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Executive Summary 
The rising investment in solar energy projects has necessitated the development of improved 
methods to quantify and assess the uncertainty of solar resource data. The practical challenges in 
this area stem from the instrument used to monitor the measurand, the model and input data used 
to predict and forecast the measurand, and their interactions. By maintaining the proper 
traceability, these sources of uncertainty amplify or compensate each other as they propagate 
from the reference data to prediction and forecast, for example. This propagation of uncertainty 
has significant impacts on the prediction and forecast data, which subsequently affects the 
project’s financing, as well as the levelized cost of energy (LCOE) and decision making at 
various steps.  

This chapter discusses the uncertainties associated with various forms of solar resource data and 
how these data impact the predictions of physical or empirical models that use such data. For the 
purposes of this chapter, solar resource data can be classified into three different categories: 
experimental data, as those measured at ground stations; modeled data, estimated for past periods 
using physical, semiempirical, or other radiative models; and forecast data, which use current 
experimental data and models to estimate the future irradiance for a particular area, season, and 
time. The latter can be distinguished between short-term forecasting (intrahour, intraday, and 
days-ahead) and long-term predictions for the next decades. 

Accurate measurement, prediction, or forecasting of the solar resource is complicated by the 
rapidity with which the solar irradiance can change, both in magnitude and spectral distribution, 
and the varied environmental conditions experienced during measurements. 

In the case of predicted and forecasted datasets, it is essential to understand the factors that 
impact their accuracy relative to ground measurements because of, for example, error 
propagation. In parallel, the quality of these measured data is key for confidence in the 
determination of uncertainty in predicted and forecasted datasets. Additional factors can be 
considered, such as the interannual variability if using only a short dataset of, for example, 12 
months or less. Thus, the overall uncertainty of a modeled dataset should include an estimate of 
the uncertainty of the modeled solar resource, of the ground measurements, and that resulting 
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from the probable interannual variability. As a general rule, even with improved instrumentation 
and radiation models, both the measurement and modeling of the incident irradiance can have 
uncertainties, depending on various factors that cannot be neglected and should be properly taken 
into consideration.  

Sections 10.1 and 10.2 summarize the basic concepts and methods of uncertainty in datasets. 
Section 10.3 discusses the measurement uncertainty, mainly using the Guide to the Expression of 
Uncertainty in Measurements (GUM) methodology for quantifying the uncertainty for measured 
irradiance. Afterward, the uncertainty of modeled and forecasted data is discussed in Sections 
10.4 to 10.6. Section 10.7 illustrates some available diagnostic algorithms and tools. Section 10.3 
on measurements comes first, because the uncertainty in the modeled data is typically obtained 
by comparison with reference measurements.  

 
Figure ES 10-1. Traceability and uncertainty propagation for various sources of solar resource 

data  
Image by NREL 

10.1 Introductory Outline 
Solar irradiance can be measured, modeled, or forecasted with various methods, as described in 
other chapters. These solar irradiance data are imperfect and thus uncertain.  

The actual uncertainty of a dataset strongly depends on the measurement and/or modeling 
approach, as well as on the considered spatial and temporal scales. Measurements normally serve 
as a reference baseline for validating modeled data because the latter are expected to have a 
relatively larger uncertainty. In what follows, the main types of models under scrutiny are those 
that provide either satellite-derived irradiance estimates or forecasts using numerical weather 
prediction (NWP). 

The following list summarizes a number of common notions and perceptions that are 
encountered in the solar industry’s current practice and provides some initial recommendations 
based on experience. 
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• Measurements: 
o Measurements are the data source many users consider “ground truth”; however, 

measurement uncertainty is frequently not, or not sufficiently, taken into account. 
o Measurement uncertainty strongly depends on instrument specification (e.g., 

Instrument Class, according to ISO 9060:2018 (ISO 9060 2018)) and quality 
control (QC); it is essential to evaluate and further consider this uncertainty 
whenever using measured data. 

o Measurements obtained with Class-A instruments and subject to thorough 
maintenance program and QC procedures have the lowest possible uncertainty for 
the site and period under scrutiny. Therefore, they are a suitable reference among 
other tasks, such as evaluating modeled or forecasted data. 

o Because high-quality irradiance measurements can be sparse, especially for long-
term periods, modeled data (of greater uncertainty) are needed in most cases.  

• Modeled predictions (satellite- or NWP-based): 
o Definition: Irradiance values for past periods that are inferred using various inputs 

related to the same site and time through a radiative transfer model or a suite of 
functions, such as GHI(t)= f(M1(t), M2(t)), where the inputs are retrieved from 
satellite imagery or meteorological measurements. 

o Uncertainty strongly depends on the time scale of evaluation and decreases with 
increasing time scales (e.g., hourly values have a higher uncertainty than monthly 
values or, even more so, long-term mean annual values). 

o The actual uncertainty of predictions strongly depends on the performance of the 
model itself (or type of model) and time scale; generally, satellite-based modeled 
data have lower uncertainty than NWP-based irradiance data. 

o The most common way to evaluate the quality of modeled datasets is to compare 
them to high-quality irradiance measurements for the same location and period; 
the differences are summarized by some usual statistical indicators of deviation, 
such as root mean square deviation (RMSD), mean bias deviation (MBD), or 
mean absolute deviation (MAD) (see Section 10.2.3). The final letter D stands 
here for “deviation” or “difference” and is used in lieu of “error” to reflect that 
both datasets have uncertainty, which might be of similar magnitude. 

o The uncertainty of modeled data can be estimated based on statistical metric 
evaluations. Here, measurement uncertainty is often not properly taken into 
account because the differences depicted by the metrics between the modeled and 
measured datasets could move up and down depending on the uncertainty of the 
measured dataset, and may or may not be significant within these uncertainty 
intervals; this critical aspect is discussed further below. Note that, in the case of 
modeled data, accuracy and uncertainty are first a consequence of the quality of 
the experimental data used for validation and the amount of data available. 

o High-quality satellite-based irradiance predictions are generally considered the 
next best thing whenever high-quality measurements are not available for a given 
location and period. In such cases, they might constitute a suitable reference for 
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the evaluation of other modeled or forecasted data, at least for global horizontal 
irradiance (GHI). 

• Short-term forecasts (intrahour, intraday, and days-ahead): 
o Definition: Future irradiance values that are inferred using present or past inputs: 

GHI(t+∆t) = f(M1(t), M2(t), N1(t-∆t), N2(t-∆t)) Here, short-term forecasting 
refers to forecasting up to days ahead, in contrast to long term-predictions, as 
described below. 

o The forecast uncertainty increases with increasing forecast horizon, and also 
strongly depends on the spatial and temporal scale of evaluation. It decreases with 
increasing time scales (e.g., minute values have a higher uncertainty than hourly 
or daily values). It also decreases with increasing spatial resolution (e.g., site-
specific or local forecasts have higher uncertainty than regionally averaged or 
aggregated forecasts). 

o Forecast uncertainty is typically greater than the uncertainty of high-quality 
measurements or modeled data (suitable for the given spatial and temporal scale).  

o The most common way to evaluate the quality of forecast datasets is by assessing 
their similarity to high-quality irradiance measurements (or, if not available, high-
quality modeled data) and by calculating the usual statistical indicators, such as 
root mean square error (RMSE), mean bias error (MBE), or mean absolute error 
(MAE) (see Section 10.2.3), with E denoting “error,” which is common practice 
in meteorological forecasting because the reference measurements are assumed to 
be of negligible uncertainty compared to that of forecasts.  

o Forecast uncertainty is described by probabilistic forecasts consisting of 
probability distributions or scenarios of possible future values, depending on the 
current meteorological situation. As before, the reliability and resolution of these 
probabilistic forecasts is evaluated against high-quality irradiance measurements 
(or high-quality modeled data).  

• Long-term predictions:  
o Long-term predictions aim to describe irradiance conditions for the next decades, 

typically 20–30 years for yield assessments, that is, the expected conditions in 
2030, 2040, or 2050 toward the preparation of future energy scenarios. 

o Currently, long-term predictions are based on long-term historical measured or 
modeled data time series, a combination of both, or alternatively on typical 
meteorological year (TMY) datasets. 

o The accuracy of these long-term predictions is typically estimated from a 
statistical evaluation of modeled and/or measured data for a specific period in the 
past. Sometimes, interannual variability and irradiance trends are also taken into 
account. There is currently no consensus methodology to characterize estimates of 
the future resource with a precise uncertainty value and a specific confidence 
interval, contrary to the situation for measurements (see Chapter 6). 

o Long-term trends caused by climate change or regional air-quality measures 
should additionally be accounted for to estimate the uncertainty of long-term 
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irradiance predictions. This is a very complex task that requires more research to 
adequately address (see Chapter 6). 

10.2  Basic Uncertainty Concepts  
A clear statement of uncertainty should accompany any comprehensive solar radiation dataset to 
provide the necessary context for understanding the reliability of the data for various solar 
energy applications. For example, estimation of uncertainty provides a basis to assess confidence 
in the predicted output of a planned solar conversion system and is thus a key factor when 
determining the bankability of the project. Uncertainty is a way to specify confidence in the data.  

In this preliminary approach, it is worth mentioning two important concepts associated with 
uncertainty that are sometimes misunderstood or mixed up. The first one is the accuracy of an 
experimental sensor or of a mathematical model. The accuracy is related to the ability of the 
sensor/model to determine the correct value of a magnitude, its true value, and how much the 
readings or estimations are deviated or separated from that value. The uncertainty gives an idea 
of how much the values of the magnitude provided by the sensor/model can be spread or 
dispersed around its readings/estimations in repeated measurements or calculations. The second 
important concept is the calibration (for an experimental sensor) or the evaluation (for an 
algorithm), which is the procedure or the means by which these deviations are determined and 
stated. In this step, it is necessary to rely on a reference value given by a standard instrument (for 
a sensing device) or provided by a set of real data or a function (for a model). A contribution for 
the overall uncertainty of the value of the magnitude given by the sensor or model is generated 
during this calibration or evaluation step. 

It is important to determine the uncertainty using a standard methodology to provide 
authoritative results that can be relied on for analysis and comparisons. The GUM (ISO/IEC 
2008) is an example of how to determine the uncertainty in measurements. GUM has been 
formalized by several organizations, including the International Bureau of Weights and Measures 
(French acronym: BIPM) and published by the International Standards Organization (ISO). 

In the case of experimental data, the GUM terminology refers to a quantity (i.e., the value of a 
physical magnitude) as the measurand. To characterize this measurand, it is necessary to provide a 
measure of the measurand and its unit. Still, this characterization of the measurand is incomplete 
without supplying the associated uncertainty. This uncertainty provides an estimate of how well the 
value of the measurand is known and provides a range of values that would result from equivalent 
measurements taken under similar circumstances with similar instruments. In general, the 
measurand has four general sources of uncertainty: the act of measurement, the instrument doing the 
measurement, the device recording the measurement, and the environment in which the 
measurements take place. These factors follow a basic metrology’s principle, in which the accuracy 
of the measurement is ensured with some confidence by using common standards.  

Therefore, any measurement only approximates the quantity being measured, and it is incomplete 
without a quantitative statement of uncertainty. Each element of a measurement system 
contributes to the final uncertainty of the data. For example, the accuracy of solar radiation 
measurements made at ground stations depends on the radiometer specifications, proper 
installation and maintenance, data acquisition and accuracy, calibration method and frequency, 
location and environmental conditions, and possible real-time or a-posteriori adjustment to the data. 
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A large portion of this overview of uncertainty in measurements of solar radiation made at 
ground stations is based on Gueymard and Myers (2008); Habte et al. (2014); Habte et al. 
(2016); Myers et al. (2002); Reda (2011); Stoffel et al. (2000); and Wilcox and Myers (2008). 

Similarly, it is desirable that predicted and forecasted datasets be qualified with a specific 
uncertainty, just like measurements. In this case, the different sources of error/deviation can be 
classified into six categories: (i) the “imperfections” of the model itself in its mathematical 
description of the actual physical processes; (ii) the uncertainty in its input data; (iii) the 
magnitude of the error propagation from input to output, depending on the specific model, 
location, and period; (iv) the uncertainty in the ground-truth measurements used to validate the 
modeled predictions; (v) the interannual variability of the predicted dataset, if the model is 
validated over only a short historical period; and (vi) the possible long-term trends that will 
affect the predictions in the future, with the latter being most important for long-term predictions. 
At this point, no general procedure provides a precise quantification of each of these sources of 
error, let alone a reproducible determination of overall uncertainty, as discussed further in 
Sections 10.4–10.6. One important reason for this situation is that the first three causes of error 
are typically site-dependent, which considerably complicates the issue. 

10.2.1 Traceability 
As with any other quantity or measurand, solar irradiance requires a standard reference value and 
physical units, which all the measuring instruments can be compared and referred to. In the 
International System of Units (SI) the units of solar irradiance are those of the radiant power (in 
W) received by the surface of a device within a given area (in m2). Although the modern 
philosophy of SI is to materialize fundamental physical units by means of universal constants, 
there are still many derived magnitudes based on prototypes or artifacts (a given reference 
instrument or a given sample of reference material), which realize and implement in practice the 
real values of these units. This is particularly the case of solar irradiance, which is currently 
referred by international consensus to a set of reference instruments of high accuracy realizing 
the unit of W m-2, namely, the World Radiometric Reference (WRR). (As discussed in Section 
3.2.3, there is progress toward using the SI-based electric W in radiometry, which will eventually 
make WRR obsolete.) 

