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Abstract: Macrophages represent a cell type that has been widely described in the context of
atherosclerosis since the earliest studies in the 17th century. Their role has long been considered
to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating
in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines
and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of
the necrotic core. However, recent evidence from mouse models using an elegant technique of
tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident
VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch
into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells
and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the
influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis,
formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well
as calcification and rupture of the plaque. We also analyze the relevance of animal models for
the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss
potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development
of cardiovascular events. Overall, although major findings have been made from animal models,
efforts are still needed to better understand and therefore prevent the development of atherosclerotic
plaques in humans.

Keywords: macrophages; vascular smooth muscle cells; atherosclerosis; animal models; therapy

1. Introduction

Cardiovascular diseases represent about 31% of total deaths worldwide, constituting
the first cause of total mortality [1]. Atherosclerosis, the major cause of cardiovascular
diseases, is an arterial pathology characterized by the chronic accumulation of lipid com-
ponents within the arterial wall, leading to its hardening and eventually to the complete
obstruction of the blood flow [2].

First, endothelial stress and accumulation of cholesterol-rich lipoproteins containing
apolipoprotein B (apoB) in the subendothelial space trigger an immune and inflamma-
tory response, promoting the recruitment of monocytes-derived macrophages. Second,
cholesterol-rich lipoproteins, particularly low-density lipoproteins (LDL), can undergo
oxidative modifications in the intima where they can form aggregates. This leads to their
uncontrolled uptake by macrophages and resident vascular smooth muscle cells (VSMCs)
via scavenger receptors, resulting in the formation of lipid-laden cells called “foam cells”.

Due to their omnipresence during all stages of atherosclerosis, monocytes and macro-
phages are regarded as the main actors to this pathology. However, the central role of
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these cells in plaque formation and progression tends to be controversial since resident,
undifferentiated VSMCs have recently been shown to be precursors of different cell types
including foam cells in early, middle and late stages of atherosclerosis [3–5].

This review aims to evaluate and compare the respective roles of macrophages and
VSMCs in atherosclerosis. In this work, we highlight the different arguments in favor of
the involvement of each cell type at the different stages of atherosclerosis.

1.1. At the Beginning of Atherosclerosis

Everything starts in the circulatory system. In a context still not very conducive
to atherosclerosis, a first stress occurs at the surface of the endothelium of arteries: the
shear stress. This stress results from a set of mechanical phenomena (vortices, vortex)
related to the blood flow at the curvatures of the arteries [6]. This “endothelial shear
stress” is believed to cause the first disorganization of the endothelial cells. Despite their
polygonal shape allowing them to adapt to a modified blood flow, endothelial cells located
at the bifurcation zones are strongly impacted by mechanical stresses [7]. In addition, the
absence of glycocalyx, a thick layer enriched in carbohydrates at the surface of endothelial
cells, make them more exposed to circulating apoB100-containing lipoproteins [remnant
chylomicron, very low-density lipoproteins (VLDL) and remnant VLDLs, IDLs, LDLs and
Lp(a)] whose accumulation in the intima is exacerbated in hyperlipidemic conditions [8].
The mechanisms by which these lipoproteins enter the intima are unclear but several
pathways have been described including the transcellular route and transcytosis [9,10].

The transcellular route involves structural changes in cell-to-cell junctions including
tight and adherens junctions, allowing the passage of molecules larger than 6 nm in diam-
eter. In pathological conditions such as dyslipidaemias, diabetes, hypertension, obesity
and smoking, the endothelium becomes more permeable to atherogenic lipoproteins [9].
During transcytosis, lipoproteins are taken up by endothelial cells via direct transport by
cell surface receptors and via indirect transport from the apical to the basal membrane
involving caveolae [11]. In receptor mediated-transport, lipoproteins are endocytosed and
recycled within endosomes, before being exocytosed to the opposite side of the endothe-
lium. Scavenger receptor B1 (SR-B1) [12,13] and activin receptor-like kinase 1 (ALK1) [14]
are the only two receptors that have been shown to mediate LDL transcytosis across the
endothelium. The LDL receptor (LDLR) has also been a candidate for LDL transcytosis,
especially across the blood-brain barrier [15], but recent evidence showed that degradation
of the LDLR by its natural inhibitor proprotein convertase subtilisin/kexin type 9 (PCSK9)
has no effect on LDL transcytosis [12].

Lipoprotein accumulation in the intima is not a random process in the vascular
system. Compared with arteries resistant to atherosclerosis (e.g., ascending aorta and
hepatic arteries), atherosclerosis-prone arteries (e.g., abdominal and descending aorta,
coronary and carotid arteries) are characterized by diffuse thickened intima. Diffuse
intimal thickening (DIT) is an early event present in human arteries in fetuses and infants
before the development of atherosclerosis [16]. DIT is mainly composed of vascular smooth
muscle cells (VSMCs) with abundant proteoglycans and elastic fibers but is devoid of lipids
and macrophages. DIT contributes to the development of atherosclerosis by promoting
the initial retention of lipoproteins via ionic interactions between negatively charged
proteoglycans and positively charged apolipoproteins such as apoB100 and apoE [17,18].
While lipoproteins accumulate in DIT, medial VSMCs of mono- or oligoclonal origin also
migrate to the intima where they proliferate and further contribute to DIT [19,20]. In
DIT, VSMCs of medial origin lose their contractile and spindle-shaped phenotype and
acquire a synthetic and proliferative phenotype characterized by the downregulation of
differentiated VSMC markers and upregulation of genes encoding extracellular matrix
(ECM) components such as proteoglycans. However, it is not clear whether the VSMCs
present in DIT in fetuses and infants originate from the surrounding media. This creates
optimal conditions for the retention of penetrating lipoproteins within the DIT where they
accumulate and aggregate over time, promoting their modification by reactive oxygen
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species (ROS) and enzymes (lipases and myeloperoxidase) [18]. The formation of foam
cells comprising mainly foam cells derived from VSMCs and to a lesser extent foam cells
derived from macrophages constitutes the first stage of early atherosclerotic lesions called
fatty streaks [4].

