" denotes the surface measure on I'.. This definition makes sense
only when ¢,(2(-), ) € L\(T.), and @, is a Lipschitz continuous function,
but is not necessarily convex.

Now, we may write the contact condition (2.6) as
-o,€ ¥ (u,) onI

where 9@, represents the generalized subdifferential of @, in the sense of
Clarke (see, e.g., [14]). For this reason, the problem is formulated as a
hemivariational inequality.

The generalized subdifferential in the sense of Clarke is a generalization
of the usual subdifferential of a convex function. The latter is the set of all
subgradients of the convex function at each point: when the function is
differentiable at a point, its subdifferential contains only the gradient, and
when it is not differentiable, the subdifferential contains the slopes of all
the supporting lines (i.e., the lines which lie below the graph and touch it
at the point only). In the case of a nonconvex function, the generalized
subdifferential may contain vertical finite segments, too.

Let ¢.(n; z) = plnllz| and define the functional ®, by

Q,r(n;2) = [r er(n; z) dT,

provided the integral exists. Then, we may rewrite the friction condition
(2.10) as

—or € 3, 9.(0,;ur) on I,
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where 3, ®,(n; z) is the subdifferential of ®; with respect to its second
variable. Since @, is convex, this is the usual subdifferential.

3. WEAK FORM OF THE PROBLEM

In this section, we derive an abstract form of the problem. To that end
let p*: R > R be the function defined by

sr gy | Fa€) >0,
P (5)“{0 if £ < 0.

It is Lipschitz continuous and monotone increasing, and there exists a
constant K > 0 such that

1P (&) — P (&) <Klé — &l foréy, & €R. (3.1)

Thus, (2.10) can be written as

v, -0

ol ey’ O

where v, = «,. Similarly, for almost every x € I, let p~(-,x): R - R be
the graph

lo,| < wp*(u,), v,#0 =

~ 0 if £> 0,
P~ (&%) = P(E,x) fE<O.

As usual, derivation of the abstract problem involves integration by
parts. Let w € E and v = u’, then we integrate by parts in the balance of
momentum equation (2.1); taking into account (2.4)-(2.6), we obtain

IOT]nv'-wdxdt

=j:frcurn(ar+o;‘n)-wdrdt—f()rj;)a:dexdt
+LTLfB-wmdt+ATLNfN-wdrdt
E—/()Tfr‘ ~-#,(u,,x)n-w,dl'dt
C
+'/0T/rccr,-w,dl"dt+foT/mfN-de‘dt

_ —_/‘)Tj;la:dexdt+/(;Tj;)fB-wdxdt.
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Now, it follows from (3.2) that regardless of whether w, # 0 or not, there
exists an element z € L* (0, T; L*(T:)™) such that

T _ _ (T ' .
/o [rco-, w, dTdt = [0 frcp.p (#,)z - w, dT, (3.3)
and
T T
jo jr 2w dl < [o /r c(lv, +w,| = Iv, ) dT. (3.4)
Thus, there exists z € L” (0, T; L*(I';)™) satisfying (3.4) such that

_/;Tfnv’ -wdxdt + /:/rc.gi’,,(u,,,Jc)n-w,l drI’ dt
+[0T[rcuzp*(n..) +w, dT

+[ [ o:Vwasdis [* [ fy-waTde+ [T [ f-wardr. (35)

Therefore, using (2.2), we define the viscosity, elasticity, and normal
compliance operators 4, B, P*: E — E’, respectively, by

(Au,w) = La,j,‘,u,",w,-'j dx, (3.6)
(Bu,w) = [n byl Wi, ; dx, (3.7)
(P*(u),w) = [r p*(u,)w,dr, | (3.8)

for all u, w € E. It follows from (2.14) that there exists n > 0 such that,
forall u € E,

(Au,u) = n(lullz - luly=), (3.9)

(Bu,u) > n(llullz — lul}=). (3.10)

We note that the operators A, B, and P* extend, in a natural way, to
operators defined on E into E’. With a slight abuse of notation, we use
below the same symbol to denote both the original operators and their
extensions.

Next, let f € E’ be given by

(f,W)r.',c=LTLfB-wmm+LTLfN-wdFm. (3.11)
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Finally, let S(E’) be the set of all subsets of E’'. We consider the friction
operator O mapping E into & (E'), defined as follows: »* € Q(v) C E’
means that there exists z € L™(0, T; L™(T;)™) satisfying

T T
jo j; 2 wrdlde < [0 jr (or+wil —lor)dTdr,  (3.12)

such that

w*w) = ["[ wp*(u)z-wydTdt VweE. (3.13)
0 “T,

c

We have now all the ingredients needed to state the weak formulation
of the problem and our main result in this work.

THEOREM 3.1. Let (2.7), (2.14)-(2.18) hold. Then there exists a triplet
{£, u, v} such that

£ L*(0,T; L*(I.)), v eE, v'eF, (3.149)
£(x,t) €p(u,(x,1),x) ae.onI X (0,T), (3.15)
v'+ Bv +Au + P*(u) + AL ¢+ Q(v) 2 f, (3.16)
u(t) = u, + jo ‘v(s)ds  ae.te(0,T), (3.17)
v(0) = v,. (3.18)

Here, 7y, is the map from E into L*(T,) defined by y,u = u,, %* is its
adjoint map, and
T

we= [

0o ’r.

v¥¢ dr dt.

We note that ¢ represents the tension due to adhesion, P* represents
the compressive part of the normal contact traction, and Q represents the

friction.

4. APPROXIMATE PROBLEM

In this section, we consider a regularized version of the problem where
the vertical segment of the adhesion part in the graph &, is replaced by
segments with decreasing slopes. We use the results of [9] to show that
each one of the approximate problems has a unique solution.
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Let 8> 0 and let p;(-,x): R - R be, for p*(x) = ag(x) and almost
every x € I, the piecewise linear approximation of p (-, x) given by

~(6,%) = - (x)(E+g(x) +8) if -8—-g(x) sé< —g(x),
Pals p (&%) otherwise.

Thus p; (-, x) = p~(-, x) except on the interval [— & — g(x), —g(x)], where
p;s (+, x) is a linear function. Clearly, p, is Lipschitz continuous and there
exists K; > 0 such that

|Ps (€1,%) —ps (€2, %) | < K4l — &1 V£, 6 ER, (40)

where K; —  as § — 0*. The function #2(¢, x) and the modified part
ps are depicted in Fig. 3.
We associate with the function p; the operator P; : E — E’, given by

(B (0),w) = [[ Py (ua(x), x)a() dT, (42)

for all u,w € E. The operator P;  extends naturally to an operator from E
into E’. .

The following nonlinear evolution inclusion is the abstract form of the
approximate problem.

Pi(€, )

-6 —g(z) —9(z)
| 0 f
|

1 —ag(z)

FIG.3. The approximate function #3(£, x).
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PROBLEM ;. Find a pair {u,,v;} such that
v, € E, v5(0) = v,, vy € E, (4.3)
vs + Bvy + Au; + P (ug) + Py (u;) + O(v;) 2f, (4.4)

us(t) =u, + j:vs(s) ds ae.te(0,T). (4.5)

We now establish the existence of the solution {u;,v;} of the approxi-
mate problem %, for each 8 > 0, and obtain a priori estimates indepen-

dent of é.
We remark that the approximate problem has some interest on its own.

It has better mathematical properties than the idealized problem, and,
indeed, the solution is more regular and is unique. For this reason it may
be used as a basis for numerical approximations of the problem.

To prove the existence and uniqueness of the solution for Problem
(4.3)-(4.5), we need the following two results due to Lions [12] and Simon
[20], respectively.

THEOREM 4.1. Letp>1, q> 1, and let W c U C Y be Banach spaces
with compact inclusion map i: W — U and continuous inclusion map i: U —
Y. Then the set

Sg = {u €L?P(0,T;W): u’ € L1(0,T;Y),
lullLr@, ;) + &’ llL2, 7,7y < R},
is precompact in L?(0,T; U).
THEOREM 4.2. Letq > 1 and W, U, and Y be as in Theorem 4.1. Then

the set
Srr = {u: "ll(t)"W + "u'"u(o,r;Y) <R,te [O,T]},

is precompact in C(0,T; U).

In order to use Theorems 4.1 and 4.2, we introduce a Banach space U
such that E C U, the embedding E — U is compact, and the trace map
U - LT )™ is continuous. We denote by || - ||y the norm on U.

For technical reasons, we change the independent variable and use
y(t)e™ = v(z), for A > 0. Then, Problem (4.3)—(4.5) written in terms of y is

yeE y(0O=vp,, y €F, (4.6)
y' + Ay + By + e *OAu + e *OP* (u) + e *OP; (u)
+ e720Q(eMy) 1, (4.7)

() = uy + [O'u(s) ds ae.te(0,T). (4.8)
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We define the Banach space X, endowed with the norm || - ||x, as follows:
X=(yeEy €Fl'}, lylx=Iyle + lly'le. (4.9)
Let also #(X’) be the set of all subsets of the dual space X'.

PROPOSITION 4.3. The operator Q,: X —F(X') defined by Q,(y) =
e~ *OQ(e*y) is pseudomonotone and bounded.

The proof of this proposition is accomplished through the following
lemmas.

LEMMA 4.4. If v* - v weakly in X, then v* — v in L*(0, T; (L*(T;))™).

Proof. Xf v* fails to converge to v in L?(0, T; L*(T;)™), there exist an
&£ > 0 and a subsequence, still denoted by v,, such that |lv* — vll.2q, 1. 0)
> &. Then we can extract a further subsequence such that »* - w
strongly in L*(0, T'; U), for some w. But the weak convergence of v* to »
in X implies the weak convergence of v* to v in L*(0,T;U). Hence
w = v, which contradicts the assumption that llv* — vllp2q,1;0) 2 s.

LEMMA 4.5. Ify* — y weakly in X, then
p*(uﬁ) - p*(u,) in L*(0, T; L¥(I¢)). (4.10)

Proof. It follows from (3.1) that
Ip*(ut) —p* (u,)| < Kluk — u,. (4.11)
Now,

3(1) = up(Dlizwer < ['10k(s) = va(3)lexcrr ds

¢
= j‘; ely () = Ya()izr,) ds,
and using the Jensen inequality, we obtain
T T
lut — u,li20,7; 2accp < Cra /‘; /(; 1y(s) = yu(s)E2r,) dsdt, (4.12)

where C, is a positive constant which depends on 7T and A. We deduce
from Lemma 4.4 that y} — y, strongly in L%(0, T; L%(T;)), and this to-
gether with (4.11) and (4.12) yield the result.

LEMMA 4.6. Let y* -y weakly in X and z* - z weak* in L°(0,T;
L™(T:)™). Then

IOT/FC u.p+(uﬁ)zk -¢dldt — ,/(,T[l.cl‘p+(u”)z - £dTdt, (4.13)

for all ¢ € LX0, T; LX(T;)™).
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Proof. We argue by contradiction. Let ¢ > 0. If (4.13) does not hold,

then there exist ¢ € L*(0,T; LX(I';)™) and two sequences {y*} and (z*)
such that y* — y weakly in X, z* - z weak* in L*(0, T; L*(T;)™) and

=>2¢e. (4.14)

foTLCMP‘L(u,’f)z"-ng‘dt - ./(;T./;.C"‘P+(um)z'£drdt

Since L*(0, T; L*(T;)™) is dense in L*(0, T; L*(I';)™), we may assume that
(4.14) holds for some ¢ € L™(0, T; L*(T-)™) with & in place of 2&. How-
ever, it follows from Lemma 4.5 that

[+

IOT_/PCII'P+(u:)Zk'Edth—)/(;T/; upt(u,)z- £dT dt,

and so (4.14) cannot hold for all k. This contradiction proves the lemma.

Proof of Proposition 4.3. It is clear that Q, is bounded, and it is
straightforward to show that Q,(y) is convex. We now show that Q,(y) is
closed. Let W be a weakly open set in X' and let W, = ™). Assume that
y* >y weakly in X, Q,(y) € W, and let (y*)* € Q,(y*)\ W for all k.
Then v* — v weakly in X, W, is a weakly open set in X’ containing Q(»),
and (v*)* = e*)(y*)* € Q(v*) \ W, for all k. Next, let {z*} be a sequence
in L0, T; L*(T;)™), satisfying (3.12) and (3.13), such that, possibly for a
subsequence, z* — z weak* in L”(0, T; L*(I;)™). It follows from Lemma
4.4 that z satisfies (3.12). Now, we obtain from Lemma 4.6 that (¢*)* — p*
weakly in E’, and thus A

T
v*,w) = *(u,)z-wpdldt, wel.
( fo fr ; pp*(u,) T
Then, by the definition of Q, we obtain that »* € Q(v) c W,. This is a
contradiction to the assumption that (v*)* & W,, for all k. Hence Q(v*) ¢
W, for all sufficiently large k. This argument also shows that Q,(y) is

closed.
It remains to verify the limit condition for pseudomonotone operators.

To that end, assume that y* — y weakly in X and let (y*)* € Q,(»*), for
all k. We show that if w € X, then
li,aigf((y")*,y" —w) ={y*(w),y —w), y*(w) €O\(y)-

We choose a subsequence y* (which depends on w) such that

gij.ri((yk)*’yk - W) = liilligf((y")*,yk - W).
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Let (0%)* = XX (y*)* € O(v*) and let z* € L7(0, T; L*(T;)™) be a related
function satisfying (3.12) and (3.13), for all k. We extract a further
subsequence, if necessary, such that

z* >z  weak®in L*(0,T; L*(I)").

Then z satisfies (3.12) by Lemma 4.4. It follows from Lemma 4.6 that if we
define y*(w) by

((w),b) = [ ’ [ e p* ()2 by dr s,

for b € E, we obtain
lim inf{(y*)*, y* — w)
= Jim (¥*)* »* —w)

= Jim [ i jrce-mf(u:)zk - (vt — wy)dr ds,

k—»00

= LT,/;.ce-AhP+(“n)Z -(yr —wy)dldt,

={y*(w),y —w).
This completes the proof of Proposition 4.3
LEMMA 4.7. If v* - v weakly in X, then P*(u*) = P*(u) in E'.
Proof. Let w € E. Using (3.1), we obtain

[<P*(u*) — P*(u),w)|
T
<K u* —u,|lw,)drde,
fo fr | | w, )
r 172 1/2
<K u,’f—u,,zdl") ( W, 2dl") dt,
17 (f s - ar) " ( f
< Klluf — u,llizq,1; 2 pliwlle -

Thus,
"P+(“k) - P+(“)"E' < K"‘Y“k - 'Y“"L’(o.r;z}(rc)"),

and the desired result follows from Lemma 4.4.
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It is easy to check that for each A > 0, the operator y - e *C)A4u is
monotone. In fact,

(e—A(-M(ul - uz),yl _y2>

1 r ,,4d 1_ .2y .1 2
](;e dt<A(u ~u’),u —u*)dt

2
-21- 2T A(u)(T) - u¥(T)), u!(T) — w*(T))
+A jo T(A(u! - u?),u! — u?ye™ 2 dt. (4.15)

Next, y* - y weakly in X if and only if »* —» v weakly in X and Lemma
4.7 implies that the operator y — e *OP*(u) is completely continuous.
Similar considerations show that the operator y — ¢ *O)P; (u) is com-
pletely continuous. Thus, if we let

#y = Ay + By + e *Qdu + e *OP*(u) + e *OP; (u)
+ e~ 20Q(e'Vy), (4.16)

then &, is a sum of pseudomonotone bounded operators. Consequently,
#,: X - P(X') is pseudomonotone and bounded. The last three terms of
(4.16) have the property that if »* is either equal to or an element of any
one of these terms, then

Ke*, »)l < Cliyli} + C,

where C is a constant mdependent of y and A. Therefore, using the

inequality, ||ylly < ellyll: + C,lyll}~, which results from the compactness

of the embedding of E into U, choosing ¢ small enough, and then

choosing A large enough, we find in addition that &, is coercive. Thus, by

the existence theorem of [9], we conclude that the system (4.6)—(4.8) has a

solution, and consequently, there exists a solution of Problem (4.3)-(4.5).
We have the following theorem.

THEOREM 4.8. For each & > 0, there exists a unique solution of Problem
P;.

Proof. It remains to verify the uniqueness. Assume that »' and »?
solve Problem ;. Let u'(t) =u, + [5v'(s)ds, let (v')* € Q(v'), and
denote by z' the element of L™(0,T; L"(T;)™) that satisfies (3.12) and
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(3.13), for i = 1,2. From (3.13) we obtain
/:((v')* — (#%)*, 0" — v?ds
2 (wp* (u3)2 = wp* (u3)")(vh — o}) dT s
> [} [, we'(p*(u2) = p* (u2)) - (o4 - 03) dras
+ [o ‘ [r ] pp*(uh)(z! —2%) - (vh —v2)dTds.  (4.17)

Using (3.12) for z! and z2, we find that the last term on the right-hand
side is nonnegative. Therefore,

/:((”l)m - (02)1&,”1 -2 ds
2 —C[ lui(s) — u?(s)lyllo*(s) — v*(s)lly ds,
0

where C is a constant which may depend on z!, u, T, and K. Using the
definitions of &' and «2, in terms of »! and »?, we may write

jo‘ (#1)* - (02)*, 0! — v2ds > —C [o “loi(s) — v2(s)I% ds. (4.18)

From (4.4), (4.15), (4.18), (3.9), (3.10), and after adjusting the constant C to
depend on &, we obtain that

S () — o)l + 1 [ (1'(s) = w2()liE = W (s) = v*(s)Viem) ds
-c /o lot(s) — v2(s)IE ds < 0. (4.19)

Using the inequality |lully < ellulls + C,lluly~ for & such that 0 < £ < 9,
we find '

oi(f) — v2(t)l4m + [o “Noi(s) — v2(s)I% ds

<C jo ‘Wi(s) — v?(s)%m ds,
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where C depends on ), 8, z!, u, T, and K. Then, by Gronwall’s inequality
we find that »! = »?, which proves the uniqueness of the solution, and
therefore, the theorem.

5. ESTIMATES AND THE LIMIT

In this section, we prove Theorem 3.1. To that end, we establish
estimates on the solutions of the approximate problems % leading to the
following theorem.

THEOREM 5.1. There exists a constant, C, independent of 8, such that

log ()14m + jo “Nog ()% ds + llug ()% + jr ®(us,(-,t))dT < C. (5.1)

Proof. To simplify the notation, we omit the subscript & in this proof.
We apply (4.4) to v and integrate from 0 to t. We consider the resulting
nonlinear terms first,

fot(PJ'("),v) ds = fo'j; Pt (uy(x,5))v,(x,5) dTds

C

= Lc/;‘p+(uu(x,s))un(x, s) dsdT’

= [r ®(u,(x,1)) — ®(uya(x))dr,
C
where ® is the indefinite integral of p*, i.e., d®/dt = p*. Therefore,
[ (P*(u),0) ds > [, ®(u,(t,%))dr - C. (5.2)
0 Te :

Here and below, C denotes a generic constant which is independent of 8.
Then,

j(-)t(Pa_(u),D) ds = lo‘jrcp;(u,,(x),x)u,,(x) dr ds,
2 =C = [lvlf ds. (53)

Next, we consider the term involving Q(»). Let v* be the element of Q(v)
for which equality occurs in (4.4), and let z € L™(0, T; L*(I';)™) be the
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function satisfying (3.12) and (3.13); then
f’(v*,v)ds = [‘f ppt(u,)z vy dlds.
0 0 ’r.

It follows from (3.12) that ||z}l =, 7; L*ry~) < 1. Since p* is Lipschitz and
equals zero at £ = 0, we obtain that

[ (v*,0)ds 2 —C [ lullvllly ds. (54)
(1] 0
From estimates (5.2)—(5.4), (4.4), and (2.14), it results that
1 t a
10Ol + ay [0 lo(s)l ds + (o)l - C jo “loll? ds

+ f @(ua(2,%)) = (uoa(x) T = C ' ls( )l ds

¢ a, 2
<C+C jo Iw(s)l5= ds + — lu(e) 5=, (5.5)

where a; and a, are the positive constants appearing in (2.14). On the
other hand, we have

lu(t)m < C + [0 ‘lo(s) 14 ds, (5.6)
and
[Nu(s)Eds < € + [* [ No(r)i drds. (5.7)
0 0’0
Using now Gronwall’s inequality, it follows from (5.5)-(5.7) that

lo(e)lm + jo “lo(s)IZ ds + la(e)l% + jr ®(u,(t,x)) dT

-C [o “loll? ds < C. (5.8)

Finally, we use the compactness of the embedding of E into U and apply
Gronwall’s inequality again and obtain (5.1) from (5.8).

We use estimate (5.1) to pass to the limit when 8 — 0 and thus obtain
the existence of a solution for problem (3.15)—(3.18).