According to the World Meteorological Organization (WMO) guide, solar resource 
measurements are traceable to WRR, which is maintained by the World Radiation Center (WRC) 
in Davos, Switzerland (see Chapter 3). The International Pyrheliometer Comparison (IPC), 
which is carried out there every 5 years, is used to maintain the WRR by intercomparing the 
World Standard Group (WSG) radiometers and evaluating their long-term stability. The WSG is 
now equipped with a few absolute cavity radiometers, which constitute the group of standard 
instruments realizing the reference unit of solar irradiance. Their average WRR reduction factor 
is used to transfer the scale to other participating radiometers. Moreover, during the intervening 5 
years, other agencies, such as the National Renewable Energy Laboratory (NREL), organize 
annual regional intercomparisons to verify and maintain the WRR factor transferred through the 
IPC. The transfer of calibrations from the WRR to national standards results in an expanded 
uncertainty for these measurement standards of ±0.45% (Reda et al. 2013). 

Various methods and standards are used to transfer the WRR values to field pyrheliometers and 
pyranometers. The calibration and assessment of calibration and field uncertainties for 
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pyrheliometers and pyranometers are described in detail in national and international standards, 
including ASTM E824 (2018); ASTM G167 (2023); ASTM G213 (2017); ISO 9059 (1990); ISO 
9060 (2018); ISO 9846 (1993); ISO 9847 (2023); and ISO/TR 9901 (2021). Figure 10-1 
illustrates the process of calibration transfer from WRR to any field radiometer, along with the 
uncertainty added at each step.  

  
Figure 10-1. Measurement traceability and accumulation of measurement uncertainty for 

pyrheliometers and pyranometers (coverage factor k = 2)  
Note: SZA stands for solar zenith angle.  

Image by NREL 

Similarly, spectral irradiance measurements are traceable to a national metrological laboratory 
(e.g., National Institute of Standards and Technology [NIST]) that has participated in 
intercomparisons of standards of spectral irradiance. The traceability chain and associated 
methods and uncertainties are exemplified in Figure 10-2. This chapter does not cover the 
uncertainty of spectral data, but this topic may be included in future editions of the handbook. 
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Figure 10-2. Measurement traceability for spectral irradiance  

Note: UV stands for ultraviolet. 

Image by NREL 

Compared to the situation with irradiance measurements just described, the traceability of 
modeled datasets is not as straightforward. Traceability is either derived from remote-sensing 
(e.g., satellite or sunphotometer) information, NWP calculations, and/or statistical means. 
Overall, traceability is maintained through evaluation with ground measurement, as well as 
ongoing evaluation of uncertainty analysis and error propagation analysis. As noted above, this 
process is neither rigorous nor standardized yet. 

10.2.2  Uncertainty vs. Error/Deviation 
The difference between error and uncertainty is well documented. According to GUM (ISO/IEC 
2008), the concept of uncertainty analysis supersedes the notion of error analysis. The term 
uncertainty describes the degree of not knowing the “true value”; it is defined as “a parameter, 
associated with the result of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to the measurand.” This concept can also be applied to predicted 
and forecast data as well as long-term predictions. 

Conversely, error is a signed difference that is the degree of deviation of a measurement from the 
true value. For example, in GUM (ISO/IEC 2008), the term “error” is described as imperfections 
in the data that can be reduced. Error can also be explained by random and systematic errors. 
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Random sources are related to the standard deviation or variance of measured datasets. Biases are 
estimates of deviations from a “true value,” primarily based on engineering judgments of the 
measurement system performance.  

The terms “error” and “deviation” in the context of evaluating any kind of modeled data (including 
forecasts) typically denote deviation from “reference values” (with uncertainty as low as possible) rather 
than deviation from the true value. Deviations from the true value can only be approximated by this. 
Most often, irradiance measurements are used as reference data because they are expected to 
have lower uncertainty than other data. Despite this uncertainty (see Section 10.3), these data are 
often referred to as “ground-truth data” if their quality has been confirmed after assessment and 
possible improvement through appropriate QC processes (see Chapter 4). Alternatively, satellite-
retrieved irradiance values, especially in the context of forecasting, or the output of a detailed 
physical model, might serve as a reference. Depending on the context, either “error” or 
“deviation” is used in the literature to characterize the difference between the modeled value and 
the reference value. In this chapter, the term “deviation” is used in the context of modeled 
historical data. It is used to emphasize the uncertainty in the reference values, for example, 
ground measurements.  

When comparing modeled data to ground measurements, the difference can be considered 
statistically significant if it is greater than the uncertainty of the latter. In many cases, the 
uncertainty in ground measurements is not known precisely. That is why reporting the statistical 
metrics in terms of difference or deviation rather than error is preferred in this context. 

To evaluate forecasts, on the other hand, it is preferred to report errors instead of deviations 
because this is the terminology generally applied in meteorological forecasting. Extrapolating in 
time to forecast future values adds another source of uncertainty, which leads to deviations from 
the true value or reference value that increase with longer forecast horizons, making the term 
“error” a suitable choice in this context. 

10.2.3 Statistical Terms and Metrics Used to Define Accuracy 
This handbook covers multiple statistical metrics used to define any deviation from the true or 
reference values. Here, we present the most-used error and deviation measures based on first-
order statistics. A more general review is provided by Gueymard (2014) for modeled solar 
radiation data. A similar overview, but for forecast evaluations, is given in Jolliffe and 
Stephenson (2011). 

10.2.3.1 Deviation of Measurements from True Value 
The expected deviation of a measurement from the true value can be estimated by taking a 
sufficiently large number of measurements. For example, bias provides a measure of the mean 
overall deviation from the true value. This can be described by the MBE: 

 MBE = 1
𝑁𝑁
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋 )𝑁𝑁
𝑁𝑁=1  

where N is the number of measurements, Xj is the measured value, and 𝑋𝑋  is the average of the 
measured values. Bias can be the result of a systematic error (roughly constant over time) or of 
different errors that change over time but do not completely compensate for each other in the 

(10-1) 
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long term. Similar to bias, the standard deviation provides a measure of the mean individual 
deviation from the true value.  

10.2.3.2 Deviation of Modeled Historical or Forecasted Data From Reference 
Values  

A time series of N solar radiation values Xi (measured, modeled, or forecasted) at instant i can be 
characterized by its average: 

𝑋𝑋 =
1
𝑁𝑁
�𝑋𝑋𝑖𝑖 
𝑁𝑁

𝑖𝑖=1

 

 
and by its standard deviation, which provides a measure of the mean individual deviation from 
its average:  

𝜎𝜎(𝑋𝑋) = � ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋 𝑁𝑁
𝑖𝑖=1 )2

𝑁𝑁−1
  

For the comparison of modeled historical or forecasted solar radiation values Xi (e.g., GHI or 
direct normal irradiance [DNI]) to reference values 𝑋𝑋𝑖𝑖

𝐴𝐴𝑡𝑡𝑆𝑆 (e.g., measured GHI or DNI), the 
following metrics are applied. Here the metrics are introduced using deviation, which is 
recommended for the evaluation of modeled historical data, as noted above. The corresponding 
notation using error for forecast data is given between brackets. 

The deviation (error) 𝛿𝛿𝑖𝑖 between a single modeled (forecasted) value and the corresponding 
reference value (e.g., measurement) is simply:  

 𝛿𝛿𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖
𝐴𝐴𝑡𝑡𝑆𝑆   

To evaluate the agreement between modeled (forecasted) data and a reference value, the RMSD 
(RMSE) is commonly used:  

 RMSD = 1
√𝑁𝑁
�∑ 𝛿𝛿𝑖𝑖2𝑁𝑁

𝑖𝑖=1   (10-5) 

MSD = RMSD2 (MSE = RMSE2), is also commonly used to characterize modeled data 
(forecasts).  

Typically, only daytime values are considered for evaluations. Relative errors for modeled 
historical or forecast irradiance are generally derived by normalization with respect to the mean 
measured irradiance over a given time interval. In contrast, relative errors of photovoltaic (PV) 
power forecasts for utility applications are often normalized to the installed power rather than the 
mean measured value, for example, in Lorenz et al. (2011). 

The RMSD (RMSE) metric can be split into two components: (1) systematic, related to the MBD 
(MBE); and (2) stochastic, related to the standard deviation of the deviations (errors) of single 

(10-2) 

(10-3) 

(10-4) 
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values. The MBD (MBE) is the difference between the mean of the modeled (forecasted) data 
and the mean of the reference values (systematic error): 

 MBD =  𝑋𝑋𝚤𝚤� − 𝑋𝑋𝚤𝚤
𝐴𝐴𝑡𝑡𝑆𝑆������ =  �̄�𝛿 = 1

𝑁𝑁
∑ 𝛿𝛿𝑖𝑖𝑁𝑁
𝑖𝑖=1   (10-6) 

A positive MBD (MBE) means the modeled (forecasted) values exceed the reference values on 
average (overestimation), while a negative MBD (MBE) corresponds to an average 
underestimation by the modeled (forecasted) data. 

The standard deviation of the deviations (errors), SD (SE), is defined as: 

 SD = 𝜎𝜎(𝛿𝛿) = 1
√𝑁𝑁
�∑ (𝛿𝛿𝑖𝑖 − �̄�𝛿)2𝑁𝑁

𝑖𝑖=1   (10-7) 

The SD (SE) metric provides information on the spread of the deviations (errors) around their 
mean value. 

Ultimately, the decomposition of RMSD (RMSE) yields: 

RMSD2 = MBD2 + SD2   (10-8) 

For more detailed analyses, the SD (SE) metric might be further decomposed into one part 
related to the difference between the standard deviation of the modeled (forecasted) time series, 
𝜎𝜎(𝑋𝑋), and that of the reference time series, 𝜎𝜎(𝑋𝑋𝐴𝐴𝑡𝑡𝑆𝑆), and another part related to the correlation 
coefficient, r, of the time series, which is defined as: 

𝑟𝑟 =
∑ (𝑋𝑋𝑖𝑖−�̄�𝑋)( 𝑋𝑋𝑖𝑖

𝑆𝑆𝑝𝑝𝑟𝑟−𝑋𝑋𝚤𝚤
𝑆𝑆𝑝𝑝𝑟𝑟�������)𝑁𝑁

𝑖𝑖=1
𝜎𝜎(𝑋𝑋)𝜎𝜎(𝑋𝑋𝑆𝑆𝑝𝑝𝑟𝑟)

  (10-9) 

Overall, the complete decomposition of RMSD (RSME) yields: 

RMSD2 = MBD2 + (𝜎𝜎(𝑋𝑋) − 𝜎𝜎(𝑋𝑋𝐴𝐴𝑡𝑡𝑆𝑆))2 + 2𝜎𝜎(𝑋𝑋)𝜎𝜎(𝑋𝑋𝐴𝐴𝑡𝑡𝑆𝑆)(1 − 𝑟𝑟)  (10-10) 

Another common measure to assess the accuracy of modeled (forecasted) data is the mean 
absolute deviation (MAD): 

 MAD = 1
𝑁𝑁
∑ |𝛿𝛿𝑖𝑖𝑁𝑁
𝑖𝑖=1 |  (10-11) 

The metrics reviewed above do not have the same importance, depending on application. In solar 
resource assessments, long-term yield predictions, and various other aspects of solar energy 
utilization, bias (MBD) can be considered “enemy number one” because it translates into 
systematic underestimations or overestimations of the solar power plant’s output. In turn, this 
can have damaging consequences on the plant’s financing, profitability, or viability. A bias in the 
estimated solar resource of just a few percentage points can make a big difference at the design 
and financing stages. To characterize random errors, the use of RMSD is more frequent than that 
of MAD. Because the solar resource is characterized over long periods (1 year to a few decades), 
and because random errors tend to decrease rapidly as the time integration increases, RMSD 
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tends to a limit close to |MBD| by virtue of Eq. 10-8, which is another reason why its role is 
secondary.  

The situation is different for the application of short-term forecasting of solar irradiance and 
power for grid management, energy management, or marketing. Here, the errors of every single 
forecast value matter because balance between demand and supply must be maintained at all 
times. Both negative and positive forecast errors have negative consequences, like penalties or 
need for balancing power that do not balance out over time. This makes MAE and RMSE the 
most crucial metrics for deterministic forecasting.  

MAE is recommended by Hoff et al. (2013) as a preferred measure in solar forecasting, in 
particular for reporting relative errors. In contrast, RMSE is recommended by Yang et al. (2020). 
An in-depth discussion on the respective merits of MAE and RMSE is given by Hodson (2022). 
From a user’s point of view, the choice of the most suitable error measure(s) should be based on 
the impact of the prediction or forecast errors on their application. MAE is appropriate for 
applications with linear cost functions (i.e., when the costs caused by inaccurate results are 
proportional to the prediction error). RMSE is more sensitive to large forecast errors and is 
therefore suitable when small errors are tolerable and larger errors cause disproportionately high 
costs, which is the case for many applications in the energy market and for grid management 
issues.  