In addition, during stressful conditions (presence of oxidized LDLs, shear stress,
reactive oxygen species), endothelial cells initiate the secretion of cytokines (TNF-a, IL-1β,
IL-6, IL-8) [21,22], chemokines (CCL2,CX3CL1) [23–25] and express adhesion molecules
(ICAM-1, VCAM-1) [26]. This primary defense reaction aims at promoting the recruitment
of leukocytes, which plays an important role in the development and exacerbation of
atherosclerosis.

1.2. Monocytes as Initiators of Atherosclerosis

The implication of monocytes has been described as a risk factor for cardiovascular
diseases, notably for coronary heart disease [27]. Dyslipidemia (including hypercholes-
terolemia) is a risk factor for atherosclerosis, as it promotes LDL-C accumulation within
the arterial wall [28]. Studies on animal models showed that hypercholesterolemia was
associated with an increase in circulating monocytes and then would promote the aggra-
vation of atherosclerosis [29]. Moreover, their presence in atherosclerotic lesions has been
described in both humans and animal models [30–32]. Indeed, monocytes are reported
to initiate the atherosclerotic process via different steps: rolling, adhesion, activation and
migration through the activated endothelium.

Monocytes come from the differentiation and proliferation of hematopoietic stem and
multipotential progenitor cells (HSPCs) from the bone marrow. Studies show that cellular
environments associated with rheumatoid arthritis or hypercholesterolemia enhance HSPC
differentiation into myeloid cells (monocytes and neutrophils) [33–35].

Monocytes can be categorized according to glycoproteins expressed at their cell mem-
branes (Figure 1). Monocytes that will differentiate into macrophages express high levels
of the glycoprotein Ly6C (lymphocyte antigen 6C “Ly6Chigh” in mice) known as CD14
in humans (CD14++CD16−) and will actively contribute to atherosclerosis in contrast to
monocytes expressing low Ly6C levels and CD14+/lowCD16+ for humans [36,37]; Ly6Chigh

and CD14++CD16− are considered as precursors of M1 macrophages, producing inflamma-
tory cytokines and leading to foam cell formation, whereas Ly6Clow and CD14+/lowCD16+

were described as resident and patrolling cells, responding to infections, producing high
levels of anti-inflammatory cytokines and being able to remove damaged cells from the
vasculature [38–40]. Recent studies put in light the conversion of monocytes Ly6Chigh into
Ly6Clow [41–43], an important process that may lead to atherosclerosis regression [44].

The trafficking of monocytes to the damaged area of the endothelium is regulated
by interactions between secreted chemokine (C-C motif) ligands (CCLs) and chemokine
(C-C motif) receptors (CCRs) present at the cell surface. Each monocyte subset has a dif-
ferent phenotype: CX3CR1low and CCR2high are associated with inflammatory monocytes
(Ly6Chigh; CD14++CD16−), whereas CX3CR1high and CCR2low are associated with resident
monocytes [45]. It has been described that CXC3CR1 expression is stimulated by CCL-2
and leads to higher adhesion of monocytes [46]. On the other side, CCR2 determines the
number of Ly6Chigh cells and has an impact on the release of monocytes from the bone
marrow, even if it is not required for the monocyte migration [47].

Different models of CCLs or CCRs deficient mice put in light the role of these pro-
teins in the monocyte recruitment and the development of atherosclerosis. For example,
CCR2−/− mice showed a delay in clearance after an intramuscular injection of LDL-C,
suggesting that CCR2 is essential for monocyte migration to the lesion [48]. CX3CR1−/−

apoE−/− mouse model showed an impaired survival of Ly6Clow monocytes and enhanced
atherosclerosis [49]. Furthermore, studies carried out after inhibition of CCL2, CX3CR1 and
CCR5 in apoE−/− mice highlighted the contribution of CCL2, CX3CR1 and CCR5 in the
monocyte accumulation process and their impact on monocyte differentiation [50,51]. An-
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other finding from Gu et al. showed that CCL2 depletion in LDLR−/− mice was associated
with reduced lipid depositions (less 83%) in the aortas [52].

Figure 1. Monocyte subsets and their glycoproteins. Depending on the type of glycoprotein expressed at their membrane,
monocytes can be classified in different subsets. Classical monocytes expressing CCR2 and CD14 are associated with pro-
inflammatory macrophages. They actively participate in the aggravation of atherosclerosis by secreting pro-inflammatory
cytokines and may become foam cells. On the other hand, resident monocytes expressing CX3CR1 and CD16, are associated
with anti-inflammatory macrophages, are resistant to lipid accumulation and promote the resolution of atherosclerosis,
notably by carrying out an effective efferocytosis.

Triggering receptor expressed on myeloid cells-like 4 (TREML4) is a positive regulator
of Toll-like receptor (TRL) signaling which leads to the initiation of intracellular signaling
pathways that elicit the expression of inflammatory genes. Recently, it has been shown that
macrophages from TREML4–/– mice were hyporesponsive to TLR7 agonists and failed to
produce type I interferon, a major inducer of the M1 pro-inflammatory phenotype [53]. In
addition, TREML4 is highly expressed in patients with atherosclerosis [54,55]. In line with
these findings, TREML4 has recently been shown to regulate the expression of genes related
to inflammation and lipid metabolism in M1 macrophages [56]. In this study, they also
showed that combined apoE and TREML4-deficient mice developed less atherosclerosis
with reduced macrophage and monocyte content as well as decreased collagen deposition,
compared with apoE-deficient control mice [56]. Further research is needed to decipher the
role of TREML4 in human atherosclerosis.