For each 8 > 0, let {u;,v;} denote the unique solution of Problem
(4.4)—(4.5). Using the estimate (5.1), (4.4), and the boundedness of the
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operators, Theorems 4.1 and 4.2 imply that there exists a subsequence of
{uz, v5} such that

vy > v’ weakly in E’, (5.9

v v weakly in [E, (5.10)

u, > u strongly in C(0,T;U), (5-11)

Uy = U, strongly in L*(T¢ X (0,T)), (5.12)
u,s(x,t) > u,(x,t) a.e.in I, X (0,T), (5.13)
vy v strongly in L%(0,T;U), (5.19)

Py (Upns?) = £ weak* in L°(T¢ X (0,T)).  (5.15)

Let v} denote the element of Q(»;) which yields equality in (4.4); thus,
vy + Bvs + Aug + Pt (uz) + Py (us) +vf =f,

and let z; € L°(0,T; L*(I';)™) be the function in the definition of Q(v,),
(3.12), and (3.13). Furthermore, we may also assume that

z; >z  weak* in L°(0,T; L°(T¢)™). (5.16)
Using (5.11), (5.16), and the definition of Q(v;) in (3.13), we conclude that
vy - o* weakly in E’,

where
(v*,w) = fT[ wpt(u,)z-wydldt, week,
0 ‘rc

and thus, »* € Q(v). On the other hand, we obtain from (5.11) and (3.1)
that

P*(uz) » P*(u)  stronglyin[E’.
Let now K be the set
K={yeL(I; X(0,T)): 0= ¢(x,t) = —p*(x) a.e.on I X (0,T)}.

K is a closed and convex subset of L*(T; X (0, T)), and from the definition
of the function p; , it follows that p; (u;,,-) € K, for each 8. Therefore,
we obtain from (5.15) that ¢ € K. Using (4.2), we have for w € E,

B (u5).wd = [ [ 5 (a2, ), x)o(,1) d
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and using (5.15), we obtain that

T

(P5 (us)m) > [ [

o ’r.

&(x,t)w,(x,t) dl dt.

Let us consider now £(x, ). Suppose first that (x,¢) is a point at which
u,(x,t) # —g(x) and is also a point where wu,,(x,t) = u,(x,t). Then
D5 (u,(x,1), x) = p~(u,(x,1), x) for all § sufficiently small. By the continu-
ity of p~(x,-) at such points, p;(u;(x,1),x) = p~(u,(x,1),x). Conse-
quently, if such points comprise a set S of positive measure, then for
almost every point in S, p~(u,(x, t), x) = £€(x,t). On the other hand, the
observation that £ lies in K implies that even if u,(x,t) = —g(x),
&(x,t) € p~(u,(x,t), x) almost everywhere. This completes the proof of
Theorem 3.1.
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Analysis of a Quasistatic Viscoelastic
Problem with Friction and Damage

M. RocHDI, M. SHILLOR et M. SOFONEA

’Descriptif I

On considere dans cet article deux problémes quasistatiques de contact d’un matériau
ayant une loi de comportement viscoélastique avec une fondation indéformable. Les con-
ditions aux limites de contact sont décrites par un modele général de réaction amortie
couplé avec la loi de frottement de Coulomb. Dans le second probléme, on tient en plus
compte de '’endommagement du matériau dii aux extensions et aux compressions. Il est
formulé sous forme d’une inclusion différentielle faisant intervenir les déformations.

On considére un milieu continu viscoélastique occupant un domaine 2 de R? (d =
2,3) et dont la frontiére I', supposée suffisamment réguliére, est divisée en trois parties
disjointes I'y, I'; et I's. On suppose que, pendant l'intervalle de temps (0,7, la partie
I'; est encastrée dans une structure fixe, que des forces surfaciques f, s’appliquent sur I'y
et que des forces volumiques f;, agissent dans 2. Le premier probléme quasistatique de
contact qu’on se propose d’étudier se formule de la fagon suivante :

Probleme P : Trouver le champ des déplacements u : Q x [0,7] — R? et le champ des
contraintes o :  x [0,7] — R%*4 tels que

o= A(e(w)) + G(e(u)) dans Q x (0,7),
Divo+fp=0 dans % (0,T),
=0 sur: By x (0D,
ov=1Ff sur Ty3x(0,T),
=g, =i} . sur Fsx(0,T),
ol . ld) o Pa e (0,7,
oo < poin) = =0,
jorl = peltn) = or =ik, A2,
u(0) =up dans Q.

On note par R%*? I'espace des tenseurs symétriques du second ordre sur R? et par
€(u) le tenseur des petites déformations linéarisé. Le point au dessus d’une quantité
représente sa dérivée temporelle, Divo désigne la divergence de la fonction tensorielle

1



o et v la normale unitaire sortante a ). Le terme ov est le vecteur des contraintes de
Cauchy, et u,, ., 0, et o, représentent respectivement le déplacement normal, la vitesse
tangentielle, les contraintes normales et tangentielles. Les fonctionnelles p, et p, sont
des positives données. La fonctionnelle p, représente la pénétration du corps dans la
fondation, s’il y a contact, alors que la fonctionnelle p, désigne le seuil de frottement.

La premiere partie de ce travail porte sur 'analyse variationnelle du probléme P.
On commence par donner une interprétation mécanique des conditions aux limites con-
sidérées. On poursuit avec deux formulations variationnelles du probléme P. La premiére
est exprimée en terme de déplacements alors que la seconde est exprimée en terme de
contraintes. On établit ensuite I’existence et l'unicité de la solution pour la premiére
formulation faible puis un résultat d’équivalence entre les deux formulations via lequel on
obtient donc I’existence et I’unicité de la solution pour la seconde formulation.

Le méme probléme tenant compte de I’endommagement du matériau se formule de la
maniére suivante :

Probléeme PE : Trouver le champ des déplacements u : Q x [0,7] — R¢, le champ des
contraintes o : Q x [0,7] — R%*? et la fonction endommagement 3 : Q x [0,7] — R

tels que

o = A(e(w)) + G(e(u),8) dans Q2 x(0,T),

B — kOB + 0Yk(B) 3 ¢(e(u),8) dans  Qx (0,T),
Divo+f,=0 dans Qx(0,7),

% = sur R (0T,

ov
u=0 sur Iy x (0,7),

ov=_f, sur T2 x (0,7),
-0, =p,(l,) sur I's x (0,7),
sl ) 2 aur 5 P01,
o, <pelily)  => 0, =0,
ol =Bein) = oy = —din, A2,
u(0) =uo, PB(0)=p dans Q.

On établit une formulation variationnelle du probléme PFE suivie d’un résultat d’existence

et d’unicité.
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Abstract

We consider a model for quasistatic frictional contact between a viscoelastic body and a
reactive foundation. The material constitutive relation is assumed nonlinear and viscoelastic.
The contact is described by a general damped response condition and the associated version
of the Coulomb law of dry friction. We derive a variational formulation for the problem and
prove the existence of a unique weak solution. We also propose a dual formulation of the
problem, in terms of the stress, and establish the equivalence between the two formulations.
Then, we add the material damage which results from tension or compression as a dependent
variable, and obtain the existence and uniqueness of the weak solution to the problem with
damage. Finally, we derive a dual formulation and establish its equivalence to the primal
problem.

Key words nonlinear viscoelastic constitutive law, frictional contact, the Coulomb friction
law, damped response, variational inequality, fixed point, damage

1. Introduction

We model and analyze a process of quasistatic contact with friction between a viscoelastic
body and a reactive foundation when the damage due to mechanical strain in the material
is taken into account.

We investigated recently a number of quasistatic problems related to frictional contact.
Indeed, a model for bilateral contact with friction was considered in [14], a model for
contact with normal compliance and friction was analyzed in [12], and the problem of
contact with damped response and directional friction was studied in [13]. In these papers
friction was modeled with versions of the Coulomb law and the material was assumed to
have nonlinear viscoelastic constitutive relation of the form

o = A(e(@)) + G(e(u)), 1.1)

where u denotes the displacement field and o and e(u) denote the stress and linearized
strain tensor, respectively. Here A and G are nonlinear constitutive functions and the dot

*To appear in Adv. Math. Sci. Appl.



above represents the time derivative. The results obtained in [12, 13, 14] deal with the
existence and uniqueness of weak solutions, i.e., solutions which satisfy variational formu-
lations of the corresponding mechanical problems. The wear of the contacting surfaces
was taken into account, however, the damage to the material arising from the strain was
not included in these problems.

The aim of this paper is to extend the results obtained in [13] to a model which includes
the material damage and a general contact condition.

We consider a contact condition with friction which generalizes the one used in [13].
We derive a variational formulation of the model and prove the existence and uniqueness
of its solutions. We also obtain and study a dual formulation of the mechanical problem,
which is in the form of a quasivariational inequality for the stress field. The importance
of dual formulations of contact problems stems from the observation that contact stresses
are the main variable of interest to the design engineer, while the displacements are of
secondary interest. We prove the existence of a unique solution of the dual problem via
an equivalence result.

Finally, we show that our mathematical approach may be applied to a contact problem
when the mechanical damage of the material is taken into account. In many engineering
applications the forces acting on the system vary periodically and, thus, the strain varies
too. This may lead to the appearance and growth of microcracks which, in turn, lead to
the reduction in the usefulness of the system. Recent models for mechanical damage which
were derives from thermomechanical considerations can be found in Following Frémond
et al. [6, 7). There, they obtained the models and performed numerical simulations
for concrete. Mathematical analysis of one-dimensional problems can be found in [4, 5].
Here we consider a general case, however, as we point out below, our source function
is not allowed to become unbounded, which is the case when the material is completely
damaged. And therefore, we may consider our results as local in time.

We consider a viscoelastic material with constitutive relation

o = A(e(w)) + G(e(u), B). (1.2)

Here 8 = B(z,t) represents the damage field which measures the decrease in the load
bearing capacity of the material. Following Frémond et al. [6, 7], the effective elastic
modulus of the material satisfies Ecg = BE, where E is the Young modulus of the damage-
free material, and thus, 0 < 8 < 1. The evolution of the microscopic cracks which cause
the damage is governed by the differential inclusion

B — kOB + 3k (B) 3 d(e(u), B), (1.3)

where k is a positive material constant; K denotes the set of admissible damage functions
which satisfy 0 < 8 < 1; 8¢k represents the subdifferential of the indicator function of
K; and ¢ is a given constitutive function which describes the sources of damage in the
system, resulting from tension and compression.

In Section 2 we introduce notation and preliminaries. In Section 3 the mechanical
problem is stated and the contact boundary conditions discussed. In Section 4 we present
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the variational form of the model; the assumptions on the problem data are listed; a
dual formulation is obtained and our main results are stated in theorems 4.1 and 4.2.
Sections 5 and 6 are devoted to the proofs of the results. We use the Banach fixed
point Theorem and as a result the existence of the unique solution is proved only under
a smallness assumption on the contact functions. Finally, in Section 7 we consider the
contact problem with damage and we use a variant of the proofs in Sections 5 and 6 to
obtain the existence of a unique local weak solution to this problem. The local character
of the solution is related to the fact that when the damage field B vanishes at a point the
material there disintegrates and the model ceases to make sense.

2. Notation and preliminaries

We present in this section the notation we will use and preliminary material. For more
details we refer the reader to [1, 9, 10] or [11].

We denote by R%*¢ the space of second order symmetric tensors on R? (d=2,3); «.”
and |- | represent the inner product and Euclidean norm on R4 or R%. Let Q c R
be a bounded domain with a Lipschitz boundary I and let I'; be a part of I' such that
meas['; > 0. We denote by v the unit outer normal on I" and

H= {’u = () | v € LZ(Q)} = L}(0)?,
H = {v= ()| e B ®)} = 2@
H={r =) | m =5 € (), } = LX),

H1={T€H|Tij,j€H}.

Here and below, ¢, = 1,2,...,d; the summation convention over repeated indices is
adopted and a subscript that follows a comina indicates a partial derivative.
The spaces H, H, H; and H; are real Hilbert spaces endowed with the inner products

(u,v)Hzfﬂu,-w dz, (U,T)H=/Uij‘l’ij dz,
Q

(u, V), = (u, vy + (e(u), £(v))3, (o,7)n, = (0,7)n + (Dive,Divr) g,

respectively. Here € : Hy — H and Div : H; — H are the deformation and the
divergence operators, respectively, defined by

f(w) = (W), e (W) = 5 (i + i),

Dive = Jij,3-

The associated norms on H, H, H; and H; are denoted by |- |, | |n, | - |#, and | - |x,
respectively.



For every element v € H; we denote by v its trace on I"' and we denote by V the closed

subspace of H; given by
V={v€H1 |v=0 on l"l}.

Since measT’; > 0, Korn's inequality holds, thus
le(u)ln 2 Clulg, VYueV, (2.1)

see, e.g., [8](p. 79). In (2.1) and in the sequel C represents a positive generic constant
which may depend on £, I') and A and whose value may change from line to line. We
define the inner product (-, )y on V by

(w,v}v = (e(u), €(v))n. (2.2)

It follows from (2.1) and (2.2) that |- |y, and | - |v are equivalent norms on V. Therefore
(V|- |v) is a real Hilbert space.

We denote by v, and v, the normal and tangential components of v € H; on I given
by v, =v-v and v, =v—v,v. We also denote by o, and o, the normal and tangential
traces of 0 € H;. If o is a regular (e.g., C!) function we have o, = (ov)-v, oy = ov—0,v
and

(o,e(v))y + (Dive,v)yg = /rau -vdl’ Vv e H. (2.3)

Finally if X is one of the above Hilbert spaces, C(0,T’; X) and C(0, T; X) represent
the spaces of continuous and continuously differentiable functions from [0, 7)) to X, with
norms

X)) = t)|x, Xy = (t)|x,

Izl eqo,m);%) Zax lz(®)x,  Izlergo.ryx) (X, lz()lx + DX, |£(t)|x
respectively. We use standard notation for the Sobolev spaces W*?(0,T; X), k € N,
1 < p £ co. Moreover, if X; and X, are real Hilbert spaces then X; x X2 denotes the
product space endowed with the canonical inner product (- ,) x,xx, and norm |- |x, xx,.

3. Problem statement

We now describe the model of the process and discuss the contact boundary conditions.
The setting of the process is as follows. A viscoelastic body occupies the domain  and
is acted upon by time-dependent volume forces and surface tractions and is in frictional
contact with a rigid foundation, and as a result its mechanical state evolves on the time,
over [0,T), for T > 0. We assume that the boundary I of {2 is divided into three disjoint
(measurable) parts I'y, T'; and I's such that meas'; > 0. The body is held fixed on
I'y x (0,T) and therefore the displacement field vanishes there. A volume force of density
fo acts in 2 x (0,T) and surface tractions of density f; are applied on I'; x (0,T). We
assume that volume forces and tractions vary slowly in time. Therefore the accelerations
in the system are negligible, which leads to the quasistatic approximation of the process.



The solid is in frictional contact with a rigid obstacle on I'3 x (0,T). The contact is
described with a generalized version of the normal damped response and the Coulomb

friction law.
A classical formulation of the model for this process is the following.

Problem P. Find a displacement field v : Q x [0,7] — R? and a stress field
o:Q x [0,T] — R%*4 such that

o = A(e(w)) + G(e(u)) in Qx(0,7), (3:1)
Dive+fo=0 in 0x(0,T), (3.2)

u=0 on I x(0,7), (3.3)

ov=1_fy on Iyx(0,T), (3.4)

-0, =p,(t,) on T3x(0,T), (3.5)

lor| <pr(d,) on T3x(0,T), (3.6)

lor| < pr(dy) = 4r =0,
lor| = pr(t) = 07 = =Mir, A >0,
u(0) =ug in . (3.7

Here, (3.1) represents the nonlinear viscoelastic constitutive law. Equality (3.2) rep-
resents the equilibrium equations; (3.3) and (3.4) are the displacement and traction con-
ditions; (3.7) represents the initial condition, where ug is given.

We describe now the contact conditions (3.5) and (3.6) where our interest lies. Here
4, and 4, represent the normal and tangential velocities, respectively, while o, and o,
denote the normal and tangential stresses, respectively. The contact functions p, and p,
are prescribed nonnegative functions. Equality (3.5) states a general dependence of the
normal stress on the normal velocity. In the case when

pu(r) =kKr with k>0, (3.8)

the resistance of the obstacle to penetration is proportional to the normal velocity. This
type of behavior was considered in [14] modeling the motion of a deformable body on sand
or a granular material. We may also consider the case

Pu(r) = K74 + po, (3.9)

where £ > 0, ry = max{0,7} and pg > 0. This boundary condition models the contact
with a normal damped response (see, e.g., [13]). Finally, in the case

pu(r) = ps, (3.10)

with p, prescribed, (3.5) and (3.6) lead to a simplified version of the Coulomb law of dry
friction where the normal stress is prescribed (see for instance [3] or [11]).

The boundary condition (3.6) states that the tangential shear cannot exceed the max-
imal frictional resistance pr(%,). When strong inequality holds, the surface adheres to the



foundation and it is in the so-called stick state, and when equality holds there is relative
sliding, the so-called slip state. Therefore, at each time instant the contact surface I'; is
Divdivided into two zones: the stick zone and the slip zone. The boundaries of these zones
are unknown a priori, are part of the problem and form free boundaries. If we choose

Pr = [ipy, (3.11)

we obtain the usual Coulomb law of dry friction where u > 0 represents the coefficient of
friction (see, e.g., [3] or [11]).

Recently a modified version of the Coulomb friction law has been derived in [15, 16]
from thermodynamic considerations. It consists of using the friction law (3.6) with

Pr = I"Pu(l —0py)+, (3-12)

where d is a small positive material constant related to the wear and hardness of the

surface and p > 0 is the coefficient of friction.
A classical friction law which can be modeled by (3.6) is Tresca’s friction law. It

consists of choosing
pr(r) = gu, (3.13)

where g, > 0 is prescribed, and represents the friction bound, i.e., the magnitude of the
limiting friction traction at which slip begins.

4. Weak formulation and statement of results

In this section we set Problem P in a variational form and state our main results.
To this end, we assume that the viscosity operator

A: Q x RI*¢ — RI

satisfies

(a) there exists L4 > 0 such that
|A(-,e1) — A(-,€2)| < Laler —€2] Vep, e € RE*9) ae. in R,

(b) there exists m > 0 such that
(A(-,€1)) = A(,€2)) - (61 — £2) > mle1 — &af? (4.1)
Ver,ea € R4*4, ae. in Q,

() z+— A(z,c) is Lebesgue measurable on Ve € R¥%4,

(d) z+— A(z,0) e H.

The elasticity operator

G: QxR — R

satisfies
(a) there exists Lg > 0 such that
|G(-,€1) — G(-,€2)| < Lgler —e2| Ver,e2 € R4, ae. in 9, (4.2)
(b)) =+~ G(z,¢) is Lebesgue measurable on Q Ve € R¥*9 ’
(¢) z+— G(z,0) € H.



The contact functions

pr:TgxR—Ry (r=uv,7)

satisfy

(a) there exists L, > 0 such that

lor (- uw1) — pr(c,u2)| £ Lelug —up| Vuy, ug €R, ae. onIs, (4.3)
(b) z+— p,(=x,u) is Lebesgue measurable onI'3 Vu € R, ’
() =+ p,(z,0) € L3(Ts).

We observe that assumptions (4.3) on p, and p, are fairly general. The main restriction
arises from condition (a), which requires the functions to grow asymptotically at most
linearly. The functions defined in (3.8)—(3.10) and (3.13) satisfy this condition. We also
observe that if the functions p, and p, are related by (3.11) or (3.12) and p, satisfies
the condition (4.3)(a), then p, also satisfies the condition (4.3)(a) with L, = uL,. We
conclude that the results below are valid for the boundary value problem of each of these

examples.
We also assume that the forces and tractions satisfy

fo € C(O,T;H), f,eC(0,T:L*('2)%), (4.4)
and, finally, the initial displacement satisfies
ug € V. (4.5)
Next, we denote by f(¢) the element of Vgiven by
(F(E), vyy = /fo(t) -vdm+/ £2(t) - vdl (4.6)
Q 1§
for all v € V and ¢t € [0,T], and we note that conditions (4.4) imply
fec(,T;V). (4.7)

Let  : V x V — IR be the functional
50w = [ (s +pr(o,)fur]) . (48)
I3

It is straightforward to show that if {u,o} are sufficiently regular functions satisfying
(3.2)-(3.6) then

(o(t), e(w) — e(@(t))) n + 7(4(t), w) — j(u(t), u(t)) = (F(t),w —u(t))y VweV (4.9)

for all t € [0,T]. Thus, by (3.1), (3.7) and (4.9) we obtain the following variational
formulation of Problem P.



Problem Py. Find a displacement field u : [0,7] — V and a stress field o : [0,T] —H
such that

o(t) = Ale(u(t))) + G(e(u(t))) Vte[o,T}, (4.10)

(o(t), e(w) — e(a(t))) + 7 (u(t), w) — 5(u(t), u(t)) > (f,w — u(t))v (4.11)
YweV, tel0,T),

u4(0) = up. (4.12)

Our main result, that we prove in the next section, is the following.

Theorem 4.1. Assume that (4.1)—(4.5) hold. Then there ezists o > 0, which depends
only on , I'1 and A, such that if L, + L, < a, then Problem Py has a unique solution

{u,0} such that
u € CY0,T;V), o € C(0, T; Hy).

The proof will be given in the next Section.

We conclude that, when the Lipschitz constants of the functions p, and p, are suffi-
ciently small, Problem P has a unique weak solution {u,0}. The question of estimating o
is left open, and such estimates are likely to depend on the particular problem and setting.