10.2.4 Visual Diagnostics 
In addition to the computation of statistical error measures, creating effective figures that 
demonstrate visual analysis is strongly recommended. These figures are interesting to show a 
direct comparison between measurements and modeled or forecast data, with the aim of 
developing a better understanding of the performance. Many scientific papers such as Badosa et 
al. (2014); Forstinger et al. (2023); Gueymard (2014); Habte et al. (2016); Markovics and Mayer 
(2022); Sengupta et al. (2018); Vuilleumier et al. (2014); Yang (2020); and Yang et al. (2020) 
demonstrate effective figures to communicate the result of solar resource and/or solar energy 
research. Yang (2020) illustrates violin plots that are hybrids of boxplots and kernel density plots 
and explain summary statistics as well as the density of the variables.  

As an example, Figure 10-3 illustrates the combination of a scatterplot with a boxplot. This 
arrangement explains the complex relationship between the measured and modeled data. The 
boxplot provides information about the median, lower and upper quartile, and interquartile 
ranges. Obviously, the scatterplot provides a comprehensive overview of the datasets and 
illustrates the strength of their relationships. In parallel, the time series plot shows a comparison 
of successive time intervals, constituting an excellent way to visualize the possible features of a 
long-term dataset by providing detailed and intuitive information on patterns or relationships 
caused by, for example, sky conditions, seasonality, or outliers. However, such time-series plots 
illustrating specific patterns show only a small part of the data. Moreover, the spatial and 
temporal visualization of aggregated statistical metrics is important to identify any spatial and 
temporal pattern in relation with geographic or climate signature, for example. 
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Figure 10-3. Example plots showing various comparisons of National Solar Radiation Database 
(NSRDB) predictions vs. ground irradiance measurements in the United States: (a) scatterplot 
and (b) time series plot for GHI at Desert Rock, Nevada; and plots depicting the temporal and 

spatial distribution of GHI and DNI for seven National Oceanic and Atmospheric Administration 
(NOAA) Surface Radiation Budget (SURFRAD) locations at different time scales, considering 

both MBE (c) and RMSE (d).  
The 2022 NSRDB data based on the Physical Solar Model (PSM) V4 model was used to generate all plots.  

Image by NREL 

a) b) 

c) 

d) 
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10.3 Estimating Measurement Uncertainty 
Uncertainty in solar radiance measurement is dependent on the type of radiometer and on the 
irradiance component to be measured, such as DNI, GHI, global titled irradiance (GTI), or 
diffuse horizontal irradiance (DHI). For each component, the measurement equation can be 
different, and the evaluation of the uncertainty can vary, even when following the same 
derivation principles. In general, the uncertainty will be estimated as a function of several 
contributions: calibration of the sensor, its characteristics or specifications, measurement of the 
output signals, working conditions, etc. Every contribution can have a different weight or 
relevance, so that not all of them are equally important.  

It is important to note here that the uncertainty of the solar irradiance measured by a radiometer 
is always greater than the uncertainty of its calibration. For instance, in the case of well-
maintained, high-quality thermopile radiometers deployed in the field, factors such as accuracy 
of solar tracking and/or leveling, data logger accuracy, cleanliness of the windows, and 
frequency of recalibration could contribute more sources of uncertainty. Detailed uncertainty 
analyses for high-quality field pyrheliometers can be found in ASTM G213 (2017); Balenzategui 
et al. (2022a; 2022b); Habte et al. (2016; 2017); and Michalsky et al. (2011). Similarly, the study 
by Vuilleumier et al. (2014) includes field pyranometers, though the term “field instrument” 
might be misleading here, because most of these studies refer to instruments located at research-
class stations and operated under quasi-laboratory conditions (i.e., with optimal calibration and 
maintenance). In the practice of solar resource assessments, particularly those involving 
temporary stations under harsh conditions, instruments are typically maintained on a more 
sporadic schedule, implying that additional uncertainties would apply. In any case, the 
aforementioned studies show that the uncertainty of calibration is one of the most important 
contributions to the overall uncertainty for well-maintained high-quality instruments. Calibration 
of a radiometer usually consists of the determination of its responsivity, R, or the relationship 
between its output signal (current or voltage) and the incident solar irradiance. Calibration 
methods depend on the type of radiometer under test and on the type of radiometer used as 
reference instrument; they are normally specified by international standards (see Chapter 3). 

The calibration stability of the present commercially available pyrheliometers and pyranometers 
is generally satisfactory, as revealed by only a slight change in their R value—typically less than 
±0.1% and ±0.2% per year, respectively. When finally deployed in the field, factors such as 
accuracy of solar tracking and/or proper leveling and orientation, data logger accuracy, 
cleanliness of the windows and domes, and frequency of recalibration could contribute more 
sources of uncertainty. Even if these effects are kept low by following measurement and 
maintenance best practices, expanded uncertainties of ±2.0%–±2.5% in DNI measurements and 
±3.0%–±5.0% in GHI measurements have been found from a high-quality measurement system 
(Reda 2011). As mentioned above, field instruments deployed at solar resource assessment 
stations in harsh environments can be expected to have greater uncertainties, particularly in the 
absence of a stringent maintenance program. 

Moreover, the ASTM G213 (2017) standard provides guidance and recommended practices for 
evaluating uncertainties when calibrating and performing irradiance measurements with 
pyranometers and pyrheliometers. The standard follows the GUM method and attempts to 
quantify the uncertainty in measuring irradiance. Further, the standard aims to maintain the 
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measurement traceability through WRR with respect to SI, which ensures that the uncertainty 
quoted for radiometric measurements can be intercompared, based on documented methods of 
derivation. Figure 10-4 shows an example of the contribution of uncertainty from each source, 
expressed either in absolute values or percentages. Some sources of uncertainty contribute more 
than others, but also, the relative importance of the uncertainty budget varies during the day, with 
a total uncertainty that increases significantly with SZA, for reasons explained next.  

  

 
Figure 10-4. Example of expanded uncertainty as a function of time and source of uncertainty 

contribution, based on ASTM G213 (2017); left image, expressed in percentages, and right, 
expressed in W m-2 

Image by NREL 

In addition to being sensitive to the magnitude of GHI, the responsivity of most pyranometers 
depends on multiple factors such as the angle of incidence of the beam irradiance component. 
This explains why the typical shade/unshade calibration uncertainty (see, e.g., ISO 9846 [1993]; 
WMO [2018]) of any thermopile pyranometer placed in a horizontal position with respect to a 
WRR reference cavity radiometer is ≈0.5% at any very narrow range (±2°–±5°) of SZA (Reda et 
al. 2008). Typically, during calibration, R is selected as an average responsivity for a specified 
SZA over one or more days. In the field, however, the monitored irradiance is sensed over a wide 
range of SZAs (up to 0–90°), and the measurement uncertainty over the whole range is larger. As 
mentioned in Chapter 3, for some pyranometers, R can vary by ±3–±10% or even more over this 
zenith angle interval. These effects then need to be combined with all other potential sources of 
error in the field (e.g., pyranometer installation, data logger accuracy, cleanliness, spectral 
dependency, or temperature sensitivity). 

If only one R is used for a wide range of solar angles, that value is often derived for relatively low 
SZAs (high solar elevation), thus making the highest irradiance values (on average) associated with 
the lowest possible uncertainty. Another option, which is the standard procedure at NREL, for 
instance, is to report R for a fixed SZA=45° because that geometry is more representative of all 
daily situations. The variation of responsivity with SZA and azimuth angles is typically greater for 
high SZAs; thus, large uncertainties usually occur at high SZAs. These high-SZA-related 
uncertainties occur throughout parts of the day (early morning and late afternoon) when the 
available solar resource is much smaller than typical midday values and/or when SZAs are 
smaller. Because the minimum SZAs vary significantly throughout the year (except close to the 
equator), the uncertainty in hemispherical radiation data will vary as well. This effect is 
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especially important for latitudes beyond ±45°, when SZA is rarely smaller than or equal to the 
SZA at which the responsivity of the pyranometer was determined.  

Even when good measurement conditions exist, such as near midday under clear-sky conditions, 
the uncertainty in hemispherical global or diffuse measurements is typically two to three times 
that of direct-beam measurements, or ±3–±5% throughout a year, primarily because of seasonal 
variations in uncertainty. Better instrumentation design and careful applications of correction 
factors as a function of SZA are ways to improve (reduce) the uncertainty in GHI measurements. 
The alternative is to use high-quality DNI and DHI measurements using a tracking device (e.g., a 
disk or a ball) to derive GHI from the closure equation (Michalsky et al. 1999). The expanded 
uncertainty for this calculated GHI then approaches that of DNI (±2%) for clear-sky 
measurements. One limitation of this method, however, is that it assumes “perfect” operating 
conditions, such as correct tracking for both DNI and DHI. Slight misalignments of tracking and 
complete tracker failures do happen in practice, resulting in large errors in all three components, 
unless the errors are properly and rapidly detected during the QC procedure, which is difficult in 
practice. 

Figure 10-1 describes the calibration traceability for pyrheliometers used to measure DNI and for 
pyranometers used to measure GHI or DHI. The figure indicates how uncertainties accumulate 
from calibration to field deployment. Broad arrow boxes show the accumulated expanded 
uncertainty at each phase of the process. The resulting uncertainty in field deployment for 
pyrheliometers is ±2.0–±2.5% in this example, assuming regular and high-quality maintenance. 
Measurement uncertainties for pyranometers used to measure GHI in the field range from ±3.0–
±5% for SZAs between 30° and 60°, but are higher for angles greater than 60°, again assuming 
regular and high-quality maintenance. 

Calibrations of pyranometers can be performed horizontally (for GHI) or at tilt (for GTI). More 
specifically, pyranometers measuring GHI are calibrated horizontally using either GHI or 
combined DNI and DHI measurements as a reference. Calibration for a pyranometer intended to 
sense GTI is done using a reference pyranometer installed on the same exact tilt (ASTM E824 
2018). Tilting a pyranometer for GTI measurements can slightly alter its responsivity compared 
to its horizontal position because of, for example, changes in convection patterns inside the dome 
or changes in thermal offset. This typically affects the calibration uncertainty of GTI 
measurements. Some thermopile pyranometers are not designed for tilted measurements, and at 
certain times of the day, direct sunlight can strike their unshaded bodies, affecting measurements. 
Shielding can reduce or eliminate this problem. Calibrating a tilted pyranometer with a reference 
instrument of a different type (or make and model) might also introduce additional uncertainty. 
To help evaluate the uncertainty in GTI data, the metadata of such datasets should include 
shielding information.  

This caveat also holds for the measurement of upwelling irradiance using a down-facing 
pyranometer. (This measurement is necessary to obtain the surface albedo by dividing it by GHI, 
see Chapter 3.) 

Digital radiometers have been recently introduced on the market and are now deployed in many 
solar energy projects. This also brings new challenges in terms of uncertainty quantification. 
Some digital radiometers, for example, include a built-in temperature compensation feature, 
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among other things. In such a case, the uncertainty of the calibrated internal sensitivity with 
temperature coefficients must be applied, and the contribution of the coefficients to the 
uncertainty should be clearly identified. More research is needed to understand the propagation 
and relationships of various sources of uncertainty related to digital radiometers.  

For rotating shadowband irradiometers (RSIs) and photodiode pyranometers, which are typically 
used in Tier-2 stations (see Chapter 3), one of the most crucial impacts on uncertainty is the 
spectral irradiance error. This is because silicon photodiode sensors detect only visible and 
infrared radiation in the range ≈300–1100 nm and have a spectral response that varies strongly 
within this wavelength interval (see Chapter 3). Further, the role of using algorithms to reduce 
systematic effects and the uncertainty introduced by imperfect shading must be considered. A 
more detailed uncertainty analysis for RSIs following GUM can be found in Wilbert et al. 
(2016). The study defines a method for the derivation of the spectral error and spectral 
uncertainties, and presents quantitative values of the spectral and overall uncertainties. The 
results of this detailed analysis and other studies such as Wilcox and Myers (2008) indicate 
lower overall uncertainties than those presented in Table 10-2 for silicon photodiode 
pyranometers because the results in the table assume that no rigorous correction is applied. The 
expanded measurement uncertainty for subhourly DNI measurements is approximately ±7% for 
a photodiode RSI radiometer with state-of-the-art correction functions for systematic errors. 
Similarly, RSI-based GHI measurements are found to be affected by slightly lower uncertainties 
than DNI (6%, k = 2, after application of advanced adjustment functions; see Chapter 3). 
Moreover, advanced adjustment functions can significantly reduce the uncertainty in both GHI 
and DNI. In parallel, considering the lower incidence of soiling effects on RSIs than on 
thermopile pyranometers, the use of advanced adjustment functions can bring RSI measurements 
at resource assessment stations almost on par with those from reference instruments (Al-
Rasheedi et al. 2018). 

The average uncertainty of an irradiance time series is expected to vary from one station to 
another and even from time stamp to time stamp for a specific station. An individual uncertainty 
analysis per station and time interval is complex and also depends on the applied QC. After 
detailed QC and the rejection of suspicious data, a significant part of the variation of the 
uncertainty with station and time is removed. As a simplification, the uncertainty of DNI and 
GHI at either Tier-1 or Tier-2 stations can be estimated, based on the methods described in this 
section. In problematic cases and for the most relevant zenith angles, the QC procedure for 
stations with an independent measurement of the 3 components (GHI, DHI, and DNI) flags data 
with deviations larger than 8% between calculated (using the closure equation) and measured 
GHI. Assuming good maintenance, the uncertainty of the used data is expected to be lower than 
this QC-based limit and close to the mentioned uncertainties. 