After reaching the damaged/activated endothelium, monocytes roll to the lesion by
interacting with the P-selectin glycoprotein ligand-1 (PSGL-1) that can bind with P, E or
L-selectins [57]. Unlike P and E-selectins which are expressed by activated endothelial
and platelet, L-selectins are only expressed by leukocytes [57]. Additional interactions,
in particular with endothelial adhesion molecules contribute to monocyte anchoring and
transendothelial migration. Indeed, the integrin-type cell adhesion molecules, leukocyte
function-associated antigen (LFA-1) and very late antigen (VLA-4) respectively bind to intra-
cellular adhesion molecule (ICAM-1,2,-3) and vascular cell adhesion molecule (VCAM-1) or
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fibronectin [58,59]. Recent in vitro studies showed the implication of α-2,6 sialyltransferase
1 (ST6GAL1) in atherosclerosis related transendothelial migration [60].

In brief, in the atherosclerosis context, high blood levels of LDL-C and cytokines pro-
duced by the endothelium stimulate the production of two main subsets of monocytes from
the bone marrow. One subset is known to be an atherosclerosis-aggravating phenotype of
macrophages. Monocytes, following chemokine signaling roll, adhere and pass through
the activated endothelium.

At the early stage of atherosclerosis, monocytes are recruited to the subendothelial
space while SMCs remain wisely in the media layer. It would be rational to think that
these macrophage precursors, the first that arrived on the scene, take the center stage in
atherosclerosis.

2. Vascular Smooth Muscle Cells and Early Atherosclerosis

VSMCs form the medial layer of arteries and are responsible for both vascular tone
and contractility. They express a range of proteins required for their contractile func-
tions including alpha-smooth muscle actin (αSMA), smooth muscle myosin heavy chain
(SMMHC or myosin 11 (MYH11)) and transgelin (TAGLN) [61,62]. Medial VSMCs also
secrete extracellular matrix (ECM) proteins such as elastin, collagens and proteoglycans,
which can modulate the elastic properties of large arteries [4].

While medial VSMCs are elongated and spindle-shaped, VSMCs in diffuse intimal
thickening (DIT) are less elongated, display a cobblestone morphology and overexpress
ECM protein-expressing genes [63]. DIT VMSCs have more synthetic organelles such as
rough endoplasmic reticulum and ribosomes [64]. This is consistent with the fact that DIT
is abundantly composed of VSMC-derived secretory products such elastin and proteo-
glycans which trap lipoproteins in the subendothelial space [18]. In contrast, DIT lacks
macrophages [65,66]. As the first cells facing the arrival of blood lipids, synthetic DIT
VSMCs undergo lipoprotein uptake leading to the formation of VSMC-derived foam cells.
In vitro studies showed that synthetic VSMCs were more efficient at binding and accumu-
lating lipoprotein cholesterol than contractile VSMCs, resulting in a higher propensity to
become foam cells [4,67,68].

Owing to chronic lipid deposition into the arterial wall, DIT may progress to an early
atheromatous lesion [4]. At this stage, several cell types including endothelial cells, platelets
and inflammatory cells release proinflammatory mediators, leading to the dedifferentiation
of medial VSMCs into modulated (also called synthetic) VSMCs which migrate from
the media to the intima. This stage also known as pathological intimal thickening (PIT)
corresponds to the fibroatheroma and progression of atherosclerosis towards complicated
lesions. According to the original “response-to-injury” hypothesis of atherogenesis, this
migration of phenotypically switched VSMCs occurs in part as a wound healing mechanism
by overexpression of ECM components including proteoglycans [69]. However, many
studies also highlighted the role of VSMC-derived cells in plaque growth and rupture.

VSMC phenotypic switching is modulated by transcription factors including my-
ocardin (MYOCD) and its cofactor serum response factor (SRF), the two main mediators
driving the SMC contractile phenotype [67,68] and Krüppel-like factor (KLF4), which is
not expressed in contractile VSMCs. Wang et al. showed that together, MYOCD and SRF
form a ternary complex over the CArG-box elements located on the promoter region of
genes coding for contraction-related protein [67]. In contrast, KLF4 promotes phenotypic
transition of VSMCs by inhibiting MYOCD/SRF interaction in response to mediators such
as platelet-derived growth factor PDGF BB [70], oxidized phospholipids [71], cholesterol
loading [72] and interleukin (IL) 1-β [73]. Depending on the presence or absence of these
various mediators in DIT, modulated VSMCs may redifferentiate into multiple pheno-
types such as macrophage-like, adipocyte-like, endothelial-like, osteochondrogenic-like or
mesenchymal-like cells [3,74–76].

VSMCs can also undergo a phenotypic switch in response to environmental changes
related to cell-cell and cell-ECM interactions [77]. For instance, in healthy arteries, medial
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VMSCs are surrounded by a basement membrane enriched in type IV collagen and laminin,
which is in turn embedded in the interstitial matrix containing type I and III collagens.
This complex network of proteins stabilizes the structure and function of the arterial wall,
in part by sequestering contractile VSMCs within the media [78,79]. In response to arterial
injury, increased activity of proteases such as matrix metalloproteinases (MMPs) leads
to proteolytic degradation of the basement membrane and interstitial matrix [80]. Loss
of contact between medial VSMCs and surrounding ECM induces dramatic phenotypic
changes in VSMCs, which migrate toward the lesion in the intima. VSMCs also acquire a
synthetic phenotype with high production of neo-synthesized ECM components such as
proteoglycans, which contribute to lipid sequestration and retention in the intima [81].

Although macrophages are thought to play the role of initiators of fatty streaks, VSMCs
are naturally present in both medial and intimal layers (at least in humans). Moreover, as
major cells of DIT, VSMCs and their secretory products involved in early lipid retention
seem to be crucial for the onset of atherosclerosis.

2.1. At the Origin of Foam Cell Formation: Macrophages or VSMCs?

Atherosclerotic lesion is an environment characterized by oxidative stress and in-
flammation. After exposure to subendothelial ox-LDL, monocytes undergo proliferation
and differentiation into macrophages influenced by environmental factors, including the
granulocyte-macrophage colony-stimulating factor (GM-CSF) and the chemokine CXC
ligand 4 (CXCL4) [82–84].