We now establish a dual formulation of the mechanical problem P. To that end we
define the set of admissible stress fields X(¢, v) by

o(t,v) = {a eH | (o,6(w))n + j(v,w) > (ft),w)y Vwe V}, (4.13)

for all t € [0,T) and all v € V. Choosing v = 2u(t) and v = 0, both in V, in (4.11) we
deduce that

(o (), e(u(t)))n +5(u(t), u(t)) = (f(t), u(t))v (4.14)
for all t € [0, T], which implies that
o(t) € B(t,u(t)), (r—oa(t),e(u(t)) >0 VreX(tut)),telo,T) (4.15)

Thus, by (3.1), (3.7) and (4.15) we obtain the following variational problem.
Problem Pp. Find a displacement field u : [0,T] — V and a stress field ¢ : [0,7] — X
such that

a(t) = Ale(u(t))) + G(e(u(t))) Vi€ [0,T], (4.16)
o(t) € I(t,u(t)), (r—o(t),e(@t)n =20 Vre L(t,u(t)), telo,T), (4.17)
u(0) = up. (4.18)

We note that (4.17) is a quasivariational inequality since the set ¥ depends on the solution.
Our second result shows that problems Py and Pp are equivalent.



Theorem 4.2. Assume that (4.1)~(4.5) hold and let u € C1(0,T; V) and o € C(0,T; H;).
Then {u,o} is the solution of Problem Py if and only if {u,o} is a solution of Problem
Pp.

The proof will be given in Section 6.

We conclude from Theorems 4.1 and 4.2 that, under assumptions (4.1)-(4.5), there
exists & > 0 such that if L, + L, < a, then Problem Pp has a unique solution {u, o}
and u € C(0,T;V), o € C(0,T;H;). Moreover, the solution {x,a} of problem Pp is the
weak solution of the mechanical problem P obtained in Theorem 4.1.

5. Proof of Theorem 4.1

The proof is based on fixed point arguments, similar to those used in [12, 13], but in a
different setting and with a different choice of the operators. For this reason, we omit some
of the details below. The proof is carried out in several steps. To simplify the notation, we
do not indicate explicitly the dependence on ¢, and the equalities and inequalities below

hold for all ¢ € [0, T].
Let n € C(0,T;H) and g € C(0,T;V). In the first step we consider the following

auxiliary problem.
Problem P,y. Find a displacement field vpg : [0,T] — V and a stress field oy : [0,T] —

‘H; such that

Ong = A(e(vng)) + 7, (5.1)
(ong, e(w) — e(vpg))n + 5(g,w) — 5(9,vng) = (fyw —vpg)v VwEV. (5.2)

for all ¢t € [0,T].
Clearly, we solve the problem for the velocity and the stress fields when the elastic

part of the stress 7 and the contact velocity g are given. We have the following result.
Proposition 5.1. Problem P,y has a unique solution {vyg,0ng} such that
vpg € C(0,T; V), ong € C(0,T;Hy).

Proof. Proposition 5.1 follows from classical results for elliptic variational inequalities, and

for more details we refer the reader to [12].
We now define the operator A, : C(0,T;V) — C(0,T;V) by

Ang = vng 9 € C(0,T;V), (5.3)
where vy, denotes the velocity field given in Proposition 5.1. We have,

Proposition 5.2. There ezists a > 0 which depends only on Q, I'y and A, such that if
L, + L; < a, then the operator Ay has a unique fized point g, € C(0,T; V).

Proof. Let g1, go € C(0,T;V) and n € C(0,T;H). Let {v;,0:}, (: = 1,2) denote the
solutions of Problem Py, i.e., v; = vy, and 0; = oyg,. Using (5.1), (5.2), (4.1) and (2.2)
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we obtain
for = valfy < C(5(g1,v2) — 501, 01) + (92, 1) — (92, 02) ). (5.4)
Moreover, from (4.8) and (4.3) it follows that

i(g1,v2) — 3(g1,v1) + 7(g2,v1) — 3(g2,v2)
< C(Ly + Ly)lg1 — galv|v1 ~ valv. (5.5)

Using now (5.4) and (5.5) we obtain
fv1 — valv < C(Ly + Ly)|g1 — galv- (5.6)

Proposition 5.2 results now from (5.6) and the Banach fixed point theorem.

We assume in the sequel that L, + L, < o and, for each n € C(0,T; H), we denote by
gn the fixed point given in Proposition 5.2. Let v, € C(0,T;V’) and o, € C(0,T; H;) be
the functions given by

Un = Ungn» On = Ongy- (5.7)
Moreover, using (4.5), let u,, € C1(0,T; V) be the function defined by
up(t) = uo + /otv,,(s)ds te[0,7T]. (5.8)
We define the operator A : C(0,T;H) — C(0,T;H) by
An=G(e(uy)) n€C(0,T;H). (5.9)

We have the following result.
Proposition 5.3. The operator A has a unique fized point n* € C(0,T,H).

Proof. Let m, n2 € C(0,T;H) and let v; = vy, 05 = 0y, Ui = Uy, gi = gn,, fori =1,2.
Using Proposition 5.2 we have g; = v; and from (5.1) and (5.2) we obtain

o; = Ae(v;) + i, (5.10)
(o1, 6(w) — (i) + J(vi, w) — J(vi, ) 2 (fiw—wvi)y, VweV, (5.11)
where i = 1,2. Using (5.11) we deduce that
(01 — 02,6(v1) — €(v2))n 20,
and, by (5.10) and (4.1) we find

v —volv < Clpt — |- (5.12)
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It follows now from (5.9), (4.2), (5.8) and (5.12) that

[Am(®) - Am(Olw < OL [ ma(s) ~ma(s)lds  Vee 0,71, (5.13)

Proposition 5.3 results from (5.13) and the Banach fixed point theorem.

Proof of Theorem 4.1. Let L, + L, < a.
Ezistence. Let n* € C(0,T;’H) be the fixed point of A and let v+, oy and u,~ be the

functions given by (5.7) and (5.8) for n = n*. Choosing n = 7* and g = g,+ in (5.1) and
(5.2) and using (5.7) we obtain that

o = Ae(vge) + 17, (5.14)
(0'17*>5(w) - €(Un*)>'H +j(9n*x'w) _j(gn‘>'”r)*) > (fiw - vpe)y Yw e V. (5.15)

Now, equality (4.10) follows from (5.8), (5.9) and (5.14), since vys = Ups, * = An* =
G(e(uzp)). Inequality (4.11) follows from (5.15) since gpe = Aprgpe = vpr = tys. The
equality (4.12) results from (5.8), and the fact that u,» € C1(0,T; V) and o, € C(0,T;H;)
is a consequence of Proposition 5.1, (4.5) and (5.8).

Uniqueness. It follows from the uniqueness of the fixed point n* of the operator A.

6. Proof of Theorem 4.2

In this section we prove the equivalence between Problems Py and Pp. Let {u, o} be two
functions such that u € C*(0,T; V) and ¢ € C(0,T;H;). We establish the equivalence of
the variational inequalities (4.11) and (4.17).

(i) (4.11) => (4.17). We choose w = 2i and w = 0 in (4.11) and deduce that
(o, e(W))n +5(,4) = (f,u)v. (6.1)
Using (4.11) and (6.1) we obtain
(o, 6(w)r +j(4,w) 2 (fw)y VYweV,

which implies that o(t) € X(¢t,(t)) for all ¢t € [0,T]. On the other hand, we obtain from
(4.13) and (6.1) that

(1 =o(t),e(u(t))) >0 V1 € Z(t,u(t)), t € [0,T). (6.2)

The inequality (4.17) follows now from (6.2).

(4.17) = (4.11). The subdifferentiability of the function j(u(t),-), for () € V, implies
that there exists a function f : [0,7] — V such that

jl,w) — (@) > (f,w—-a)y VweV,
thus,

(f = frw—1d)y +j(@,w) - j(u,9) > (fw—d)y YweV. (6.3)
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Choosing w = 2% and w = 0 we obtain

It then follows from (6.3), (6.4) and (2.2) that e(f(t) — f(t)) € T(¢, u(t)) for all t € [0, T).
Therefore, by using 7 = €(f — f) as a test function in (4.17) and (2.2) we deduce

(f = fri)y > (o,e(@))n.
Adding j(@, %) to this inequality and taking (6.4) into account we find
(fra)y 2 (o,e(@))n + j(4,1%). (6.5)
On the other hand, since o(t) € (¢, u(t)) and u(t) € V, we obtain
(o, e(@))n + 5, 4) > (f, )y, (6.6)
and, also,
(o,6(w))n + j(a,w) > (fyw)y VweV. (6.7)

Inequality (4.11) is now a consequence of (6.5)—(6.7).

7. The problem with damage

We consider the contact problem when the damage of the material caused by tension or
compression is taken into account. We assume that the mechanical strain, when above a
given threshold, creates microcracks which may grow and cause the decrease in the load
bearing capacity of the material. General models for damage were derived recently in [6, 7]
from the virtual power principle. Analysis of one-dimensional problems can be found in
[4, 5]. Here we use a variant of one of their models, and we note that a number of other
models for damage can be found in the engineering literature.

We assume, following [6, 7], that the effective elastic moduli of the material depend
on the damage function 8 = B(z,t). There it was assumed that 8 = Eeg/E, where E g is
the effective modulus of elasticity and E is the Young modulus in the absence of damage.
Therefore, § has values between zero and one; when 3 = 1 there is no damage; when 8 =0
the material is completely damaged at the point; when 0 < 8 < 1 there is partial damage
there. We retain the assumption that 0 < 8 < 1 but use a more general dependence of
the elasticity function on 3, given in (1.2). Furthermore, we assume that the source of
damage can be represented by ¢ = ¢(e(u), 3), since the damage depends on the strain. In
_ [6, 7] the damage source was chosen as

¢re(e(u),B) =m <1—;—é) - % (e(w))? + w,

where m and w are two positive material parameters. We note that the source becomes
unbounded when § — 0. However, our assumptions on ¢ do not allow for complete
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damage at any point. Therefore, we may consider the global solutions of our problem as
local solutions of a problem with ¢r as damage source, valid as long as 0 < B, < 5. We
assume that the material may recover from damage and cracks may close, thus, we do not
impose the restriction 98/t < 0 which was used in [4, 6, 7, 5].

The physical setting is the same as in Section 3, and in the model we replace the
constitutive law (3.1) by (1.2) and (1.3). For the sake of simplicity we assume a homoge-
neous Neumann boundary condition for the damage field. Next, let K denote the set of

admissible damage functions
K={£GH1(Q): 0<E<1 ae in n}

Let ¢k denote the indicator function of K and 8y be its subdifferential.

Under these assumptions, the classical formulation of the physical problem is:
Problem DP: Find a displacement field u : Q x [0, T] — R?, a stress field o : 2x [0, T] —
R%*¢ and a damage field 8 : Q x [0, T] — R such that

o=A(e(u)) +G(e(w),8) in Qx(0,T), (7.1)

B — kOB +0¢k(8) 3 d(e(w),) in  Qx(0,T), (7.2)
Dive+fp=0 in Qx(0,T), (7.3)

% =0 on I x(0,T), (7.4)

u=0 on T;x(0,7), (7.5)

ov="Ff; on TIyx(0,T), (7.6)

-0, =p,(%,) on TI3x(0,7T), (7.7)

lor] <pr(d,) on T3 x(0,T), (7.8)

|0’1—| < p-r(iLy) = i’:-r == 0,
|0"r| = p‘r(i‘u) = 0y = —-A’L.L,-, A2 0,
u(0)=ug, BO)=F in N (7.9)

Here, %’ represents the normal derivative of # on the boundary and fp in (7.9) is a

prescribed initial damage.
Next, we derive a weak formulation for the problem DP. To this end we introduce the

bilinear form a : H!(2) x H'(Q) — R given by
a(§,n) = k/Vf -Vndz. (7.10)
Q
Using arguments similar to those in Section 3 we obtain the following variational

formulation of the viscoelastic problem with friction and damage.
Problem DPy. Find a displacement field « : [0,T] — V/, a stress field o : [0,T] — H
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and a damage field g : [0, T] — H!(£2) such that for all t € [0,T)

o(t) = Ale(u(t))) + Gle(u(t), B(¢)), (7.11)
(o(t),e(w) — e(a(t)))r + 5(u(t), w) — j(ult), u(t)) (7.12)
2 (f(t)yw—au(t)v VweV,
Bt e K, (B(),€ — B®)rxa)+ a(B(t).€ ~ B(t)) (7.13)
> (b(e(u(t), B(1),€ — B(t)) L2y VEEK, ae te[0,T),
u(0) = up, P(0) = po. (7.14)

To study problem DPy we make the following additional assumptions on the data.

G: 0 x R4 x R — R¥*4

satisfies

(@) there exists Lg > 0 such that

IG('7€11 ﬂl) - G('7 €2aﬁ2)| <Lg (IEI - E2| + 'ﬂl - ﬁ2')

Ver,eo € R4, B, B € R, a.e. inQ, (7.15)
(b) z+— G(z,¢,B) is Lebesgue measurable on Q Ve € R¥*4, B c R,
(¢) z+— G(z,0,0) € H.

The damage source function

¢:AxRIxR—R

satisfies

(a) there exists Ly > 0 such that
16(-.€1,81) — ¢(- ,€2,82)| < L (lex — 2| + 161 — Bal)
Ver,e2 € R¥%4, By, B €R, ae. inQ, (7.16)

() =+ ¢(z,¢,B) is Lebesgue measurable on 2 Ve € R%¥*¢, g e R,
(c) z+— ¢(z,0,0) € L2(Q).

Bo € K. (7.17)

We have the following existence and uniqueness result for the problem.

Theorem 7.1. Assume that (4.1), (4.3)—(4.5) and (7.15)~(7.17) hold. Then there erists
a > 0, which depends only on §2, I'1 and A, such that if L, + L, < a, then Problem DPy

has a unique solution {u, 0,3}, and
v €CY0,T;V), o€C(0,T;H1), BeW0,T;L%))n L0, T; H(R)).

We conclude that when the Lipschitz constants of the contact functions p, and p, are

sufficiently small, Problem DP has a unique weak solution {u, o, 3}. Moreover, a does not
depend on the damage data. Furthermore, it follows that the problem with an unbounded

damage source function of the type ¢r has a local weak solution, as long as 0 < .
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The proof of Theorem 7.1 is similar to that of Theorem 4.1 and is obtained in several
steps. Since the modifications are straightforward, we omit most of the details.

Let n € C(0,T;H) and 6 € C(0,T; L%(Q)). In the first step we consider the following
uncoupled auxiliary problems.
Problem DP,. Find a displacement field u, : [0,7] — V and a stress field o5, : [0,T] —

‘Hi such that

on = Alelin) +n, (7.18)
{on,e(w) — () + J(iyw) —j(ly,dy) 2 (fiw—tg)y YweV (7.19)

for all t € [0,T), and
un(0) = wuo. (7.20)

Problem DP,. Find a damage field 85 : [0,T) — H(Q) such that Gy(t) € K for all
t€[0,T) and

(Ba, € — Bo)L2(a) + a(Ba,€ — Bo) = (0,€ —Podr2y VEEK (7.21)
a.e. on [0,T}, and
Bs(0) = fo. (7.22)
We have the following results for these problems.

Proposition 7.2. There ezists a > 0, which depends only on Q, 'y and A, such that if
Ly + L < a, then Problem DP, has a unique solution {u,,oy}, and

uy € CYO,T;V), oy € C(0,T;H1).

Proof. Let {uy,, oy} be the functions defined by (5.7) and (5.8). Clearly u, € C1(0,T;V),
oy € C(0,T;H1) and u,, satisfies (7.20). Choosing g = g, in (5.1), (5.2) and keeping in
mind (5.3), (5.7), (5.8) we obtain (7.18) and (7.19). The uniqueness follows from (7.18)
and (7.19), by using (4.1) and the assumption L, + L, < .

Proposition 7.3. Problem DPy has a unique solution By such that
Be € WH2(0,T; L2()) N L0, T; HY()).

Proof. Proposition 7.3 follows from the coercivity of the form a defined by (7.10) and
classical results for parabolic variational inequalities, see, e.g., [2](p. 124).

As a consequence of Propositions 7.2, 7.3, (7.15), and (7.16) we may define the operator
L:C(0,T;H x L*(Q)) — C(0,T;H x L*(R)) by

L(n,6) = (Gle(un), Bo), #(e(un), o)), (7.23)
for all (n,0) € C(0,T;H x L?(Q)). We have

Proposition 7.4. The operator L has a unique fized point (n*,0*) € C(0,T; H x L3(Q)).
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Proof. Let (m1,61), (n2,62) € C(0,T;H x L*(R2)) and let t € [0,T]. Using (7.23), (7.15)
and (7.16) we deduce

[L(m1,61)(t) = L(m2,02)(O)lxr2() < C (tomy (£) = una (B)]v + 1B, (£) — By (£)L2(syy) -

(7.24)
Moreover, it follows from (5.8), (5.12) and (7.18)—(7.20) that
t
om () = vm(®)ly < € [ 1m(s) = ma(s)b . (7.25)
On the other hand, we obtain from (7.21)-(7.22) that
t
|Be, () — Bo (V) 2() < C /0 161(s) — 62(5)|L2(q)ds- (7.26)

Using now (7.24)—(7.26) we find

\L(m,61)() — L(m2,62)t)lrux12) < C /0 [(m, 01)(8) — (12, 02)(8) ux L2y ds.  (7.27)

Proposition 7.4 follows now from (7.27) and the Banach fixed point theorem.

Proof of Theorem 7.1. Assume that L, + L, < a. Let {u,+,0,+} be the solution of
(7.18)—(7.20) for n = n* and let fBg. be the solution of (7.21)-(7.22) for 8 = 6*. It is
straightforward to show that {uy,s,op+, B9} is a solution of problem (7.11)—(7.14) such
that u,. € C}(0,T;V), oy € C(0,T; Hy) and Bg. € W12(0, T; L3(§2)) N L?(0, T; H()).
The uniqueness of this solution follows from the uniqueness of the fixed point of the
operator L.

We turn now to the dual variational formulation of Problem D Py which can be ob-

tained as the one in Section 4.
Problem DPp. Find a displacement field u : [0,T] — V, a stress field o : [0,T] — H
and a damage field 8 : [0,T] — H!(2) such that for all t € [0, T]

o(t) = A(e(i(t))) + G(e(u(t)), B(2)), (7.28)
o(t) € I(t, u(t)), (1 — a(t),e(u(t))n V7 € E(t,u(t)), (7.29)

p(t) e K and for all{ € K, ae. t€[0,T),
(B(), € - B(t)) La(q) + a(B(E), € — B(E)) > (B(e(u(t)), B(E)), € — B(E)) 3e)» (7.30)

u(0) = ug, B(0) = fo. (7.31)

We note, again, that problem (7.28)-(7.31) is a quasivariational inequality since ¥ depends
on the solution. We have have the following equivalence result.

Theorem 7.5. Assume that (4.1), (4.3)—4.5) and (7.15)~(7.17) hold. Then {u,0,B} is
the solution of Problem DPy if and only if {u,0,B} is a solution of Problem DPp.

The proof of Theorem 7.5 follows from the same arguments as those used in in Section
6 and it is based on the equivalence of the time dependent inequalities (7.12) and (7.29).
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| Descriptif I

Ce travail porte sur I’étude d’un modele pour les problémes quasistatiques de contact
bilatéral avec frottement entre un matériau déformable et une fondation rigide en mouve-
ment. La Loi de comportement du matériau est du type viscoélastique de Kelvin-Voigt.
Le frottement est modélisé par la version modifiée la loi de Coulomb introduite par N.
STROMBERG, L. JOHANSSON et A. KLARBRING. On tient compte aussi au niveau des
conditions aux limites du dégagement de chaleur due aux frottements.

On considére un milieu continu viscoélastique occupant un domaine  de R™ (m =
2,3), et dont la frontiére I', supposée suffisamment réguliere, est divisée en trois parties
disjointes I'p, 'y et I'c. On suppose que, pendant I'intervalle de temps [0, T, des forces
volumiques f4 agissent dans €2, que la partie I'p est encastrée dans une structure fixe,
que des forces surfaciques fy s’appliquent sur I'y. On suppose en outre que la partie
Ip UI'y est maintenue une température donnée 6, alors que la fondation rigide, en mou-
vement tangentiel avec une vitesse ¢, est maintenue  une température z. Ce probléme
mécanique peut se formuler mathématiquement de la fagon suivante :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R™, le champ des
contraintes o : 2 x [0, T] — RT**™ et la température 6 : Q x [0,7] — R tels que

Oij = Gtk + bijrugy — ;0 dans  Q x (0,7),
oijj+ fai=0 dans Qx(0,7),
& — (kij03)s = —cijui; +q dans Qx (0,T),
u=0 sur TIpx(0,T),
on=fy sur Tyx(0,T),
0=06, sur (I'pUTly)x(0,7T),
up =0 sur T¢x(0,7),




|o-| < plRow|(1 - 6|Ras|), sur Tcx(0,T),
|oz| < N|R0n|(1 s ‘5|R‘7n|)+ = u, = ¢,
o] = plRaoa|(1 - <5|Rc7,,|)+ = u.=¢— Ao, A0,

kij0n; = p|Ron|(1 = 8|Ronl) , sc(-, [ur. — @)
—ke(o e 03) sur FC X (O,T),
U(' ,0) = Uy, 9( ,0) = 00 dans (2.

