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A B S T R A C T

Computational fluid dynamics (CFD) is a valuable tool in designing built environments, enhancing comfort,
health, energy efficiency, and safety in both indoor and outdoor applications. Nevertheless, the time required
for CFD computations still needs to be reduced for engineering studies. Recent advances in machine learning
(ML) techniques offer a promising avenue for developing fast-running data-driven models for physics-related
phenomena. As scientific machine learning (SciML) research increasingly focuses on efficiently coupling ML and
CFD techniques, this literature review highlights the growing number of applications in the built environment
field to accelerate CFD simulations. This work aims to identify emerging trends and challenges in incorporating
ML techniques into built environment flow simulations to foster further advancements in this domain. The
prevailing approaches are direct surrogate modeling and reduced-order models (ROMs). Both approaches
increasingly rely on deep learning architectures based on neural networks. The reviewed studies reported
computational time gains of several orders of magnitude in specific scenarios while maintaining reasonable
accuracy. However, several challenges remain, such as improving models’ generalizability and interpretability,
enhancing methodology scalability, and reducing the computational cost of developing the models. Efforts are
underway to address more complex cases with advanced SciML techniques. Notably, incorporating physics
into the learning process and hybridizing CFD solvers with data-driven models merit further investigation.
The exploration of these approaches represents a crucial step toward the deployment of reliable models that
enable fast design for built environment engineering studies.

Contents

1. Introduction ...................................................................................................................................................................................................... 3
2. Computational fluid dynamics for building engineering......................................................................................................................................... 4

2.1. Main CFD applications for buildings ........................................................................................................................................................ 4
2.2. Computational time issue of building CFD simulations despite simplifications ............................................................................................ 4

2.2.1. Traditional CFD approaches for building engineering ................................................................................................................. 4
2.2.2. Computational time bottleneck ................................................................................................................................................. 4

2.3. Replacing CFD with simplified models ..................................................................................................................................................... 5
3. Machine learning overview................................................................................................................................................................................. 5

3.1. Machine learning approaches ................................................................................................................................................................. 5
3.2. Focus on deep learning ........................................................................................................................................................................... 5

3.2.1. Neural networks architectures ................................................................................................................................................... 6
3.2.2. Neural networks for physics ...................................................................................................................................................... 6

4. Accelerating CFD with ML.................................................................................................................................................................................. 6
4.1. Accelerate high-fidelity flow simulations .................................................................................................................................................. 6
4.2. Enhance turbulence modeling with ML .................................................................................................................................................... 8
4.3. Reduced-order models and flow control ................................................................................................................................................... 8

∗ Corresponding author at: Department of Sustainable Built Environment, PIMENT lab, University of Reunion, 117 rue du Général Ailleret, Le Tampon, 97430,
La Réunion, France.

E-mail address: clement.caron@univ-reunion.fr (C. Caron).
https://doi.org/10.1016/j.buildenv.2024.112229
Received 3 June 2024; Received in revised form 6 September 2024; Accepted 23 October 2024
vailable online 8 November 2024 
360-1323/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/buildenv
https://www.elsevier.com/locate/buildenv
mailto:clement.caron@univ-reunion.fr
https://doi.org/10.1016/j.buildenv.2024.112229
https://doi.org/10.1016/j.buildenv.2024.112229
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2024.112229&domain=pdf
http://creativecommons.org/licenses/by/4.0/


C. Caron et al.

o
o
e
p
t
c
r
h

t

Building and Environment 267 (2025) 112229 
5. AI-accelerated CFD simulations for built environments.......................................................................................................................................... 8
5.1. Direct surrogate modeling for built environment CFD applications ............................................................................................................ 8

5.1.1. Surrogates for high-level metrics ............................................................................................................................................... 9
5.1.2. Surrogates for spatial fields ....................................................................................................................................................... 9
5.1.3. Observed trends in direct surrogate modeling ............................................................................................................................. 9

5.2. Reduced-order models for built environment CFD applications .................................................................................................................. 12
5.3. Hybrid approaches for built environment CFD applications ....................................................................................................................... 13
5.4. Synthesis, discussion, and future challenges ............................................................................................................................................. 14

5.4.1. Emerging trends ...................................................................................................................................................................... 14
5.4.2. Challenges and future directions ............................................................................................................................................... 14

6. Conclusions ....................................................................................................................................................................................................... 15
CRediT authorship contribution statement ........................................................................................................................................................... 16
Declaration of competing interest ........................................................................................................................................................................ 16
Acknowledgments .............................................................................................................................................................................................. 16
Data availability ................................................................................................................................................................................................ 16
References......................................................................................................................................................................................................... 16
p

n

u
t
f

g
i
a

p
t
a

m

Nomenclature

AE Autoencoder
AE-CNN Convolutional autoencoder
AI Artificial intelligence
CFD Computational fluid dynamics
CNN Convolutional neural network
DMD Dynamic mode decomposition
DNS Direct numerical simulation
FCNN Fully connected neural network
FNO Fourier neural operator
GAN Generative adversarial network
GNN Graph neural network
GPU Graphics processing unit
IAQ Indoor air quality
LES Large eddy simulation
LSTM Long short-term memory
ML Machine learning
NIROM Non-intrusive reduced-order model
PINN Physics-informed neural network
POD Proper orthogonal decomposition
RANS Reynolds-averaged Navier–Stokes
RBF Radial basis function
RNN Recurrent neural network
ROM Reduced-order model
SciML Scientific machine learning
SVM Support vector machine
XGBoost Extreme gradient boosting

1. Introduction

Computational fluid dynamics (CFD) techniques have been devel-
ped for decades to analyze complex fluid-related phenomena based
n computer simulations. This numerical approach has great potential,
specially for industrial needs, because it helps avoid or limit ex-
erimental procedures. Indeed, conducting experiments can be costly,
ime-consuming, difficult to set up, and challenging to monitor ac-
urately. In addition, CFD methods can produce much more refined
esults than hand calculations or simplified models. It makes CFD a
ighly valuable complementary tool [1–3].

Since computing capacities continuously grow, CFD is becoming
more affordable and widely used. Scientists tackle increasingly sophis-
icated systems with greater accuracy, improving our understanding
2 
of advanced physical phenomena. Simulations support the design of
complex systems and provide key elements for decision-making or
erformance optimization. Nevertheless, while CFD codes have come

a long way, they are still maturing and evolving. There are many
aspects in which CFD methods can be improved, including turbulence
modeling, multiphysics problems, and numerical methods [4,5]. A
major challenge is the computational time needed to address large-scale
real-world problems.

Building design is not exempt from the computational cost bottle-
eck [6,7], as engineering studies often involve large computational

domains and turbulent flows. Providing exact computational times to
support this statement is difficult due to the various factors involved,
such as the specific problem, modeling assumptions, the CFD code
sed, and the computing resources available. However, it is possible
o provide a practical range of time for building engineering studies,
rom hours to weeks, for a single simulation [8–11].

Artificial intelligence (AI), for its part, has experienced significant
rowth in the last few years. The plentiful data and increased comput-
ng power have revealed the full potential of machine learning (ML)
lgorithms [12,13]. Besides their ability to recognize patterns in data

and accurately approximate complex functions, ML models may offer a
major advantage in computation time compared to more conventional
algorithms, such as high-fidelity physics-based models [14]. Although
the training phase of ML models can be time-consuming, they are very
efficient at making new predictions (i.e., the inference time is short).

Investigating how to combine CFD tools with AI to accelerate
computation is a natural progression [14–16]. Nevertheless, coupling
hysics-based numerical models with ML presents many challenges
hat must be overcome [17]. The research question of how AI can
ccelerate CFD simulations while maintaining result reliability is still

open. One straightforward solution is to substitute physical models
with ML models (i.e., direct surrogate modeling), but this strategy
may result in non-physical solutions and poor generalization [18].
Research is underway to enhance CFD with AI and democratize data-
driven models for real-world fluid dynamics challenges [16,18–20].
The main objectives are to enforce underlying physics and increase

odel generalizability, robustness, and data efficiency.
Accelerated CFD computation would be a significant stride toward

improving building design. To follow this path, we propose a review of
recent advances and attempts to accelerate the built environment CFD
simulations with ML algorithms. We present an up-to-date synthesis
that has not yet been covered in the existing literature to the best of
our knowledge. Given the fast-growing nature of ML and the numerous
uncoordinated approaches to its application, we consider this work to
be necessary. Therefore, the three main objectives of this review are
as follows. First, (i) we determine emerging trends and challenges to
accelerate built environment CFD simulations using ML techniques.
Then, (ii) we identify advancements beyond the building domain to
bridge the gap between scientific machine learning (SciML) and built
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environment engineering. Finally, (iii) this review has a pedagogical
scope, aiming to connect the seemingly distant worlds of the built
environment and ML.