Depending on environmental conditions (presence of cytokines, lipopolysaccharides
(LPS), oxidized lipids...), monocyte differentiation may result in different macrophage
phenotypes. For example, the better-known macrophage phenotypes are M1 (induced by
T-helper 1/Th1 cytokine signature) and M2 (induced by T-helper 2/Th2 cytokine signature),
which are respectively involved in atherosclerosis progression and resolution. Different
subsets of M2 macrophages have been described (M2a–d) as well as other macrophage
phenotypes such as Mox, Mhem and M4 [85]. After their migration into the intimal space,
monocytes are rapidly confronted with various microenvironments, with different avail-
able metabolites that will direct their differentiation into M1 or M2 macrophages. Glucose,
fatty acid and amino acid metabolism are thought to modulate macrophage phenotype and
function at the different stages of atherosclerosis (for review, see [86]). For example, specific
glucose fluxes have been shown to be utilized in M1- and M2-type macrophages in glycoly-
sis and the pentose phosphate pathway [87]. This may have an impact on imaging of the
atherosclerotic plaque using 18F-FDG PET, which relies on glucose uptake. It was shown
that only LPS-stimulated macrophages, but not M1 or M2 polarized macrophages, exhib-
ited an increased glucose uptake and could therefore be more easily detected by 18F-FDG
PET [88]. Some less known atheroprotective phenotypes (HA-mac; M(Hb); Mhem) carrying
out hemoglobin, cholesterol and erythrocyte clearance have also been described [89]. M1
and M2 macrophages have been described in both humans and mice: the M1 phenotype,
sensitive to interferon; TNF- and LPS, which are known to secrete large amounts of pro-
inflammatory cytokines; and the M2 phenotype, influenced by the cytokines IL-4 and
IL-13, are more associated with the anti-inflammatory reaction [90,91]. The term “polar-
ization” is commonly used in reference to their ability to switch from one phenotype to
the other [90]. For instance, M2 macrophage polarization was described as mediated by
the Stat6 pathway [92]. Ox-LDLs present in atherosclerotic lesions also promote monocyte
differentiation into pro-inflammatory macrophages involving PPARγ expression [93]. A
better understanding of the metabolic regulation of macrophages associated with their
various phenotypes would provide better therapeutic and diagnostic targets.

An important point to note in the aggravation of atherosclerosis is linked to a massive
secretion of cytokines leading to the dysfunction and death of the surrounding cells. At the
origin of this phenomenon are the so-called “pro-inflammatory” macrophages. Depending
on their level of differentiation, macrophages could aggravate or delay the progression of
atherosclerosis. But what about VSMCs?
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2.2. VSMC Foam Cell Formation

Cellular plasticity is an important feature of the atherogenic process, in which arterial
resident cells need to adapt to changes in the environment. In particular, VSMCs are
able to change phenotype and convert themselves into ECM synthetic cells, but also into
macrophage-like cells in order to phagocyte the excess of lipids or cellular debris [94].
Several important studies have shown that upon switching to a synthetic phenotype,
VSMCs progressively lose the expression of contractile proteins such as αSMA, MYH11 and
TAGLN and acquire macrophages and leukocytes specific markers such as CD68, CD11b,
F4/80, HLA-DR and LGALS3/Mac2 [72,95–100]. As a result, the contribution of VSMC-
derived cells to all plaque cells based on immunohistochemical studies of atherosclerotic
plaque sections has been underestimated.

Recently, the development of an elegant methodology for VSMC lineage tracing in
animal models has allowed a precise study of the role and fate of VSMCs throughout the
different stages of atherosclerosis as well as different regions of the lesions [97–99]. The
principle of VSMC lineage tracing in atherosclerosis is to track vascular VSMCs and their
progeny to study their behavior and migration during atherogenesis. This methodology
relies on the conditional expression of reporter genes (e.g., GFP) exclusively in a specific
cell line (e.g., VSMCs), allowing identification of both parents and progeny cells. In the case
of VSMC tracing studies, Cre recombinase expression is under control of the promoter of a
gene, which is exclusively expressed in the VSMC lineage, such as MYH11. Consequently,
Cre recombinase is expressed in the same way as MYH11 and then recognizes LoxP sites
flanking a stop sequence located at a locus carrying the reporter gene. Once the stop
sequence is irreversibly removed from the parent cell DNA by the Cre recombinase, the
reporter gene can be expressed uninterrupted and independently of MYH11 expression.
The transmission of this gene to each descendant cell allows identification of all VSMC-
derived cells by the signal resulting from the expression of the reporter gene (e.g., green
fluorescence for GFP). In addition, Cre recombinase expression can be controlled by an
inducible system permitting its activation at a given time upon the administration of an
inducer such as tamoxifen. These conditional and inducible Cre recombinase systems allow
the study of VSMC fate independently of the expression of marker genes such as MYH11
or αSMA, which are often downregulated in plaques [101].

Due to the expression of macrophage-specific markers by some VSMCs, the contribu-
tion of VSMC-derived foam cells to all plaque foam cells has long been underestimated or
even ignored. VSMCs are now known to be the major cellular site of lipid accumulation,
being the driving force of atherosclerosis progression. The first piece of evidence for this
is that VSMCs, unlike macrophages, contribute to initial lipid retention in the intima of
atherosclerosis-prone arteries in utero as well as in infants and children [16,69,102]. VSMCs
also contribute significantly to the foam cell population in advanced plaques of adults [94].
A major study from the Francis group revealed that in human coronary artery sections,
at least 50% of total intimal foam cells were derived from VSMCs and that about 40% of
CD68+ cells were of VSMC rather than myeloid origin [103]. They also showed that the
gene expressions of the cholesterol exporter protein ATP-Binding Cassette A1 (ABCA1)
and lysosomal acid lipase (LAL), a cytosolic enzyme which hydrolyzes cholesteryl esters
(the main form of cholesterol storage) to free cholesterol, were significantly reduced in
VSMC-foam cells but not in macrophages-foam cells, suggesting that VSMCs may contain
a much larger burden of lipids than macrophages, as they are unable to release excess
lipid via ABCA1 and LAL [103,104]. In line with this observation, a study found that TNF
ligand-related molecule 1A (TL1A), a vascular endothelial growth inhibitor reducing neo-
vascularization, was able to inhibit the development of atherosclerosis by regulating VSMC
(but not macrophage) foam cell formation by activating ABCA1, ABCG1 and cholesterol
efflux by a liver X Receptor (LXR)-dependent signaling pathway [105].