As indicated above, the standard uncertainty for well-maintained Tier-2 stations is estimated as 
7% and 6% for DNI and GHI, respectively. As the three-component test cannot be performed at 
such stations, the upper uncertainty limit that is related to the QC procedure for these stations is 
higher than in the case of the Tier-1 stations with independent measurements of DNI, GHI, and 
DHI, and can be expected to be ≈10%. At Tier-1 stations, the uncertainty is expected to be lower 
than the QC-related limit and close to the estimations for well-maintained stations. 
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10.3.1 Method for Quantifying Uncertainty: The GUM Method  
The method for estimating uncertainty has changed significantly over the last few decades. The 
general adaptation to the current methodology takes time, so some outdated terminology and 
methods still appear in the literature and might be in use by the industry. Even though the use 
of outdated methodologies is discouraged, short descriptions are provided to help users 
understand and correctly use uncertainty data based on older methodologies. 

10.3.2  Practical Examples 
GUM is currently the accepted guide for measurement uncertainty (ISO/IEC 2008). The method 
provides the expanded uncertainty for a 95% confidence interval by multiplying the combined 
uncertainty by the coverage factor k (k = 1.96 for a Gaussian distribution for infinite degrees of 
freedom; it is often approximated as 2, which is also alternatively used in this chapter). GUM 
defines Type-A uncertainty contributions as derived from statistical methods and Type-B sources 
as evaluated by other means, such as scientific judgment, experience, specifications, 
comparisons, and calibration data. GUM defines the concept of a standard uncertainty (ustd) for 
each uncertainty type, which is an estimate of an equivalent standard deviation (of a specified 
distribution) of the source of uncertainty. To appropriately combine the various uncertainties, the 
GUM methodology uses a sensitivity coefficient (c) that is calculated from the measurement 
equation using partial derivatives with respect to each input variable in the equation. GUM 
removes the historical factor of 2 and introduces the coverage factor k (whose value depends on 
the known or assumed statistical distribution of uncertainties),61 which is applied to compute the 
expanded uncertainty (UE) as:  

UE = k· uc
    (10-12)  

where: 

uc is the combined standard uncertainty, per all the steps of the GUM summary below (points 
1–6). 

As shown in Figure 10-5, the GUM procedure can be summarized in six steps (Konings and 
Habte 2016; Reda 2011): 

1. Define the measurement equation for the calibration and/or measurement system. 
This consists of a mathematical description of the relation between sensor voltage and 
any other independent variables and the desired output (calibration response or 
engineering units for measurements). The example equations used to quantify 
radiometric measurement are: 

𝐸𝐸 =
(𝑉𝑉 − 𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑 • 𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑)

𝐸𝐸
 

(10-13a) 

  

𝐸𝐸 = DNI • cos(𝑍𝑍) + DHI (10-13b)  

 
61 k is 1.96 for a Gaussian distribution for a 95% confidence level. Generally, a 95% confidence level means that 
95% of the values will be within the statistical limits defined by the uncertainty. 
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where: 

o E = irradiance, in W m-2 (GHI, GTI, DHI, or DNI); in particular, when E stands 
for DNI, DHI = 0 in Eq. 10-13b and Rnet ≈0, resulting in a simplified version of 
Eq. 10-13a: E = V / R 

o R = responsivity of the radiometer in μV/ (W m-2)  
o V = sensor output signal (e.g., voltage or current) of the radiometer (e.g., μV, mA) 
o Rnet = net infrared responsivity of the radiometer in μV/(W m−2) 
o Wnet = effective net infrared irradiance measured by a collocated pyrgeometer in 

W m−2. 
In the case of GHI, the closure equation (10-13b) applies, in which: 

o DNI = beam irradiance measured by a primary or standard reference standard 
pyrheliometer in W m−2 

o Z = SZA, in degrees or radians 
o DHI = diffuse horizontal irradiance, measured by a shaded pyranometer (W m-2). 

2. Determine the sources of uncertainty. Most sources of uncertainty are obtained from 
statistical calculations, specifications from manufacturers, and previously published 
reports on radiometric data uncertainty or professional experience. Some common 
sources of uncertainty are associated with the cosine response, spectral response, 
nonlinearity, temperature response, thermal loss, data logger accuracy, soiling, and 
calibration, including the drift of the calibration constant(s). 

 
Figure 10-5. Measurement uncertainty estimation flowchart  

Image modified from Habte et al. (2016) 
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3. Calculate the standard uncertainty, u. In this step, an individual u for each variable in 
the measurement equation is calculated using either a statistical method (Type-A 
uncertainty component) and/or other methods (Type-B uncertainty component). In the 
GUM method, the standard uncertainties are calculated by dividing the expanded 
uncertainty of each source by a factor corresponding to the specific statistical distribution 
of the experimental data (ASTM G213 2017). 

A. Type-A uncertainty: 
 Type-A standard uncertainty (u) is calculated when taking repeated measurements 

of the input quantity value, from which the sample mean and sample standard 
deviation (SD or σ) can be calculated, resulting in Eq. 10-13: 

𝑎𝑎2 =
𝜎𝜎2

𝑆𝑆
 where: 𝜎𝜎2 =

 ∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋 𝑛𝑛
𝑖𝑖=1 )2

𝑆𝑆 − 1
 (10-14) 

 
B. Type-B uncertainty: 

Type-B uncertainties are often provided (e.g., in calibration certificates) as an 
expanded uncertainty (U). To be consistent with Type-A uncertainties, the 
standard Type-B uncertainties, u, are calculated from the expanded uncertainties, 
U, using one of the three following methods: 

i. Equation for unknown statistical distribution (common assumption: 
rectangular distribution): u = U/√3, where U is the expanded uncertainty 
of a variable 

ii. Normal distribution: u = U/k, where k is a coverage factor of 2 or, more 
exactly, 1.96 (ISO/IEC 2008) 

iii. For other statistical distributions, the applicable values for k are used. 
4. Compute the sensitivity coefficient, c. To appropriately combine the various uncertainties 

in the next step, the uncertainties must be weighted. According to the GUM method, this 
is done by calculating the sensitivity coefficients (c) of the variables in a measurement 
equation. These coefficients affect the contribution of each input factor to the combined 
uncertainty of the irradiance value. Therefore, the sensitivity coefficient for each input is 
calculated by partial differentiation with respect to each input variable in the 
measurement equation. Table 10-1 shows those sensitivity coefficients applicable to 
radiation measurements. 
The sensitivity equations given in Table 10-1 are for two distinct situations. The 
calibration sensitivity is for calibrations when the reference GHI is calculated from 
reference DNI and DHI measurements. The second column is for GHI measurements in 
the field. The calibration sensitivities are related to the inverse of the GHI value, whereas 
the field sensitivities are related to the inverse of the responsivity.  
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Table 10-1. Example of Computing Sensitivity Coefficients for GHI Pyranometer Calibration and 
Measurement Using Partial Derivatives 

Calibration Sensitivity Equations Field Measurement Sensitivity Equations 

𝑆𝑆𝑉𝑉 =
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉

=
1

DNI cos(𝑍𝑍) + DHI
 cR=

∂GHI
∂R =

–(V–𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑 𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑)
R2  

 

𝑆𝑆𝑅𝑅𝑛𝑛𝑡𝑡𝑑𝑑 =
𝜕𝜕𝐸𝐸
𝜕𝜕𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑

=
−𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑

DNI cos(𝑍𝑍) + DHI
 

c𝑅𝑅𝑛𝑛𝑝𝑝𝑡𝑡=
∂GHI
∂𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑

=
–𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑

R
 

𝑆𝑆𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑 =
𝜕𝜕𝐸𝐸

𝜕𝜕𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑
=

−Rnet

DNI cos(𝑍𝑍) + DHI
 c𝑊𝑊𝑛𝑛𝑝𝑝𝑡𝑡=

∂GHI
∂𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑

=
–𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑

R
 

  

𝑆𝑆𝐷𝐷𝑁𝑁𝐷𝐷 =
𝜕𝜕𝐸𝐸
𝜕𝜕DNI

=
−(𝑉𝑉 − 𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑 𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑)cos(𝑍𝑍)

( DNI cos(𝑍𝑍) + DHI)2
 

c𝑉𝑉=
∂GHI
∂V

=
1
R

 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 =
𝜕𝜕𝐸𝐸
𝜕𝜕𝑍𝑍

=
DNI sin(𝑍𝑍) (𝑉𝑉 − 𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑 𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑)

( DNI cos(𝑍𝑍) + DHI)2
 

 

𝑆𝑆𝐷𝐷 =
𝜕𝜕𝐸𝐸
𝜕𝜕DHI

=
−(𝑉𝑉 − 𝐸𝐸𝑛𝑛𝑡𝑡𝑑𝑑 𝑊𝑊𝑛𝑛𝑡𝑡𝑑𝑑)

( DNI cos(𝑍𝑍) + DHI)2
 

 

5. Calculate the combined standard uncertainty, uc. This is the combined standard 
uncertainty using the propagation of errors formula and quadrature (square root sum of 
squares) method. It is applicable to both Type-A and Type-B sources of uncertainty. 
Standard uncertainties (u) in Step 3 multiplied by their sensitivity factors (c) in Step 4 are 
combined in quadrature to give the combined standard uncertainty, uc:  

𝑎𝑎𝑆𝑆 = �∑ (𝑎𝑎𝑗𝑗  • 𝑆𝑆𝑗𝑗)2𝑛𝑛
𝑗𝑗=0

 

where n is the number of uncertain variables that are used to calculate the combined 
uncertainty. 

6. Calculate the expanded uncertainty (U95). The expanded uncertainty is calculated by 
multiplying the combined standard uncertainty by the coverage factor, typically by 
applying the student’s t-analysis to determine the appropriate value of k (typically 1.96 
for 95% and 3 for 98% confidence, respectively, for large datasets assuming a Gaussian 
distribution): 

𝑈𝑈95 = 𝑘𝑘 • 𝑎𝑎𝑆𝑆 

These six steps, also described in Figure 10-5, demonstrate that the uncertainty quantification is a 
cycle. This means that one can use the expanded uncertainty in Step 6 as an input to a 
measurement equation. This would be the case, for example, in calculations of the performance 
ratio of solar conversion systems: to calculate the ratio of system output/solar input, the 
expanded uncertainty in Step 6 is used as an input to evaluate the denominator (solar input), and 
the cycle continues to ultimately quantify the expanded uncertainty of the performance ratio. 

(10-15) 

(10-16) 
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Further, these steps are applicable to the quantification of the uncertainty in both calibration and 
field measurements. Uncertainty in measurements begins with the uncertainty in calibration 
references, calibration processes, and sensor design characteristics. For example, for thermopile 
sensors, a calibration constant is required to convert the output voltage to the required irradiance, 
as discussed in Chapter 3. The resulting uncertainty in calibration factors must then be combined 
with the influence of additional sources of uncertainty in the field measurement instrumentation, 
installation methods, data acquisition, and operations and maintenance processes (Reda 2011). 
Overall, estimates of uncertainties for the magnitudes of values (e.g., voltage, Rnet) need some 
(documented) experimental, theoretical, or other (specifications) sources. These sources of 
uncertainty are the magnitudes adjusted in these steps—for example, in the sensitivity 
coefficients calculation. Such example data are presented in several references (ASTM G213 
2017; Habte et al. 2014; Konings and Habte 2016; Reda 2011).  

Users must pay close attention to the sources of uncertainty. For instance, the SZA uncertainty 
includes sources of error such as accuracy in latitude and longitude, air pressure (for refraction 
corrections), or timekeeping (clock accuracy). The units of these variables must be treated 
carefully and consistently, whether they are percentages (such as of full scale or reading) or 
absolute units (such as volts, degrees, or W m-2). Additionally, it is essential to consider the 
symmetry of the sources of uncertainty. In this section, all sources of uncertainty are considered 
symmetrical (±); however, some other sources could be asymmetrical or one-sided. For example, 
Konings and Habte (2016) considered non-stability and zero offset of Type-A as one-sided 
sources of uncertainty. 

Applying the GUM procedure to the case of pyrheliometer and pyranometer calibration, Table 
10-2 summarizes the estimated uncertainties that are typically found in practice. In addition, the 
table identifies the typical sources of uncertainty considered for the overall uncertainty analysis 
of irradiance measurements from two types of radiometers: radiometers with thermopile 
detectors and photodiode radiometers with silicon detector (before the application of correction 
functions for systematic errors). Note that the contribution to uncertainty caused by insufficient 
maintenance (alignment, leveling, cleaning, etc.) can be much greater than the combined 
uncertainties for well-maintained instruments. As explained in Chapter 3, instruments with clear 
optics (such as most thermopile radiometers) are more strongly affected by soiling; therefore, the 
uncertainty related to their operation in the field directly depends on the regularity and quality of 
their maintenance over time. 
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Table 10-2. Example of Estimated Expanded Uncertainties at 95% confidence interval of 
Responsivities of Field Pyranometers and Pyrheliometers 

Modified from Reda (2011) 

Type-B Uncertainty 
Source 

Thermopile 
Pyranometer  
(%) 

Photodiode 
Pyranometer 
(%) 

Thermopile 
Pyrheliometer 
(%) 

Photodiode 
Pyrheliometer 
(%) 

Calibrationa 3 5 2 3 

Zenith Responseb 2 2 0.5 1 

Azimuth Response 1 1 0 0 

Spectral Response 1 5 1.5 8 

Tiltc 0.2 0.2 0 0 

Nonlinearity 0.5 1 0.5 1 

Temperature Response 1 1 1 1 

Aging per Year 0.2 0.5 0.1 0.5 

U95  4.1 8.0 2.7 8.9 
a Includes zenith angle responses from 30° to 60°. 
b Includes zenith angle responses from 0° to 30° and from 60° to 90°. 
c This uncertainty is set to zero for untilted radiometers. 
 