In this review, Section 2 provides an overview of CFD usage for
built environment engineering. The challenge of CFD computational
cost is discussed. Section 3 is dedicated to ML basics, outlining the key
concepts to understand SciML trends. Our emphasis on deep learning
is deliberate, as it is prevalent in the reviewed articles. Section 4
focuses on current strategies to accelerate CFD with ML algorithms.
Thus, the preceding sections provide a foundation for an in-depth
examination of current research efforts to accelerate built environment
CFD simulations with ML. This specific review is conducted in Section 5
prior to the conclusions.

2. Computational fluid dynamics for building engineering

2.1. Main CFD applications for buildings

Most CFD applications for built environments relate to comfort,
health, energy efficiency, or safety [6]. They cover indoor (Fig. 1) and
outdoor (Fig. 2) flows, operating at different scales. In indoor appli-
cations, the focus is on air movement within a building, considering
factors such as ventilation, temperature gradients, and the presence of
pollutants. Ensuring the thermal comfort of occupants and maintaining
satisfactory indoor air quality (IAQ) are key priorities. In addition,
anticipating smoke propagation is critical for fire risk assessment.
Outdoor simulations investigate the external airflow behavior in built
environments. Such analysis can yield significant insights into various
aspects of urban design, including pedestrian comfort, natural ventila-
tion potential, wind load, urban thermal environment, and pollutant
dispersion. CFD tools can assist in studying all of these topics [6,21].
In particular, CFD can accurately identify flow patterns, which has the
potential to enhance building design.

2.2. Computational time issue of building CFD simulations despite simplifi-
cations

2.2.1. Traditional CFD approaches for building engineering
The standard numerical methods for addressing a CFD problem

involve two main stages: preprocessing and solving [2]. In particular,
the region of interest is meshed during the preprocessing phase (see,
e.g., Fig. 1), and then the underlying equations are discretized into
a system of algebraic equations that must be solved. Since solving
the governing equations in their full complexity is often unnecessary
and inefficient, the modeler is responsible for deciding which part
of the physics can be ignored because it has little impact on the
analysis results. For most building applications, the air can be treated
as an isothermal incompressible Newtonian fluid. The equations are
adapted, typically based on the Boussinesq approximation [3,22], to
cover cases involving heat transfers, e.g., comfort studies. Ultimately,
a more comprehensive version of the equations and supplementary
intricate models are necessary to address complex flows, such as those
encountered in fire safety studies [23].

The most natural approach to solving a CFD case is through direct
numerical simulation (DNS). Using fine meshes and small time steps
enables the solver to capture all the scales of the flow, offering the
possibility of unique fundamental insights. However, for turbulent
large-scale real-world problems, this method becomes computationally
prohibitive. Therefore, DNS is not part of the engineering toolbox for
built environment studies.

Building simulations traditionally rely on the use of Reynolds-averaged
Navier–Stokes (RANS) and large eddy simulation (LES) approaches [7,
26], which incorporate models to avoid solving all the turbulent scales.
RANS approach decomposes the quantities of interest (typically the
velocity, pressure, or temperature) into a mean and a fluctuating
component. The resulting equations allow us to solve the mean flow
3 
Fig. 1. Example of a CFD indoor application: simulation result (top) and mesh (bottom)
for a room.
Source: Extracted from Luo et al. [24].

Fig. 2. Example of a CFD outdoor application: urban wind field.
Source: Extracted from Shao et al. [25].

while modeling the influence of turbulent fluctuations. On the other
hand, in LES, a spatial filtering operation is applied to the quantities
involved in the governing equations. Large eddies of the fluid are
explicitly resolved, whereas the dissipative effect of the small scales
(under filter size, usually the grid size) is modeled. Thus, LES can
provide time-dependent solutions to turbulent flows at a fraction of
the DNS computational cost. Several other techniques mix LES and
RANS strategies. However, they have yet to be widely used for building
engineering.

There is no doubt that the LES strategy is capable of producing
results that are more accurate than the RANS approach [7,27,28].
However, this comes at the cost of increased computation time. Since
providing CFD results with extreme accuracy is often unnecessary for
engineering purposes, RANS remains the most popular approach for
building applications [7]. While it is common to assume that the mean
airflow is stationary, it may be essential to account for fluctuations
in some cases. For example, Yoshie et al. [29] admitted that LES
would be desirable for achieving better accuracy in predicting the wind
environment around buildings. Ultimately, the choice of the numerical
strategy depends on the speed-accuracy trade-off.

2.2.2. Computational time bottleneck
Even with simplified approaches such as RANS or LES, compu-

tational time remains a significant bottleneck for CFD engineering
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studies. For an order of magnitude, a single LES simulation for built
environment applications can take several days, even with a dedicated
supercomputer [11]. Assessing numerous configurations is beyond the
capabilities of conventional computational resources. Furthermore, Mo-
ozova et al. [30] estimated that the growth of computational resources
s unlikely to be sufficient to make CFD a viable option for routine

use in building applications. Therefore, reducing CFD computational
osts is a major future challenge for the CFD community [4,6,30,31].

The advent of fast CFD methods could transform the decision-making
process, enabling parametric and optimization studies for more efficient
designs. This perspective provides the main motivation for investi-
gating innovative methodologies, such as machine learning, which
epresents a promising avenue for accelerating built environment CFD
imulations [4,30].

2.3. Replacing CFD with simplified models

Various simplified approaches are being developed and improved
to produce faster flow simulations [32,33]. For example, Xu et al.
32] mentioned the porous media model [34,35], fast fluid dynamics

[36,37], multizone model [38], lattice Boltzmann method [39,40],
or coarse-grid CFD [41]. Regardless of the method, model simplifi-
ations inevitably reduce accuracy for some configurations. Neverthe-
ess, when appropriately used, simplified models remain powerful ap-
roaches to achieving fast calculations and delivering valuable insights,
lthough they cannot entirely replace traditional CFD methods. For ex-

ample, Seifert et al. [42] demonstrated that the simplified macroscopic
method frequently employed for wind-driven ventilation analysis can
yield satisfactory results for engineering applications. However, out-
comes can be dramatically inaccurate depending on building porosity
and wind direction. In another context, Hodges et al. [43] emphasized
that fire zone models cannot predict complex configurations and may
lack the necessary resolution for hazard analysis.

Simplified models have been the subject of extensive study over
the past few years. On the other hand, there has recently been a
roliferation of studies on machine learning approaches that may offer
 breakthrough in accelerating simulations. New turnkey ML tools are
eginning to emerge, particularly for urban wind modeling [44–46].

Their objective is to revolutionize early-stage design with instantaneous
predictions. However, the lack of detail provided about the perfor-
mance and the ML methods used under the hood limits the ability to
make a comprehensive evaluation. We believe that a review should
help clarify recent advances. Thus, our study focuses on ML techniques,
potentially hybridized with traditional approaches, to expedite built
environment CFD simulations.

3. Machine learning overview

3.1. Machine learning approaches

Machine learning leverages data to gain insight into the behavior of
ystems, opening up a range of potential applications across scientific
ields [47,48]. The ML framework is powerful in that it requires no
rior knowledge of the laws of the underlying system. Furthermore,

a model can generate predictions almost instantaneously once the
learning phase is complete. Returning to our main topic, this advantage

ay be exploited to accelerate computations in fluid mechanics.
ML algorithms are traditionally divided into three categories, de-

pending on the information available in the data and the nature of
the knowledge to be extracted. (i) In supervised learning, a model is
trained to predict a specific outcome directly provided by the dataset,
i.e., the labels. The learning algorithm aims to minimize a loss function
that quantifies the discrepancy between the model predictions and
he target values over the training data (Fig. 3). (ii) In contrast,

unsupervised learning extracts information from unlabeled data about
the underlying probability densities using techniques such as clustering
 g

4 
Fig. 3. Schematic of supervised learning. The model maps inputs 𝒙 to outputs 𝒚̂ =
𝑓𝜃 (𝒙) ≈ 𝒚. Training data (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑟𝑎𝑖𝑛) are used to identify the optimal parameters 𝜃 for
the best possible approximation of 𝑓 according to the metric .