Several studies reported mechanisms and processes by which VSMCs may accelerate
foam cell accumulation in atherosclerosis. First, the secretory properties of intimal syn-
thetic VSMCs contribute to ECM secretion by an increased proteoglycan production [102].
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ApoB100-containing lipoproteins including LDL particles are retained and modified within
the proteoglycan network built by VSMCs via hydrophobic interactions [106,107]. In vitro
studies showed that VSMC foam cell formation can occur irrespective of oxidative [108]
or enzymatic [109] LDL modifications. However, enzymatic modifications of LDL appear
to be a more potent stimulus than oxidative modifications in terms of VSMC foam cell
formation [110].

Unlike the early stage of DIT during which VSMCs are the only lipid-laden cells of
intima, later stage lesions contain macrophage foam cells derived from activated mono-
cytes [94]. In vitro study from Vijayagopal et al. focusing on VSMC-macrophage co cultures
showed that direct cell-cell contact significantly increased both cholesterol accumulation
and synthesis in VSMCs [111]. A more recent report from Weinert et al. demonstrated
that this cell-cell interaction may in part involve lysosomal transfer of cholesterol from
macrophages into VSMCs [112], which further increases their phagocytic activity. Inter-
estingly, Niu et al. also showed that extracellular vesicles released by macrophage foam
cells could promote VSMC migration and adhesion via ERK- and Akt-mediated phos-
phorylation [113]. However, the authors did not investigate whether such extracellular
vesicles were also able to promote VSMC foam cell formation. In contrast, an earlier study
reported that VSMCs were able to phagocyte cholesterol ester-rich droplets isolated from
macrophage foam cells in a metabolic activity-dependent manner [114]. A more recent
study confirmed that macrophages were able to transfer the surplus of cholesterol towards
adjacent VSMCs, even in the absence of high-density lipoproteins or ABCA1 at the cell
surface of macrophages [115].

All recent investigations, including lineage-tracing studies that can accurately estimate
the number and the origin of each cell type in plaques, agree that VSMCs are the principal
contributors to form foam cells at all stages of atherosclerosis.

2.3. Scavenger Receptors Expression, a Step towards Foam Cell Formation

The presence of foam cells is described at the early stages of atherosclerosis [116].
These cells are the result of an excessive and unregulated engorgement of modified
cholesterol-rich lipoproteins (including ox-LDLs) by VSMC and macrophages [117]. It has
been shown that ox-LDLs also trigger surface expression of “scavenger receptors” such
as scavenger receptor A (SRA), lectin-like oxidized LDL receptor-1 (LOX-1) and cluster
of differentiation (CD) 36 (CD 146 and CD 68 for humans), leading to foam cell forma-
tion [118–121]. In vitro studies also highlight the close link between TLR pathway and foam
cell formation, notably supported by the increased lipid accumulation by macrophages
after stimulation with bacterial lipopolysaccharides (LPS) [122–124]. While LDLR expres-
sion is downregulated in response to elevated intracellular cholesterol levels, scavenger
receptor expression is unaffected by this feedback regulation, resulting in uncontrolled
uptake and accumulation of cholesterol in VSMC and macrophages [125]. Nonetheless,
scavenger receptors do not only play a role in oxidized lipoprotein uptake, but also act as
lipid sensors [126].

The main scavenger receptors involved in atherosclerosis are presented in Table 1.

Table 1. Main scavenger receptors involved in atherosclerosis.

Cell Type Receptor Stimulus Function References

Macrophages

Scavenger
receptor-A1 (SR-A1) Visfatin, ox-LDL Ox-LDL uptake, cell apoptosis,

foam cell formation [127–129]

Lectin-like oxidized
LDL receptor-1

(LOX-1)

Ox-LDL, ER stress,
modified lipoproteins,

advanced glycation
end-products (AGEs)

Ox-LDL uptake, inhibition of
macrophage migration, increase in

foam cell formation
[130–133]

CD 36
Ox-LDL,

ox-phospholipids,
IL-34, visfatin

Ox-LDL uptake, cytokine release,
NLRP3 inflammasome activation,
increased in foam cell formation

[130,131,134,135]
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Table 1. Cont.

Cell Type Receptor Stimulus Function References

CD 68 Ox-LDL Ox-LDL uptake, contribution to
inflammation [136,137]

CD 146 Ox-LDL Foam cell formation, macrophage
retention [138]

TLR4 Ox-LDL, LPS, saturated
fatty acids Mediates inflammatory response [134,135,139]

Macrophage
scavenger receptor -1

(MSR-1)

Native or modified
LDL (acetylated,

oxidized
Ox-LDL uptake [140,141]

SMC

Scavenger
receptor-A1 (SR-A1)

Phorbol esters,
ROS, ox-LDL

Ox-LDL uptake, foam cell
formation [142,143]

CD 36 Free fatty acids (Oleic
acid), ox-LDL

Free fatty acid and ox-LDL uptake,
Foam cell formation [144]

Scavenger Receptor
BI/II

Intracellular cholesterol
content

Cholesterol ester uptake,
apoB-containing lipoproteins [145,146]

Lectin-like oxidized
LDL receptor-1

(LOX-1)