10.4  Estimating the Uncertainty of Modeled/Predicted Datasets 
Solar radiation can be modeled in many ways, depending on the available inputs, origin (ground-
based, satellite-based, or NWP-based), application requirements (e.g., clear-sky or all-sky 
conditions), and degree of detail (broadband or spectral irradiance). 

Satellite-based models used to estimate solar radiation can use a physics-based approach relying 
on radiative transfer modeling, an empirical or semiempirical approach relating the reflected 
radiance sensed by the satellite sensor directly to surface radiation, or a mix of both (see Chapter 
7).  

Models developed using empirical or semiempirical correlations between ground-based 
irradiance measurements and reflected radiance observations from satellite sensors inherently 
carry the uncertainty of these measurements. This uncertainty is embedded in the ultimate model 
accuracy, along with the uncertainties associated with the satellite sensors and the modeling 
process. Models empirically based on ground-based irradiance measurements with 2%, 5%, or 
10% uncertainty cannot have a lower uncertainty than the data used to derive and/or validate the 
model. Similarly, models based on first principles of physics and radiation transfer cannot be 
validated or verified to a level of accuracy greater than that of the ground-based irradiance 
measurements. A thoroughly documented uncertainty analysis of these measurements 
(Gueymard and Myers 2008; 2009; Habte et al. 2016; Vuilleumier et al. 2014) is necessary to 
ascertain the validity of model accuracy claims. The effect of biases on ground-based irradiance 
measurements should be part of any model analysis. 
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An understanding of the differences between the perspectives of satellite-derived irradiance 
estimates and ground-based measurements is essential when the latter are used to derive and 
validate satellite-derived irradiance values. Observations of a specific pixel (or grid cell) by a 
spaceborne radiometer ultimately provide (after substantial modeling) an estimate of surface 
radiation based on the estimated properties of those clouds and other atmospheric constituents 
spread throughout that pixel or a larger area. In contrast, surface irradiance observations are 
made by an instrument viewing the sky from a specific point. If the satellite pixel size is small 
enough, parallax errors enter into the comparison. Conversely, if it is too large, the radiation field 
over the pixel might not be homogenous enough for a correct comparison. Terrain effects could 
also influence a comparison in which cloudiness, elevation, and/or topographic shading could 
vary within a short distance. Often the data available for satellite modeling lack the exactitude 
for differentiating fine variations seen by ground-based measurements. Another intricate 
situation results from the fact that the clear-sky part of a satellite-based radiation model typically 
has a much coarser spatial resolution than the cloudy part. Whereas the latter is up to 1 km in 
most modern products, the former is, for example, 0.5 by 0.625° (or ≈65 km) when the 
atmospheric input data for the clear-sky radiation model are extracted from Modern-Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA-2). Thus, the actual 
resolution of the irradiance product ultimately depends on the cloudiness conditions. These 
issues can be compounded by the fact that ground measurements represent an average irradiance 
value calculated over a fixed time interval (e.g., 1 minute or 10 minutes), whereas satellite-based 
model predictions solely rely on instantaneous snapshots taken at different intervals (e.g., every 
10 minutes). 

10.4.1 Statistical Metrics  
To alleviate the absence of any standardized method for accuracy assessment and uncertainty 
calculation, many possible statistical metrics used in the literature have been reviewed 
(Gueymard 2014). Still, most authors report only the RMSD and MBD (or RMSE and MBE), 
that is, randomness and bias (absolute or relative). As an example, the model of Darnell et al. 
(1988) was used to evaluate surface radiation using cloud information from the International 
Satellite Cloud Climatology Project C1 cloud database. The results were then compared to 
surface observations collected by the World Radiation Data Center in Darnell et al. (1992). The 
RMSD from this comparison was ≈16 W m-2, and the MBD was ≈4 W m-2. Note that the 
interpretation of the reported sources of uncertainty depends on the spatial and temporal 
resolution of the data being compared (random errors tend to decrease rapidly with increasing 
averaging period) and that the relative uncertainties in the modeled DNI are always greater than 
in GHI—opposite to what occurs with high-quality measurements. 

According to Perez et al. (1987), satellite-based retrievals of DNI were accurate to 10–12%. 
Later, Renné et al. (1999) and Zelenka et al. (1999) found that the target-specific comparison to 
ground-based observations had a relative RMSD of at least 20%; the time-specific pixel-wide 
accuracy was 10–12% on an hourly basis at the sites under scrutiny. Most accuracy results 
contain values that are proportional to the measured values (percentage), given that the measured 
values are within a certain range and specifications are related to a fixed value in W m-2. The 
validation of satellite-based irradiance predictions is sometimes performed on a daily (instead of 
hourly or subhourly) timescale. This might not always be appropriate, however, particularly in 
areas where strong morning/afternoon cloudiness asymmetries exist (Salazar et al. 2020). 
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From an application or use of statistical metrics perspective, using both MAD and RMSD is not 
necessary and can lead to misinterpretations. This stems from considerations of statistical 
consistency that become important when verifying the accuracy of modeled data—most 
particularly in the case of forecasts (Section 10.6). In summary, if a model is optimized by 
minimizing the squared error, RMSD is consistent, but MAD is not (Yang et al. 2024). More in-
depth theoretical details are provided by Gneiting (2011). 

From a solar resource standpoint, the most important error measure is MBD by far, because any 
bias in the predicted resource leads to a similar bias in the estimated power production over the 
long term, which can put the whole project at risk, either at the financing stage or later if the 
actual production does not meet expectations. Although random errors in modeled irradiance 
estimates can be large when considering short time intervals (e.g., a few minutes), they decrease 
rapidly when integrating over time. They normally reach a low value when averaging over one or 
more years, which is the typical time frame used for resource assessments.  

Moreover, bias is actually part of RMSD, per Eq. 10-8. It indicates that, even if a long averaging 
period is considered, such as ≈15 years, RMSD can approach the absolute value of MBD, 
|MBD|, but can never be lower. In contrast, good measurements have relatively small random 
errors, so that their total uncertainty does not change much over time. Thus, when comparing 
modeled irradiance estimates to reference ground-truth measurements, the RMSD of the former 
decreases over the averaging time and tends toward a limit that is either the uncertainty of the 
reference measurements or the |MBD| of the modeled results, whichever is greater. This is 
exemplified in Figure 10-6, using modeled data from the NSRDB. 

 

Figure 10-6. Example of decreasing trend of the RMSD of NSRDB-modeled GHI (1998–2018 PSM 
V3) with averaging time at various U.S. stations in comparison with measurement uncertainty. Y-

axis shows the overall uncertainty with 95% confidence interval.  
Image by NREL 
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10.4.2  Practical Examples 
To improve modeled data integrity, a comprehensive representation of the model uncertainty 
method is desirable. As discussed in Section 10.2, no standardized method that would be 
equivalent to GUM, but specifically addressing modeled estimates, exists yet. Ideally, the 
assessment of modeled data uncertainty would attempt to replicate the developments made for 
measurement uncertainty, as detailed in Section 10.1. This means that the individual uncertainty 
of each of the six sources of error identified above would have to be quantified and ultimately 
combined in quadrature. This process is still in its infancy, but some considerations are 
developed in what follows for each source of error. 

1. Intrinsic Model’s Uncertainty 
Each radiation model—most notably of an empirical nature—constitutes an approximate 
(and thus imperfect) mathematical representation of complex physical processes that occur 
throughout the atmosphere. To accelerate calculations, most models used in practice rely on 
several simplifying assumptions, parameterizations, look-up tables, 
interpolation/extrapolation, ad hoc empirical results, etc., which decrease performance. 
Because this might occur under various, typically unknown, circumstances, and there is 
essentially no way to verify the model’s output without measurements that carry uncertainty, 
it is difficult to attribute a specific uncertainty to the model itself. The most sophisticated 
models with a discrete-ordinate solver algorithm (e.g., libRadtran [Emde et al. 2016; Mayer 
and Kylling 2005]), are considered to provide an “exact” solution to the equation of radiative 
transfer, and thus should have no intrinsic uncertainty, although this cannot be demonstrated. 
Moreover, such models cannot normally be used in repetitive calculations because of their 
considerable computing requirements. Even when they are used in research projects, their 
irradiance predictions do not necessarily appear better than those of much simpler models, 
possibly because of the inherent uncertainty in the reference ground truth or error 
propagation from imperfect inputs (Abreu et al. 2023). 

2. Model’s Input Data Uncertainty 
Any radiation model relies on various inputs to provide an irradiance prediction. Some of 
these inputs are either deterministic (e.g., SZA) or can be measured very accurately, and can 
thus have an extremely low uncertainty if properly handled. Many important variables, 
however, can only be retrieved (e.g., through remote sensing) or estimated, in which case 
their uncertainty can be high and dependent on location and time. This is, for example, the 
case for all aerosol- and cloud-related variables. If the radiation processes strongly depend on 
such uncertain variables, the irradiance predictions will be impacted by any error in them. 
Further, if errors in the atmospheric input data are large over a specific area, a paradoxical 
situation can occur whereby the predictions of a sophisticated model that uses such inputs 
can be worse than those of a simple locally developed empirical model that does not depend 
on them (Sun et al. 2022). 

3. Uncertainty Caused by Error Propagation from Input to Output 
Error propagations depend on the sensitivity of the model to each input, and how these 
sensitivities interact with each other to result in compensation or amplification of errors. 
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Ideally, the specific standard deviation, σp, for error propagation affecting a model that 
predicts the irradiance quantity E from n inputs Xi (i = 1, n) would be obtained from: 
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where the ∆Xi error in input Xi is multiplied by the sensitivity of the modeled output to Xi. 
This formula, however, might be too pessimistic because it does not take any possible 
systematic compensation of errors into account. In any case, there is currently no specific 
data to determine these sensitivities for each model used in practice. Some preliminary 
studies involving a few clear-sky radiation models have been made, however, either for the 
particular case of the sensitivity of DNI predictions to aerosol inputs (Gueymard 2003; 
2012a; Gueymard and Ruiz-Arias 2015) or for more inputs but with a rigorous radiative 
transfer model, namely, libRadtran (García et al. 2014). Recently, Wang et al. (2024) 
analyzed the impact of various key atmospheric variables (including cloud optical depth) on 
the estimates of hourly all-sky GHI obtained with hybrid combinations of libRadtran and 
machine-learning algorithms. 

4. Uncertainty in Ground-Truth Measurements 
As mentioned earlier, the validation of any modeled dataset is normally made by comparison 
with high-quality ground-based radiometric measurements. Because there is uncertainty 
involved in those, even a perfect model using perfect inputs would not be attributed an 
uncertainty lower than that of these reference ground-truth measurements. In the field, the 
uncertainty of irradiance measurements can be estimated using ASTM G213 (2017), for 
instance.  
Note that many publications mention the term “model uncertainty,” but this is a confusing 
misnomer. Based on the above discussion, a more correct terminology is “modeled prediction 
uncertainty” because all four sources of error a), b), c), and d) are then explicitly included. It 
is also important to emphasize that the prediction uncertainty is not necessarily independent 
from the measurement uncertainty, which complicates the picture, as demonstrated by the 
following example. Suppose that the predictions from two models, M1 and M2, are 
compared against GHI measurements obtained with a high-quality pyranometer of assumed 
5% uncertainty. Unbeknownst to the analyst, however, that specific instrument is incorrectly 
calibrated, resulting in a systematic bias of +3% in the measurements. Unbeknownst to the 
analyst as well, M1 and M2 behave the same in terms of introducing randomness in their 
outputs, but M1 happens to be perfectly centered (no bias), whereas M2 is biased +3% for the 
specific inputs used at that specific location. The comparison with ground measurements 
would lead the analyst to the incorrect conclusion that M2 is better than M1 and that the 
latter’s uncertainty is larger than the former’s. 

5. Uncertainty Caused by the Interannual Variability 
Modeled irradiance predictions are typically validated against ground-based measurements 
that span a period of only a few months or years. To extrapolate those results to a longer 
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period, such as the 30-year period of climate normals, additional uncertainty must be added, 
depending on irradiance component and the specific interannual variability conditions of the 
area (see Chapter 6). Even though this uncertainty is not negligible in general, most 
validation results do not take it into account and are thus somewhat optimistic, unfortunately. 
Note, however, that this uncertainty obviously does not apply to short-term forecasts.  

6. Uncertainty Caused by Long-Term Trends 
Modeled predictions can only be validated against observational data from the past. 
Sometimes, the reference measurements that are needed for such validation are years or 
decades old. Various regions of the world are affected by long-term trends (e.g., dimming 
and brightening) that typically affect DNI more than GHI. Because what actually matters in 
solar resource assessments is the accuracy of modeled predictions in future decades, the 
mismatch between the validation period in the past and the future period of interest must be 
attributed an additional uncertainty. This specific uncertainty is still not known precisely and 
has not been considered yet in published validation results. As in the case just above, this 
uncertainty does not apply to short-term forecasts. 