Fig. 4. Schematic of the encoder–decoder procedure describing the dimensionality
reduction. The encoder 𝐸 and the decoder 𝐷 are trained to compress data while
preserving maximum information (𝒙̂ ≈ 𝒙).

or dimensionality reduction. In particular, the latter is instrumental in
machine learning for fluid mechanics [15]. An encoder–decoder scheme
compresses data while retaining essential information (Fig. 4). (iii) As
he name suggests, semisupervised learning bridges unsupervised and su-
ervised methods, addressing situations where not all data are labeled.
echniques such as generative models or reinforcement learning, found

n fluid dynamics applications, usually fall into this category [15]. A
common feature is that these algorithms generate data to improve their
wn performance.

A myriad of ML algorithms are available [47,48], including linear
models, decision trees, support vector machines (SVMs), and neural
etworks, but no single algorithm is universally superior. Although ML

techniques are not novel, the advancements have been substantial in
recent years. This progress can be mainly attributed to the significant
increase in computational power and accessible data.

3.2. Focus on deep learning

Nowadays, deep learning is undoubtedly the most popular machine
earning approach [13]. In practice, deep learning architectures are

based on deep neural networks, which are capable of approximating
any continuous function [49,50]. The capacity of neural networks to
handle large datasets [51,52] and their efficiency in being trained on
graphics processing units (GPUs) give them a distinct advantage, con-
tributing to their popularity. Researchers now have the means to train
much deeper models than was conceivable a few decades ago [13],
pushing back the limits of neural networks. A notable breakthrough is
that deep learning can process raw data, avoiding the need for feature
engineering to create helpful model inputs [12]. Nevertheless, it is

orth remembering that even if deep learning is very efficient in a large
anel of tasks, classical data-driven methods should not be discarded.
omplex models also come with difficulties such as overfitting, lack of
eneralization, bad interpretability, and a heavy training process.
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Fig. 5. Schematic of a fully connected neural network (FCNN). Neurons combine input
omponents linearly and apply a final nonlinear activation function to provide a scalar
utput. They are arranged in layers, which are connected to form an FCNN.

Fig. 6. 2D discrete convolution illustration. 4 × 4 kernel, no padding, stride of 1. The
onvolutional kernel applies the same sequence of operations to all the patches of the
nput matrix. Thus, convolutional neural networks (CNNs) can recognize the same local
attern at different locations with a relatively small number of parameters.

3.2.1. Neural networks architectures
A fully connected neural network (FCNN) represents the most basic

eural network architecture for deep learning (Fig. 5) [47]. However,
it is not always the optimal choice, primarily due to the significant
increase in the number of parameters with the network size. As a
consequence, sparsely connected networks emerged and proved to be
very effective [12].

Convolutional neural networks (CNNs) [12,53] rely on convolutional
layers that perform discrete convolutions for filtering (Fig. 6). They
have become a widely adopted architecture across different domains
ecause they are easier to train and have superior generalization capa-
ilities compared to FCNNs. Recurrent neural networks (RNNs) [12,54]
uccessfully handle data sequences such as time series. By design,
hey retain information about previous elements of a sequence when
roducing an output (Fig. 7). However, RNNs are challenging to train
ecause the gradient tends to vanish or explode during optimization.
ong short-term memory networks (LSTMs) [55], which include an
xplicit memory to address the difficulty of long-term information

retention, have been demonstrated to be more efficient for long time
series. The trend has recently shifted from RNNs to transformers, based
n the attention mechanism [56], to handle data sequences. Graph

neural networks (GNNs) [57] are designed to apply neural networks
o problems formulated in graph form. This framework represents an
xciting approach for physics-based problems, as an unstructured mesh
an be seen as a graph [58,59]. Usually, a message-passing mechanism
s implemented to allow information to flow between graph elements,
.e., nodes and edges. The graph is then iteratively updated based on
he information received from their neighboring elements.

This paragraph only provides a narrow perspective of the extensive
possibilities attainable within this highly adaptable framework. Deep
learning is a fast-growing field, resulting in an incredible variety of
ideas being grafted onto this general concept. As an illustration, CNNs
have been extended to graphs by introducing diffusion-convolutional
neural networks [60]. These have subsequently been integrated into an
RNN architecture for spatiotemporal forecasting tasks [61,62].
 e

5 
3.2.2. Neural networks for physics
The field of scientific machine learning emerged at the intersection of

scientific computing and machine learning, intending to leverage data
science to improve numerical modeling [18,63,64]. A typical objective
of SciML is to construct models consistent with both the data and
the governing equations. Integrating physics at various stages of the

L process, including network architecture and loss function, ensures
hat the model adheres to physical principles with varying degrees of
ertainty. Two anticipated advantages are the enhancement of model
eneralization capabilities and a reduction in the required training
ata.

One of the most well-known techniques in SciML is undoubtedly
he promising physics-informed neural network (PINN) framework [65],

specifically designed to incorporate physics equations during training.
Equation residuals and boundary constraints are typically added to
the loss function (Fig. 8). While the loss is statistically minimized,
there is no guarantee that zero residuals will be achieved. Despite
the widespread enthusiasm for the PINNs in the literature, Chuang and
Barba [66] argued that the PINN framework is not yet mature enough
o handle real-world problems and replace, for example, conventional

CFD solvers.
Neural operator architectures [67], e.g., deep operator networks

(DeepONets) [68] or Fourier neural operators (FNOs) [69], are gain-
ing increasing attention for solving partial differential equations [18].
Neural networks learn the underlying operator, i.e., mapping between
function spaces, rather than a discrete representation. This produces a
resolution-invariant solution. Although neural operators are the leading
lgorithms in many real-time inference applications, they exhibit sub-
tantial limitations when applied to large multiphysics problems [18].

Other approaches encode the underlying physics into the neural
networks [18,70,71]. In particular, the neural ordinary differential equa-
ions (NeuralODEs) [71] architecture combines a standard differential

equation solver with a neural network. This powerful methodology
or modeling ordinary differential equations has been extended in
umerous ways [72–74]. These physics-encoded strategies are likely to

be more difficult to train but have the potential to accelerate scientific
computing significantly [18].

4. Accelerating CFD with ML

In the wake of recent advances in machine learning, the fluid
mechanics community is actively investigating ways to leverage this po-
tential to improve CFD [15–17,75]. Vinuesa and Brunton [16] proposed
 three-category classification of the applications of ML to enhance CFD
olvers (Fig. 9): (i) accelerating direct numerical simulations, (ii) im-
roving turbulence models, and (iii) developing reduced-order models.
ach of these three lines of research can accelerate calculations, which
s the focus of this paper.

From an industrial perspective, data science is impacting the design
of complex engineering systems through the implementation of digital
twins [76,77]. ML models can enrich these virtual representations of
physical entities, providing rapid and reliable predictions based on
imulations and experiments. Consequently, novel paradigms are being
nvestigated to generate digital twins capable of delivering up to real-
ime predictions without additional resource-intensive CFD simulations
78–80].

4.1. Accelerate high-fidelity flow simulations

The simplest approach is to build an ML-based surrogate model
to replace an entire CFD simulation. While effective in specific ap-
plications, this method tends to generalize poorly [18]. Incorporating
physical knowledge to guide or constrain the ML model (see Section
3.2.2) represents a promising strategy for enhancing model perfor-
mance and ensuring the generation of physically consistent predictions.
That is why research efforts are shifting toward data-driven models that
nforce underlying physics [19,75].
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Fig. 7. Schematic of a recurrent neural network (RNN). 7(a) shows the usual recursive representation. 7(b) illustrates the unfolded graph in time on a forward pass. For each
element 𝑡 of the sequence, the RNN provides an output that depends implicitly on all the previous elements.
Fig. 8. Physics-informed neural network (PINN) illustration. In this example, the neural
network predicts a velocity field 𝒖̂ from which the classical supervised loss 𝑑 𝑎𝑡𝑎 and the
physics-based continuity loss 𝑐 𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 are computed. Both losses are combined during
the training process.

Vinuesa and Brunton [17] correctly pointed out that CFD solvers
have been optimized for decades, while ML-CFD coupling is still a
new frontier. How to combine ML and CFD efficiently remains un-
clear, but it seems unrealistic to completely replace CFD with ML
shortly. A more practical approach would be to discover how to make
them work together. Hybrid methods generally result in less drastic im-
provements in computational time than purely data-driven approaches.
However, they demonstrate enhanced robustness and generalizability.
6 
For instance, Jeon et al. [81] implemented a cross-coupling strategy
to accelerate long-term unsteady simulations. The alternating sequence
ML-CFD successfully controlled the error accumulation in successive
ML model predictions. List et al. [82] showed that unrolling training
trajectories over time strongly influences the prediction accuracy for
dynamical systems, i.e., solver-in-the-loop approach. The study also em-
phasized the importance of learning a correction, whereby the model
learns to correct a classical numerical solver rather than supplanting
its role. Another popular approach is to coarsely mesh the domain,
which dramatically influences the computational time, and use ML
models to mitigate the loss of accuracy [83–86]. This technique is
known as super-resolution. Costly CFD solver subcomponents, such as
the Poisson solver for incompressible fluids, are also reasonable targets
for ML models. For example, the model predictions can improve pre-
conditioning techniques or serve as an initial guess for iterative linear
solvers [87–91].