LPS, TNF-a, IL-1β,
IFN-y, ox-LDL, shear

stress

SMC proliferation, ox-LDL uptake,
foam cell formation [131,147]

Ox-LDL uptake is followed by an enzymatic degradation in the late endosome/lysosome
to release free cholesterol and fatty acids into the cytosol [148]. Free cholesterol can be recon-
ditioned in cholesteryl esters by the mitochondrial acylCoA cholesterol acyl-transferase-1
(ACAT-1) and stored in the endoplasmic reticulum. In homeostatic conditions, choles-
terol efflux may occur via neutral cholesteryl ester hydrolase (NCEH) activity and free
cholesterol transfer to ABCA1, ABCG1 and SR-B1. However, the atherosclerotic context
is an excess of lipids and an increased scavenger receptor expression at the expense of
cholesterol efflux mediators [149,150]. This unregulated lipid uptake and their partial
degradation in the lysosomes, leads to endoplasmic reticulum (ER) stress mediated by
unfolded protein response (UPR) and activation of “cholesterol-induced apoptosis” (involv-
ing caspases, Jun-N-terminal stress activated protein kinases (JNK) and the transcription
factor CHOP) [151–153].

Importantly, red blood cells also constitute another substrate for foam cell forma-
tion. Intraplaque hemorrhage is not only observed in the late stages of atherosclerotic
lesions [154]. Erythrocyte extravasation may represent an important source of choles-
terol, as their membranes are particularly rich in lipids including phospholipids and free,
unesterified cholesterol. Indeed, glycophorin from the erythrocyte membrane is recog-
nized by macrophage scavenger receptors. Beyond that, traces of erythrocytes at different
stages of atherosclerosis (intimal thickening, fibrous cap atheroma, neovascularization,
intraplaque hemorrhages) support their implication in promoting plaque initiation, pro-
gression, instability and rupture [155,156]. As a result, it is possible that the cholesterol
responsible in foam cell formation may also come from damaged erythrocyte phagocytosis
by macrophages [157,158].

The conclusion seems undeniable: macrophages already present in large numbers in
the fatty streak are in charge of lipid plaque clearance. Unfortunately, this unregulated
uptake of cholesterol that is only partially degraded in the lysosomes leads to foam cell
formation, a well-known driver of atherosclerosis.

Macrophages are not the only cell type expressing scavenger receptors. Indeed,
VSMCs are also able to form foam cells.

CD36 is a major receptor for ox-LDL uptake by macrophages. Matsumoto et al.
reported that certain but not all primary human aortic VSMCs were able to express CD36,
suggesting a clonal difference between them [159]. During the same year, Ricciarelli et al.
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indicated that Vitamin E downregulated CD36 expression by reducing its promoter activity
and led to a parallel reduction of ox-LDL uptake by human aortic VSMCs [160]. More
recently, Xue et al. reported that hyperglycaemia-induced VSMC foam cell formation
was mediated by a CD36-dependent ox-LDL uptake and was associated with increased
oxidative stress and NF-κB pathway activation [161]. In addition to its LDL uptake capacity,
CD36 is also able to induce VSMC foam cell formation via the uptake of free fatty acids
such as oleic acid [144]. CD36 is likely the most important scavenger receptor in VSMCs,
as antisense oligonucleotides directed against CD36 mRNA are capable of inhibiting the
up-take of ox-LDL by up to 80% [143].

VSMC foam cells display several types of scavenger receptors involved in excess
lipid loading. Like macrophages, SR-AI is expressed by VSMCs of both rabbit [144] and
human [162] atherosclerotic lesions. In human VSMCs, EGF and TGF-beta 1 stimulate
SR-AI activity in the presence of IGF 1 or PDGF BB [163]. Pitas’ group showed that SR-AI
mRNA expression in VSMCs was upregulated by redox-sensitive transcription factors
such as NFB activating protein-1, c-Jun and CCAAT enhancer-binding protein beta in
the presence of ox-LDL and ROS was correlated with cyclooxygenase-2 expression and
calcium flux [147,164,165]. Although SR-AI is a key receptor for the uptake of LDLs by
macrophages, its involvement in VSMC cholesterol burden appears to be negligible [166].

LOX-1 is present on VSMC membranes and its expression is increased in human
atherosclerotic lesions in response to ox-LDL and proinflammatory cytokines such as
IL-1α, IL-1β and TNF-α [167]. Hypertension and high blood cholesterol also induced
LOX-1 expression in VSMCs [168,169]. Mukai et al. reported that heparin-binding EGF
(HB-EGF) significantly increased LOX-1 expression and Ox-LDL uptake by promoting the
phosphorylation of ERK, p38 MAPK and Akt in VSMCs [170].

The scavenger receptor for phosphatidylserines and ox-LDL (SR-PSOX) is a transmem-
brane chemokine also known as CXCL16 present on human aortic VSMCs cell sur-face [164].
SR-PSOX levels at the cell surface of VSMCs are upregulated by IFN-γ and followed by
an intracellular accumulation of ox-LDL [165]. Although SR-PSOX has been identified as
being responsible for ox-LDL uptake by VSMCs, studies are lacking that decipher the role
of this receptor in the formation of VSMC-derived foam cells.

Additional receptors such as receptors for advanced glycation end products
(RAGE) [171,172], P2RY12 receptor [172] or LRP1 [173,174] have recently been suggested
to be key mediators of VSMC-derived foam cell formation but further investigations are
needed to clarify their precise role in atherosclerosis.

Image evidence indicates that the phenotypic change in VSMCs could be observed by
immunohistology.

Our histological analyses on human carotid samples with atherosclerotic lesions show
areas where VSMCs seem to express both αSMA and CD68, which are generally reputed
to be expressed by macrophages. Our results presented in Figure 2 suggest a phenotypic
change in VSMCs and their contribution to foam cell formation.