On note par RT**™ D’espace des tenseurs symétriques du second ordre sur R™. Le
“prime” au dessus d’une quantité représente sa dérivée temporelle, n est la normale
unitaire sortante a et on est le vecteur des contraintes de Cauchy. Les fonctions u,,
u., o, et o, représentent respectivement le déplacement normal, la vitesse tangentielle et
les contraintes normales et tangentielles. Le réel u désigne le coefficient de frottement et
J est un coefficient positif (assez petit) lié & I'usure et la dureté du matériau.

Le travail commence par une interprétation mécanique des équations et des termes
cités dans le probleme. L’accent est mis particulierement sur les conditions aux limites
considérées sur la partie de contact potentielle I'c. Sous certaines hypotheses, on établit
une formulation faible du probleme P. Elle se présente comme un systéeme hyperbolique-
parabolique d’équations aux dérivées partielles. Le systeme est formulé ensuite en terme
d’opérateurs. Un résultat d’existence est alors établi en utilisant une méthode de régulari-
sation suivie d’estimations a priori puis de passages a la limite pour terminer avec une
technique de point fixe.
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Abstract

We prove the existence and uniqueness of the weak solution for a quasistatic thermoviscoelastic
problem which describes bilateral frictional contact between a deformable body and a moving
rigid foundation. The model consists of the heat equation for the temperature, the elliptic
viscoelasticity system for the displacements, the SJK-Coulomb law of friction and frictional
heat generation condition. The proof is accomplished in two steps. First, the existence of
solutions for a regularized problem is established and a priori estimates obtained. Then the
limit function, which is the weak solution of the original problem, is shown to be the unique
fixed point of the solution operator when the friction coefficient is small.

Keywords. Quasistatic frictional contact, viscoelastic, bilateral contact, frictional heat gen-
eration, fixed point, SJK-Coulomb law of friction

1. Introduction

This work deals with a model for the quasistatic process of bilateral frictional contact be-
tween a viscoelastic body and a rigid moving foundation. The model consists of the heat
equation for the temperature and the elliptic viscoelasticity system for the displacements,
together with friction and frictional heat generation conditions on the contact surface. We
establish the existence and uniqueness of the weak solution for the problem when the co-
efficient of friction is sufficiently small. The proof is based on the study of a sequence of
auxiliary problems, passage to the limit when the regularization parameter vanishes, and
an application of a fixed point argument.

The model describes the evolution of the thermomechanical state of a part or component
that is in frictional contact with a harder object. The assumption that the acting forces,
tractions and possible heat sources change gradually in time allows us to neglect the inertial
terms in the equations of motion and use the quasistatic approximation. In particular, we

*To appear in Quart. Appl. Math.




neglect any viscoelastic waves in the body, which is the case in a system, such as a pump
or a low rpm motor, where slow periodic forces act on the contacting elements. Often in
such systems, the contacting elements are partially lubricated and, therefore, the friction
coefficient is small.

There exists a large body of research on frictional contact in the engineering literature.
Recent results from a number of different points of view can be found in [24] and references
therein. General dynamic thermoelastic models, which were derived from thermodynamical
principles, can be found in [14, 26). The mathematical literature on dynamic or quasistatic
frictional contact models which include thermal effects is very recent, although in applica-
tions frictional contact is very often accompanied by considerable heat generation. Indeed,
when car brakes are applied the frictional heat generation can easily exceed 100 HP. Dy-
namic thermoviscoelastic frictional contact problems can be found in [4, 5, 6, 11, 21]. In [5]
the wear of the contacting surface was included and in [6] a model for the grinding process
was developed. A one-dimensional thermoviscoelastic problem for a beam was investigated
in [16] where the existence of the weak solution was established and numerical simulations of
the solutions conducted. A quasistatic thermoviscoelastic problem for a beam can be found
in [13, 12] where the wear of the contacting end is included. A frictionless one-dimensional
thermoelastic contact problem for a rod was thoroughly analyzed in [3].

Recent existence and uniqueness results for quasistatic contact problems can be found
in [2, 8, 19, 22, 23, 25]. However, this paper is the first to investigate the general bilateral
quasistatic contact problem in three dimensions in which the thermal effects of friction are
taken into account.

The behavior of the bulk material is assurned, for the sake of simplicity, to be linear.
The nonlinear effects on which we focus occur on the part of the boundary which is in
contact with the rigid foundation. We employ the Kelvin-Voigt viscoelastic law with ther-
mal effects included. We model friction by the SJK-version of Coulomb’s law, [26], and
assume that the contact is maintained throughout the process, which is the case in many
engineering applications. The frictional heat generation enters as a boundary condition for
the temperature.

In Section 2 we present the physical setting and formulate the model as a coupled system
of parabolic-elliptic partial differential equations, together with initial and boundary condi-
tions. Because of the friction condition there is a regularity ceiling for the solutions and, in
general, these problems do not admit classical solutions. Therefore, we introduce the weak
formulation in the form of a variational inequality and then rewrite it in an abstract operator
form. Then we list the assumptions imposed on the data and state our main existence and
uniqueness result in Theorem 2.2. It guarantees that when the coefficient of friction is small
the problem has a unique weak solution. Estimating the bound on the friction coefficient
remains an important unsolved question, however, partially lubricated surfaces have small




friction coefficients. Finally, we present an auxiliary problem in which the contact stress
is assumed to be known. The existence of the unique solution of the regularized version
of the auxiliary problem is established in Section 3 where we use an abstract existence re-
sult for degenerate evolution equations due to [15]. We note in passing that a considerable
generalization of this theorem can be found in {17]. Then we obtain the necessary a priori
estimates on the solutions. We pass to the regularization limit in Section 4 and, thus, prove
the existence of the unique solution to the auxiliary problem. Finally, in Section 5 we use
a fixed point argument and establish Theorem 2.2.

There remain many of open questions, in addition to estimating the size of the friction
coefficient. Does the solution converge to the steady solution when the forces, tractions and
heat sources converge to time independent quantities? If so, what is the rate of convergence?
Moreover, the wear of the contacting surfaces needs to be taken into account. Finally, the
auxiliary problem and the fixed point argument may be a basis for a convergent numerical
algorithm, but will it be sufficiently effective in practice?

2. The model, weak formulation and results

The physical setting consists of a viscoelastic body which, over a part of its surface, is in
frictional contact with a rigid moving foundation. The body (in its reference configuration)
is represented by (2, a region in R™ (m = 2, 3), whose boundary 02 = I', which is assumed
to be Lipschitz continuous, is divided into three disjoint parts. On the first part, denoted
by ['p, the body is clamped; known tractions act on the second part I'y; the body is in
frictional contact with a rigid obstacle on the third part, I'c. The reference configuration is
assumed to be stress free and isothermal; its temperature conveniently set as zero, which also
serves as the reference temperature. The rigid foundation moves with tangential velocity ¢
and this motion is accompanied by frictional heat generation—which is considerable in many
applications—on the part of the contact surface where relative slip takes place.

We assume that contact is maintained between the body and the foundation. This is
the case in many engineering systems where there is no loss of contact, such as between the
piston rings and the engine block in a car. An example from everyday life is the frictional
contact of the wheels with the rail when a train is braking. From the mathematical point
of view the approach below does not allow us to consider the case when separation occurs
between the body and the foundation. We assume that the applied forces, tractions and the
heat source vary slowly with time and consequently neglect the accelerations in the system.
So we employ the quasistatic approximation for the process. The unknowns in the model
are the displacements vector u = (u;(z,t),...,un(z,t)), the temperature § = 6(z,t) and
the stress tensor ¢ = (0yj(x,t), at location z and time ¢.

The model for the process of quasistatic thermoviscoelastic bilateral contact with friction




is as follows:
Find {u, 0,0} such that

0ij = QijiUk ] + b.'juu;,’, —cji0 in Qp, (2.1)
Oijj + fai=0 in Qr, (2.2)

0 — (kiib;)i = —cijui;+q in Qr, (2.3)
u=0 on I'px(0,7), (2.4)

on=fy on Iyx(0,T), (2.5)

=0, on (IpUTy)x(0,T), (2.6)

u, =0 on T¢x(0,T), (2.7)

|o+| < plRow|(1 = 8|Roa|), on Tcx(0,T), (28)

0,1 < W{Roal(1 - 8lRoal), = o, = &,
|ov| = plRon|(1 — 6| Ro]), => u, = ¢ — Aoy, A 20,
kijfn; = p|Roy|(1 — 8|Roy|) , sc(-, [u) — @)
—ke(6—6r) on T¢x(0,T), (2.9)
u(-,0) = uy, 0(-,0)=6, in Q. (2.10)

Here, Qr = 2 x (0,T), 4,5 = 1,...,m, the repeated index convention is employed, the
prime represents time derivative, the portion of a subscript prior to a comma indicates a
component and the portion after the comma refers to partial derivatives. All the variables
are scaled and form dimensionless quantities.

The thermoviscoelastic constitutive relation is given in (2.1) where a = (a;ju) and b =
(bijx1) are the tensors of elastic and viscosity coefficients, respectively. Since we consider
the quasistatic approximation for the process, (2.2) represents the equilibrium equations,
and f, = (fai(z,1),..., fam(z,t)) denotes the density of applied body forces acting in .
For the sake of simplicity, the material density is assumed constant, set equal to one. (2.3)
is the energy equation where ¢;; and k;; are the components of the thermal expansion and
thermal conductivity tensors, respectively, and ¢ is the density of volume heat sources.

To describe the boundary conditions we introduced the unit outward normal n =
(n1, -..,nm) to I, and since I is assumed Lipschitz, n exists at almost every point there. We
denote by 0, = 0;n;n; and u,, = u;n; the normal components of ¢ and u on I, respectively,

and let
Or =0N — OpN, Ur=U—UN

be the tangential parts (see, e.g., {18] or [10]).
In (2.5) and (2.6), fy = (fm(z,t),..., fnm(z,t)) denotes the tractions applied on Iy,
and 6, is the known and scaled temperature of the part of the boundary I'p, UT'y. Condition

(2.7) means that there is no loss of contact.




We turn to the conditions on the contact surface. In (2.8) we employ the SJK-generalization
of Coulomb’s law of dry friction ([26]). p is the friction coefficient, § is a small positive co-
efficient related to the wear and hardness of the surface, u! is the tangential velocity of
the body, (- )+ = max(-,0) and R represents a normal regularization operator, a linear and
continuous operator R : H=2(I') — L2(T) (see, e.g., [9]). We use it in (2.8) and (2.9) to
regularize the trace of the stress tensor on I'. Condition (2.8) may be interpreted physically
in the following way. The boundary sticks to the foundation and moves with it when the
applied tangential stress is less than the limiting value. The part of I'c where this takes
place is called the stick zone. The part where the tangential stress reaches its limiting value
and does not move in tandem with the foundation is called the slip zone. A is an unknown
multiplier which indicates the relative direction of the slip.

The modification to Coulomb’s law of friction, which was derived in [26] from thermo-
dynamical considerations, consists of the factor (1 —4|-|). It represents the fact that when
the contact stress is large there is a decrease in frictional resistance because of surface wear.
This modified condition agrees with Coulomb’s law for |o,| not too large since ¢ is very
small in applications. On the other hand, when the contact tractions are very large it is
very likely that the surface will be damaged, and Coulomb’s condition, actually the whole
model needs to be redone. Thus, from the point of view of applications the modified condi-
tion seems more natural. From the mathematical point of view the fact that the tangential
stress is bounded is essential to obtaining the necessary estimates below.

Next, the introduction of the regularization operator R is necessary since the contact
stress is not sufficiently regular to make the condition of friction meaningful. Indeed, o on
I'¢ lies in H ‘%(I‘), which means that it is only a distribution, too irregular to use below.
An explanation of the mathematical difficulties and a justification for using R can be found
in [9]. The operator R may be chosen to have a small support, in which case it will average
the contact stress over the surface asperities in a small region on I'c. We do not know how
it affects the friction bound since we can not obtain comparable results without it.

We now describe the temperature boundary condition (2.9) on I'c. The power generated
by the frictional contact forces is proportional to |o,| and |ul — ¢|, so, for the sake of
generality, we used the function s.(-,7), which is prescribed and generalizes | - |, and it is
given by u|Ra,|(1 — 8|Ron|) +Sc(s [ur — @). Or is the foundation’s temperature and k. is
the coefficient of heat exchange between it and the body. Finally, (2.10) represent the initial
conditions.

It is well known that, in general, there are no classical solutions to the problem because
of the regularity ceiling related to the possible stick-slip motion. Therefore, we consider a
weak or variational formulation for the problem. To this end we introduce the following



classical Hilbert spaces:
H=1L*Q), H™=LIQ)™,
E= {w € H(Q)™: w=0o0n I‘D},
V= {n € HY(Q): n=0on PDurN},
W= {‘f = (1) : 7 = 15 € L(Q), 75 € L2(Q)},

H=L*0,T;H), E=L*0,T;E), V=L*0,T;V), W=L*0,T;W).

Below, we use || - ||, || - [l and || - |lw to denote the norms of E, V and W, respectively.
Similarly, we use |- |y and | - |gm to denote the norms of H and H™, respectively, and (- ,-)
denotes the duality pairing between E’ and E or V' and V, as the meaning is evident from

the context. For standard notation we refer the reader to [1, 20, 18].

We now describe the assumptions on the data. The coefficients of elasticity, viscosity,

thermal expansion and thermal conductivity satisfy:
aijet € L2(82),  biji € L2(Q), ¢ € LP(Q), kij € L=(Q);

Aijkl = Qjikl, Qijkl = Qklij, Qijkl = Qijlk,

GijkiXkiXij = 01XijXi; for all symmetric tensors x = (x;);
bijkt = bjixt, bijkt = briij, bijri = bijik,

bijuXmXij = Q2XijXi; for all symmetric tensors x = (x;);
Gij = Cjiy

kij = kji, kijzjzi > asziz; for all vectors z = (z;).

Here, a;, a; and a3 are positive constants.
The body forces and the volume heat sources satisfy

Ffa € L30,T;H™), gqeV.

The friction coefficient and the velocity of the foundation satisfy

pueL>*T¢), p>0, ae on I'c,
¢ = ¢(t) € C([0,T]; R™).

The function s, satisfies

sc: e x R — R, is Borel measurable,
Se(-,7)<ayq forall reR, ae. on I'g,
[sc(-,7m1) — 8c(-,m2)] S as|ry — 1] forall 7,7 € R, ae. on TIg,

where a4 and as are positive constants.
The assumptions on the boundary and initial data are
fn € L*0,T; L>(Tn)™);
there exists 8 € H!(0,T; H'(€)) such that © = 6, on I'p UTy;
Or € L*(0,T; L*(Tc));
ug € E, 6 € H.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



For technical reasons, it is convenient to shift the temperature function so that it is zero
on I'p UT'y. To that end, we introduce £ = § — © and & = 6, — ©(-,0). To simplify the
notation, we will not indicate explicitly the dependence on ¢.

We can now present the weak formulation of the problem.

Definition 2.1. A triplet {u, 0,6} is said to be a weak solution to (2.1)-(2.10) provided

it satisfies

ueE, v €eE, wu(,0)=uy, (2.16)
EeV, eV, &(,0)=¢&, (2.17)
oeW, o0i=ajuur+ bijklu;g,l —ci;(§+9), (2.18)

and forallw e E
/ @ikt (Wi~ ;)dx + / bijrruy, o (w; j—u; ;)dr — / cii€(ws j—u; ;)dzx
Q Q Q
+ /F ulRow|(1 — 6|Raw])., (|- — @l — [, —l)dT (2.19)

c
> /fA,-(wi - u:)dx + /c,-,-@(wi,j - ug,j)dx + Fi(w; — u:)dl",
Q Q 'y
and, for allp € V

(€ n + /Q ki;€n jdx + /n ciju; ndT -+ /F keéndz

(o}

_ / ulRos| (1 — 6|Ran) , se(z, [ul, — ¢l)ndl (2.20)

T'c

={gq,n) - / ©'ndz — k(6 — Or)ndll — / ki;0©,n dz.
Q Tc Q

We write the weak formulation in an abstract form, and to that end we define the

following operators:

— FE,
— V',
El
— V',

— V,

S
o< < I
|



(Au,w) = [)@jk[“k’lwijdx, (2.21)
(Bv,w) = nbijklUkJﬂ)in.T, (2.22)
(Ciom) = /n —— (2.23)
(C26,w) = —/Cijfwudl', | (2.24)
Q
(g = [ ke, (2.25)
(Kab,m) = /n ki sde, (2.26)
(S(o,v),n) = —/F p|Ray|(1 - 8| Rou|) , se(z, [vr — ¢|)ndT. (2.27)

We note that each of these operators extends, in a natural way, to an operator defined on
the corresponding space of square-integrable vector-valued functions on (0, T'). For example,
A extends to an operator from E to E' by setting (Au)(t) = A(u(t)). With a slight abuse of
notation, we will use below the same symbol to denote both the original operator and its
extension, since the meaning will be clear from the context. We can now formulate Problem

(2.16)—(2.20) abstractly as follows.
Problem P: Find {u, 0, £} satisfying (2.16)—(2.18) and such that

fl + Kié + Ky + Ciu’ + S(o, 'U.’) =Q in V, (2.28)
Bu' + Au+ Cof + &j(o,w')3 f in E. (2.29)

Here f € E' and Q € V' are given by

T T T
(f, w) = //fA,-w.-dzdt + / /c,-,-ewi,,-d:cdt + // fN,-w.-dI‘dt,
0JQ 0JQ 0JInN

T T T T
@n = [@na- [ [enasat— [ [ k(- onpara~ [ [ k0m,asar,
0 0J0 0 JI'e 0JQ

respectively, and 0zj (0, v) denotes the partial subdifferential with respect to v of

T
#o0) = [ [ ulRa|(1 - 8iRow), lo. — idras
C

Our main existence and uniqueness result is the following.



Theorem 2.2. Assume that (2.11)—(2.15) hold. Then Problem P has a unique solution

when || is sufficiently small.

Leo(T,)

We conclude that problem (2.1)-(2.10) has a unique weak solution when |u| Loo(ry) 18
sufficiently small. Estimating the allowed size of the friction coefficient is an open and very
interesting problem.

The proof of Theorem 2.2 is accomplished in several steps. The first consists of studying
a problem of the form (2.16)—(2.18), (2.28) and (2.29) when the stress o on the contact
boundary is assumed to be known. The existence of a solution for this intermediate problem
is obtained as a limit of solutions for a sequence of approximate problems that are presented

in the next Section. /
In the last step of the proof of the theorem we use a fixed point argument and obtain a

solution of Problem P.
In the first step,, for each g € W we consider the following abstract problem:

Problem P, : Find {u,y, 04,&,} such that

u, €E, u,€E, wu,(,0)=1u, (2.30)
eV, £eV, £(,0)=f, (2.31)
o, €W, {og}ij = asm{ughes + biji{ughes — i(ég — ©), (2.32)
£ + K18y + Koy + Crug + S(g,up) = Q in V/, (2.33)
Bul, + Aug + Cofy + B2j(g,uy)  f in E'. (2.34)

We have the following result.

Theorem 2.3. Assume that (2.11)—(2.15) hold. Then Problem P, has a unigue solution.

The solution of Problem P, will be obtained in the next Section.

3. Approximate problems

In this section we consider a sequence of regularized approximations to Problem P,. The
solutions of these problems are obtained by using a version of an abstract existence theorem
for degenerate first order evolution equations obtained by Kuttler in [15] (see also [17] for a
generalization of the theorem) which we now recall.

Let F and G be reflexive Banach spaces such that F C G, |- |lr = || - lc and F is
dense in G; thus, we may write F C G = G' C F’'. Suppose that B is a linear, bounded,
positive and symmetric operator from G to G'. Let F = L%(a,b; F), G = L*(a,b;G) and
define X = {w € F : (Bw)' € F'} with the graph norm ||lw|lx = [lwll¢ + ||(Bw)'[lr. Here,
the differentiation is taken in the sense of F' valued distributions. It is easy to see that X

9



is a reflexive Banach space. Let A(t,-) be an operator from F to F'. We also denote by A
its natural extension from F to F' given by Aw(t) = A(t,w(t)). Assume that

A:X — X' is pseudomonotone, (3.1)
(see, e.g., [7]),

A:F — T is bounded, (3:2)
and, for some A € R,

MBw, w)erxe + (Aw, w)pxr _ 0o, (3.3)
[lwllg—oo0 |lwle

then, the following existence theorem is a special case of the result in [15].

Theorem 3.1. Let A and B be as described above. Then, for each wo € G andl € F'
there erists a w € X satisfying

(Bw) + Aw=1 in F,

Bw(0) = Bwy in G’

We turn to describe the sequence of regularized problems whose solutions will be given
by Theorem 3.1. To replace the inclusion in (2.29) with an equality we regularize the norm
function on R™. Let (y"),_, be a family of smooth approximations to | - | such that, for
each h > 0, ¥" € C(R™) is positive, convex and

IV’(/Jh(S)I <2, 0<(Vyh(s),s) and [¥h(s) — |s|| < h,
for all s € R™. We define the operator J* : E — E’ by

(o) = [ wRgal(1 = 81Rgnl), V4 (vr — ) -, (3.4)

We let R, : E — E’ denote the Riesz map, and for the sake of simplicity, we will omit the

subscript g below.
We now consider, for each h > 0, the following regularized problem.