In addition to the aforementioned methods, other initiatives in-
directly reduce calculation times by targeting the simulation prepro-
cessing steps. For example, estimating realistic boundary conditions
(e.g., inflow) may reduce the size of the computational domain and
affect computation time [75,92]. Another promising avenue for accel-
eration is automatic mesh generation, a particularly time-consuming
process requiring expert knowledge [18,93,94].
Fig. 9. Summary of some of the most relevant areas where machine learning (ML) can enhance computational fluid dynamics (CFD), according to Vinuesa and Brunton [16]. In
the present review, we focus on ML to accelerate simulations. We highlight that these three categories (b, c, and d) can lead to faster CFD calculations.
Source: Figure extracted from Vinuesa and Brunton [16].
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4.2. Enhance turbulence modeling with ML

As stated in Section 2.2, engineers mainly rely on RANS and LES
approaches. However, turbulence closure models can oversimplify the
flow behavior and be difficult to tune for a specific use case. Hence, tur-
bulence modeling is one of the major areas of research in ML-enhanced
CFD [15–17,75]. Data-driven algorithms can assist in calibrating turbu-
lence models to a particular application, learn part of a closure term, or
even provide entirely new ML-based turbulence models [95,96]. Given
the high cost of LES for wall-bounded flows, which are common in
engineering, some attempts have been made to develop data-driven
wall models for LES [97–99]. More generally, ML is a powerful and
promising approach for all kinds of fluid flow underlying models,
e.g., turbulent, reacting, or porous media flows.

ML models are not primarily designed to reduce computational
time in these cases. Nevertheless, improved accuracy can broaden the
scope of applicability for lower-cost simulations, such as RANS or
wall-modeled LES. It should be noted that hybrid ML-CFD strategies
(presented in Section 4.1) can also speed up approaches such as RANS
and LES. For example, Obiols-Sales et al. [100] successfully coupled
RANS steady simulations with a CNN to accelerate the convergence.

4.3. Reduced-order models and flow control

Reduced-order models (ROMs) [101] offer a low-dimensional, low-
fidelity representation of complex systems. The first step is identifying
an appropriate low-dimensional basis, which can be achieved through
a range of dimensionality reduction techniques. Then, the objective is
to capture the system dynamics expressed in the reduced basis. ROMs
have the potential to decrease fluid mechanics computations up to real-
time flow approximation. However, this speed-up comes at the cost of
a limited scope of application. Indeed, ROMs are usually designed for
a specific flow configuration and may not generalize well [75].

Proper orthogonal decomposition (POD) [102] is the most widely
used technique in fluid dynamics for finding a low-dimensional or-
thogonal spatial basis from flow snapshots. The basis components,
designated as modes, have the dimension of the studied domain. This
linear method is physically interpretable, which helps improve our
physical understanding of complex flows [103]. POD modes are typ-
ically ordered by energy content, and the first few modes show the
main flow structures (Fig. 10). One advantage of POD is that it allows
for selecting the number of modes included on a reduced basis, which
adjusts the trade-off between simulation fidelity and computational
speed. The Galerkin projection is a popular choice for projecting the
physical governing equations onto the modes. This procedure yields
a new system that can be solved faster than the full-order model.
However, the process is intrusive, i.e., it requires explicit knowledge
of the governing equations.

Dynamic mode decomposition (DMD) [105] is another common
approach to building a low-dimensional flow dynamics model. This
model-free data-driven technique captures the main flow dynamics
into a collection of non-orthogonal modes and constructs a linear
model describing the main flow evolution in time. DMD and POD are
complementary approaches but share some similarities. They rely on
singular value decomposition to build the best linear model fitting the
data. However, DMD associates each mode with a temporal frequency,
which is particularly relevant for periodic systems. Numerous exten-
sions to these methods (e.g., higher-order DMD [106], SINDy [107])
have been implemented to improve the approximation capabilities of
reduced-order models.

ML progress offers new opportunities for improving reduced-order
modeling strategies [75]. A contemporary approach is to train a neural
network to map high-dimensional flow snapshots to a low-dimensional
latent space in a non-intrusive manner, using, e.g., autoencoders (AEs)
[108]. Non-intrusive reduced-order models (NIROMs) can solve the main
limitations of classical intrusive approaches. (i) NIROMs avoid the
7 
Fig. 10. Lattimer et al. [104] used the proper orthogonal decomposition (POD) to
create a reduced-order model (ROM) of a buoyant plume simulation. This figure shows
the contribution of the first velocity and temperature modes (1, 2, and 3 from left to
right) to the ROM. Each mode adds different levels of coherent structures.
Source: Figure modified from Lattimer et al. [104].

need for cumbersome CFD code manipulations during the projection
step. (ii) They may learn a more compact data representation using
non-orthogonal and nonlinear encoding. (iii) Linear methods such as
POD and DMD may encounter difficulties in handling nonlinearities.
Modern ML techniques can also be instrumental in capturing the system
dynamics of the flow on a reduced basis. Neural networks with specific
architectures, such as LSTMs, are trained to predict the nonlinear
temporal evolution of a flow.

POD, DMD, and other ROMs are ideal candidates for tackling fluid
flow control tasks, where model responsiveness is critical. It should
also be noted that the deep reinforcement learning framework [109],
which brings deep neural networks into the reinforcement learning
[110] process, is also well-suited to complex control issues such as those
related to fluid dynamics [111].

5. AI-accelerated CFD simulations for built environments

In their detailed review, Calzolari and Liu [20] investigated the
potential of deep learning for computational fluid dynamics analysis
in built environment applications. They observed that most studies
employed machine learning to substitute costly CFD simulations and
achieve rapid predictions. Hence, they concentrated on deep learn-
ing surrogate modeling when reviewing built environment studies.
The authors emphasized that some promising methods have yet to
be fully explored in this field, such as super-resolution, turbulence
model enhancement, or physics-informed deep learning. We share this
perspective and believe bridging the gap between the built environment
field and advanced ML methods is essential.

Besides, a complementary and updated review is necessary. The
current section comprehensively analyzes recent literature to identify
emerging trends in surrogate modeling for accelerating built environ-
ment studies. We then focus on the developments in reduced-order
models. Finally, we describe attempts to integrate ML into CFD solvers
with hybrid strategies.

5.1. Direct surrogate modeling for built environment CFD applications

Westermann and Evins [112] pointed out that surrogate modeling is
already a prevalent trend in current research on building performance
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simulation and optimization. Their literature review concentrated on
sing ML surrogates to improve the design of sustainable buildings.
lthough the conclusions drawn are relevant for CFD surrogate models,

t is worth noting that almost all the listed surrogate models target
uilding simulation software that does not include CFD codes. The
uthors identified four stages in the building design process that can
enefit from fast surrogate models: (i) conceptual design, (ii) design
ptimization, (iii) sensitivity analysis, and (iv) uncertainty analysis.
he review highlighted promising accelerations for building design

optimization tasks, reducing computation time by up to 80% without
ompromising the optimum quality. However, challenges remain to be
ddressed, particularly regarding generalizability, interpretability, and
he computational cost of creating surrogate models [20,112].

As illustrated in Table 1, many recent studies have applied ML tech-
niques to replace heavy built environment CFD simulations completely.
We can observe that all building applications (indoor and outdoor) are
part of this trend.

5.1.1. Surrogates for high-level metrics
CFD simulations are often conducted to obtain a high-level metric

f interest, either to optimize its value or to verify that it meets
pecific criteria. These metrics can correspond to global indices, such as
hermal comfort level, pollution concentration, or air change efficiency.
raining data track the evolution of high-level metrics under various
imulation conditions and can then be used to learn the response
urface. Therefore, the models typically learn functions that map geo-
etric features and physical quantities describing the problem (i.e., the

nputs) to some figures of merit aggregating information produced by
 CFD simulation (i.e., the outputs). The most popular models for this

task are undoubtedly fully connected neural networks [113–115,118,
120] and tree-based algorithms [116,117,119].

Concerning indoor studies, Tian et al. [113] and Li et al. [114]
rained FCNNs to predict indoor air quality, thermal comfort, and
nergy performance in a room. Output values are indicators such as

the room energy consumption, CO2 concentration, air age, and thermal
omfort predicted mean vote. In a related development, Ding and Lam
116] proposed to infer a novel index for estimating cross-ventilation

potential. Similarly, outdoor CFD simulations can predict wind char-
acteristics [117,119,120] or pollutant concentration [118], which are
common targets for surrogate models.

