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The Hahn-Banach axiom

Given a vector space E over the field R of real numbers, a
semi-norm on E is a mapping N : E → R+ such that for every
λ ∈ R and every x , y ∈ E , N(λ.x) = |λ|RN(x) and
N(x + y) ≤ N(x) + N(y), where |.|R is the usual absolute value
x 7→ max(x ,−x) on R.

HB: Given a R-vector space E , a semi-norm N : E → R+, a
vector subspace V of E and a linear form f : V → R such that for
every x ∈ V , |f (x)|R ≤ N(x), there exists a linear form f̃ : E → R
extending f such that for every x ∈ E , |f̃ (x)|R ≤ N(x).

Remark. In set-theory without the axiom of choice:
• AC⇒ HB⇒ “The Hausdorff-Banach-Tarski” paradox.
• None of these two arrows is reversible.
See Jech’s book “The Axiom of Choice” or Howard and Rubin’s
book “Consequences of the Axiom of Choice”.
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The Hahn-Banach Lemma (set theory without choice)

The usual proof of HB can be obtained by transfinitely iterating
the following Lemma (for example using Zorn’s lemma or a
transfinite recursion and the Axiom of Choice).

Lemma (Hahn-Banach, 1932, “one step”)

Let E be a R-vector space, let N : E → R+ be a semi-norm on E ,
let V be a vector subspace of E and let f : V → R be a linear form
such that |f |R ≤ N�V . For every a ∈ E\V , there exists a linear
form f̃ : V + R.a→ R extending f such that |f̃ |R ≤ N�V+R.a.
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A similar result to Hahn-Banach’s Lemma

The following result is choiceless:

Lemma (Ingleton, 1952, “one step”)

Let E be a vector space over a spherically complete ultrametric
valued field (K, |.|), let N : E → R+ be a ultrametric semi-norm,
let V be a vector subspace of E and let f : V → K be a linear
form such that |f | ≤ N�V . If a ∈ E\V , then there exists a linear
form f̃ : V + K.a→ K extending f such that |f̃ | ≤ N�V+K.a.
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Valued fields
An absolute value on a (commutative) field K is a mapping
|.| : K→ R+ satisfying the following properties for every λ, µ ∈ K:
|λ| = 0⇔ λ = 0; |λµ| = |λ||µ| and |λ+ µ| ≤ |λ|+ |µ|. Each
valued field (K, |.|) gives rise to a metric d : K×K→ R+ defined
by d(x , y) = |x − y | for every x , y ∈ K. An absolute value |.| on K
is said to be ultrametric if the associated metric d is ultrametric,
equivalently if for every λ, µ ∈ K, |λ+ µ| ≤ max(|λ|, |µ|).

• For each commutative field K, the mapping |.|triv : K→ R+

associating to each λ ∈ K the real number 0 if λ = 0 and 1
otherwise is a ultrametric absolute value, called the trivial absolute
value on K. If K is finite, |.|triv is the only absolute value on K.
• For each prime number p, the mapping x 7→ |x |p := p−vp(x) is a
ultrametric absolute value on the field Q of rational numbers,
where vp : Q→ Z ∪ {+∞} is the p-adic valuation on Q.
• Every non trivial absolute value on Q is of the form |.|τR where
0 < τ < 1, or of the form |.|τp for some prime number p and some
τ > 0 (Ostrowski’s theorem).
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Spherically complete ultrametric valued fields

A ultrametric valued field (K, |.|) is spherically complete if every
chain of balls with “large inequalities” (i.e. of the form
{x ∈ K : |x − a| ≤ r} where a ∈ K and r ∈ R+) of the metric
space (K, d) has a non-empty intersection.

Examples

-Each commutative field K endowed with the trivial absolute value
is spherically complete.
-For each prime number p, the valued field (Q, |.|p) is not
spherically complete, however, the Cauchy completion Qp of
(Q, |.|p) is spherically complete (because the unit ball of Qp is
compact).
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Semi-normed vector spaces over a valued field

Given a vector space E over a valued field (K, |.|), a semi-norm on
E is a mapping N : E → R+ satisfying for every x , y ∈ E and
λ ∈ K the properties N(λ.x) = |λ|N(x) and
N(x + y) ≤ N(x) + N(y).

For a ultrametric valued field (K, |.|), the semi-norm N is
ultrametric if the semi-metric associated to N is ultrametric,
equivalently if for every x , y ∈ E , N(x + y) ≤ max(N(x),N(y)).
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AC implies Ingleton’s statement

From Ingleton’s Lemma and the Axiom of Choice, it follows for
each spherically complete ultrametric valued field (K, |.|):

Ingleton’s statement

IK,|.|: “Let E be a K-vector space, let N : E → R+ be a
ultrametric semi-norm, let V be a vector subspace of E and let
f : V → K be a linear form such that |f | ≤ N�V . Then there exists
a linear form f̃ : E → K extending f such that |f̃ | ≤ N.”