7. Uncertainty Caused by the Sun’s Output Variability 
As discussed in Chapter 2, the sun’s output is not constant but has both short-term (daily) 
fluctuations and a long-term (≈11-year) cycle. At any moment, the resulting uncertainty is 
about ±0.2%. It affects the uncertainty of all radiometer calibrations made outdoors because, 
by chance, an instrument might be calibrated at a moment when the sun’s output is 
exceptionally high or low. For modeled data, however, this source of uncertainty is relatively 
small and can be neglected. 

It is essential to use measurements of solar radiation made at ground stations from regions in 
various climates (or even microclimates) with the goal of performing a detailed evaluation of the 
modeled dataset; however, measurements of solar radiation made at ground stations are 
temporally and spatially sparse, and they are expensive to operate and maintain. Further, to 
perform an accurate evaluation of the model’s predictions, it is critical that these ground-based 
irradiance measurements be of high quality and rely on low-uncertainty radiometers that follow 
the best practices for collection, operation, maintenance, and quality assurance. 

Studies such as those by Cebecauer et al. (2011b); Gueymard (2014); Habte, Sengupta, and 
Lopez (2017); Suri and Cebecauer (2014); Thevenard and Pelland (2013) discussed 
quantification methods aimed at a comprehensive representation of prediction uncertainty. 
Various error statistics (bias, random error metrics) can be used to evaluate the effective 
uncertainty of modeled data when also considering the uncertainty in the ground-based 
irradiance measurements.  

Following Gueymard and Wilcox (2011); Habte, Sengupta, and Lopez (2017), the interannual 
variability metric can be formalized as follows: 

 SD = �� 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 (𝑎𝑎𝑖𝑖 − â)2�  (10-18) 
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𝑈𝑈𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡𝐴𝐴−𝑎𝑎𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐 𝑣𝑣𝑎𝑎𝐴𝐴𝑖𝑖𝑎𝑎𝑣𝑣𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑣𝑣(%) = COV(%) =  SD
â

 • 100   

where SD is the standard deviation, and 𝑎𝑎𝑖𝑖 is the average irradiance of the individual year, i, of 
the considered n years. The mean irradiance during the selected long-term period is represented 
by â. 

In parallel, the accuracy of satellite-derived modeled data can be determined using various other 
statistical indicators, such as the Kolmogorov-Smirnov test (Massey Jr. 1951). The Kolmogorov-
Smirnov test is a rigorous nonparametric method that is used for benchmarking satellite-retrieved 
GHI and DNI against ground-based observations (Espinar et al. 2009; Gueymard 2014). Directly 
derived from it is the Kolmogorov-Smirnov test integral, which calculates the area differences 
between two cumulative distribution frequencies to determine the deviation, for example, 
between satellite-derived data and ground measurements (Espinar et al. 2009; Beyer et al. 2009). 
Another indicator is OVER (estimate of the area between the CDFs over a critical value 
distance), which assimilates the original Kolmogorov-Smirnov test; it attempts to find values that 
are above a specific critical value. Unlike MBD or RMSD, OVER discriminates between values 
that are either statistically similar or dissimilar (depending on whether they are above a specific 
critical value). This test has the advantage of being nonparametric and is therefore not 
distribution-dependent. It compares the two distributions of irradiance to evaluate their 
resemblance. In the future, more elaborate methods, such as those used in the meteorological 
community to quantify the performance of weather forecasts (Murphy 1993), can be expected to 
appear and be adopted more often in large-scale solar resource assessment studies.  

10.5  Modeled Data Uncertainty Estimation Challenges 
Satellite-derived irradiance datasets have various embedded sources of uncertainty (Cebecauer et 
al. 2011a; 2011b). Most importantly, irradiance values obtained from satellite-based models use 
spaceborne observations of clouds. The satellite pixel represents a certain area, typically 1–100 
km2. Depending on that size, some subpixel variability and cloud-induced parallax effects could 
contribute to higher random errors in both GHI and DNI, as suggested by Cebecauer et al. 
(2011a); Habte, Sengupta, and Lopez (2017); and Zelenka et al. (1999). In intermittent cloud 
situations, the resolution of satellite images has limited ability to adequately describe properties 
of small and scattered clouds. This problem can be exacerbated when a physical retrieval method 
is used to first characterize the cloud optical properties for a given pixel, which can result in 
actual partly cloudy periods being classified as cloudless, thus yielding significant positive bias 
in DNI, for instance (Salazar et al. 2020).  

In tropical rainforest climates, it is often challenging to find cloudless situations for 
characterizing the surface albedo, which is often used as a reference based on which of the 
pixel’s overall cloudiness characteristics can be eventually quantified. Conversely, for 
geostationary satellite observations at high latitudes, the low satellite viewing angles introduce 
errors in the detection of cloud position and properties (the satellite sensor most often sees clouds 
from the side rather than from the top). For intermittent cloud situations, a major part of the 
observed random errors (evaluated by RMSD) is driven by inadequacies in the cloud-related 
portions of the radiative transfer algorithms. 
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Adequate specification of aerosols is another area of concern (Cebecauer et al. 2011b). Aerosols 
tend to affect DNI three to four times more than GHI, depending on the relative proportions of 
absorption and scattering for the specific aerosol mixture of the moment and location (Gueymard 
2012b). For example, mineral dust is mostly scattering, whereas black carbon is partly absorbing. 
At any instant, the aerosol optical depth (AOD) varies spectrally, so the common use of a single 
broadband AOD could result in additional uncertainties (see Chapter 5, Section 5.5 for more 
information on AOD). When monthly (or “climatological”) AOD averages are used, they could 
introduce significant errors in long-term DNI estimates (Ruiz-Arias et al. 2016). This is more 
likely to happen over areas of biomass burning, severe urban air pollution, or dust storms, where 
an aerosol climatology tends to smooth out episodic high-AOD events; therefore, it is 
advantageous to use AOD data with daily or subdaily resolution in advanced modeling 
approaches (Cebecauer et al. 2011b; Gueymard et al. 2018). 

In regions with variable or complex landscape patterns (e.g., high spatial variability caused by 
land/water mosaics, complex urbanization, or mountains), the surface reflectance properties 
change rapidly, both over the space and time domains and even over distances that are shorter 
than the satellite’s spatial resolution (Gueymard et al. 2021) (see Chapter 5, Section 5.11 for 
more information on this topic). Compared to neighboring rural or natural landscapes, large 
urban or industrial areas have much higher and temporarily changing concentrations of aerosols 
and water vapor. Over mountains, rapid changes in elevation also induce rapid changes in the 
concentration of key atmospheric constituents and in cloud properties. In addition, 3D effects 
and terrain shading are local complexities that must be considered and approximated by solar 
radiation models. 

Another difficulty inherent to satellite-derived datasets is the poor discrimination between clouds 
and snow-covered surfaces when using only the visible imagery. This is because both situations 
have a high reflectance in the visible spectrum; thus, a clear-sky scene over snowy ground might 
look like an overcast sky, resulting in a strong overestimation or underestimation of both GHI 
and DNI, depending on the situation (Perez et al. 2002; Vignola and Perez 2004). One such 
adverse situation is known as the “Eugene syndrome” (Gueymard and Wilcox 2011). The use of 
multiple channels in the visible and infrared can solve this issue. 

Finally, specular reflections of significant intensity, especially from sandy deserts or snowy/icy 
surfaces during certain times of the day, could result in incorrectly interpreting the satellite 
image as temporarily cloudy and thus in an underestimation of both GHI and DNI. Theoretically, 
this issue can be resolved by estimating the probability of specular reflection for such areas and 
factoring that into the calculation of surface radiation. 

10.5.1 Indicative Uncertainty of Modern Satellite-Based Models 
As an example, experience based on 189 validation sites shows that state-of the-art 
semiempirical satellite models can estimate the annual GHI with bias of about ±4% when 
normalized to daytime irradiation (Suri and Cebecauer 2014). This bias value depends on 
topography and climate. It can be higher (up to at least ±8%) in: (1) complex tropical regions; (2) 
areas with high atmospheric pollution, high latitudes, high mountains, or complex terrain; and (3) 
regions with low sun angles and occurrences of snow. Typical bias for DNI estimates at most 
sites is approximately twice that of GHI.  
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Regarding random errors, the main sources of increased uncertainty are clouds and, to a lesser 
extent, changes in snow cover and increased dynamics of aerosols. Over arid and semiarid areas 
or during sunny seasons, the RMSD of hourly GHI values normally range from 7–20%. In more 
cloudy regions with more intricate weather patterns, higher dynamics of atmospheric 
constituents, complex landscapes, or middle latitudes, the hourly RMSD increases to 15–30%. 
Over high mountains, high latitudes, or during seasons with low sun angles and frequent 
occurrences of snow, the relative RMSD for GHI can be 25–35% or more. Similar patterns of 
RMSD exist for the hourly DNI but with approximately twice the errors mentioned for GHI. In 
arid and semiarid zones, which are of the highest interest for concentrating solar energy 
technologies, RMSDs for the hourly DNI ranging from 18–30% are typical. In cloudier regions, 
with significant dynamics exhibited by aerosols, RMSD can reach 25–45%. Finally, at high 
latitudes and over mountains, RMSD could exceed 45%. 

With continuous progress in satellite sensors and radiation models, it can be expected that the 
accuracy in satellite-derived databases will continue to improve, as suggested by recent 
validation results (Babar et al. 2018; 2019; Bright 2019; Kamath and Srinivasan 2020; Shi et al. 
2018; Urraca et al. 2018). In Urraca et al. (2017), satellite data are even used to test some aspects 
of ground measurements using the positive-quality aspects of satellite-based irradiance data. A 
general validation of this “reverse QC” approach for ground measurements still needs to be 
undertaken, however. 

10.6  Evaluation and Uncertainty of Irradiance and PV Power 
Forecasts 

The evaluation of solar irradiance forecasts provides users with the necessary information about 
forecast quality and helps them choose from different forecasting products or assess the risk 
when using a particular forecast as a basis for decisions. This section first addresses the 
evaluation of deterministic irradiance or solar power forecasts that provides an overall indication 
of the uncertainty of a specific forecast model. Probabilistic solar forecasts assigning uncertainty 
estimates to each individual forecast value are described in Chapter 9, Section 9.7. Methods for 
probabilistic forecast evaluation, including the assessment of reliability, resolution, and 
sharpness are given below in Section 10.6.3. 

As described in Section 10.2, the quality of forecasts, both deterministic and probabilistic, is 
evaluated by assessing their similarity to reference data. Most often, irradiance measurements are 
used as reference data. They are commonly referred to as ground-truth data, though they are also 
affected by a certain degree of uncertainty (see Section 10.3) Alternatively, satellite-retrieved 
irradiance values or the output of a detailed physical model might serve as reference. The 
uncertainty of the reference data should always be kept in mind when interpreting the results of 
forecast evaluations.  

An extensive overview of forecast-verification methods is given by Jolliffe and Stephenson 
(2011). The choice of appropriate metrics and concepts for the evaluation of solar irradiance 
and power forecasts is the subject of ongoing discussions within the solar forecasting 
community; see Hoff and Perez (2012); Kleissl et al. (2013). Recently, Yang et al. (2020) 
proposed applying the well-established Murphy-Winkler framework for distribution-oriented 
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forecast verification as a standard practice to analyze and compare deterministic solar forecasts. 
In parallel, Lauret et al. (2019) addressed the evaluation of probabilistic solar forecasts. 

In this chapter, the most standard evaluation methods for solar forecasting are outlined. These 
include: (1) statistical error metrics (Section 10.2.3); (2) basic visual assessment (Section 10.2.4); 
(3) comparison to reference models using the skill score (Section 10.6.1); (4) analyzing forecasts 
as a function of different influencing parameters (e.g., location, solar elevation, cloud conditions; 
Section 10.6.2); and (5) introduction to probabilistic forecast evaluation (Section 10.6.3). 

10.6.1 Skill Score 
The skill score (also referred to as forecast skill) is used to quantify the forecast performance 
relative to a reference model. RMSE is normally used for this comparison; other scores, such as 
MAE or MSE, are also often used. The skill score is defined as the difference between the score 
of the reference model and the forecast model divided by the difference between the score of the 
reference model and a perfect model; note that a perfect model yields zero RMSE. For RMSE, 
the skill score, ssRMSE, is calculated as: 

  ssRMSE = RMSEref −RMSE
RMSEref

,  (10-20) 

where RMSEref refers to the reference model, and RMSE refers to the investigated forecasting 
algorithm (Coimbra and Pedro 2013). The skill score’s value of 1 then indicates a perfect 
forecast, and a skill score of 0 means that the investigated algorithm has the same RMSE as the 
reference forecast. A negative value indicates performance that is worse than the reference. Skill 
scores might be applied for comparisons to a simple reference model and also for 
intercomparisons of different forecasting approaches (i.e., improvement scores). 