Problem P, : Find a triplet {us, vp,&n} satisfying

eV, eV, wu,eE, wv,€E, _ (3.5)
€ + Kibp + Kol + Clvn + S(g,v0) =Q  inV, (3.6)
Buy+ Aup+ Cobp+ J'vpy = f inFE, (3.7)
(Reup) — Revp =0 inE/, (3.8)

with the initial conditions

10



un(0) = uo, £,(0) =&. (3.9)

We have the following existence result for this problem.
Theorem 3.2. Let h > 0. Then there exists a solution for Problem P,.

Proof. We fit Problem P, into the framework of Theorem 3.1 by choosing F =V x EX E
and G=Hx H™ x E, w € G, wy € G and | € ' given by

3 o Q
w=1tv], Wo= | Yo |, = f .
u Ug 0

The operators B: G — G’ and A(t,-) : F — F’ are chosen as

§ K€ + K36 + Crv + S(g,v)

Bw=<0), A(t,w):( Bv + Au+ G + J™ )
R.u -R.v

Now, the verification of the assumptions of Theorem 3.1 is routine, so we establish only

the pseudomonotonicity (3.1) and the coercivity (3.3) conditions. In checking the pseu-

domonotonicity of the the operator A, we use the fact that we may write A = A; + A,

where

K€+ K€+ Civ
—R.v

A (t, w) = ( Bv + Au+ Cy¢

gives rise to a bounded linear operator from X to X’ (hence weakly continuous and thus

pseudomonotone [7]), and
S(g,v)
Ag(t,w) = | Jo

0

is a weak to norm continuous operator from X to X’. To establish the latter property we
recall that X = {w € F : (Bw)' € F'}, and employ the following lemma.

Lemma 3.3. LetY = {u € E : (Reu) € E'} with the graph norm |ully = |jullg +
l(Rew)'||ler, and let S(g,") : Y — V' and J* : Y — Y’ be given by (2.27) and (3.4),
respectively. Then S(g,-) and J* are weak to norm continuous.

Proof. We establish the result only for the operator S(g,-) since the proof for J* is
similar. It is enough to show that every subsequence of a weakly convergent sequence {v},
which converges to v in Y, has a further subsequence whose images under S(g, ‘) converge
to S(g,v). So let {vi;} be a subsequence of {v}. Since {vx;} is bounded in Y and since
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the injection H!(2)™ — H'~¢(Q)™ is compact for any € > 0 ([7]), we have by a theorem
of Lions [20], that {vy,} is relatively compact in L?(0,T; H1=¢(2)™). By the continuity
of the trace map L*(0,T; H'~¢(Q)™) — L*(0,T; L*I)™) = (L* (T x (0,T)))™ we may,
upon passing to a subsequence denoted also by {v,}, suppose that v (z,t) — v(z,t) for
almost all (z,t) € T'c x (0,T). Since sc(-,7) < a4 and |Rga|(1 — 8| Rgal), < } we obtain
that {|Rg.|(1 — 8|Rgnl)  5c(,(vs,)- — #])} is a bounded sequence in L*(Tc x (0,T)).
Consequently, it converges to |Rga|(1 — 8|Rgnl) , s¢(:, [v- — ¢]) in L*(Tc x (0,T)). Finally,
using Cauchy’s inequality, we deduce that S(g,v;) — S(g,v) in Y’ when j — oo. This
completes the proof.

In checking the coercivity condition (3.3), we estimate various terms using Cauchy’s
inequality, standard trace theorems and the following result. Here and below c represents
a positive constant whose value may change from line to line, but in all cases depends only
on the data and coefficients of the approximate problem.

Lemma 3.4. Assume that (2.11)—(2.15) hold. Then there ezists a positive constant a such
that

(Au,u) 2 aflullz,  (Bu,v) 2 allvllz,  (K2£,8) > aliéll}, (3.10)
and also
(JPv,v) > —c. (3.11)

Proof. The first three inequalities are consequences of assumptions (2.11) and Korn’s
inequality. The last estimate is a result of the following decomposition

(0, v) = /F 4l Rgal (1 - 6| Rgnl) , Vi (ur — 8) - (v, — $)dT
+ [ WiRg (1 - 61Rgal) , V¥ (o, - ) - g,

in which the first integral is nonnegative and the second one is bounded. This concludes
the proof of the lemma and of Theorem 3.2.

The next step in the proof of Theorem 2.3 deals with an a priori estimate on the solutions
of Problem P,

Theorem 3.5. Let {un, vn, {4} be a solution of Problem P, corresponding to the parameter
h. Then there exists a positive constant c, independent of h, such that, for all t € [0,T],

s @3 + / lon(s) 1% ds + [En(t) % + / len(s)I3 ds < c. (3.12)
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Proof. For the sake of simplicity, we will omit the subscript h below. We begin by letting
(3.7) act on v. Thus,

/ot(B'u, v)ds + /Ot(Au, v)ds + /ot(J"v,'u)ds = —/Ot(sz,'v)ds + /ot(f,h)ds. (3.13)

We will now estimate each of the terms in (3.13). Applying Lemma 3.4 yields

t t
/ (Bv,v)ds > o / o(s)|2ds, (3.14)
0 0 .
¢ 1/t 1 1
d
/ (Au,0)ds = / (4 (Au, ) ds = 2 (Au(t), u(t)) ~ 5 (Auo, uo)
0 0
(8%
> ‘2‘||U(t)“2E ~ cfluol%, (3.15)
and
t
/ (JPv,v)ds > —c. (3.16)
0
The integrals on the right in (3.13) are estimated by using Cauchy’s inequality with &,
t t a t
[cenas) < o [leomat [loeia, 317
0 0 0
t t o t
fvasl < e[+ [z (3.18)

Combining the estimates (3.14)—(3.18) in (3.13), we find

Ol + [ o) ds < (1+ [ is). (319)

We turn now to the energy equation (3.6) and by letting it act on ¢ we obtain

/0 (€', €)ds + /0 (K€, €)ds + /0 (Ka, €)ds

t t t
= - [(ew.eds - [(ste.).00s+ [(@00s. (3.20
0 0 0
From Theorem 1(2) in [15] and our choice of the spaces F' and G we find
t 1 [t 1 1
[eeras=3 [(HIem) ds = 5leh; - gleol (3.21)
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Moreover, using arguments similar to those above (see (3.14), (3.17) and (3.18)) we get

t t

/ (K€, £)ds = / kJéP ds > 0, (3.22)

0 0JT¢
/ (Kot €)ds > a / €N, ds, (3.23)

0 0
| [em.gas| <c [[lo(s)imas+2 [leco)l as, (3.24)
t t t

| [@0us| < [1awikias+S [l as (329

To estimate the term involving S(g,-), we use the inequality |Rga|(1 — &|Rgal), < i,
assumption (2.14) and Cauchy’s inequality with €, and deduce that

[s@ooa <+ [ (320
Combining the estimates (3.21)—(3.26) in (3.20) we obtain
e+ [ NI ds < 3.27)
and thus,
[l as <.
Inserting this estimate in (3.19) we deduce
@I+ [ Io(l3ds < e (3:28)

The estimate (3.12) is now a consequence of (3.27) and (3.28).

4. Proof of Theorem 2.3

We prove the existence of the unique solution of Problem P, as a limit of a subsequence of
solutions for Problem P, obtained above. It follows from Theorem 3.5 that for a given set
of initial conditions the family of solutions {u, vs, &, } is bounded in E x E x V. From this
and (3.6)-(3.8) it follows that { R.u}, &} is bounded in E’ x V’. Consequently, there exists
a weak limit point (u,v,£) € E x E x V and a subsequence of parameters {h;} such that
h; — 0 when [ — oo and such that the following limit processes take place when | — oo:

w —
v —
& —
§ —

Reu; —

u
v

§
EI

weakly in
weakly in
weakly in
weakly in

E,
E,
v,
'

R.u' weakly in E'.
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We may pass now to the limit in (3.6) and (3.7) in all terms except the one involving J%.
We may suppose, by passing to a subsequence if necessary, that J"(v;) — < weakly in E,
for some y € E'. It only remains to show that v € &:j(g, v). Toward that end, we note that

when [ — oo we have

d’h' (wr - v+ (vl)‘r - ¢) - Iwr - ¢| in Lz(PC X (01 T)))

M ((v)r — @) — |v-—¢|  in L*(To x (0,T)),
for w € E. Then, it follows from the convexity of ¥ and Holder’s inequality that

(v, w—v) = hm(Jh’vl, - v)

- hm//r p|Rgn|(1 - 6| Rgal) . vy ((v1)r — @) - (wr — v,)dldt

< zliTo/O /PC#IRgnl(l — 6|Rgnl) ,
X ["/}hl ('w'r —vr+ ('vl)r - ¢) - ¢hl (('Ul)-,- - ¢)] dl'dt

T
< / /Fcu|Rgn|(1—6|Rgn|)+[|wf~¢|—|vf—¢|]d1‘dt-

This shows that v € 8»j(g, v). Consequently, the weak limit {u,£} of the subsequence
{uy, &} is a solution to (2.30), (2.31), (2.33), (2.34). Let now o given by 0i; = a;jrur; +
bty — Cij(€ + ©). To show that ¢ € W we let (2.34) act on ¢ € D(Q)™ followed by
Green’s formula which implies that o;;; + fa; = 0. This completes the proof of the existence

part in Theorem 2.3.
We will prove now that the solution of Problem P, is unique. Indeed, let {,, 01,4} and

{u3, 09,2} be two solutions corresponding to the same data. Taking (2.32) into account,
it suffices to show that u; = ug and & = &. To this end, we substitute into (2.34) w, for
u and let the resulting expression act on u} — u} and then substitute into (2.34) u, for u
and let the resulting expression act on uy — u}. Adding the two inequalities and using the

notation u = u; — U, v = w)] — us and § = § — &, yields
t t t
/(B'v,'u)ds + / (Au,v)ds < —/(Cgﬁ, v)ds. (4.1)
0 0 )

We estimate the terms in (4.1) using the same arguments as those used to estimate the
corresponding terms in (3.13) (see (3.14), (3.15) and (3.17)) and combining the resulting
estimates in (4.1), we find

IIu(t)||2E+/0 lv(s)llds < C/o [€(s) 7 ds. (4.2)

15



Next, we substitute §; and &, into (2.33) in turn, subtract the resulting equations and let
the result act on £, we obtain

[i€.0as+ [rieds + [t e
=— /0 (Cyv, £)ds — /0 (S(g,v1) — S(g,2),€)ds. (4.3)

All the terms in this equality, except the last one, can be estimated in the same way as
(3.21)~(3.24). To estimate the term involving S(g,-) we use (2.27) and get

|[(56.90) - 506,01, 045

< // HRgal(1 = 8Rgal)+[sc(z, | (v1)7 = ) — sc(=, |(v2)- — B))||€]dT ds.
0JT¢c

Since |Rga|(1 — 0|Rga|)+ < 3, by using (2.14) followed by Cauchy’s inequality with &, we
obtain

t t
<e [Io@lbas+ 5 [ e s

|[(5@00 - 50,00, a5

Here we used in an essential way the assumption of SJK. Combining these estimates in (4.3)

we get
t 1 4

@ + / IE(s)II3 ds < c / lo(s)][%ds. (4.4)

We deduce from (4.2) that
t t
/0 lo(s)|[3ds < ¢ / I€(s)1E ds,
which, when used in (4.4), implies that
t
B < c / I€(5) 2. (45)

Now, it follows from Gronwall’s inequality that £(t) = 0, and then it (4.2) implies that
u(t) = 0. This completes the proof of Theorem 2.3.

Remark 4.1. The arguments of this section may be used to show that the solution of each

of the approximate problems P, is unique, too.
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5. Proof of Theorem 2.2

We use a fixed point argument to establish the existence of a unique solution for Problem
P when |y e, , is sufficiently small. Theorem 2.3 asserts that for each g € W, Problem
P, has a unique solution {ugy,0y,§;}. Consequently, we consider the operator A : W — W

defined by
Ag = gy, geW. (5.1)
We have

Proposition 5.1. There ezists uo > 0, sufficiently small, such that if || Leo(rg) < Ho then
the operator A has a unique fized point g* €¢ W.

Proof. Let g', g> € W and set g = g' — g%, v’ = uy, v* = ul, o' = o, and & = &y,
where i = 1 or 2. We substitute into (2.34) u! for u and let the resulting expression act
on v! — v? and then substitute into (2.34) u? for u and let the resulting expression act on
v? — v!. We add the two inequalities denote by u = u! — u?, v = v! — v? and £ = ¢! — €2,

and obtain
/ot(B'v,v)ds + /ot(Au, v)ds + /Ot(C’gf,'u)ds
¢ 1 1 2 1 6R 2
< [ [ n(imsiic - é1Rl). - 1Rg - o1RS2). )
x(I(v1)r — ¢ = I(v2)- — #)drds. (5.2)

We estimate the terms on the left-hand side in (5.2) by the same arguments as those used
to estimate the corresponding terms in (3.13) (see (3.14), (3.15) and (3.17)). The integral
on the right-hand side is estimated by using the inequality

|Rgn|(1 — 6|Rgn|)+ — |Rgal(1 — 6| Rgzl)+ < c|Rgp — Rgal, (5.3)
followed by Cauchy’s inequality with €, to obtain
t
[ (1Rakica = 61RokD. = 1Rt — 81RgEI) ) (1o0): = @1 = I(wa)- - 81 drds
C
t a t
< clull, [ 1RGHS) — Ry ds+ 5 [ Il ds.
Combining these estimates in (5.2), we get

t t t
lu(®)l + / lo(s)l% ds < / £(5) 3 ds + e / |Rgl(s) = Rg2 () 3aqry ds,
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which implies
t
lu(®)l% + / llo(s)13ds < c / E(5) 1y ds + il / lo()Eds. (5.4

Next, we substitute £; and &> into (2.33) in turn, subtract the resulting equations and
let the result act on the difference £ and obtain

/(;(E’,f)dS‘f‘/o‘(Kli, E)ds+/0(K2§, §)d$
- / (Civ, £)ds — / (S(g*,v') — S(g* v?), €)ds. (5.5)
(1] 0

All the terms in this equality, except the last one, can be estimated in the same way as
(3.21)—(3.24). To estimate the term involving S we write

/o (S(6%, v%) - S(g, 1), €)ds

S At(s(g2’vl) - S(glivl)’g)ds + /0t<S(gzv ,02) - S(.qz’vl)) E)ds

Using (2.27), (5.3) and (2.14), the first integral on the right-hand side is estimated by
Cauchy’s inequality with ¢ thus,

(562,01 - 564, 0%, €ds < el 1 s+ 5 [ ne as.

Using (2.27), (2.14) and the inequality |Rg.|(1 — 8|Rgna|)+ < 1, we find that the second
integral on the right-hand satisfies

<c [ooizds+ 2 [lewy as

,/(5(9 v?) - S(¢%,v'), £)ds

Combining these estimates in (5.5) we obtain

ol + [ 1@ ds <c [ o3 ds +elufleg, [olhds 66

We deduce from (4.4) that

/ lo(s)|3ds < / ()1 ds + clfZ,, / o ()13 ds, (57)

which, when used in (5.6), yields

t t
€% <c / 6l ds + el / lg(s)II3 ds.
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By using Gronwall’s inequality we obtain
i
€Oy < el [ ooy ds.

Applying this estimate in (5.4), we find

13 < i, ([ loB drds + [la(o)ds).

t t ps t
/ lo(s)| ds < cluf?.. / / l9(r)Il% drds + / lg(s)ll3 ds ) .
0 Te) 0Jo 0

We conclude, using (5.8)—(5.10), that
lelle + lolle + 1€l < clula ., N9l
On the other hand, it follows from (2.32) and (2.11) that
ot — oIl < cllullg + llvliE + €l
Combining the estimates (5.11) and (5.12) we find
lo* = 0%llw < clit e, lgllw,
and, using (5.1), we deduce that

”Agl - Ag2”W < CIMILW(FC)”gl - gzllw‘

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

We choose pp = 1/c and Proposition 5.1 is now a consequence of (5.13) and the Banach

fixed point theorem.

Proof of Theorem 2.2. Using (5.1) and Proposition 5.1, it straightforward to show that

the solution {ug«, 04+, &g} of Problem P, is also a solution of Problem P when

|4l poor, 8

sufficiently small. The uniqueness part in Theorem 2.2 can be deduced from the uniqueness
of the solution of Problem P, and the uniqueness of the fixed point of the operator A.
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A Dynamic Thermoviscoelastic Frictional
Contact Problem with Damped Response

M. ROCHDI et M. SHILLOR

| Descriptif I

Il s’agit dans ce travail de I'étude d’un modele général pour les problémes dynamiques
de contact avec frottement entre un matériau déformable et une fondation rigide en mou-
vement. Le matériau est supposé obéir a la loi de comportement viscoélastique de Kelvin-
Voigt en tenant compte des effets thermiques. On suppose la présence d’un lubrifiant
entre le matériau et la fondation. Les frottements sont modélisés par la version modifiée
la loi de Coulomb introduite par N. STROMBERG, L. JOHANSSON et A. KLARBRING. Le
dégagement de chaleur due aux frottements est pris en compte dans les conditions aux
limites relatives & la température.

On considére un milieu continu viscoélastique occupant un domaine 2 de R™ (m =
2,3), et dont la frontiere I', supposée suffisamment réguliere, est divisée en trois par-
ties disjointes I'p, I'v et I'c. On suppose que, pendant 'intervalle de temps [0,7], des
forces volumiques f4 agissent dans 2, que la partie I'p est encastrée dans une structure
fixe, que des forces surfaciques fy s’appliquent sur I'y. On suppose en outre que la partie
I'pUT'y est maintenue a une température donnée 6, alors que la fondation rigide, en mou-
vement tangentiel avec une vitesse ¢, est maintenue & une température 6. Ce probléme
mécanique est illustré par la figure suivante :

? R, : 7

£9%5%% ARRA 5%55%%

2030305

2297 9999909498299452929992929929429%%
995555255554 555 %55
0995999999999 %99%99%92%%% 0000080894899




Il peut se formuler mathématiquement de la fagon suivante :

Probléme P : Trouver le champ des déplacements u : Q x [0,7] — R™, le champ des
contraintes o :  x [0,T] — RI**™ et la température 6 : Q x [0,7] — R tels que

Oij = Gijitk + bijuuy, — i dans Q% (0,T),
u; —0i;; = fai dans Qx(0,7),
¢ — (kijf;); = —cijui;+q dans  Qx(0,7),
u=0 sur. ... Bp-x.(0;F);
on = fy sur 'y x(0,7),
8=0, sur (TpUTw)x(0,T),

—0n = B(u)+ + po sur. - Pa % (0,T),
orl S Wloal(1 = lonl),  sur Tox (0,T),
lo-| < l‘lanl(l =i 5|‘7n|)+ = Ufr =@,
lor| = plon| (1 - 6|0',,|)+ = u. =¢— Ao, A >0,
kij0n; = ploa|(1 — 6|an|)+sc(- Jur — @|) — ke(0 — 6R) sur T¢ x(0,7),
u(-,0) =uo, u(-,0)=wv, 6(-,00=6, dans Q.

On note par R7**™ l’espace des tenseurs symétriques du second ordre sur R™. Le
“prime” au dessus d’'une quantité représente sa dérivée temporelle, n est la normale
unitaire sortante a §) et on est le vecteur des contraintes de Cauchy. Les fonctions u,,
u.., on et o, représentent respectivement le déplacement normal, la vitesse tangentielle et
les contraintes normales et tangentielles. Les fonctions 3 et py désignent respectivement
le coefficient de lubrification et la pression du lubrifiant alors que u est le coefficient de
frottement et § est un coefficient positif (assez petit) 1ié & I'usure et la dureté du matériau.

On commence tout d’abord par donner une interprétation mécanique de chacune des
équations et des termes cités dans le probléme P. On insiste tout particulierement sur les
conditions aux limites considérées sur la partie de contact potentielle I'c pour chacunes des
inconnues. On introduit ensuite les hypothéses utilisées suivies d’une formulation faible du
probleme P. Cette formulation se présente comme un systéme hyperbolique-parabolique
d’équations aux dérivées partielles. Le systéme est formulé ensuite en terme d’opérateurs.
Un résultat d’existence est alors établi en utilisant une méthode de régularisation suivie
d’estimations a priori puis de passages & la limite. On termine par prouver 'unicité de la
solution moyennant quelques hypothéses supplémentaires.
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Abstract

We analyze a problem that describes dynamic contact between a thermoviscoelastic body and a rigid
foundation. The contact is modeled with normal damped response and the SJK version of Coulomb’s
friction law. Frictional heat generation is taken fully into account. The problem is set as a dynamic
evolution system. The existence of a weak solution is established by using regularization, the existence
theorem for degenerate evolution equations of Kuttler and a priori estimates. We prove the uniqueness
of the weak solution when the friction coefficient is sufficiently small.

Keywords: Thermoviscoelastic frictional contact, dynamic contact, degenerate evolution inequalities,
SJK-Coulomb friction law, normal damped response, frictional heat generation, weak solutions.