5.1.2. Surrogates for spatial fields
Some studies attempt to predict spatial information rather than a

high-level metric to obtain more detailed results, often relevant for
engineering purposes.

Kim et al. [121] and Shin et al. [122] employed CNNs to make
spatial predictions regarding IAQ from images. Zhou and Ooka [123,
124] and Quang et al. [126] demonstrated that FCNNs can estimate
he velocity and temperature distributions for non-isothermal cases
cross the entire domain of interest. Hodges et al. [43], Lattimer et al.

[104], and Su et al. [127] developed surrogate models to estimate spa-
tially resolved temperature, velocity, or smoke visibility slices within
a building. Transpose convolutional neural networks, well-suited for
upsampling tasks, were trained to generate images from high-level
fire scenario descriptions in less than a second. They demonstrated
promising generalization capabilities with acceptable accuracy for fire
safety engineering.

Regarding outdoor applications, Javanroodi et al. [131] used FCNNs
to estimate the local wind speeds or air temperatures in arbitrary urban
morphologies, achieving satisfactory accuracy. Peng et al. [129] made
pioneering efforts to adapt FNOs to a 3D dynamic microclimate simu-
lation at an urban scale. This FNO approach significantly accelerated
simulations with an error rate of less than 1% and satisfactory gener-
alizability across different wind directions. Shao et al. [25] proposed
a novel physics-informed graph neural network (i.e., combining GNN
and PINN approaches) for urban wind field fast predictions (Fig. 11).
8 
They claimed that their model met the requirements of low cost,
epeatability, reliable precision, scalability, and high performance. Nev-

ertheless, they acknowledged the necessity to extend their work to more
omplex scenarios. Huang et al. [130] utilized generative adversarial

networks (GANs) [135] as surrogate models to accelerate urban design,
which they achieved by a factor of more than 100 in their research.
They targeted multiple fields of interest, such as pedestrian-level wind,
thermal comfort, and accumulated solar radiation. Glumac et al. [11]
and Lamberti and Gorlé [128] employed ML models to determine the
ressure coefficients on building facades. They utilized a multi-fidelity

approach, incorporating low-fidelity RANS and high-fidelity LES data.
Lin et al. [134] used FCNNs to predict pollutant dispersion in an

ideal urban environment. With a relative error of NO concentration
below 20%, they showed that a surrogate model can provide valuable
insights within a few seconds. Similarly, Jurado et al. [133] trained
several state-of-the-art CNN-based deep learning architectures to pre-
dict airborne pollutant dispersion. They achieved the best results using
the multiResUnet architecture [136]. Pedro Souza de Oliveira et al.
[132] focused on predicting the concentration field associated with 2D
atmospheric dispersion cases. The authors obtained promising results,
even when considering the influence of wind.

5.1.3. Observed trends in direct surrogate modeling
Computational time savings. Surrogate models provide almost instan-
aneous predictions, replacing time-consuming CFD simulations and

thereby offering tremendous computational time savings. Authors often
claim that models are faster by several orders of magnitude. However,
t is crucial to counterbalance this advantage with the model’s general-
zation capabilities and the time required for data generation and model
raining, including hyper-parameter optimization.

Many simulations must be run to populate the learning database,
usually from dozens [113,114,134] to thousands [43,116,133]. A best
practice is to balance database size with model performance. Most
studies employed RANS solvers to generate data within a reasonable
time frame, resulting in models with a limited degree of accuracy.

If the model is tailored to a particular situation, the entire learning
rocess must be repeated for each new study [11,119,124–126,128].

Although the gains in computation time may be less impressive, this re-
training strategy can still be effective when many calls to the surrogate
model are necessary, such as for optimization purposes. Mortezazadeh
et al. [119] demonstrated that a training database with an angle step of
5◦ for wind direction could be sufficient for training a model predicting
the wind power potential over a specific urban area. In their case, they
needed 24 h of computation to generate the database. Zhou and Ooka
[124] and Quang et al. [126] fairly displayed the computation time
comparison between a classical CFD approach and the surrogate model
pproach, including data generation and model training. Glumac et al.
11] and Wei and Ooka [125] stated that a promising way to reduce

the retraining cost is using pre-trained models, i.e., transfer learning.

High-level metrics versus spatial fields. Focusing the learning effort on
he high-level goal appears to be an effective strategy. The models
emonstrated good accuracy, which is highly valuable, especially for
he early stages of built environment studies that may not require
igh precision. In light of these readings, the weak points are the
ollowing. (i) The generalization capabilities. Most studies focused on a
imited use case with strong hypotheses, such as simple geometries.
ii) Lack of interpretability and investigation possibilities. Since the model
utputs are high-level indicators, much of the valuable information
rom a traditional CFD simulation is lost. In practice, extracting the full
low characteristics is often crucial, at least for consistency checks. (iii)
o uncertainty estimate. For engineering purposes, exploiting back-box
odels without estimating uncertainty is inadvisable, particularly in

xtrapolation tasks.
With the advancement of ML methods, more studies attempted to

predict spatial fields (see Table 1). This approach is appealing as it
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Table 1
Recent contributions from the built environment field using machine learning for CFD direct surrogate modeling.

Reference Building
application

Study focus Machine learning
model

Physics
incorporated

Predicted target
typea

Prediction
scopeb

Indoor Out-
door

High-level
metrics

Spatial
fields

Local Global

Tian et al. [113] ∙ IAQ, thermal comfort, and energy performance. Single
room. Stratified environment (heating and cooling).

FCNN ∙ ∙

Li et al. [114] ∙ IAQ, thermal comfort level, and energy consumption.
Single room. Smart environmental control.

FCNN ∙ ∙

Shen et al. [115] ∙ Inverse tracing of fire source location. Single room. The
forward model predicts the temperature distribution.

FCNN ∙ ∙
(forward)

∙

Ding and Lam [116] ∙ ∙ Cross-ventilation potential. High-density cities. Linear regression,
gradient boosting

∙ ∙

He et al. [117] ∙ Pedestrian-level wind environment. Low-Velocity Areas.
Isolated rectangular buildings.

Extra trees
regressor

∙ ∙

Wai and Yu [118] ∙ Vehicle-derived airborne particulate dispersion within a
compact high-rise-built environment.

FCNN ∙ ∙

Mortezazadeh et al.
[119]

∙ Wind power potential of a cluster of roof-mounted wind
turbines.

Random forest ∙ ∙

Higgins and
Stathopoulos [120]

∙ Wind velocity for wind turbine placement in urban areas. FCNN ∙ ∙

Kim et al. [121] ∙ Optimize portable air cleaner placement in a room. CNN ∙ ∙

Shin et al. [122] ∙ IAQ. Mean age of air. Reefer containers. FCNN, CNN ∙ ∙

Zhou and Ooka [123] ∙ 2D indoor environment, including both velocity and
temperature distributions.

FCNN ∙ ∙

Zhou and Ooka [124] ∙ Indoor airflow prediction. FCNN ∙ ∙

Wei and Ooka [125] ∙ Reconstruct an indoor airflow field based on an
experimental dataset.

FCNN PINN ∙ ∙

Quang et al. [126] ∙ Indoor airflow distribution in multi-storey buildings. FCNN ∙ ∙

Hodges et al. [43]
Lattimer et al. [104]

∙ Spatially resolved temperatures and velocities. Fire safety. CNN ∙ ∙

Su et al. [127] ∙ Smoke motion and the Available Safe Egress Time in an
atrium. Fire safety.

CNN ∙ ∙

Lamberti and Gorlé
[128]

∙ Pressure coefficients on a highrise building. FCNN ∙ ∙

Glumac et al. [11] ∙ Wind pressures and wind loads on high-rise buildings. SVM, FCNN,
random forest,
gradient boosting

∙ ∙

Shao et al. [25] ∙ Urban wind field. FCNN PINN, GNN ∙ ∙

Peng et al. [129] ∙ Urban wind field. FNO Neural
operator

∙ ∙

Huang et al. [130] ∙ Environmental performance-driven urban design. GAN ∙ ∙

Javanroodi et al.
[131]

∙ Climate variables in arbitrary urban morphologies, with a
focus on extreme climate conditions.

FCNN ∙ ∙

Pedro Souza de
Oliveira et al. [132]

∙ Gas dispersion. FCNN ∙ ∙

Jurado et al. [133] ∙ Airborne pollutant dispersion. CNN ∙ ∙

Lin et al. [134] ∙ Pollutant dispersion in the near-wake of building. Ideal
urban environment.