They are all about markers; whereas observations from the 1970s were based on ultra-
structure, mainly using electron microscopy, with the advent of antibodies and immuno-
logical techniques, most evidence supporting the role of macrophages in atherosclerosis is
currently based on “specific markers”. However, as previously discussed, VSMC plasticity
may induce the expression of membrane markers thought for decades to be specific for
macrophages.

2.4. Towards the Necrotic Core Formation

In a context of lipid accumulation, oxidative stress and high concentrations of cy-
tokines secreted by all vascular and inflammatory cells, macrophages trigger apoptosis
and potentially secondary necrosis due to the lack of an efficient phagocytosis process.
Foam cells, damaged cells and debris constitute the necrotic core. The development of the
necrotic core is also mediated by deficient phagocyte efferocytosis (clearance of apoptotic
cells by phagocytosis); indeed, foam cells (macrophages or smooth muscle cells) have a
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decreased capacity to eliminate cell debris and apoptotic bodies [175]. Consequently, early
lesions display more effective efferocytosis as compared to vulnerable plaques because of
the lower number of apoptotic cells [176,177]. At this stage of atherosclerosis, the implica-
tion of macrophages seems undeniable, both due to their presence at the very initiation of
atheroma and due to their contribution to local inflammation and necrotic core formation.

Figure 2. Immunohistological analysis of human atherosclerostic carotid samples. Human atherosclerotic carotid sections
were stained for αSMA and CD68. Higher magnifications show areas positive for both staining, containing cells which
seem to express both SMA and CD68, suggesting a phenotypic transition of VSMCs from contractile or synthetic towards a
phagocytic subset. (A) Example of an advanced atherosclerotic section with an important necrotic core and a thin fibrous
cap (few αSMA-positive cells). Higher magnifications of the delineated area show the interface between the fibrous cap and
the underlying necrotic core containing cholesterol crystals. (B) Section of human atheromatous lesion with a thick fibrous
cap. Higher magnifications show the interface between the media and the necrotic core, containing cells with potentially
intermediate phagocytic/contractile phenotypes.

Unlike macrophages, VSMCs are not specialized in removing debris and apoptotic
cells. Yet, several studies have shown that VSMCs also have phagocytic properties [178,179].
For example, Kolb and colleagues showed that senescent red blood cells are phagocytized
by primary cultures of VSMCs in vitro. However, the phagocytosis capacity of smooth mus-
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cle cells seems to be dependent on the surrounding conditions. Fries and colleagues showed
by electron microscopy that efferocytosis of apoptotic cells by VSMCs was enhanced by
the release of cytokines such as CCL2, cytokine-induced neutrophil chemoattractant-1
and TGF-beta 1 by neighboring VSMCs [180]. In contrast, when VSMCs are preloaded
with cholesterol, they exhibit reduced phagocytic and efferocytic capacities compared to
macrophage-derived foam cells. It is worth noting that under their experimental condi-
tions, VSMC-derived foam cells expressed the macrophage marker CD68 [181]. Similarly,
Clarke et al. showed in vivo that VSMC phagocytosis of apoptotic VSMCs is inhibited
by hyperlipidemia [179]. In addition, inefficient apoptotic cell phagocytosis of VSMCs in
hyperlipidemic conditions results in secondary necrosis and subsequent release of pro-
inflammatory mediators, further aggravating the chronic inflammation associated with
atherosclerosis. The inefficient apoptotic cell phagocytosis of VSMCs in hyperlipidemic con-
ditions also results in secondary necrosis and the subsequent release of pro-inflammatory
mediators, further aggravating chronic inflammation associated with atherosclerosis [179].

In addition to their inefficient ability to phagocytose apoptotic cells, apoptotic VSMCs
significantly contribute to the formation of the necrotic core. Several studies by Clarke et al.
showed that VSMC apoptosis alone increases the necrotic core volume of both develop-
ing and established plaques in apoE−/− mice [182,183], whereas macrophage apoptosis
appears to induce necrotic core growth only in established plaques [184]. Recently, a
VSMC-lineage tracing study on apoE-deficient mice fed a high fat diet showed that dedif-
ferentiated Sca1+ VSMCs located near the necrotic core could promote atherosclerosis by
evading macrophage efferocytosis [185].

The contribution of VSMC-derived cells to the total necrotic core cells was recently
assessed by Chappell and colleagues by the means of a VSMCs-lineage tracing study in
mice. Similarly to VSMC-derived cells in the fibrous cap, an average of 70% of the cells
in the necrotic core were VSMC-derived. Importantly in the necrotic core, only 10% of
VSMC-derived cells expressed αSMA but 50% of them expressed Mac3 [186], meaning
that a standard immunostaining procedure would have yielded incorrect numbers of
VMSCs and macrophages based on αSMA and Mac3 positivity, respectively. All these
studies suggest that VSMCs can promote necrotic core development by at least two distinct
mechanisms involving both their reduced efferocytosis capacity and apoptosis.

Senescence is a natural protective mechanism leading to cell division blockade to pre-
vent transmission of defects to progeny cells [187]. However, intimal foam cell senescence
mediated by DNA damage, mitochondrial deterioration or oxidative stress is deleterious at
all stages of atherosclerosis [188]. In line with this observation, telomere erosion observed
in atherosclerotic plaques [189], likely induced by repeated cell divisions of clonal VSMCs,
may activate their senescence [190]. Moreover, a recent study from Wang et al. showed that
VSMC senescence promotes plaque formation and exhibits marked effects on the fibrous
cap and necrotic core. These adverse effects were blunted via reduced DNA damage in-
duced by the expression of telomeric repeat-binding factor-2 (TRF2) in cultured VSMCs. In
this study, they also expressed a wild-type form and a loss-of-function mutant (T188A) of
TFR2, specifically in VSMCs of apoE−/− mice. TRF2188A transgenic mice showed increased
atherosclerosis and necrotic core formation, whereas TRF2 transgenic mice had increased
fibrous cap thickness and reduced necrotic core volume [191]. 8oxoG DNA glycosylase
I (OGG1) is a base excision repair enzyme which displays anti-atherosclerotic proper-
ties [192]. Shah et al. showed that both the necrotic core and the total atherosclerosis area
were reduced in ApoE−/− mice expressing a VSMC-restricted OGG1 version compared
with ApoE−/− mice deficient in OGG1 [193], suggesting a major role of VSMCs senescence
in necrotic core formation irrespective of macrophages.