1. Introduction

In this paper we consider a general model for the process of dynamic thermoviscoelastic contact
between a deformable body and a rigid obstacle. The material is assumed to behave according
to the Kelvin-Voigt constitutive law with added thermal effects. The contact is modeled with the
normal damped response and the friction with the recently derived SJK-Coulomb condition. The
model is set as a dynamic variational inequality for the displacements coupled with a variational
equality for the temperature, and the existence of a weak solution is established. The uniqueness
of the weak solution is proved when the friction coefficient is small.

Thermoviscoelastic contact abounds in industry. It can be found in engines, transmissions,
brakes and other engineering systems. It is very important, for instance, when a train or a car
stops suddenly since a large amount of heat is generated at the contact interface and this may
adversely affect the rail wheels or the car brakes and tires. Indeed, the sudden application of car
brakes may lead to the dissipation of energy in the form of frictional heating at a rate of 100 HP
or more.

General models for dynamic contact with friction have been investigated mathematically in [13,
9,6, 2, 3). In [13] the isothermal frictional contact problem with normal compliance was formulated,
analyzed and numerical simulations presented. A general existence theorem for dynamic contact
with normal compliance, without any restrictions on the power of the normal compliance function,
was obtained in [9]. Thermoviscoelastic frictional contact with normal compliance can be found
in [6, 2] where the existence of weak solutions was proved, but the effects of the frictional heat
generation were included only in the second paper. The dynamic thermoviscoelastic problem,
with frictional heat generation, which takes into account the wear of the contacting surfaces was




investigated in (3], where the existence of a weak solution was established. Models and numerical
simulations for the dynamic thermoelastic processes can be found in [7, 16].

In this paper we model the contact processes with the normal damped response and the SJK
version of Coulomb’s law of friction ([16]). The surface normal resistance is assumed to be propor-
tional to the normal velocity. This is the case when there is a thin layer of oil, lubricant or a layer
of softer material on the contacting surface. A version of the damped normal response condition
was considered recently in [15] where it was related to the wear of the contacting surfaces under
steady sliding; actually, it was obtained from Archard’s law of wear. It was also employed in [14]
where the quasistatic contact problem with directional friction was investigated. The SJK version
of Coulomb’s friction law takes into account the deterioration of the surface under large normal
loads, which seems to be a reasonable modification of Coulomb’s law for large stresses. For small
or medium stresses, the new version reduces to the usual version of the law. This condition, in
addition to being more realistic, also turns out to be essential in the existence proof. Moreover,
it helps to remove restrictions on the asymptotic power of the frictional heat dissipation function.
Apparently, a better description of the physical process leads to removal of certain mathematical
restrictions on the asymptotic behavior of the contact functions which had to be imposed in [2, 3]
and seem to be of mathematical origin only.

The weak formulation of the problem is in the form of a variational inequality. To establish the
existence of weak solutions we regularize the problem, reducing it to a variational equality. The
existence of weak solutions to the regularized problem follows from an abstract existence result
for implicit evolution equations in [8]. Then the necessary a priori estimates are obtained which
allow us to pass to the limit. A similar approach, based on the result of (8], was used in (2, 3.
The estimates turn out to be very delicate, but do not impose unnecessary restrictions on the
asymptotic powers of the functions involved in the contact condition, unlike the situation in the
above references.

The paper is organized as follows. In Section 2 we describe the classical model for the process.
It consists of the equations of motion for a viscoelastic body, in terms of the displacements,
together with the energy equation for the temperature. Since the normal velocity of the contact
surface may be discontinuous, there exists a regularity ceiling for the problem which precludes, in
general, the existence of classical solutions. Therefore, a weak or variational formulation for the
problem is presented. It consists of a dynamic variational inequality for the displacements and a
variational equality for the temperature. We state the assumptions on the problem data and then
cast the problem in an abstract operator setting, as Problem P. The existence result is stated in
Theorem 2.2.

The existence proof is given in Section 4 and is based on passing to a limit in a subsequence
of solutions to approximate problems, which are investigated in Section 3. These are obtained by
regularization of the Euclidean norm, which leads to a variational equality instead of inequality.
The regularized problems are set in an abstract operator form and the existence of solutions follows
from a result of Kuttler [8] concerning degenerate evolution equations. We recall the setting and
the version of his theorem that we employ. Then we obtain the necessary a priori estimates on the
approximate solutions. A solution to Problem P is obtained in Section 4 as a limit of a sequence of
these solutions. We establish the uniqueness of the solution, in Section 5, under a mild additional
assumption on the data, but only when the friction coefficient is sufficiently small.



2. Classical model, weak formulation and results

In this section we present the physical setting and formulate the model as a coupled parabolic-
hyperbolic system of partial differential equations. Then we introduce the weak formulation and
state the assumptions on the data and our main existence result.

We employ the Kelvin-Voigt viscoelastic law and include thermal effects. We retain the inertial
terms in the equations of motion, and thus consider the fully dynamic problem. The behavior of
the bulk material is assumed to be linear, the nonlinear effects occur on the part of the boundary
which may contact the rigid foundation.

SR

SN

&
SN
O
N
Q0N
W

Fig. 1. The physical setting, I'; is the contact surface.

The physical setting, depicted in Fig. 1, consists of a viscoelastic body, represented (in its
reference configuration) by ©, a region in R™ (m = 2,3), whose boundary 92 = T is divided into
three disjoint parts. On the first part, denoted by I'p, the body is clamped; on the second part,
T'y, known tractions act; and on the third part, I'c, the body may come into frictional contact with
a rigid foundation. For the sake of generality, we allow for the motion of the rigid foundation with
tangential velocity ¢. The reference configuration is assumed to be stress free and at a constant
temperature, conveniently set as zero, which also serves as the reference temperature. Our interest
lies in the evolution process of the system state on the time interval [0,T], 0 < T. We assume
that measI'p > 0; although, unlike the static or quasistatic cases, in the dynamic problem it is not
needed from the mathematical point of view. Indeed, all the results below hold without it with
minor modifications. But, without this assumption, the problem becomes invariant under rigid
body motions and then the interpretation of the contact surface becomes very cumbersome.

Let fa4 = (fai(z,t), ..., fam(z,t)) denote the (nondimensional) density of applied body forces
acting in € and q the density of volume heat sources. For the sake of simplicity, the material density
is assumed constant, set equal to one. Let u = (u1(z,t),..., um(z,t)), 8 = (z,t) and o = (g;;) for



i,j = 1,...,m, represent the dimensionless displacement vector, temperature and stress tensor,
at location z and time ¢, respectively. The system of viscoelastic and energy equations takes the
(nondimensional) form

uﬁ' — G4 = fai in Qx (0, T), (2.1)
0 — (kij03); =—cijui;+q  in Qx(0,7). (22)
Here and below, 4,5 = 1,...,m; the repeated index convention is employed; the prime repre-

sents time derivative; the portion of a subscript prior to a comma indicates a component and the
portion after the comma refers to a partial derivative. The constants ¢;; and k;; are the compo-
nents of the tensors of thermal expansion and thermal conductivity, respectively. We employ the
thermoviscoelastic Kelvin-Voigt stress-strain relation

Oij = Qijkiuk, + bijklusc,l - ¢;;0 in Qx(0,7). (2.3)

Here a = (aijx) and b = (bj;r1) are the tensors of elastic and viscosity coefficients, respectively.
The initial conditions are

u(-,0) =vuy, '(-,0) = vy, 6(-,00=6, in Q. (2.4)

To describe the boundary conditions we introduce the unit normal n = (n;,...,ny,) to T,
and since I" is assumed Lipschitz, n exists at almost every point of the boundary. We then let
on = oiyinin; and u, = w;n; be the normal components of o and u on I, and let

0r = 0N — oypn, Ur = U — Uy

be the tangential components, see, for instance, [10, 5]. We impose the following conditions on the
I'p UT'y portion of the boundary:

u= 0 on I'px(0,7), (2.5)
on=fy on I'y x(0,7), (2.6)
0= 6 on (Cpuly)x(0,T). 2.7

Here, fn = (fni1(z,1),- .., fNm(z,t)) denotes the tractions that are applied on 'y, and 6, is the
known, scaled temperature of the boundary.

We turn to consider the boundary conditions on the potential contact surface I'c, which is
where our main interest lies. Mechanically, the contact surface is assumed to be covered with a
lubricant that contains solid particles, such as a new smart lubricant or oil with worn metallic
particles. The resistance of the foundation, actually of this lubricant layer, is assumed to be
proportional to the normal velocity when pressing, but it offers no resistance when receding; thus,

—0n=P(up)s+p0 on Icx(0,T), (2.8)

where (f)+ = max{0, f}, B is the normal damped response function and pyg is the oil pressure.
Alternatively, we may consider the surface of the foundation as covered by a thin soft layer with
asperities, which resists the contact. If we replace u, with u, we obtain a version of the normal
compliance condition which was investigated in (13, 11, 2, 3, 9, 6] (see also the references therein).
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We remark that all the results below hold when (u})4+ is replaced by u], in (2.8), but then the
interpretation is different. Moreover, a condition similar to (2.8), but withoutpp, has been derived
in [15] in connection with t he wear of the contacting surface when in sliding contact.

We model the friction by the SJIK generalization of Coulomb’s law of dry friction ({16]) which
may be stated as

lor| < ploal(1 = 6|0n|)+ on I¢x(0,T),
(071 < Blonl(1 = Sloal), = . =&, (2.9)
lor| = plon|(1 - élanl)+ => u, =¢— Aoy, A2>0.

Here p is the friction coefficient, ¢ is a small positive coefficient related to the wear and hardness
of the surface, ¢ is the tangential velocity of the rigid foundation, and v/ is the tangential velocity
of the body. Condition (2.9) may be interpreted as follows. When the applied tangential stress
is less than the limiting value, the boundary sticks to the foundation and moves with it: the
part of the boundary where this takes place is called the stick zone. When the tangential stress
reaches its limiting value, the boundary does not move in tandem with the foundation: this is the
so-called slip zone. The scalar A is a multiplier indicating the relative direction of the slip between
the body and the foundation. This condition represents a modified version for Coulomb’s law of
friction and was derived in [16] from thermodynamical considerations. The modification consists
of the factor (1 — 4] - |)+ which states that when the contact stress is large there is a decrease in
frictional resistance because of surface cracking, and when it is too large, i.e., when it exceeds 1/4,
the surface disintegrates and offers no resistance to the motion. Clearly, this modified condition is
more realistic, and since 4 is very small, it agrees well with Coulomb’s law for |o,,| not too large. On
the other hand, as was mentioned above, mathematically it leads to considerable simplifications.

Finally, we describe the boundary condition for the temperature on I'c. Since the power that
is generated by frictional contact forces is proportional to |or| and |u} — ¢|, we choose:

kijfin; = plon|(1 — 6|a'n|)+sc(- yJuk — @|) — ke(0 — 6R) on I'¢cx (0,7). (2.10)

Here, sc(-,r) is a prescribed function which generalizes the Euclidean norm | - |, g is the foun-
dation’s temperature, and k. is the coefficient of heat exchange between it and the surface. The
inclusion of the frictional heat generation is essential in many situations, as was mentioned in the
Introduction.

The classical formulation of the thermoviscoelastic frictional contact problem with normal damp-
ing is to find {u, 0} such that (2.1)-(2.10) hold.

It is well known that, in general, there are no classical solutions to the problem because of
the regularity ceiling related to the possible jump in the velocity upon impact on the boundary.
Therefore, we turn to the weak or variational formulation of the problem. To this end we introduce
the following classical Hilbert spaces:

E={weH1(Q)m tw=0 on FD},

V——-{nEHl(Q):n=0 on FDUFN},
H=1%Q), H"=L*O™, E=L*0,T;E), V=L*0,T;V).



Below, we use || - |g, || - |lv, | |# and | - |gm to denote the norms of E,V, H and H™, respectively.
Also, (-,-) denotes the duality pairing between E’ and E, or V' and V, where the meaning is
evident from the context. For standard notation we refer the reader to [1, 12, 10].

We now describe the assumptions on the data. The coefficients of elasticity, viscosity, thermal
expansion and thermal conductivity satisfy

aiikt € L2(), bijuw € L®(Q), cij € L®(N), kij € L=(D);

Qijkl = Qjikl,  Gijkl = Gklij,  Gijkl = Gijlk,
@ijkIXij Xkt > Q1XijXij for all symmetric tensors x = (Xij);
bijrke = bjit, bijki = biij, bijri = bijik, (2.11)

bijriXij Xkl > a2XijXij for all symmetric tensors x = (x:;);
Cij = Cji;
kij = kji, kijzizj > azzz for all vectors z = (z).

Here, a;, a2 and a3 are positive constants.
The body forces and the volume heat sources satisfy

fa€E, gqeV. (2.12)
The damping and friction coefficients, the oil pressure and the velocity of the foundation satisfy

B € L>(T¢), B >0, ae on I'c,
p € L*(L¢), p# >0, ae on Ig,

po € L2(0, T; L=(T'¢)), po >0, ae. on I'c, (213)
¢ = ¢(t) € C([0,T}; R™).
The function s, satisfies
sc:F'c x R — R, is Borel measurable,
s¢(z,) is continuous for each z € I'c, (2.14)

Sc(-,r) < aylr|, reR, ae on I'c,

where a4 is a positive constant. We note that assumption (2.14) is a considerable relaxation of
the restrictions which were imposed on s in {2, 3], indeed, in [2] the function was assumed to be
bounded, and in [3] it was allowed to grow asymptotically as ™ for 0 < m < 1/3. On the other
hand, since s, is a generalization of | - | clearly the conditions (2.14) are appropriate.
The regularity assumptions on the boundary and initial data are

fn € L3(0,T; L*(Tn)™);

there exists © € H(0,T; H'()) such that 8 =8, on I'pUTy;

fr € L*(0,T; L*(Tc));

ug € E, vg € H™, 6y € H.

(2.15)

For technical reasons, it is convenient to shift the temperature function so that it is zero on
I'p UT'N. For this purpose, we introduce the quantities { = # — © and § = 6p — 6(-,0). To
simplify the notation, we will not indicate explicitly the dependence on ¢.



We can now present the weak formulation of the problem.

Definition 2.1. A pair of functions {u, 8} is said to be a weak solution to (2.1)-(2.10) provided
that {u, &} satisfies

u, ' €E, v’ €k, u(,0)=muy, u(,0)=uvy,

(2.16)
'3 EV) E’ EV/, E(»O) =607

for all w € E and a.e. on (0,T),

(u ,wi—ui) + /Q aijrrek,t (Wi j—uj ;)dz + /ﬂ bijrug i (wij—uj j)dx — /Q cijé(wij—uj ;)dz

+/11Cﬂ(ué)+(wn~uﬁ)dr + /Pc# (B(un)+ + o) (1 = 8(B(un)+ + po)) ;. (lwr—¢|—luz—¢l)dl’ (2.17)
> (fai, wi—ul) + /ﬂc,-_,-@(wi,j—uﬁ'j Ydz + /FNfN,-('w,--uﬁ)dI‘ — | po(wn—uy,)dr,

Te

and, for all 7 € V and a.e. on (0,7,
(&,m + / kij€in jdz + / cijui nde + / keéndx
Q Q e
= [ B} +20) (1= (8w )1 + £0) ez i~ (2.18)
C

= (@) - [ mds— [ k(©=brimdr - [ k0 .mda.
Q T'c Q
To write the problem in an abstract form, we define the following operators:

A B, D:E — F,

Cl, S:F — V’,
K, Kp:V — V/,
Cy:V — F,



by

(Au, w)
(Bv, w)
(C1v,n)
(Ca€, w)
(Dv, w)
(K1€,m)
(K2€,m)

(Sv,7)

/ QiK1 Uk, |W; T,

Q

/ bijk1vk yw; jdz,

o

/ Cij Vi jNd,

Q

- / cij€wi ;dz,
Q

[ Btun) uncr,

| ¥ol

ke&ndl’,
I'c

/n ki€ in jdz,
= [ 1B} + po) (1= EBLom)s + ) y 5 or — B

(2.19)
(2.20)
(2.21)
(2.22)
(2.23)
(2.24)
(2.25)

(2.26)

We note that each of these operators extends to an operator defined on the corresponding space of
square-integrable vector-valued functions on (0, T') in a natural way. For example, A extends to an
operator from E to E’' by setting (Au)(t) = A(u(t)). With a slight abuse of notation, we will use
below the same letter to denote both the original operator and its extension, since the meaning
will be clear from the context. We can now formulate Problem (2.16)-(2.19) abstractly as follows.

Problem P: Find {u,£} satisfying (2.16) and such that

E+ K+ K +Ciu' +8u' =Q in V,

u" + Bu' + Du' + Au+ Co€ + &oj(u/,v') > f in E.

Here f € E' and Q € V' are given by

T T T T
(f, w)E:xE = / (fA,-,w,-)dt + / /cgjew,',jd.'l:dt +/ fniwdldt — / / pownpdl'dt,
0 0JQ 0JI'n 0 JIe

(2.27)
(2.28)

T T T T
(Q,n)v'xv=/ (g,m) dt—//e’ndxdt—// ke(G—GR)ndI‘dt—//k,-je,m,j dzdt,
0 oJa 0 Jre oJa

respectively, and 827 (v, w) denotes the partial subdifferential with respect to w of

T
i) = [ [ (B +50) (1 = 5(B(un)s + o).y ur - glarae.

QOur main existence result is:

Theorem 2.2. Assume that (2.11)-(2.15) hold. Then Problem P has a solution.

We conclude that Problem (2.1)-(2.10) has a weak solution.
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The proof of the theorem will be given in Section 4, where the solution will be obtained as a
limit of solutions to a subsequence of approximate problems that will be investigated in the next

section.

3. Approximate problems

In this section we consider a sequence of regularized approximations to Problem P. The solutions
are obtained by the application of a special version of an abstract existence theorem for first order
evolution equations obtained by Kuttler in [8] which we now recall.

Let F and G be reflexive Banach spaces such that F C G, || - ||F 2 || - |l¢ and F is dense in G;
thus, we may write F' C G = G' C F'. Suppose that B is a linear, bounded, positive and symmetric
operator from G to G'. Let F = L?(a,b; F), G = L%(a,b;G) and define X = {w € F : (Bw)' € F'}
with the graph norm |jw||x = ||w||F + [|(Bw)'|lg. Here the differentiation is taken in the sense of F’
valued distributions. It is easy to see that X is a reflexive Banach space. Let .A(t, -) be an operator
from F to F'. We also denote by A its natural extension from F to F’ given by Aw(t) = A(t, w(t)).
Assume that

A:X — X is pseudomonotone, (3.1)
(see, e.g., [4]),
A:F — F is bounded, (3.2)
and, for some ) € R,
”w}lirn_xm(||w||,F)‘1(,\(Bw,w)c,,<G + (Aw, w)prxF) = 00, (3.3)

then, the following existence theorem is a special case of the result in [8)].

Theorem 3.1. Let A and B be as described above. Then for each wg € G and l € F' there erists
aw € X satisfying

(Bw) + Aw=1 in F,

Bw(0) = Bwy in G

We turn to describe the sequence of regularized problems whose solutions will be given by
Theorem 3.1. In order to replace the inclusion in (2.28) with an equality we regularize the norm
function on R™. Let (wh) h>0 be a family of smooth approximations to |- | such that, for each

h > 0, ¥* € C}(R™) is positive, convex and
|Vgh(s)| <2, 0<(Vih(s),s) and |$*(s) — |s|| < b

for all s € R™. We define the operator J* : E — E’ by

(PPoy) = [ (Bon)s+ p0) (1 = B(B(on)s +p0) , VP(0r =) - wrdl. (34)



Finally, we let R : E — E' be the Riesz map.
We now consider the following regularized problem, for each & > 0.

Problem B, : Find a triplet {uy,vp,&n} satisfying

eV, eV, ueE, v €eE, v,eFE, (3.5)
&+ Kibp+ Kobp + Clup + S =Q in V| (3.6)
v, + By + Dup + Aup + Cobp + Jup=f in E, (3.7
(Rup)' — Rv, =0 in E/, (3.8)

with the initial conditions
up(0) = uo, v(0) =v,  &k(0) = &o. (3.9)

We have the following existence result for this problem.

Theorem 3.2. Let h > 0. Then there exists a solution to Problem F,.

Proof. We fit Problem P, into the framework of Theorem 3.1 by taking FF =V x E x E and
G=HxH™x E,weG,w €G and [l € F given by

() =@ -0

The operators B : G — G' and A(t,-) : F — F' are chosen as
£ Ki€ + Kt + Crv + Sv
Bw=| v}, A(t,w)= { Bv+Dv+ Au+Cot + Jhu | .
Ru —Rv

Now, the verification of the assumptions of Theorem 3.1 is routine. So we single out only two
items for special mention: the pseudomonotonicity (3.1) and the coercivity (3.3). In checking the
pseudomonotonicity of the the operator A, we use the fact that A = A; + A, where

K€+ K6 +Cv
Ai(t,w) = | Bv+ Au+ Cy¢
—Rv

gives rise to a bounded linear operator from X to X’ (hence weakly continuous and thus pseu-

domonotone {4]), and
Sv
Az(t,w) = | Dv+ Jhy

0

is a weak to norm continuous operator from X to X'. To establish the latter property we recall
that X = {w € F : (Bw)' € F'}, and employ the following lemma.