FCNN ∙ ∙

Abbreviations
CNN: Convolutional Neural Network, FCNN: Fully Connected Neural Network, FNO: Fourier Neural Operator, GAN: Generative Adversarial Network, GNN: Graph Neural Network,
IAQ: Indoor Air Quality, PINN: Physics Informed Neural Network, SVM: Support Vector Machine.
a Distinction between models predicting (i) aggregated metrics of interest (i.e., high-level metrics) or (ii) spatial distributions of quantities of interest (i.e., spatial fields).
b Distinction between models providing predictions for (i) a specific subpart of the domain of interest (i.e., local) or (ii) the whole domain at once (i.e., global).
9 
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Fig. 11. PIGNN-CFD architecture proposed by Shao et al. [25]. A graph neural network (GNN) iteratively computes the next state 𝑀 𝑡 (a). An encoder generates a latent graph
𝐺0 from the input graph (c), which is updated through 𝑛 rounds of learned message-passing steps (d) and then decoded to produce the output 𝑄 at the next time step (e). In the
GNN architecture, trained neural networks process a subset of the graph (i.e., local approach) but are applied to the entire domain to make global predictions. Therefore, their
model scales up to arbitrary large-scale urban scenes.
Source: Figure extracted from Shao et al. [25].
addresses the lack of investigation possibilities. Huang et al. [130]
demonstrated the importance of obtaining global information (i.e., spa-
tial fields) to optimize urban blocks (Fig. 12). Indeed, the GAN-based
field surrogate outperformed the FCNN-based average metric surrogate
for this optimization task.

From our perspective, spatial field surrogate modeling is a crucial
approach for expanding the use of ML in CFD engineering studies.
Although the results are promising, the models’ ability to generalize re-
mains a significant concern. Furthermore, we noticed that most studies
focused on 2D cases or predicted 2D slices, suggesting that the approach
has difficulty scaling to 3D.

Global versus local approach. As Table 1 depicts, ML-CFD studies can
be divided into two main approaches based on their prediction scope:
global and local.

On one hand, the global approach provides predictions for the entire
domain of interest simultaneously. High-level metric surrogate models
(see Section 5.1.1) mainly relied on global approaches, given that
the outputs correspond to some metrics that summarize the global
simulation. The spatial field surrogates (see Section 5.1.2) that pro-
vided global predictions either generated outputs from features [43,
104,127] or maintained the spatial arrangement between inputs and
outputs [122,129,130,133] (see, e.g., Fig. 12a). However, if the dimen-
sions of the model inputs or outputs depend on the domain size, (i)
the model is probably tailored to a specific domain size, and (ii) the
learning procedure is unlikely to work on a vast domain. Therefore,
they may exhibit deficiencies in generalization and scalability, as ev-
idenced by the following examples. (i) It is impossible to generalize
to new domains without retraining while using an FCNN to predict a
spatial field with a global approach [123,124,126]. (ii) Complex deep
learning architectures were involved in handling the problem’s dimen-
sionality, e.g., CNN [43,104,122,127,133], FNO [129], and GAN [130].
10 
(iii) Peng et al. [129] faced GPU memory limitations in their work on
3D urban-scale simulations.

On the other hand, the local approach provides predictions for a
subpart of the domain (Fig. 13). Applying the same model to different
subparts of the domain makes it possible to generate a prediction
map. Thus, it is particularly well-suited for spatial field predictions.
As for the global approach, local predictions relied on handcrafted
features [11,128,131] or raw data from the local flow field [25,132]
as inputs. This local treatment restricts the problem dimensionality,
i.e., input and output sizes are usually reasonable, which brings some
major advantages. (i) Model architecture is simpler, (ii) the model
predictions scale up to any domain size, and (iii) learning is data-
efficient because one global simulation provides many local samples.
Intuitively, compared to the global approach, one potential drawback
is that inputs may not provide sufficient information to solve the local
problem, i.e., the problem is ill-posed. Also, if all local predictions
are made independently, it may create a lack of overall coherence in
the predicted field. Pedro Souza de Oliveira et al. [132] demonstrated
that the local approach can be employed for both unsteady and steady
dispersion of pollutants. For a given cell, they gathered information
from this cell and its neighborhood as input for an FCNN to predict the
next cell state (Fig. 13). Shao et al. [25] used a GNN to predict the next
state at the node level (Fig. 11). With this approach, their model scales
up to arbitrary large-scale urban scenes. We noticed that some studies
included the position as an input, i.e., the global coordinates related
to the local prediction to perform [11,25,125,131]. In our view, this
choice may not align well with creating a versatile local model as the
global position information could lead to overfitting.

Transient simulation predictions. Most of the reviewed studies treated
their problem in a classical manner, assuming a steady flow. However,
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Fig. 12. Two of the surrogate models proposed by Huang et al. [130] in their study are presented here. A comparison was conducted between a generative model predicting the
fields of interest (a) and a fully connected neural network predicting high-level metrics (c). In (a), 𝐺 denotes the generator, and 𝐷 is the discriminator. These are deep neural
network architectures involving convolutional layers. In (c), the neural network takes six morphological indicators as inputs to predict averaging values of the environmental field.
In their article, the results of this comparison underscored the importance of predicting information on the spatial distribution of environmental indicators.
Source: Figure modified from Huang et al. [130].
Fig. 13. Local approach described by Pedro Souza de Oliveira et al. [132]. The model
uses only the local state as input to make a local prediction. In particular, this approach
enables scaling across any domain without additional training.
Source: Figure redrawn from Pedro Souza de Oliveira et al. [132].

it may be important to simulate the temporal evolution. Hodges et al.
[43] and Lattimer et al. [104] conducted unsteady fire simulations.
Nevertheless, the models predicted temporally averaged outputs and
were not intended for transient predictions. Shao et al. [25] pointed
out that their physics-informed GNN maintained consistent predictions
while taking approximately 20 times larger time steps. This advantage
could be crucial in improving computing efficiency for unsteady prob-
lems. Peng et al. [129] and Pedro Souza de Oliveira et al. [132] tackled
transient problems and exhibited strong predictive capabilities for a
single time-step transition. However, the authors revealed the error
accumulation associated with the ML sequential time step predictions.
Hence, data-driven unsteady simulations that run over a long period
will likely encounter stability issues.

Embedding physics. Although SciML is rapidly growing (see Section
3.2.2), efforts to incorporate physics into surrogate models for built
environment studies are still limited. Wei and Ooka [125] and Shao
et al. [25] added terms in the loss function to incorporate the boundary
condition constraints or the residuals of the underlying equations,
i.e., the PINN approach. Wei and Ooka [125] found out that PINNs
yield results that adhere more closely to the laws of physics and
are more robust when dealing with limited data. Peng et al. [129]
11 
adapted FNO for a realistic urban-scale simulation and demonstrated
high accuracy. Several articles discussed the integration of physics into
their future work [43,129,132,133], underscoring the importance of
investigating this avenue.

5.2. Reduced-order models for built environment CFD applications

Reduced-order models are capable of providing predictions in near
real-time for building engineering CFD studies by capturing main flow
features (see Section 4.3). Masoumi-Verki et al. [137] reviewed re-
cent advances in ROMs for predicting urban airflow and pollutant
dispersion. They reported that the current focus is on NIROMs, which
demonstrate superior potential for approximating real-world nonlinear
wind flows. The authors also noted that the POD technique may not
be the best choice for urban flow due to constantly changing boundary
conditions, which can deteriorate POD performance.

Table 2 contains some recent studies that utilized ROMs for building-
related applications. Machine learning techniques are deployed for the
two primary stages of developing ROMs: reducing dimensionality and
computing feature dynamics.

The classical POD approach has been extensively studied for model-
ing built environments but remains a standard for reducing dimension-
ality [137]. Lattimer et al. [104] demonstrated, in a simple 2D case (see
Fig. 10), that POD can reasonably represent the global buoyant plume
flow 2–3 orders of magnitude faster than CFD simulations. By com-
bining POD with radial basis function (RBF) interpolation, Luo et al.
[24] successfully obtained accurate and rapid predictions of indoor
airflow. However, autoencoders exhibited better results for both indoor
and outdoor studies [138,139]. Indeed, Masoumi-Verki et al. [137]
confirmed that advanced nonlinear methods based on neural networks
are promising for the dimensionality reduction step. Upon further study
of AEs, it becomes clear that fully connected AEs do not scale well to the
problem dimensionality [137]. Convolutional autoencoders (AE-CNN)
are better suited for complex fluid dynamics problems, such as those
related to urban areas [139–141]. Masoumi-Verki et al. [141] improved
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Table 2
Recent contributions from the built environment field using reduced-order models for CFD.