• A.C.M. van Rooij (1992) asked whether the “full Ingleton
theorem” (i.e. the conjonction of all statements IK,|.|) implies AC.
• We shall show that in set theory ZFA (set theory without choice
weakened to allow “atoms”), the “full Ingleton theorem” + HB
does not imply AC (unless ZFA is inconsistent).
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A model of ZFA+¬AC with “multiple choices”

Levy (1962) built a model of ZFA in which there exists a sequence
(Fn)n∈N of finite sets such that for every n ∈ N, #Fn = n + 1 and∏

n∈N Fn = ∅: such a model does not satisfy AC.

However, Levy showed that this model satisfies the following
consequences of AC:

• MC: (“Multiple Choice”) “For every family (Ai )i∈I of non-empty
sets, there exists a family (Bi )i∈I of non-empty finite sets such that
for every i ∈ I , Bi ⊆ Ai .”

For every prime number p ≥ 2, the following refined statement:

• MC(p): “For every family (Ai )i∈I of nonempty sets, there exists
a family (Bi )i∈I of finite sets such that for every i ∈ I , Bi ⊆ Ai and
#Bi is not a multiple of p.”

Remark. In set-theory ZFA, MC does not imply AC. In set-theory
ZF (without atoms), MC implies AC.
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MC+∀Primep MC(p) implies HB + “Full Ingleton”

We shall prove the following Lemma:

Extension Lemma
Let (K, |.|) be a spherically complete ultrametric valued field or the
usual valued field R. Let E be a K-vector space endowed with a
semi-norm N which is assumed to be ultrametric if K 6= R. Then
MC+∀Primep MC(p) implies the existence of a mapping
associating to each ordered pair (V , f ) where V is a proper vector
subspace of E and f : V → K is a linear form such that |f | ≤ N�V ,
an ordered pair (V ′, f ′) such that V ′ is a vector subspace of E
strictly including V and f ′ : V ′ → K is a linear mapping extending
f with |f ′| ≤ N�V ′ .

The “full Ingleton theorem” follows from this Lemma in set theory
ZFA.
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Proof of the Lemma in ZFA+MC+∀Primep MC(p)

With MC, let Φ be a mapping associating to each non-empty
subset X of E ∪KE a finite non-empty subset of X . Given a
proper vector subspace V of E and a linear form f : V → K
satisfying |f | ≤ N�V , let F := Φ(E\V ) and let VF := span(V ∪ F ).
Using Hahn-Banach’s lemma (for K = R) or Ingleton’s lemma
(otherwise), the set G of linear forms g : VF → K extending f such
that |g | ≤ N�VF

is non-empty.

For the first two cases below, we let G := Φ(G).
• Case K = R. Consider the linear form f̃ := 1

#G

∑
g∈G g on VF :

then f̃ extends f and |f̃ |R ≤ N�VF
(whence MC⇒ HB).

• Case K has characteristic zero and the restriction |.|�Q is the
trivial absolute value. Consider the same linear form
f̃ := 1

#G

∑
g∈G g . Then |#G | = 1 thus for every x ∈ VF , |f̃ (x)| =

1
|#G | |

∑
g∈G g(x)| = |

∑
g∈G g(x)| ≤ maxg∈G |g(x)| ≤ N(x)

whence |f̃ | ≤ N�VF
.
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Proof of the Lemma in ZFA+MC+∀Primep MC(p): cont’d

• Other cases.
-Subcase a): The characteristic of the field K is zero; then K
extends the field Q of rational numbers; |.|�Q is non-trivial. Using
Ostrowski’s theorem, the absolute value induced by |.| on Q is
equivalent to the p-adic absolute value for some prime number p.
-Subcase b): The characteristic of K is not zero. Then, this
characteristic is a prime number p.
With MC(p), let Φp be a mapping associating to each non-empty
subset X of KE a finite subset G of X such that p does not divide
#G . Let G := Φp(G): then G is a finite subset of G such that p
does not divide #G . Let n := #G . Then |n| = 1: in Subcase a),
|n| = |n|p = 1 because p does not divide n; in Subcase b),
n ∈ Fp\{0} ⊆ K thus |n| = 1.
Now we consider the linear form f̃ := 1

n

∑
g∈G g : this linear form

extends f , and for every x ∈ VF , |f̃ (x)| = 1
|n| |

∑
g∈G g(x)| =

|
∑

g∈G g(x)| ≤ maxg∈G (|g(x)|) ≤ N(x), whence |f̃ | ≤ N�VF
.
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Some questions

-Are there links in set-theory without choice between the
statements IK obtained for various spherically complete ultrametric
valued fields K?
-Does the conjonction of the statements IQp for p prime number
imply IQ,|.|triv or HB?
-Given two different prime numbers p and q, are the statements
IQp and IQq equivalent?
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Remark

For each ultrametric spherically complete valued field (K, |.|), the
statement I(K,|.|) is equivalent to the following one (see MM-2017):

“For every vector subspace F of an ultrametric semi-normed
K-vector space (E ,N), there exists an isometric linear extender
T : BL(F ,K)→ BL(E ,K).”

Here, given a vector subspace V of E , BL(V ,K) denotes the set of
linear bounded mappings from V to K.
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