In solar radiation forecasting, persistence is the simplest and most widely used reference model to 
evaluate forecast skill. Several definitions of persistence of solar irradiance are given in Chapter 9, 
Section 9.2.1, including simple persistence, scaled persistence (which accounts for solar geometry 
changes), and more-advanced concepts, such as smart persistence. Simple persistence, which does 
not account for solar geometry, is not recommended as a baseline for forecast lead times other than 
24 hours (or multiples of it). Scaled or smart persistence are a much better choice in general. 
Alternatively, if long-term irradiance measurements are available, combinations of climatology and 
persistence can be used, as recommended by Yang et al. (2020) as an advanced reference model for 
forecast evaluation. 

10.6.2 Analysis of Solar Forecasts Using Statistical Metrics From Different 
Perspectives 

Solar forecasts can be analyzed with statistical metrics calculated over various scales. For 
example, the statistical metrics described in Section 10.2.3 can be calculated over global, 
temporal, or spatial scales to assess the performance of solar forecasts. The global-scale metrics 
computed with all available modeled-observed data across all locations and times are used to 
evaluate the overall performance of solar forecasts.  

It is also useful to group forecast evaluations with respect to forecast lead time (temporal-scale 
metrics), that is, to compute error metrics with all available data at a given lead time to evaluate 
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the error evolution as a function of the forecast lead time. Evaluation of forecast performance in 
dependence of forecast lead time is shown for several examples and a variety of different 
forecasting algorithms in Chapter 9 (e.g., Figures 9-8, 9-13, 9-19, 9-20). This type of analysis is 
particularly helpful in identifying the most suitable forecast models for different lead times. 

Other important considerations include analyzing forecast quality as a function of space or cloud 
conditions (Section 10.6.2.1), solar position and time of day (Section 10.6.2.2), or cloud 
variability and spatiotemporal averaging (Section 10.6.2.3). 

10.6.2.1 Spatial Evaluation of Forecasts and Taylor Diagrams for Different Cloud 
Conditions 

For the evaluation of solar forecasts as a function of space, the statistical metrics are calculated 
with all available pairs of predictions and observations at each location. Figure 10-7 shows an 
example of 2D maps for R2, RMSE, MAE, and MBE for the DNI forecasts simulated by the 
combination of the Fast All-sky Radiation Model for Solar applications with DNI (FARMS-
DNI) (Xie et al. 2022; Yang et al. 2022) and WRF-Solar (Jimenez et al. 2016). The NSRDB 
(Sengupta et al. 2018) was used to analyze the spatial distribution of the statistical metrics. More 
generally, high-quality satellite-derived solar radiation datasets essentially offer the opportunity 
to conduct in-depth analyses of the accuracy of gridded solar forecasts over a wide range of 
regions. 

 
Figure 10-7. 2D maps for (a) R2, (b) RMSE, (c) MAE, and (d) MBE of DNI forecasts simulated by the 

combination of FARMS-DNI and WRF-Solar  
Statistical metrics of DNI forecasts are calculated against the NSRDB data for each grid point. The evaluation is 

performed using 365 sets of day-ahead forecasts spanning 2018.  

Image by NREL 

A statistical summary of model performance for the prediction of solar irradiance can be 
obtained with the Taylor diagram (Taylor 2001). This diagram quantifies the performance of 
forecasts (or other modeled data using three statistical metrics computed from modeled-observed 
pairs: the Pearson correlation coefficient, the standard deviation, and RMSE. Figure 10-8 shows 
an example of a Taylor diagram (using a normalized standard deviation) representing the 
performance of each member of ensemble GHI forecasts composed of 20 members simulated 
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with the WRF-Solar ensemble prediction system (EPS). The member obtaining the best 
performance is the one that lies closest to the reference point compared to other models. For 
example, in Figure 10-8, WRF-Solar accurately represents clear-sky scenes (red dots), thus the 
ensemble members lie much closer to the reference point than for cloudy-sky or all-sky 
conditions.  

 
Figure 10-8. Taylor diagram for 20 ensemble members simulated with WRF-Solar under three sky 

conditions  
Data from WRF-Solar EPS development (Sengupta et al. 2022). 

10.6.2.2 Analysis of Forecast Error with Respect to Solar Elevation 
Solar irradiance has a deterministic component, which results from the daily and seasonal course 
of the sun, and a nondeterministic component because of, for example, clouds. Both the 
deterministic and nondeterministic signals influence the forecast error signal. To investigate the 
solar irradiance forecast errors, valuable additional information is obtained by evaluating not 
only GHI (or DNI) but also the nondeterministic part of solar radiation, which is primarily 
caused by errors in the representation of clouds. To this aim, the analyzed variable is often 
selected to be the forecast error based on the clear-sky index rather than based on GHI.  

The forecast performance of the clear-sky index can be illustrated by examples from an 
observational dataset of hourly pyranometer measurements from 18 weather stations of the 
German Weather Service (DWD) from March 2013 to February 2014 (Lorenz et al. 2016) and 
forecasts from two NWP models: 

• High-resolution deterministic global Integrated Forecasting System (IFS) model, 
operated at the ECMWF with a spatial resolution of 0.125° and 3-hourly outputs; here, 
forecast horizons up to 24 hours are used, issued every day at 00:00 UTC.  
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• High-resolution Limited Area Model, operated for the area of Scandinavia (HIRLAM-
SKA), operated at the Danish Meteorological Institute, with a spatial resolution of 3 km, 
hourly outputs, and forecast horizons from 4–9 hours ahead, issued daily at 00:00, 06:00, 
12:00, and 18:00 UTC. 

Figure 10-9 shows the RMSE and MBE of the clear-sky index, Kc, as a function of the cosine of 
the solar zenith angle (Figure 10-9, left) and the time of day (Figure 10-9, right) for the two 
different NWP model forecasts (IFS and SKA). The two models show similar behavior: RMSE 
increases with low SZA or, equivalently, during morning and evening hours, as is also the case 
with the magnitude of bias. This error pattern is very often caused by deficient modeling of the 
atmospheric transport of radiation for low solar altitudes. This limitation is a well-known flaw of 
the two-stream schemes used in most NWP models. Other model limitations also exist, such as 
3D effects and atmospheric refraction issues whose impact is enhanced at low solar altitudes. 

  

Figure 10-9. Clear-sky index (here noted as kt*) forecast error as a function of (left) cosine of SZA 
(noted here θz) and (right) hour of the day for the forecasts issued by the IFS and SKA NWP 

models (blue and red lines, respectively)  
Solid lines show RMSE, and dashed lines show MBE (bias). The evaluated period is from March 1, 2013 to  

February 28, 2014.  

Image by Elke Lorenz 

10.6.2.3 Analysis of Forecast Error with Respect to Cloud Variability and 
Spatiotemporal Averaging 

Forecasts generally show good agreement with measurements during clear-sky periods or even 
completely overcast days because both basically have a quasi-constant clear-sky index. In 
contrast, cloud variability strongly impacts solar forecasting accuracy. Thus, considerable 
deviations from the measurements are typically observed during days with variable cloudiness. 
An evaluation of the SKA forecast errors as a function of the measurement-derived Kc 
variability, here represented by the standard deviation of Kc over a 5-hour period, is shown in 
Figure 10-10. The evaluation also shows this dependence for multiple spatial and temporal 
averaging configurations of the SKA forecasts.  
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Figure 10-10. RMSE of various versions of the SKA forecasts as a function of the 

standard deviation of measurement-based clear-sky index, std(kt*)  
Red line: SKA, original output. Dark blue: Nearest grid point, SKA20x20 averaged throughout 20 by 20 grid points. Light 

blue: SKAav 5-hour sliding mean of the clear-sky index of the forecasts of the average throughout 20 by 20 grid 
points. Green: SKAav, LR.kt*: linear regression of the clear-sky index of the forecasts applied to SKAav. The evaluated 

period is from April 3, 2013–February 28, 2014. Training set: Last 30 days, all 18 DWD sites.  

Image by Elke Lorenz 

Overall, Figure 10-10 shows that: 

1. The forecast error increases with enhanced cloud variability. 
2. Spatial and temporal forecast averages result in reduced RMSE values, going from 

negligible reductions under very stable conditions to large reductions under highly 
variable conditions. 

Regarding the first point, the solar radiation forecast error shows a clear dependency with respect 
to cloud variability and, more generally, with respect to cloud conditions (Figure 10-8). 
Combining the error trend in the dependence of cloud conditions and the solar elevation has been 
proposed as an efficient method to reduce the systematic error in NWP model forecasts using a 
postprocessing model output statistic (MOS). In particular, Lorenz et al. (2009) used a 
polynomial function with cos(SZA) and Kc as independent variables to parameterize the forecast 
bias error from historical forecasts relative to observations and ultimately to subtract the 
parameterized error from operational forecasts. This approach has also been adapted and 
evaluated for other NWP models and different climates (Mathiesen and Kleissl 2011; Müller and 
Remund 2010; Pelland et al. 2013). 

Regarding the second point, high-resolution irradiance forecasts frequently show phase shifts 
when compared to measurements, in particular for variable cloud conditions, as described also in 
Lorenz et al. (2016):  

“Phase shifts are caused by displacement errors in cloud prediction. Even small 
errors in cloud position can result in large errors for high-resolution forecasts 
resolving also small-scale cloud features—which is often referred to as ‘double 
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penalty’ effect. Spatial as well as temporal averaging reduces large fluctuations 
and forecast errors in variable situations and consequently also the RMSE.”  

Looking at this from another perspective, spatial and temporal averaging is in effect a way to 
create a new forecast by averaging forecasts of neighboring points in space and time. Under 
variable cloud conditions, the correlations among these forecasts are small, leading to random 
error cancellations during the averaging process. In contrast, under stable conditions, the 
correlation among neighboring pixels is high and the cancellation of random errors is reduced.  

When using averaging for RMSE reduction, the optimal area size and time interval depend on 
the correlation structure among neighboring forecasts, both in time and space. Multiple studies 
have been conducted on this topic. For instance, a detailed evaluation of irradiance forecasts 
from the Canadian GEM model resulted in a reduction of forecast errors in the range from 10% 
to 15% when the model outputs were averaged throughout several hundred kilometers (Pelland 
et al. 2013). A similar improvement was achieved with WRF forecasts provided by Meteotest 
using averages over an area of 50 km by 50 km (Müller and Remund 2010). In parallel, 
Mathiesen and Kleissl (2011) reported an averaging area of 100 km by 100 km as suitable for 
irradiance forecasts using either the GFS or North American Mesoscale forecast system models. 
The benefit of horizon-dependent smoothing filters for Cloud Motion Vectors (CMV) forecasts 
was also shown by Lorenz et al. (2004), Aicardi et al. (2022), and Kühnert et al. (2013)  

It is emphasized here that spatial and temporal averaging effects also have a strong impact on 
RSME when comparing solar irradiance forecasts of NWP models with different output 
resolutions. This should be considered in model intercomparisons, where different models can be 
compared on a similar spatial and temporal scale in addition to their original output resolution. 

Temporal and spatial averaging can be also considered for nowcasts based on an all-sky imager 
(ASI). It has been found that in a nowcasting system with four ASIs during days with many 
transient clouds, the DNI RMSE for forecasts that are 10 minutes ahead is reduced in half, from 
13.0% to 6.5%, by using averages of 4 km2 and 15 minutes with respect to pixel-wise forecasts 
(Kuhn et al. 2018) 

Despite the positive impact of spatiotemporal averaging on reducing the RMSE of a forecast, 
there are also negative effects. A first negative impact exists on the frequency distribution of 
forecasted data because the averaging process reduces extreme forecasted values and distorts the 
original frequency distribution of the forecast data. A second impact is that the capability to 
reproduce irradiance variability by the forecasts is obviously reduced. These different 
implications of averaging should be considered when evaluating and selecting a forecasting 
system for a given application. Whereas, for energy trading, RMSE or MAE are the most critical 
error metrics, ramp forecasting requires forecasts reflecting the high-resolution irradiance 
variability.  
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10.6.3 Verification of Probabilistic Solar Forecasts  

10.6.3.1 Properties Required for a Skillful Probabilistic System 
Several attributes characterize the quality62 of probabilistic forecasts. Here, the focus is on 
reliability, resolution, and sharpness—the main properties used to assess the quality of 
probabilistic forecasts. 

Reliability or calibration refers to the statistical consistency between forecasts and observations; 
in other words, a forecast system has a high reliability if the forecast probability and observed 
frequency agree. The reliability property is an important prerequisite because nonreliable 
forecasts would lead to a systematic bias in subsequent decision-making processes (Pinson et al. 
2007). 

Resolution measures the ability of a forecasting model to generate predictive distributions that 
depend on forecast conditions. Put differently, the more distinct the observed frequency 
distributions for various forecast situations are from the full climatological distribution, the more 
resolution the forecast system has. Climatological forecasts are perfectly reliable but have no 
resolution. Consequently, a skillful probabilistic forecasting system should issue reliable 
forecasts and should exhibit high resolution. 

Sharpness refers to the concentration of predictive distributions and can be measured by the 
average width of the prediction intervals. Unlike reliability or resolution, sharpness is a function 
of only the forecasts and does not depend on the observations. Consequently, a forecasting 
system can produce sharp forecasts yet be useless if the probabilistic forecasts are unreliable.  