Reference Building application and model focus Dimensionality
reduction

Reduced basis
coefficient determination

Lattimer et al. [104] Indoor. Velocity and temperature fields. 2D buoyancy-driven
plumes from fires.

POD PDE projection
(intrusive)

Luo et al. [24] Indoor. Air velocity and temperature fields. 3D non-uniform
environment with multiple boundary conditions.

POD RBF

Wang et al. [138] Indoor. Air velocity field. 2D room with variable inlet
velocity.

POD
AE-FCNN

FCNN

Xiang et al. [139] Outdoor. Urban airflow (wind field) with dynamic boundary
conditions. 2D-slice at the pedestrian level.

POD
AE-FCNN
AE-CNN

XGBoost

Xiang et al. [140] Outdoor. 3D urban airflow (wind field) with dynamic
boundary conditions.

AE-CNN XGBoost

Masoumi-Verki et al. [141] Outdoor. Urban airflow. Turbulent airflow field in the wake
region of an isolated high-rise building, located in an
unstable thermal stratification condition.

AE-CNN
Multi-scale AE-CNN
Self-attention AE-CNN

Parallel LSTM

Masoumi-Verki et al. [142] Outdoor. Urban airflow. Turbulent airflow field in the wake
region of an isolated high-rise building.

WGAN-AAE Parallel bidirectional
LSTM

Abbreviations
AAE: Adversarial Autoencoder, AE: Autoencoder, CNN: Convolutional Neural Network, FCNN: Fully Connected Neural Network, LSTM: Long Short-Term Memory,
PDE: Partial Differential Equation, POD: Proper Orthogonal Decomposition, RBF: Radial Basis Function, WGAN: Wasserstein Generative Adversarial Network,
XGBoost: Extreme Gradient Boosting.
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the AE-CNN approach by considering the multi-scale nature of the flow.
The authors explained that convolutional layers only capture local cor-
relations among data and may be limited for non-local correlations. To
overcome this limitation, they implemented a multi-scale convolutional
autoencoder and a self-attention convolutional autoencoder. The study
revealed that the self-attention AE-CNN model outperformed the other
models in reconstructing the velocity field of a simplified urban geom-
etry. In a similar scenario, Masoumi-Verki et al. [142] demonstrated
that adversarial autoencoders performed better than the self-attention
AE-CNN in predicting the turbulent kinetic energy of the flow field.
Therefore, when POD is inefficient for addressing complex airflows,
advanced neural network approaches such as adversarial autoencoder
or AE-CNN may successfully reduce dimensionality with reasonable
accuracy.

Neural network techniques are also increasingly involved in com-
uting feature dynamics in reduced space. Luo et al. [24] emphasized
he limited interpolation ability of RBF and suggested using better inter-
olators, such as neural networks or SVMs. Recurrent neural networks
e.g., LSTM) or temporal CNN [143] have been successfully used for

outdoor urban airflows [137].
Table 2 highlights that advanced machine learning regression tech-

iques such as extreme gradient boosting [144] or LSTMs are already
used for built environment applications.

The computational time gains reported for the proposed ROMs are
remarkable in the reviewed papers. These models demonstrated reduc-
ions in time ranging from 2 to 6 orders of magnitude compared to CFD
imulations. However, as with direct surrogate modeling (cf. Section

5.1.3), these results must be balanced with the model’s generalization
capabilities and the time required to create the dataset and to train
the model. Nevertheless, there is considerable interest in ROM-based
control systems that make numerous calls to the model.

While the ROM procedure is powerful, it is essential to recall that
OMs are typically tuned to a specific situation. As Luo et al. [24]
tated, the ROM needs to be rebuilt if there are any changes to the
eometry or other aspects within the domain. Nevertheless, studies
ave shown that ROMs can adapt to different boundary conditions [24,

138–140]. Even if a ROM must be rebuilt, transfer learning techniques
appear promising to accelerate this process [24,142].

Although neural network-based NIROMs have great potential, chal-
enges still need to be addressed. The main weaknesses include the
12 
computational cost of training, the physical interpretation of the model,
the embedding of physics, and the stability and robustness of the

odel [137]. Physical interpretation, in particular, is a major challenge
or engineering purposes. Classical ROMs (e.g., POD-Galerkin) have
he significant advantage of being physically interpretable (see Section

4.3), unlike the black-box models, which have the potential for improv-
ing ROM accuracy. Incorporating more physics into these data-driven
models is crucial to improve their performance and interpretability.
Efforts are already underway to tackle these challenges [137], but they
must continue to enable the use of ROMs in increasingly complex and
realistic situations.

5.3. Hybrid approaches for built environment CFD applications

Although machine learning models can drastically reduce com-
utation, they cannot claim to be as reliable and accurate as CFD

simulations. This statement is particularly evident when dealing with
ong-term simulations, as pure ML predictions can rapidly diverge
rom physical reality over time (see 5.1.3). Furthermore, as previously

discussed, model generalization capabilities are often limited. Simula-
ion reliability is of paramount importance in engineering. It may be

acceptable to sacrifice accuracy for computation time for early design,
but it is still important to quantify the error, which is challenging.
Therefore, relying on an ML model for extrapolation tasks can be risky.
To address these limitations, Westermann and Evins [112] discussed
gray-box methods, which do not rely solely on data. This approach may
offer a better compromise between black-box ML models and classical
physics-based simulations. Research is underway to hybridize the two
approaches, bridging the gap between pure-ML and pure-CFD methods.
As stated in Section 4.1, this may lead to more modest computational
ains but with valuable physical consistency.

Several built environment studies explored hybrid approaches.
uang et al. [126] noted that in their future work, it would be

essential to investigate whether ML models can accelerate steady-
state simulations when used as a warm-up setting for high-accuracy
CFD simulations. This strategy could converge faster with excellent
accuracy.

Saboori et al. [145] developed an ML-based method to predict
the flow behavior and thermal pattern of a large pore-scale porous
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Fig. 14. Example of a hybrid strategy developed by Mendil et al. [146] for outdoor pollutant dispersion. The deep neural network is involved in the correction stages. The
prediction is initiated with a Gaussian plume model, and masking stages ensure spatial constraints.
Source: Figure extracted from Mendil et al. [146].
media Trombe wall incorporating phase change materials. They used
high-fidelity CFD results at the micro-scale to train recurrent neural
networks. These models enabled them to scale up to large-domain
predictions. Thus, they performed long-term simulations and optimized
the Trombe wall composition, which is beyond the capabilities of stan-
dard numerical methods. We posit that a promising short-term avenue
is the data-driven approximation of costly subcomponents, which are
subsequently integrated into a classical physics-based simulation.

Mendil et al. [146] introduced a novel hybrid strategy for predicting
outdoor pollutant dispersion in 2D sections of urban areas (Fig. 14).
This approach combined a simple, fast, and interpretable Gaussian
plume model with masking and correction blocks. The masking opera-
tion enforced spatial constraints, while the correction stage mitigated
inconsistencies using a deep neural network trained on synthetic data.
The resulting approach was instantaneous, physically interpretable, and
generalizable to any simple urban geometry with reasonable accuracy.
Although there are ways to improve the methodology (e.g., 3D pre-
dictions, rigorous mass conservation, more complex conditions), this
article demonstrated that purely data-driven models are not the only
means of enhancing CFD with ML.

More generally, using ML models to learn corrections of a physical
model is a promising approach (see Section 4.1). In this line, Waibel
et al. [147] used inexpensive physics-based fast fluid dynamics calcu-
lations as inputs for ML models to predict wind pressure on the facade
of high-rise buildings. They hypothesized that such coupled methods
could improve simplified model fidelity while keeping simulation times
low. We concur with their view that physics-based models will not be
superseded shortly and that they will play a pivotal role in integrating
ML into building engineering. In a separate approach, Wang et al. [148]
proposed a data-driven framework to discover a nonlinear Reynolds
stress correction model for steady RANS simulations of urban airflows.
This correction could enhance prediction accuracy and extend the
applicability of the cost-effective RANS approach to a broader range
of engineering scenarios.

5.4. Synthesis, discussion, and future challenges

5.4.1. Emerging trends
The reviewed articles highlight that a significant body of research

has explored the potential of ML to accelerate CFD calculations within
the context of the built environment. Table 3 provides a summary of
the observed trends.