Lemma 3.3. Let Y= {u€E : (Ru) € E'} with norm given by |ully = |lu|lg + ||(Ru)'||g’, and
letS:Y —V,D:Y —Y and J*: Y — Y’ be given by (2.26), (2.23) and (3.4), respectively.
Then S, D and J" are weak to norm continuous.
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Proof. We establish the result only for the operator S since the proof for D and J h is sim-
ilar. It is enough to show that every subsequence of a weakly convergent sequence {vx} in Y,
such that vy — v weakly, has a further subsequence whose images under S converge to Sv.
So let {vy;} be a subsequence of {vx}. Since {v;}; is bounded in Y and since the injection
HY(Q)™ — H-5(Q)™ is compact for any € > 0 ([4]), we have by a theorem of Lions [12],
that {vy,}; is relatively compact in L?(0,T; H'~¢(2)™). By the continuity of the trace map
L2(0,T; H-¢()™) — L2(0,T; L*(T)™) = (L*(T x (0,T)))™ we may, upon passing to a subse-
quence denoted also by {vg,};, suppose that vy, (z,t) —v(z,t) for almost all (z,t) € I'c x (0,T).
Since sc(z,7) < ay|r| and {v,}; is bounded in Y, by the continuity of the trace map we obtain
that

{ (B((vk;)n)+ + Po) (1 = 8(B((vk;)n)+ + p0)) ;8¢ [ (vr;)r — E1) };
is a bounded sequence in L?*(T'¢ x (0,T)). Consequently, it converges to
(B(vn)+ +P0)(1 —6(B(vn)+ +p0))+3c(' s |[vr = ¢|)

in L}(T'¢c x (0,T)). Finally, using Cauchy’s inequality, we deduce that Svx;, — Sv in Y’ when
7 — oo. This completes the proof.

In checking the coercivity condition (3.3), we estimate various terms using Cauchy’s inequality,
standard trace theorems and the following result. Here and below ¢ represents a positive constant
whose value may change from line to line, but in all cases depends only on the data and coefficients

of the approximate problem.

Lemma 3.4. Assume that (2.11)-(2.15) hold. Then there ezists a positive constant o such that
(Au,u) > aflul,  (Bu,v) 2alvlf, (K26, 2 aliéllf, (3.10)

and also

(JMv,v) > —c. (3.11)

Proof. The three first inequalities are a consequence of assumptions (2.11) followed by Korn’s
inequality. The latter estimate is a result of the following decomposition

(Ihv,0) = /P H(B(va)+ +p0) (1 — 5(B(va)+ +p0)) , Vi (vr — 8) - (vr — $)dT

+ [ 1Be)s + P0) (L= 3(B(un) +50) TH(vr = ) - 4T,

in which the first integral is nonnegative and the second one is bounded. This concludes the proof

of the lemma and of Theorem 3.2.

The next step in the proof of Theorem 2.2 deals with an a priori estimate on the solutions to
Problem P;,.

Theorem 3.5. Let {up,vp,&n} be a solution to Problem P, corresponding to the parameter h.
Then there exists a positive constant c, independent of h, such that, for all t € [0,T],

i t
lun (% + [on () B + /0 lon(s)I1% ds + €2 + /O len(s)I3 ds < c. (3.12)
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Proof. For the sake of simplicity, we will omit the subscript h below. We begin by letting (3.7)
act on v. Thus,
t

/ot(v', v)ds + /:(Bv, v)ds + /ot(Dv,v)ds +/0t(Au, v)ds + /o (J*v, v)ds
= —/ot(C2§, v)ds + /ot(f, v)ds. (3.13)

We will now estimate each of the terms in (3.13). Using Theorem 1(2) in (8] and our choice of the
spaces F' and G we obtain that

t 1t 1 1
/ (W', v)ds = & / (2 10(8) g )ds = ~(0(8) Eim — ~fv0[3m. (3.14)
A 2/, 2 3
Applying Lemma 3.4 yields

/ (B, v)ds > a / Iv(s)[[%ds, (3.15)
0 0

[tauoids = 5 [ (au ) ds = 5(4ut), w(®) - 5(Au0, )

a
> 5”“(0"215 - clluol}, (3.16)
and
t
/(th, v)ds > —c. (3.17)
0
The integrals on the right in (3.13) are estimated by using Cauchy’s inequality with e:
t t o [t
|[emas| < [le@ds+ 3 [oeibd, (3.1
t t ) a [t )
|[irmas] < c [semtas+ 5 [oeas (3.19)

Combining the estimates (3.14)—(3.19) in (3.13) and using the fact that the integral involving the
operator D is nonnegative, results in

IO + bfEm + [ To(olds < (1+ [ le(o)has). 320

We turn now to the energy equation (3.6) and by letting it act on £ we obtain

t t t
/0 (€', €)ds + /0 (K1, £)ds + /0 (Kat, €)ds
- / (Crv, £)ds / (S, £)ds + / Q. 6)ds (3.21)
0 ’ 0 ' 0 ' ’ )
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Using arguments similar to those above (see (3.14), (3.15), (3.18) and (3.19)) yields
t 1 1
[ €.61ds = Z1eis - 3léof
0
t t
— 2
[weaa=[[ keleftds 20,
t t
[t a5 > a [ 1t as,
0 0
t t i
[ew ol <e [wehmds+ 5 [ee s
t t t
[(@od <c [10@ikds+§ [ as

To estimate the term involving the operator S, we use the inequality

(Bwa)s +70) (1= 8(B(en)+ +0)) , < 5

assumption (2.14) and Cauchy’s inequality with €, and deduce:

[isvodsl<e [oeipas+ [l s

Combining the estimates (3.22)—(3.27) in (3.21) yields

€@ + /otllé(s)"%, ds<e (1 + /OtIU(s)ﬁ{m ds + /0t||v(s)||%ds) .

It follows now from (3.20) that

[iwezds <c(1+ [ieias).

Inserting this estimate in (3.28) we deduce

t i t
ol + [l as < (1 + [wolhmds + [ ey ds) -

Finally, adding the inequalities (3.20) and (3.29) we obtain

()1 + o) + [ o) ds + ) + / eI ds
<1t [olhmds+ [leelias)
which implies that
O+ 16O < ¢ (14 [ m s+ [ le)ds)
Using now Gronwall’s inequality yields

[o(®) 3 + €O < c.

The a priori estimate (3.12) is now a consequence of (3.30) and (3.31).
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4. Proof of Theorem 2.2

We prove the existence of a solution to Problem P as a limit of a subsequence of the solutions
to the regularized Problem P obtained above. It follows from Theorem 3.5 that for a given set
of initial conditions the family of solutions {up, vs,&n}n is bounded in E x E x V. From this and
(3.6)~(3.8) it follows that {Ru}, v}, £} is bounded in E' x E' x V’. Consequently, there exists a
weak limit point (u,v,£) € E x E x V and a subsequence of parameters {h;} such that A; — 0
when [ — oo and such that the following limit processes take place when [ — oc:

uy — u weaklyin E,
yy — v weakly in E,
& — €& weaklyin V,
§ — ¢ weaklyin V,
vy — ¢ weaklyin E/,
Ruj — Ru' weakly in E'.

With these results and Lemma 3.3 we may pass to the limit in (3.6) and (3.7) in all terms except
the one involving J™. For this term we may suppose, by passing to a subsequence that, for some
v € E', Jh(y) — v weakly in E'. It only remains to show that 4 € &j(v,v). Toward this end,

we note that when | — oo
(B((v1)n)+ + Po) (1 = 8(B((w)n)+ + Po))+ — (B(vn)+ +Po) (1= 6(B(vn)+ + o)) .,
strongly in L3 (¢ x (0,T)). On the other hand, for any w € E we have

M (wr — vy + (0)r — ¢) — lwr - ¢| in L¥(¢ x (0,T)),

WM ((w)r —4) — lvr -4l i L*(Tc x (0,T)).
Then it follows from the convexity of 4" and Hélder’s inequality that
(v, w—v) = lim (J¥v, w—v)
l—00

T
= Jim [ 5 (B(0n)s +20) (L= S(B(n)+ + p0)) VI (=)  (wr=vr)aTat

IA

T
im [ w(B(a)s+ 7o) (1= 88((00n) s+ p0),
x [ (wr—vr+(u)r—9) —™ ((v1), —9) | dTat
T
< [ (Bt +20) (1-6(8n)s + ) (1091~ fo i)

This shows that 4 € 82j(v, v) which completes the proof of Theorem 2.2. -
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5. Uniqueness

In this section we introduce additional, reasonably mild, assumptions on the function s; and prove
that the solution to Problem P is unique when |¢|pe(r,) is sufficiently small. Estimating the
allowed coefficient yx is left open.

Theorem 5.1. Assume that assumptions (2.11)-(2.15) hold and that s. satisfies the additional
boundedness and Lipschitz conditions

Se(,7) < a5 forall reR, (5.1)
[sc(-,71) — sc(-,m1)| S as|lry — 12| forall r1, 72 €R, (5.2)

where a5 is a positive constant. Then, the solution to Problem P is unique when |u| L=(Tc)

sufficiently small,

Proof. Let {u1,£&} and {ug, &} be two solutions to Problem P corresponding to the same
data. We substitute into (2.28) u; for u and let the resulting expression act on v} — u} and
then substitute into (2.28) ug for u and let the resulting expression act on u) — u}. Adding
the two inequalities and using the notation v = u3 —ug, v = uj —u, £ = & — & and \; =
(B((v3)n)+ + Po) (1 = 8(B((vi)n)+ + p0)) . for i = 1,2, yields

t t ¢ t t
/(v',v)ds+/(Bv,v)ds+/(Dv,'v)ds+/(Au,'v)ds+/(02£,'u)ds
0 0 0 0 0
t
< [ 60u=22)(10): — 81 - (2} - gl)dras (5.3
0JT ¢
We estimate the terms on the left-hand side in (5.3) using the same arguments as those used to

estimate the corresponding terms in (3.13) (see (3.14)—(3.16) and (3.18)). The integral on the
right-hand side is estimated by taking into account p|A; — Az| < c|u|peo(rg)lvr — v2l; thus,

¢ t
L #0 = 32) () = 61 = 1wa): = dl)drds < clalzqeey [ Iote)l ds.
C
Combining these estimates in (5.3), when |u| L=(Te) is sufficiently small, yields
t t
lu@IE + [v(®)Fm +/0 llo(s)lIEds < C/O |€(s) (% ds- (5.4)

Next, we substitute £; and & into (2.27) in turn, subtract the resulting equations and let the result
act on the difference £ = £; — €2 to obtain

/0(f’,f)dé’-i-/0(K1£,£>ds+/(;(K2§,§)ds
t t
= "/(Clv,ﬁ)ds—/(sm — Svg, £)ds. (5.5)
0 ()}



All the terms in this equality, except the last one, are estimated in the same way as (3.22)—(3.25).
To estimate the term involving S we use (2.26) and obtain

t
= ' /o /P p(A15e(z, |(v1)r — @]) — Aase(z, |(v2)r — 1)) €dTds|,

'/t(S”l — Suy, £)ds
0
t
< /o/rcﬂl)q — Xo|sc(z, |(v1)r — &])|€]dTds
t
+/0/rc#/\2|sc(z, [(v1)r = @]) — sc(z, |(v1)r — ¢|)| |¢|dTds.

Since p|A1 — Ag| < c|v; — vgl, using assumptions (5.1) and (5.2) followed by Cauchy’s inequality
with € in the two integrals on the right-hand side, we obtain

[t5u-smgas < (< [Iootas+ 3 [leias).

Combining these estimates in (5.5) yields

t t t
€)% + /0 IE(s)I3 ds < c ( /O fo(8) Em ds + /0 lo(s)li% ds) . (5.6)

We deduce from (5.4) that

t t
[ ol as < [y as,
0 0

which, when applied in (5.6), gives

et + [ et ds < e ( i Jo(s) s + / o ds) . (5.7)

Finally, we add (5.4) and (5.7) and obtain

t t
IS + v + €O + /0 lo(s)I2ds + /o lE(s)I3ds

<o [1todmdst [lee)ras),

t t
(&) 3w + [EQ) < ¢ ( [ wte)ns+ [ |s(s)|%,ds) .

Applying now Gronwall’s inequality yields v(t) = 0 and £(t) = 0, and then it follows from (5.4)
that u(t) = 0. The proof of Theorem 5.1 is complete.

which implies

Remark 5.2. Under the additional assumptions (5.1) and (5.2) we can establish, using the argu-
ments of this section, that for |u|ze(r ) sufficiently small the solution to each of the approximate

problems P, is unique, too.

Acknowledgment. The first author wishes to thank the Department of Mathematical Sciences
at Oakland University for its hospitality and support during his visit.
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| Descriptif I

Ce travail est une présentation de simulations numériques concernant les vibrations
d’une barre élastique entre deux obstacles.

On consideére une barre élastique horizontale fixée par I’'une de ses extrémités & un mur
oscillant verticalement avec une vitesse ¢. L’oscillation du mur entraine 'oscillation de
toute la barre. Les mouvements de ’autre extrémité restent bloqués entre deux obstacles
fixes. La figure suivante illustre le modele étudié :

stops

beam |
ul =

d

ANNANAN

La barre élastique est modélisée par I'intervalle 0 < z < 1 alors que g; et g» (g1 <
0 < go) sont les positions verticales des deux obstacles. On note Qr = (0,1) x (0,7)
pour T > 0. Soit u = u(z,t) le déplacement vertical de la barre et o = o(z,t) les
contraintes dans la direction verticale. Le probléme étudié ici se modélise en partie de la
fagon suivante :
Trouver une fonction u telle que :

Uy — Oz = f,
o(z,t) = —kUzes(z, t),
u(0iti=9(t), uwl0.t)=0fex 0<i<T,
g1 <u(l,t) < gs,

’LL(,’L‘,O) = ’LLQ(CC), ut($7 O) T 'UO(m)'

Ici, f représente la densité de forces appliquées sur la barre (par unité de longueur), les
indices en z et en ¢ indiquent respectivement les dérivées partielles en espace et en temps
et k? représente le module d’élasticité.

Pour les conditions aux limites au niveau de I’éxtrémité droite de la barre, on considére
deux types de conditions : les conditions de Signorini ou les conditions de compliance

1



normale. Les conditions de Signorini s’écrivent sous la forme
—a(1,t) € Ox(u(1,)),

pour 0 < ¢ < T, ou dx le sous-différentiel de la fonction indicatrice x = x[g, 4, de
l'intervalle [g1, go], i.e.,

[0, +o0) si 7= gy,
ax(r) = 0 8 gy < r& o8,
(—00,0] si r=g.

Les conditions de compliance normale s’écrivent sous la forme

U(l’t) i, [(u (lat) bE. 92)+ o (gl P u(l,t))+] )

ou k est un coefficient d’amortissement et (f); = max{f,0}.

L’étude théorique ayant été faite dans un travail antérieur (cf. références de I’article),
le but de ce travail concerne I’étude numérique du probléme suivant les conditions de
compliance normale. Pour ’algorithme, une méthode des lignes a été considérée. Elle est
basée sur la discrétisation du systéme d’équations aux dérivées partielles obtenu suivant la
variable espace z, ce qui le transforme en un systéme d’équations différentielles ordinaires
en temps. La derniére partie de ce travail porte sur des simulations numériques suivant
différentes paramétres. La transformée de Fourier rapide (FFT) a été utilsée pour mettre
en évidence les bruits générés au niveau du contact de la barre avec les deux obstacles.
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Abstract. We present numerical simulations of vibrations of an elastic beam be-
tween two stops. The beam is clamped at one end to a vibrating device; the motion
of the other end is restricted by two stops. The contact is modeled by the normal
compliance condition which describes nonlinear flexible stops, and approximates
the Signorini condition for rigid stops. We use a finite difference scheme for the
numerical approximations of the behavior of the model. The numerical simulations
indicate that the stops may cause very complicated oscillations. We also use the
FFT to describe the noise characteristics of the system.

AMS(MOS) classification: 73T05; 35L35, 35L85.

Keywords: Dynamic contact, elastic beam, Signorini condition, normal compli-
ance, constrained vibrations.

1. Introduction

This research is a continuation of our investigation, started in (Kuttler
and Shillor, 1998), of the vibration characteristics of contacting struc-
tures. We study numerically the vibrations of an elastic beam between
two rigid stops. The model and the existence of its weak solutions
can be found in (Kuttler and Shillor, 1998). Here we describe a finite
difference numerical algorithm for the problem, and present numerical
simulations of the solutions. _ _

There is considerable interest in industry in the dynamic vibrations
of mechanical systems. In particular, it is recognized in the automotive
industry that the noise and vibration characteristics of cars are an im-
portant factor in the product customer satisfaction. Indeed, appreciable
effort has been made recently in designing automotive components to
reduce undesired or disturbing noise. For instance, when the mounting
of the components on the engine is not perfect, the motion in the
clearances leads to dynamic contact, which may generate this undesired
noise.

The purpose of this study is to investigate contact noise charac-
teristics by simulating numerically a dynamic model for constrained

* This paper is dedicated to the memory of P. D. Panagiotopoulos

© 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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vibrations in a simple setting which avoids mathematical and numeri-
cal difficulties associated with two- or three-dimensions. The problem
we consider is one-dimensional and describes an elastic beam that is
clamped at one end to a vibrating device while the other end oscillates
between two rigid or flexible stops. Such a setting was considered by
Moon and Shaw (Moon and Shaw, 1983) (see also (Moon, 1992) and
references therein). There, the mathematical problem was considerably
simplified by reducing it to a nonlinear ordinary differential equation.
They showed that even such an approximation can exhibit complicated
behavior under periodic forcing. Indeed, it can oscillate periodically,
quasiperiodically or chaotically. Since we consider the full problem, we
expect it also to exhibit such varied types of behavior.

Related results for elastic rods can be found in (Schatzman and
Bercovier, 1989) and a simplified model for vibrations in (Paoli and
Schatzman, 1998) and in (Schatzman, 1998). In (Kuttler, Park, Shillor
and Zhang, 1999) a model for the transmission of vibrations between
two beams, across a mechanical joint with a clearance, was investigated.
The model was formulated in a variational form and the existence
of weak solutions established. Then, the solutions were numerically
simulated using the method of lines. The noise characteristics of the
system were simulated too, by using the FFT.

The model is described in Section 2, following (Kuttler and Shillor,
1998). The contact is modeled with either the Signorini condition which
represents two perfectly rigid stops (see, e.g., (Duvaut and Lions, 1976;
Kikuchi and Oden, 1988)), or with the normal compliance condition
(see, e.g., (Martins and Oden, 1983; Klarbring, Mikelic and Shillor,
1988; Andrews, Kuttler and Shillor, 1997; Andrews, Shillor and Wright,
1996; Kuttler, Park, Shillor and Zhang, 1999) and references therein),
which describes flexible stops with spring-like nonlinear reaction. Each
problem is set in a variational form, and the existence results of (Kuttler
and Shillor, 1998) extend to these problems, guaranteeing the existence
of weak solutions. We quote these in Section 2, as well. In Section 3
we present the numerical algorithm which is based on the finite differ-
ences approximations of the beam equation, and time retarding at the
contacting end of the beam. In particular we use the method of lines
to convert our partial differential equations problem into a system of
ordinary differential equations; then, we integrate the system by using a
backward time discretization. Our numerical simulations are presented
in Section 4. We show that the vibrations of the beam can exhibit
very complicated patterns. Moreover, using the FFT we show that the
contact excites frequencies which are higher than the driving frequency.
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2. The. model

In this section, we present the classical model and its variational for-
mulation, following (Kuttler and Shillor, 1998). Then we quote the
existence results obtained there. For the sake of simplicity we consider
only the elastic beam and omit the viscosity effects which were included
in (Kuttler and Shillor, 1998). The mechanical setting is depicted in
Fig.1. A uniform elastic beam is clamped at its left end to an oscillating
device. The motion of its right end is constrained by two obstacles ~
the stops. :

beam ] stops

u

d

ANAANANY

Fig.‘ 1. The physical setting.

The area-center of gravity of the beam in its (stress free) reference
configuration coincides with the interval 0 < z < 1; g; and g9 (g1 <
0 < g2) are the positions of the stops. We set Qr = (0,1) x (0, T), for
T > 0. Let u = u(z, t) represent the vertical displacement of the beam,
and o(z,t) the stress in the vertical direction. Then, the equation of
motion, in nondimensional form, is

utt—azzf) (1)

in Qr, where f denotes the density (per unit length) of applied forces,
and the subscripts z and ¢ indicate partial derivatives. The material
is assumed to be elastic and of constant cross section, thus o(z,t) =
—kugry (z,t), where k? is the scaled elastic modulus. The initial con-

ditions are
u(z, 0) = up(z), ut(z,0) = wy(z), (2)
for 0 < z < 1. The beam is rigidly attached at its left end,
u(0,t) = ¢(t)  and uz(0,t) =0, for 0 <t < T. (3)

Here ¢ = ¢(t) represents the motion of the supporting device. In this
paper we present simulation results when the device oscillates periodi-
cally (see also (Moon, 1992)). At the free end we use either the classical
Signorini condition (see, e.g., (Duvaut and Lions, 1976; Kikuchi and
Oden, 1988), or the normal compliance condition (see, e.g., (Kikuchi
and Oden, 1988; Klarbring, Mikelic and Shillor, 1988; Kuttler and



4 Y. Dumont, D. Goeleven, M. Rochdi and M.Shillor

Shillor, 1998; Kuttler, Park, Shillor and Zhang, 1999)). In the nu-
merical simulations we use the latter as an approximation of the for-
mer. The Signorini condition describes the idealized case of completely
rigid stops. The displacement u(1,t) of the beam’s end is constrained

between the stops, thus,
a1 <u(l,t) < g2 | (4)

Then either the end is free and o(1,t) = 0; or it is in contact and the
stress is opposite to the displacement,

o(1,) <0 if u(l,t)=gs o(L,£)>0 if u(l,t)=g.
Since only one of the cases can take place we require that

0(1’ t)(g2 - u(l,t)).,.(u.(l, t) - gl)-l- =0,

where (f)+ = max{f,0} is the positive part of f. The condition may
be restated as follows. Let x = X[g1,9;) e the indicator function of

the interval [91192]) ie. X(r) = 0 when r € [gl: 92] and X(T) = o0,
otherwise. Then Signorini’s condition, in addition to (4), states that

—a(1,t) € Ox(u(1,t)), (5)
for 0 < t < T, where Oy is the subdifferential of x;, i.e.,

[0, +00) if r = g9,
Ox(r) = 0if g1 <r<go,
(—o0, 0] if T=g.