10.6.3.2 Probabilistic Verification Tools  
A number of visual diagnostic tools and error metrics are used for verifying probabilistic 
forecasts. Table 10-3 lists the diagnostic tools used to analyze probabilistic forecasts, for which 
Lauret et al. (2019) provided pros and cons, as well as detailed information about their 
implementation. Note that some tools were initially designed for a specific type of forecast (i.e., 
an ensemble or quantile forecast). 

 
62 Quality refers to the correspondence between forecasts and observations. 
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Table 10-3. Visual Diagnostic Tools for Probabilistic Forecasts 

Diagnostic Tool Remarks 

Reliability Diagram Initially designed for the reliability assessment of quantile forecasts. 

Can be used for ensemble forecasts if members are assigned specific probability 
levels; see Lauret et al. (2019). 

Rank Histogram  Initially designed for the reliability assessment of ensemble forecasts. 

Can be extended to quantile forecasts if quantiles are evenly spaced. 
Probability Integral 
Transform Histogram 

Represents a reliability assessment of quantile forecasts  

Sharpness Diagram Plots the average width of the prediction intervals for different nominal coverage 
rates. 

Sharpness can only contribute to a qualitative evaluation of the 
probabilistic forecasts.  

Even if narrow prediction intervals are preferred, sharpness cannot be seen as a 
property for verifying the quality of probabilistic forecasts but is more likely the 
consequence of a high resolution. 

 

Numerical scores provide summary measures for the evaluation of the quality of probabilistic 
forecasts. Table 10-4 enumerates the main scoring rules for evaluating the quality of probabilistic 
forecasts of a continuous variable. All the scores listed in the table are proper scoring rules 
(Gneiting and Raftery 2007), ensuring that perfect forecasts are given the best score value. 
Lauret et al. (2019) gives a detailed definition of each score.  

Table 10-4. Forecast Metrics for Probabilistic Forecasts 

Forecast Metric Remarks  

Continuous Ranked Probability 
Score (CRPS) 

Can be normalized to define a skill score (CRPS skill score). 

Can be further partitioned into the two main attributes: reliability and 
resolution. 

Ignorance Score Local score (i.e., the score depends only on the value of the predictive 
distribution at the observation). 

Cannot be normalized. 

Interval Score  Specifically designed for interval forecasts. 

Quantile Score  Forecast performance of specific quantiles. 

 
Some frequently used diagnostic tools and numerical scores to evaluate probabilistic forecasts 
are detailed next (see Lauret et al. [2019] and Yang et al. [2020] for descriptions of other 
metrics).  
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10.6.3.2.1 Reliability Diagram 
A reliability diagram is a graphical verification display used to assess the reliability attribute of 
quantile forecasts. Quantile forecasts are evaluated one by one, and their observed frequencies 
are reported versus their forecast probabilities (Figure 10-11). Such a representation is appealing 
because the deviations from perfect reliability (the diagonal) can be visually assessed (Pinson et 
al. 2010); however, because of both the finite number of pairs of observation/forecast and also 
possible serial correlation in the sequence of forecast-verification pairs, observed proportions are 
not expected to lie exactly along the diagonal, even if the density forecasts are perfectly reliable. 
Pinson et al. (2010) proposed a method to add consistency bars to the reliability diagram. This 
addition can help users gain more confidence in their (possibly subjective) judgment regarding 
the reliability of the different models. Figure 10-12 shows an example of reliability diagram with 
consistency bars. In this example, the forecasts cannot be considered reliable because the line 
Figure 10-11 corresponding to the forecasts falls outside the consistency bars. More elaborate 
reliability diagrams are proposed by Yang (2019a; 2019b).  

 
Figure 10-11. Example of a reliability diagram  

Consistency bars for a 90% confidence level around the ideal line are individually computed for each nominal 
forecast probability. Image by University of La Réunion Laboratory of Physics and Mathematical Engineering for 

ENERGY, the ENVIRONMENT and BUILDINGS (PIMENT) 

10.6.3.2.2 Rank Histogram 
A rank histogram is a graphical display initially designed for assessing the reliability of ensemble 
forecasts (Wilks 2011). Rank histograms help users to visually assess the statistical consistency 
of the ensemble—that is, if the observation can be seen statistically like another member of the 
ensemble (Wilks 2011). A flat rank histogram is a necessary condition for ensemble consistency 
and shows an appropriate degree of dispersion of the ensemble. Underdispersed or overdispersed 
ensembles lead to U-shaped or hump-shaped rank histograms, respectively (Figure 10-12). 

In addition, some unconditional biases can be revealed by asymmetrical (triangle-shaped) rank 
histograms. It must be stressed that one should be cautious when analyzing rank histograms. As 
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shown by Hamill (2001), a perfectly flat rank histogram does not mean that the corresponding 
forecast is reliable. Further, when the number of observations is limited, consistency bars can 
also be calculated with the procedure proposed by Bröcker and Smith (2007). 

 
Figure 10-12. Illustrative examples of rank histograms for an ensemble of M = 9 members  

The horizontal solid blue line denotes the statistical consistency of the ensemble. The dashed-dotted lines represent 
the consistency bars.  

Figure modified from Wilks (2011) 

10.6.3.2.3 Overall Skill Assessment With the Continuous Ranked Probability Score 
The most common skill score for evaluating the quality of predictive densities of continuous 
variables is the CRPS, whose formulation is: 

CRPS =
1
𝑁𝑁
��  �𝐹𝐹�𝑆𝑆𝑆𝑆𝑠𝑠𝑑𝑑𝑖𝑖 (𝑦𝑦) − 𝐹𝐹𝑣𝑣𝑦𝑦𝑣𝑣𝑠𝑠𝑖𝑖 (𝑦𝑦)�

2+∞

−∞

𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑦𝑦, (10-21) 

  

where 𝐹𝐹�𝑆𝑆𝑆𝑆𝑠𝑠𝑑𝑑𝑖𝑖 (𝑦𝑦) is the predictive cumulative distribution function (CDF) of the variable of 
interest, x (e.g., GHI), and 𝐹𝐹𝑣𝑣𝑦𝑦𝑣𝑣𝑠𝑠𝑖𝑖 (𝑦𝑦) is a CDF of the observation (i.e., a step function that jumps 
from 0 to 1 at the point where the forecast variable, 𝑦𝑦, equals the observation, 𝑦𝑦𝑦𝑦𝑣𝑣𝑠𝑠). The squared 
difference between the two CDFs is averaged over the N forecast/observation pairs. Note that 
CRPS is negatively oriented (smaller values are better) and has the same dimension as the 
forecasted variable.  
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Figure 10-13(a) shows three hypothetical predictive probability density functions (PDFs), and 
Figure 10-13(b) plots the corresponding predictive CDFs. The black thick line in Figure 10-13(b) 
represents the CDF of the observation, 𝐹𝐹𝑣𝑣𝑦𝑦𝑣𝑣𝑠𝑠𝑖𝑖 (𝑦𝑦). Because CRPS represents the integrated 
squared difference between the two CDFs, the pair of observation/forecasts labeled “1” will be 
assigned the best score. Conversely, forecasts indicated by labels 2 and 3 will lead to a higher 
CRPS. Indeed, although it has the same degree of sharpness as Forecast 1, Forecast 2 is not 
centered on the observation (i.e., this is a biased forecast). Conversely, Forecast 3 is centered on 
the observation, but is less sharp than Forecasts 1 or 2. In summary, CRPS rewards the 
concentration of probability around the step function located at the observed value (Hersbach 
2000). 

 
Figure 10-13. Schematic of the CRPS skill score  

Three forecast PDFs are shown in relation to the observed variable in (a). The corresponding CDFs are shown in (b), 
together with the step function CDF of the observation (black heavy line). Forecast 1’s PDF would produce a small 

(i.e., good) CRPS. This would not be the case for Forecast 2 or Forecast 3.  

Illustration modified from Wilks (2011) 

CRPS can be further partitioned into the two main attributes of probabilistic forecasts described 
above: reliability and resolution. The decomposition of the CRPS leads to:  

CRPS = RELIABILITY –  RESOLUTION + UNCERTAINTY.  (10-22) 

The uncertainty term cannot be modified by the forecast system and depends only on the 
observation’s variability (Wilks 2011). Because CRPS is negatively oriented, the goal of a 
forecast system is to minimize the reliability term and maximize the resolution term as much as 
possible. Hersbach (2000) and Lauret et al. (2019) detail the procedures for calculating the 
different terms (reliability and resolution, respectively) for ensemble and quantile forecasts.  
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It must be stressed that the decomposition of CRPS provides quantitative overall measures of 
reliability and resolution, providing additional and valuable insight into the performance of a 
forecasting system.  

Similarly, to obtain skill scores used for evaluating deterministic forecasts (Coimbra and Pedro 
2013), a CRPS skill score (CRPSS) can be derived to quantify the improvement brought by a 
new method over a reference easy-to-implement model, such as: 

CRPSS = 1 −
CRPS𝑛𝑛𝑡𝑡𝑤𝑤 𝑡𝑡𝑡𝑡𝑑𝑑ℎ𝑦𝑦𝑑𝑑

CRPS𝑅𝑅𝑡𝑡𝑆𝑆𝑡𝑡𝐴𝐴𝑡𝑡𝑛𝑛𝑆𝑆𝑡𝑡
. (10-23) 

Negative values of CRPSS indicate that the new proposed method fails to outperform the 
reference baseline model, and, conversely, positive values of CRPSS mean that the new method 
outperforms the reference model. Further, the higher the CRPSS, the better the improvement. 
Note that the uncertainty part of the decomposition of CRPS (which corresponds to the score of 
the climatology) can be used as a reference baseline model. CRPSS and mean-normalized CRPS 
are also discussed by Yang (2020). 

10.6.3.2.4 Interval Score 
The interval score (IS) specifically assesses the quality of interval forecasts. As shown by 
Eq. 10-24, the interval score rewards narrow prediction intervals but penalizes (with a penalty 
term that increases with increasing nominal coverage rate) the forecasts for which the 
observation, 𝑝𝑝𝑦𝑦𝑣𝑣𝑠𝑠, is outside the interval. For a (1 − 𝛼𝛼) × 100% nominal coverage rate, the 
interval score is obtained as: 

  

IS𝛼𝛼 =
1
𝑁𝑁
��𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

+
2
𝛼𝛼
�𝐿𝐿𝑖𝑖 − 𝑝𝑝𝑦𝑦𝑣𝑣𝑠𝑠𝑖𝑖 �𝐼𝐼𝑥𝑥𝑆𝑆𝑏𝑏𝑝𝑝𝑖𝑖 <𝐿𝐿𝑖𝑖 +

2
𝛼𝛼
�𝑝𝑝𝑦𝑦𝑣𝑣𝑠𝑠𝑖𝑖 − 𝑈𝑈𝑖𝑖�𝐼𝐼𝑥𝑥𝑆𝑆𝑏𝑏𝑝𝑝𝑖𝑖 >𝑈𝑈𝑖𝑖 , (10-24) 

 
 

  

where 𝐼𝐼𝑡𝑡 is the indicator function (𝐼𝐼𝑡𝑡 = 1 if U is true and 0 otherwise), and 𝑈𝑈𝑖𝑖 and 𝐿𝐿𝑖𝑖  represent 
the upper �𝜏𝜏 = 1 − 𝛼𝛼

2
� and lower �𝜏𝜏 = 𝛼𝛼

2
� quantiles, respectively.  

A plot of interval scores for different nominal coverage rates might offer a consistent evaluation 
of the quality of interval forecasts. Consequently, such a plot could advantageously replace the 
sharpness diagram. 

10.7 Available Diagnostic Tools 
To evaluate various datasets, many statistical metrics (e.g., correlation, RMSE, MAE, or MBE) 
can be calculated by common scripts, given their simple formulas. Moreover, some 
programming languages provide various user-friendly library functions to calculate the statistical 
metrics (Table 10-5). 
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Table 10-5. Functions for Statistical Metrics in R, Python, and MATLAB  

Programming 
Language Remarks 

R Name of library function: Metrics 

Documentation: https://cran.r-project.org/web/packages/Metrics/Metrics.pdf 

Documentation for the Taylor diagram: https://search.r-
project.org/CRAN/refmans/plotrix/html/taylor.diagram.html. 

 Python Name of library functions: NumPy and scikit-learn 

Documentation: 
NumPy: https://numpy.org/doc/stable/ 
scikit-learn: https://scikit-learn.org/0.21/documentation.html 

Documentation for Taylor diagrams: 
https://metplotpy.readthedocs.io/en/develop/Users_Guide/taylor_diagram.html. 

MATLAB Link: 
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=des
criptive-statistics&s_tid=CRUX_topnav 
Documentation for the Taylor diagram: 
https://www.mathworks.com/matlabcentral/fileexchange/20559-taylor-diagram. 

 
  

https://cran.r-project.org/web/packages/Metrics/Metrics.pdf
https://search.r-project.org/CRAN/refmans/plotrix/html/taylor.diagram.html
https://search.r-project.org/CRAN/refmans/plotrix/html/taylor.diagram.html
https://numpy.org/doc/stable/
https://scikit-learn.org/0.21/documentation.html
https://metplotpy.readthedocs.io/en/develop/Users_Guide/taylor_diagram.html
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=descriptive-statistics&s_tid=CRUX_topnav
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=descriptive-statistics&s_tid=CRUX_topnav
https://www.mathworks.com/matlabcentral/fileexchange/20559-taylor-diagram
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