Thus far, the main focus has been to employ ML-based direct surro-
gate modeling to substitute entire CFD simulations. Surrogate models
typically target high-level metrics of interest, but we have also observed
numerous attempts to predict spatial fields. Spatial field surrogates can
provide more accurate and detailed estimations but often necessitate
13 
complex deep learning architectures. While direct surrogate modeling
may be the most straightforward to implement, it has been documented
that significant challenges are associated with models’ generalizability
and interpretability. In particular, model accuracy will likely decline
when extrapolation tasks are involved. However, it is essential to
acknowledge that direct surrogate models can be sufficiently accurate
in a constrained and well-defined context, offering significant time
savings, potentially by several orders of magnitude.

Reduced-order models have demonstrated the ability to deliver
significant computational time gains while maintaining reasonable ac-
curacy for specific flow configurations. Recently, there has been a shift
in focus toward nonlinear and non-intrusive ROMs. Advanced ML meth-
ods are becoming increasingly prevalent for dimensionality reduction
(e.g., convolutional autoencoders) and feature dynamics estimation
(e.g., recurrent neural networks or extreme gradient boosting).

Hybrid strategies have emerged to enhance the reliability and accu-
racy of purely data-driven approaches. ML models have been trained
to correct coarse physics-based computations or to substitute high-
fidelity simulation subcomponents. These gray-box methods may offer
a better compromise between black-box ML models and traditional
physics-based simulations.

5.4.2. Challenges and future directions
Alongside the enthusiasm expressed for using ML techniques to

accelerate built environment CFD simulations, we have highlighted the
main challenges that will need to be addressed in future studies. We
recommend that efforts be made to encourage interaction with the
SciML community to fill the following gaps.

Reference training data. A direct comparison of the model perfor-
mances across the studies was deliberately avoided, given the diverse
nature of the use cases involved. Additionally, it has been documented
that SciML studies often exhibit overly optimistic results [149], which
creates confusion regarding the actual computational time savings
and the most effective approaches. Therefore, open-source reference
datasets related to building engineering must be released. These data
will enable the fair comparison of proposed methodologies and foster
the development of new initiatives. As supported by McGreivy and
Hakim [149], the establishment of domain-specific challenge problems
with clearly defined evaluation metrics and baselines would be in-
strumental in guiding research efforts toward impactful topics. The
emergence of high-fidelity reference SciML datasets representing real-
world phenomena [150–153] underscores the necessity for the building
sector to align with this trend by bringing its own challenges to the
forefront.

Scaling and computational cost. Most studies concentrated on 2D
predictions and employed learning data generated through RANS sim-
ulations. This highlights the challenge in developing effective mod-
els quickly, given the time-consuming processes of data curation and
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Table 3
Review synthesis. Observed trends in recent built environment literature for accelerating CFD simulations with ML. Key strengths, weaknesses, and recommendations based on our
analysis.

Approach Main ML techniques Strengths Common weaknesses Recommendations (for weaknesses)

Direct surrogates (5.1) ∙ Instantaneous predictions
∙ Easy implementation

∙ Generalizability
(cannot extrapolate)

∙ Interpretability

∙ Incorporate physics
(improve generalizability)

Retrain using transfer learning
(avoid extrapolation)
∙ Enforce physics

↰High-level metrics (5.1.1) FCNN,
tree-based

∙ Simple ML architectures
∙ One model for multiple geometries
∙ Scalable

∙ Investigation possibilities ∙ Spatial field surrogates

↰Spatial fields (5.1.2) FCNN, CNN,
FNO, GAN

∙ Detailed fields ∙ Complex architecture
∙ Tailored to a specific domain
∙ Scalability
∙ Error accumulation (transient flows)

∙ Local approaches
(helpful for the first three
weaknesses)
∙ Hybrid approaches

Reduced-order models (5.2) ∙ Instantaneous predictions ∙ Generalizability
(specific flow configuration)

∙ Retrain using transfer learning

↰Intrusive POD / Galerkin ∙ Interpretability ∙ Limited accuracy (linear methods)
∙ Intrusive (cumbersome)

∙ Nonlinear approaches
∙ NIROMs

↰Non-intrusive POD, AE /
RBF, FCNN,
XGBoost, LSTM

∙ Non-intrusive
∙ Better accuracy
(nonlinear approaches)

∙ Interpretability ∙ Enforce physics

Hybrid (5.3)

↰Subcomponent surrogate

↰Low-cost model correction

Various ∙ Physics-based
(enhanced accuracy, robustness,
generalizability, interpretability)

∙ Complex implementation
∙ Limited acceleration

Abbreviations
AE: Autoencoder, CNN: Convolutional Neural Network, FCNN: Fully Connected Neural Network, FNO: Fourier Neural Operator, GAN: Generative Adversarial Network, LSTM: Long
Short-Term Memory, ML: Machine Learning, NIROM: Non-intrusive reduced-order model, POD: Proper Orthogonal Decomposition, RBF: Radial Basis Function, XGBoost: Extreme
Gradient Boosting.
c
R

M

model training. While reviewed studies have provided valuable proof
of concept, future research must demonstrate the ability to scale up to
real 3D problems and to learn from higher-fidelity data.

Transfer learning [154] has been proposed as a potential solution
to reduce the cost of the training phase, but further investigation is
required. The fundamental concept is to leverage pre-trained models
to address a novel problem that is related to the original one, e.g., the
same task with different domains. The new model may be trained with
 reduced dataset [155], a shortened training period, and enhanced
eneralization capabilities. Therefore, transfer learning could enable
he democratization of rapidly trained models dedicated to specific
onfigurations, which are likely to be easier to train and more accurate
han complex general-purpose models.

Local approaches (described in Section 5.1.3), which concentrate on
ubparts of the domain, offer an intriguing perspective for addressing
he issues of scalability, model complexity, and data efficiency. While

some studies have focused on cell-level predictions [81,132], other
authors within the field of SciML have suggested dividing the domain
nto blocks [90,91], which may be a better compromise for tackling

large-scale problems. Some sparsely connected network architectures
can also be regarded as local approaches. For example, with fully
convolutional networks [87,156] or GNNs [25], the domain size can be

odified at inference time. However, they can be particularly memory-
ntensive for training [25] and inference [87]. Given the prevalence
f large-scale domains in building studies, our recommendation is that
ocal approaches be subjected to more rigorous examination, as they

could facilitate the development of models that can be applied to
industrial cases.

Physics incorporation and hybridization. Improving the data-efficiency,
eneralizability, and interpretability of ML models is necessary for
ngineering purposes. Additionally, a solution should be found to
ontrol ML model error accumulation for transient simulations. From
ur perspective, incorporating more physics into the training process
nd pushing for greater hybridization with numerical solvers are crucial
teps in this direction. Promising approaches such as PINNs, GNNs,

eural operators, or hybrid strategies have begun to be incorporated n

14 
into recent built environment studies. However, they are still under-
represented within the existing literature. These efforts need to be
ontinued, combined, and expanded to produce more reliable models.
ecent SciML advances (see, e.g., Section 4) must be disseminated to

the built environment field.

6. Conclusions

The primary objective of this review is to examine the potential of
machine learning algorithms to speed up computational fluid dynamics
calculations for built environments. The current and prospective trends
and challenges have been discussed.

Our review highlights that ML methodologies are widely inves-
tigated for accelerating built environment CFD. Currently, the most
prevalent approaches are deep learning for direct surrogate model-
ing and reduced-order models, showcasing considerable reductions
in computational time. Nonetheless, critical shortcomings related to
model generalizability, scalability, interpretability, and pre-deployment
computational cost must be addressed before widespread adoption. To
overcome these challenges, we advocate for embracing emerging SciML
trends. In particular, integrating physical principles into the training
process and implementing robust hybrid ML-CFD solvers represent sig-
nificant avenues for advancement. It is encouraging to note that several
reviewed studies have progressed in this direction, yet greater effort
is still required. In addition, transfer learning and local approaches
have been identified as potentially instrumental to the acceleration
of real-world CFD cases, and further investigation is recommended.
Finally, we argue that it is of the utmost importance for the built
environment community to propose challenge problems and provide
reference open-source CFD data.

While this review has focused on ML techniques, claiming they
constitute the sole or optimal method for reducing computational time
would be fallacious. Nevertheless, we firmly believe that they will
contribute to this goal. Current literature places significant emphasis on
deep learning, but it is essential to acknowledge the efficacy of classical

L methods and recognize that replacing them with deep learning is
ot always appropriate.
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In light of the present review, the integration of ML into built
nvironment CFD is advancing toward providing faster, more accurate,
eliable, and scalable models. This progress will benefit building design
t preliminary and detailed stages, enabling the development of novel
ontrol and optimization strategies and paving the way for holistic
uilding designs.
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