The second condition we use is the normal compliance condition, where
the stops are assumed to be flexible, with resistance force proportional
to the deflection,

o(1,t) = -k [(u(1,t) — g2), — (g1 —u(1,8)),]. (6)

The stops behave as one-sided nonlinear springs, with spring constant
k. Conditions (4) and (5) can be obtained from (6) in the limit when
Kk — +o00, and therefore, we may employ (6) as a regularization of the
Signorini condition. Finally, we assume that no moments act on the

free end,
uzz(1,t) = 0. (7)

The classical statement of the problem of vibrations of a beam be-
tween two stops with Signorini’s unilateral condition is: Find a function

u such that (1)-(5) and (7) hold.
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The classical problem with normal compliance is: Find a function u
such that (1)—(3), (6) and (7) hold.

Both condition impose regularity ceilings which, generally, preclude
the existence of classical solutions to dynamic problems containing
them. Thus, it is natural to consider weak or variational inequality
formulations of the problems. To that end we introduce the following
spaces and notation. For definitions of any unexplained notation we
refer the reader to (Adams, 1975). .

Let H = L?(0,1) and V = {w € H?%(0,1) : w(0) = w'(0) = 0}, then
V CH=H'C V/, where V' is the topological dual of V. We denote
by (-,-) the inner product in H and by (-, -) the duality pairing between
V and V. The associated norm on H is denoted by |- |y and the one
on V by || - ||Jv. To incorporate Signorini’s conditions (4) and (5) we set

K:{wGV:gl Sw(1)592},

which is the convex set of all admissible displacements. Next, to have
zero boundary condition at £ = 0 we change the dependent variable
to u(-,t) = u(-,t) — (1 — z)¢(t), then the forcing function f changes to
(- t) = f(-,t) — (1 — z)¢"(t). Here and below “’” denotes the time

derivative. _
The following existence result for the Signorini problem has been

established in (Kuttler and Shillor, 1998):

Theorem 1. Assume that f € L?(0,T; H), ¢ € H*(0,T), up € K and
vg € H. Then, for each T < 0o, there exists a function u satisfying

u € L%(0,T;V), «' € L*(0,T; H), u(t,-) € K, u(0) = uo,

and the variational inequality,

T rl T o1
/ / o' (w' - ') dzdt + k2 / / Upg (Weg — Ugg) dzdt
o Jo 0 Jo

+/01vo(w(0)—"-o)d$ > —/DT/OIf(w—u)dwdt, ®

which holds for all w € L%(0,T; V) with w' € L%(0,T; H), w(t,") € K
and w (T,:) =u (T,").

The proof of the theorem was based on a priori estimates for the
solutions of a family of problems with the normal compliance condition.
We conclude that Problem (1)-(5) and (7) has a weak solution.

For the problem with normal compliance the following result of
(Kuttler and Shillor, 1998) holds.
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Theorem 2. Assume that the data satisfy the above conditions. Then,
the problem (1) — (3), (6) and (7) has a weak solution for each T < oo,

such that
u € L*(0,T;V), u(0) =uo, u' € L®(0,T;H), u" € L*0,T; V"),

and for each w € L%(0,T; V) with w' € L?(0,T; H), w(t, ) € K and
w (-, T) = u(-,T), the following equality holds _

/ / o (w' — ) dzdt + k? / / Upz (Weg — Uzz) dzdt
0JO 0 JO

. |
- [ [ 1,8 = @), — (o1 - w(1,0),] (w(0,0) - (1, )+

+f " o(w(0) - o) d = / T/ fw-wdsd. ()

When the material is considered viscoelastic the results in (Kuttler and
Shillor, 1998) show that, in addition, the solution of the problem with
- normal compliance is unique and better behaved.

3. Numerical algorithm

Assuming enough regularity on the solution, we present a numerical
algorithm for the problem with normal compliance. We use Rothe’s
method (Kacur, 1985), or the so-called method of lines, to discretize
the problem. It is based on discretizing the partial differential equations
system with respect to the = variable and in this way transforming it
into a system of ordinary differential equations in time. We assume, for
the sake of simplicity, that there are no external forces, thus, f = 0.
Next, we make the following change of variable v (z,t) = u (x,t) —

é(t) (1 z), which makes the displacements at = = 0 vanish, but does
not affect the conditions at £ = 1. The problem can be written as

2 v(z

Folot) , p@0El) _ g2,
v(,0) = u(z) - $(0) (1-2),
% (z,0) = vo(z)-¢'(0)(1-12),
Uz (O:t) = ¢(t),
vt(ost) = 0,

kz'uzu(l,t) = K.((u. (1,t) -92); — (¢ —u(l,t))+) ,

vz (1,8) = 0.




Simulations of Beam Vibrations between Stops ' 7

We denote by V' the vector (vi,vzz) = (v¢ (2,t),v2z (z,t)). Under
sufficient regularity on the solution, the’ equatlon in the interior of the

beam can be written as

- wl pya-a,
Ovgr 0%,
ot — 0z2°
That is R
B = 552 (AV) + F,
where

_ (0 -k _ (R _{(-¢®01-2)
(1) e (B)(00).

.. Next, we discretize the problem. Let At = T/N be the time stép
and let h = 1/M be the space step, then the grid points are given by
(z: = ih, tn = nAt), where, here and below, i = 1,--- ,M — 1 and

- n = 0,---,N. We first discretize with respect to the space variable

using the classical finite difference scheme. We obtain a system of M
ordinary differential equations

v 1
o = A Vi1 —2Vi + Vi) + Fi. (10)

To integrate this ODE system we use a second order backward finite
difference approximation. Let V* = (vt i Ve ,) denote the approxima-
tion of V' at the grid point (ih, nAt); we have

zzt (Vn 3‘/in—l Vn—2) A( - 2Vn + Vn 1) + Fn
(11)

where FJ* = F(z;,t,). We set A = £f and rewrite (11) in the following
way
A
- Rave (I+ 4’\A) v - 2;,4 s

=§Vi"' IV"‘ +2§F-"

The discretized initial conditions are v; = vg; — ¢/(0) (1 —ih) and
v, ;= ug,,; The boundary conditions v (1,t) = 0 and (0, t) =0

zx,i
can be expressed as Vzz,y = 0 and v} = 0.
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Next, we derive a boundary condltlon for vz at £ = 0. Recalling
that v,,-(O t) = ¢(t) and using Taylor expansions around 0 at z = h and
z = 2h, we obtain

ve (hyt) = he' (t) + vaze (0,£) B + voaae (0,2) B + O (Y,

ve (2h, t) = 2h¢' (t) + Vrzt (0, £) 282 + vygas (O, t) B +0(hY).
Then,
8ut (h,t) — ve(2h,t) = 6h¢' (t) + 2h%u.0x (0,2) + O (hY),
from which we deduce |
Vzzt (0,8) = 2h2 (8ut (h,t) — ve(2h,1)) - Ed)’ (t) + 0O (h?).

Using again the second order backward differentiation approximation,
we find

8At ., At 4 1 .
v:;‘:(l) 3h2 ri'. + 3h2 tn;-l 3 :::0 3 :zo (¢’)ﬂ+1

where (¢/)"+! = ¢/(tn+1). We turn to the discretization of the contact
condition. We model the contact with the normal compliance, and as
explained above, we may also think of it as an approximation for the
Signorini condition. First, we use Taylor expansions around 1 at ¢ =
1 —h and z =1 — 2h to discretize vzzz2(1,t), thus,

Vaz (1 — By t) = vz (1,£) — hVizes (1,£) + B vgeqs (1,8)
~ M Vorzrz (1,8) + O (R%),
Vez (1 = 2h,t) = vz (1, t) — 2hvzes (1, ) + B0pprs (1, )
~ 8 vagzz (1, ) + O (h%).
Using the assumption v, (1,t) = 0, we have
8zz (1 — by t)—vzz (1 — 2h,t) = —6hvzgy (1,£)+2h2vz0es (1,8)+0 (BY) .
We deduce
vszes (18) = 525 (8022 (1 = y2) = ax (1= 20, 1))+ 20aze (1,40 (7).

Using now the equation

avt (1, t)

— _L2
5t = kvzzza:(lat),
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and the discretization with respect to z, we obtain

dun K 3k2
ot = oh2 (S'sz,N—l - 'U:c:r.,N—Z) - T'U:m:z,N-

Recalling that o (1, t) - —Kk2pr (1, 1), we have

ov —k2 _ 3
at;N = 2h2 (8'01:1:,N—1 - v:c:c,N—Z) + E N,

where the contact pressure is given by

on =~k ((vn —g2), — (91 —vN),),

and vy is the displacement at the end of the beam. Below, we linearize
the system by using the value of this term computed from the previous
time step, i.e., we use time retarding of the argument.

Then, using again the same approximation, we obtain

8Atk? k2At 4 1 2At
. 1 1 1 -1 ) 1
’UZ}S + 352 v:a-:':N—l - 342 v::-c':N—2 = EUZN - §'U: + h 0.11\:,+ .

To summarize the algorithm, at each time step we solve the following
linearized system:

BV = -;W"-l - %IV"‘z + 6", (12)

where B € R?N*2N ig given below, I is the 2N x 2N identity matrix
and V™ € R2N is the column vector

Vi= (vigo W' V3 o o oo Vvea VR, o).

We note that v}y and v, y are omitted, since both vanish. Next, G" e
R2V is given by

G = (JALg(0,nAL) 2tEp

24t pm

3 L

T
%an—l e JAY 7 (('u?’v — g2)+ — (91 — 'Ux)_'_) )

The term G3yy is computed from the known values v}, v} 2, vz:;{,l and

vZ;ﬁ, which is the linearization of the contact condition and therefore
of the whole problem.
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The matrix B is given by

1 -8 0o I 0o 0 o0 0 0o o \
Ky 1 %5 0 2\ 0 0 0 0 o0
0 32 1. -2 0o o0 0 0 0 o
0 0 % 1 -4 o %\ 0 0 o0
0 -3x 0 3 1 -2 0 0 --- 0
B=] : . 0 0 :
: 0 0
: . 1
;0 0 0 0 0 o0 $x 1 -2
\o - 0 0 o0 o _Ex0 %5\ 1 )

The convergence of this algorithm, as Az — 0 and At — 0, remains
an open question. The numerical simulations, obtained by solving the
linear system (12) are presented in the next section.

4. Numerical simulations

We describe a number of our numerical simulations, showing the types
of behavior the solutions exhibit. To start the algorithm we need to
compute the values of V? and V! from the initial conditions 1 and vg.
We use the Crank-Nicholson scheme to compute V1, for 0 < i < M.
Once we have the initial values we march in time using the scheme .
described in the previous Section. The motion of the left end is given
by ¢(t) = Esin(at), where a is the frequency of the driving device. We
depict the numerical solutions below, and in each figure the values of the
various constants, and the value of the normal compliance coefficient
k, are given in the table above the figure. We employed very large
values of k, in the range 108 - 1019, which are found to approximate
the Signorini condition closely, indeed, the displacements of the stops
are seen to be very small.

In each case we give, in addition, the fundamental and the second vi-
bration frequencies wp and w;, respectively, of a beam which is clamped
at the left end and free at the right end. We found in the simulations
that when the free end is not in contact it vibrates at higher frequencies,
often at the fundamental free frequency, although higher frequencies are
also prsent.

The free vibration frequencies are given by

wn = kB2, n=0,1,---,
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where the B, are ordinate solutions of the transcendental equation
cosh B8 cos 8 = -1.
A straightforward calculation shows that
wo = 3.5148k [rads/sec],  w; =22.3480k [rads/sec].

We provide these values in each table. .

For each simulation we present the noise characteristics of the sys-
tem. We depict the (Fast) Fourier Transforms (FFT) of the motion
of the beam’s end, u(1,t), which show the frequency distribution of
the vibrations. It is seen that the high frequencies are, in part, the
free vibrations of the end during the transits between contacts. Also,
it is seen that higher modes are excited by the contact and the system
becomes rather ‘noisy’ at high driving frequencies. In Fig. 2 we present
a very low driving frequency (a = 1) solution. There is contact between
the beam’s end and the stops over considerable periods of time, and
there is very little deflection of the stops. The phase portrait of the
~ beam’s end, u:(1,t) vs. u(1,t) is shown in Fig.3, together with the

'FFT. The end velocity oscillates rapidly, at the fundamental frequency
wo = 314.4, during the free motion between the stops. Two higher
modes are excited too, with frequencies 3a and 5a, as can be seen in
the FFT.
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k a h At g1 92 K wo wy
V8000 1 0.02 4x10~% —0.1 01 10° 3144 1971.3

-0.18

Fig. 2. The displacement u(1,t) vs. t; low frequency
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Fig. 3. The phase portrait u,(1,t) vs. u(1,t), and the FFT, as in Fig. 2
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k a h At | g1 . 92 K wo w1
v/8000 10 0.02 2x107% —-0.1 0.1 10 3144 1971.3
0.15 T T . T T T T T Y

MNNONNANNANNNNNT

0.05F

-0.15
-0.2 L ' L
1 2 3 4 5 6 7 8 9 10
time
Fig. 4. The displacement u(1,t) vs. t, low frequency
1 L 3 4
i) .
- a N . . i -[-I-I‘T‘T-L‘ o0 o 9
-a2 -2.15 a1 -806 [ 008 [ 1] o5 0 4 [ ] L.g".m" “w - "w o0

Fig. 5. The phase portrait u;(1,%) vs. u(1,t), and the FFT as in Fig.4

In Fig.4 we depict a low frequency oscillations (¢ = 10), and we see
that the contact times are shorter. The phase portrait, Fig. 5, shows
that the motion is periodic. Again, the end’s velocity oscillates about
five times during the transit between the stops, which corresponds to
the fundamental free frequency wg = 314.4. The FFT is shown in Fig. 5,
and now the excited frequencies are, in addition, 3a, 5a, 7a, 9a and

11a.
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k a h At 01 ) K wo wi
v8000 50 0.02 10~% —-0.1 0.1 10° 3144 1971.3

0.15 -

; MW

-0.15

_02 A L 1 L '] A 1 ] 1
] 05 1 1.5 2 28 3 3s 4 45 ]
time

Fig. 6. The displacement u(1,t) vs. t, medium frequency
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Fig. 7. The phase portrait u.(1,t) vs. u(1,t), and the FFT, as in Fig. 6

A higher driving frequency was used in Fig. 6, with short contact peri-
ods. The driving frequency is very close to the natural frequency. The
phase portrait, Fig. 7, shows that near contact the motion is not as
regular as away from the stops, and it may be that the end oscillates
with frequency w;. We note in the FFT, Fig.7, that multiples of a
are excited, and, interestingly, the amplitudes of the odd multiples are
much higher than the even ones.
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Fig. 8.The displacement u(1,t) vs. ¢, low frequency; with contact
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Fig. 9. The phase portrait w(1,t) vs. u(1,t) and the FFT, as in Fig.8

Another low frequency simulation (a = 10), with wider clearance and
stiffer material, is given in Fig.8. Small deflection of the stops can be
seen during contact. The phase portrait and the FFT are depicted in
Fig.9, and we see that the tip oscillates rapidly between the stops,
however, the frequency is lower than wp. Only odd multiples of a are

excited.

-
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k a h At gl g2 K wo wy
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- Fig. 10. The displacement u(1,t) vs. ¢, high frequency
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Fig. 11. The phase portrait u,(1,t) vs. u(1,t) and the FFT, as in Fig. 10

A simulation with a larger clearance and medium driving frequency
(a = 100) can be seen in Fig.10. The phase portrait, Fig. 11, shows
that the motion of the end is becoming irregular. The FFT is depicted
in Fig. 11 too. We do not know if this irregularity is a numerical artifact
or the property of the motion itself, and it is possible that we may
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attribute it to both. The FFT shows that higher frequencies, only odd
multiples of a are excited.

k a h At g1 g2 K wo wq

1000 400 002 10~6 —0.09 0.02 10 3514.81 22348.03

0.04
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0.01 002 003 ©0D4 005 006 007 008 009 0.1
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Fig.12. The displacement u(1,t) vs. ¢, high frequency
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Fig. 13. The phase portrait u(1,t) vs. u(1,t) and the FFT, as in Fig. 12

In Fig.12 we present the simulation of a stiff beam with high driving
frequency (e = 4007) which is higher than the fundamental frequency,
and asymmetric stops. We see that the oscillations near the lower stop
are much larger than those near the top one. Moreover, it seems as if
the frequency near the bottom doubles in an interesting fashion. The
phase portrait, Fig. 13, indicates that the motion is becoming irregular.



18 Y. Dumont, D. Goeleven, M. Rochdi and M.Shillor

Again, we conjecture that only part of it is numerical. In the FFT the
odd multiples of a have higher amplitudes than the even ones.

k a h At N g2 K wo wy
1000 1000 0.02 10~ —0.02 0.02 5 %101 - 3514.81 22348.03
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[] 0. 02 03 o4 [ 1] 08 a7 08 09 1

Fig. 14. The displacement u(1,t) vs. ¢, high frequency

: l [at11sLl. L1,

A . . 1 A . 2
& s -0 4 - . Q006 M AN el NS " L} L] | ianad mane e W
[

Fig. 15. The phase portrait u,(1,t) vs. u(1,t) and the FFT, as in
Fig.14

In Fig. 14 we depict a simulation with very high driving frequency (a =
1000) which is higher than wp. The phase portrait, Fig. 15, shows that
the motion seems to be unpredictable, and rather messy. The FFT in
Fig. 15 shows a broad range of excited frequencies.
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We consider now simulations when the device driving function is
#(t) = Esin(at) cos(bt).

We show the simulations for a stiff beam and low driving frequency
b < a. The motion is depicted in Fig.16. It seems to be periodic.
However, the phase portrait, Fig.17, has considerable noise, and we
conjecture that only part of it is numerical. The FFT indicates that a
wide range of frequencies is excited.
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Fig. 16.The displacement u(1,t) vs. ¢, low frequencies, a < b
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Fig. 17. The phase portrait u(1,t) vs. u(1,t) and the FFT, as in Fig. 16
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Next, we consider a stiff beam and low driving frequency with b < a.
The motion is depicted in Fig. 18. It does not seem to be periodic, and
the phase portrait, Fig. 19, is very noisy, indicating an irregular motion.
The FFT shows a wide band of excited frequencies, and the motion may
be chaotic.
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Fig. 18. The displacement u(1,t) vs. t, low frequencies, a > b
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Fig. 19. The phase portrait u,(1,t) vs. u(1,t) and the FFT, as in Fig. 18
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The computations were done on the SUN workstation Ultra 10, using
Matlab for computing and graphing. Typical low frequency simulations
took 235 seconds of CPU time while the high frequency simulations
- took 4993 seconds of CPU time. The scheme was found to be reliable

and easy to work with. .

5. Conclusions

We present a model for the dynamic contact of a vibrating beam with
two flexible, nonlinear stops. Since we deal with contact conditions,
which lead to velocity discontinuities, we employ a weak formulation of
the problem. We construct an algorithm for the numerical approxima-
tions of the solutions, based on finite differences. The convergence of
the scheme is an open question. Then we present extensive numerical
simulations of the solutions. We show that the stops introduce a varied
~and complicated types of oscillations, some of them seem to be irregular
- and might be chaotic. For low driving frequencies we see that the end
vibrates at the fundamental free beam frequency wo when in transit
between the stops. This is not the case for high driving frequencies,
where other frequencies can be seen.

The FFT of the solutions shows that multiples of the driving fre-
quency are excited in the process. Sometimes only the odd multiples,
in other cases all multiples appear but the odd ones have higher am-
plitudes. At high driving frequencies it is seen that a wide range of
frequencies is exited, indicating a complicated motion.

The numerical scheme was found to be quick and reliable. Only the
computer runs with high frequency took relatively long CPU times. We
conclude that even such a simple setting exhibits complex and intricate
types of behavior.

We plan to continue this investigation, especially of the transition to
a possible chaotic behavior. Moreover, we will extend this study to more
realistic settings of mechanical joints. There is a need to investigate the
numerical noise in the solutions, and to determine how much of their
irregular behavior is caused by the numerics. It is very likely that the
system is capable of genuine chaotic oscillations, however, to prove it
will take considerable effort, since the some of the needed mathematical

tools are not available, yet.
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