3. “Of Mice and Men”

The first analyses of human atherosclerotic lesions were carried out by Virchow in the
1800s. In his description of the “Vertical section from a sclerotic plate in the aorta in process
of fatty degeneration”, Virchow revealed the presence of proliferating cells, VSMCS (“spin-
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dle shaped cells”) and foam cells (“fatty degeneration”) at the advanced stages of atheroscle-
rosis [194]. This observation constituted the first description of macrophage-related cells.
Almost a century later, Jonasson et al. showed the predominance of macrophages in the
different parts of human atherosclerotic plaque by immunohistochemistry, using suppos-
edly “specific markers” for leukocytes and for VSMCs (desmin). Macrophages represented
23.9 +/− 3.7% of the fibrous cap and 60.3 +/− 5.1 % of the necrotic core, suggesting their
undeniable role in atherosclerosis [195]. To understand the mechanisms of lipid uptake by
macrophages in atherosclerosis, Goldstein et al. explored the esterification of cholesterol
in different cell types (macrophages or fibroblast) in the presence of extracts from human
atherosclerotic plaques. Their results showed that macrophages were the only cell type
able to ingest aortic extracts and trigger cholesterol storage/esterification [196]. New
technological approaches by mass cytometry (CyTOF) highlighted different clusters and
subsets of macrophages such as “resident-like”, ”pro-inflammatory”, “anti-inflammatory”,
“involved in foam cell formation” or “involved in cholesterol efflux” [197,198].

While the first animal model of atherosclerosis was developed in rabbits, the use of
murine models has enabled the study of the implication of macrophages in atheroscle-
rosis [199]. Models involving bone marrow transplantation used by Linton in 1995 and
Herijers in 1997 have introduced the hypothesis that macrophages derived from hematopoi-
etic cells play a crucial role in atherosclerosis. In these pioneering experiments in the
field of atherosclerosis, ApoE−/− and LDLR−/− mice were irradiated and respectively
transplanted with ApoE+/+ and C57BL/6 wild type bone marrow. In the two experi-
ments, results showed a modulation of the lipid profile with a reduction of circulating
cholesterol levels [52,200]. Bone marrow transplantation and mouse chimeric models are
broadly used to assess the role of macrophages in atherosclerosis. This can range from
the study of macrophage pro-inflammatory phenotypes to the study of their metabolic
profile. For example, Kennedy et al. highlighted the contribution of CCL3 in the aggra-
vation of atherosclerosis in an LDLR−/− mouse model transplanted with bone marrow
from CCL3−/− donors [201]. In another study, Kubo et al. showed the enhancement of
atherosclerosis in LDLR−/− mice that received bone marrow from mice with defective
Fas-ligand expression (Ipr mice) [202]. Other studies such as those of Nong et al. and
Yu et al. have shown the importance of macrophage metabolism in the aggravation of
atherosclerosis, notably via hepatic and lipoprotein lipases promoting foam cell formation
and the expression of apoE involved in cholesterol efflux and SR-B1 expression [203,204].
Furthermore, the use of murine models allowed the exploration of macrophage subsets in
atherosclerosis [205,206].

The involvement of VSMCs in atherosclerosis was established in the 1960s following
their identification in both normal and injured arteries of rats, rabbits and humans by
electron microscopy [207–209]. Most plaque cells including a large part of the abundant
foam cells were therefore already thought to be VSMC-derived cells exhibiting an altered
phenotype [210]. The subsequent development of immunohistochemistry has provided a
clearer indication of the importance of each cell type in early or advanced atherosclerotic
plaques. Numerous studies showed that DIT and fibrous cap was mainly constituted of
spindle-shaped cells that showed positive results for the anti-SMC monoclonal antibod-
ies (anti-desmin), whereas most of the lipid and necrotic core cells including foam cells
were positive for leukocytes antigens such as CD14, T200 and HLA-Class II [195,211–214].
However, some of these studies pointed at the limits of immunohistochemistry, as many
“specific” VSMC markers such as desmin and YPC 1/3.12 are not expressed by the entire
VSMC population [195,212]. In addition, several investigations revealed that VSMCs can
also express myeloid and lymphoid markers such as CD68 and HLA-DR [75,98,99] leading
to probable misinterpretations of histological sections of atherosclerotic plaques in the past.
The development of lineage tracing of VSMCs in animal models allowed a precise investi-
gation of VSMC role and fate throughout the different phases of atherosclerosis [97–99].

Unlike macrophages that stem from bone marrow, VSMCs are naturally present in
the arterial wall, at least in humans. ApoE-deficient mice are the gold-standard model
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for the investigation of atherosclerosis. Although mouse arteries do not display DIT,
which mainly consist of VSMCs in human atherosclerosis prone arteries, a recent study
showed that VSMCs contribute to the majority of total foam cells in both WT and apoE−/−

VSMC lineage-tracing mice, suggesting that despite structural differences between humans
and mouse arteries, VSMCs play a central role in atherosclerosis in both humans and
murine models [215]. However, further investigations are needed in order to evaluate the
contributions of VSMCs in other in vivo models such as rabbits and rats.

Arterial remodeling after vascular injury such as in atherosclerotic plaques leads to
VSMC migration and proliferation towards the intima [216]. In line with this observation,
clinical interventions such as angioplasty with stenting may lead to rapid restenosis due
to important damage to the arterial endothelium [217]. In 1972, Stemerman and Ross
established an in vivo model in order to investigate the arterial remodeling after vascular
injury [218]. Arteries from non-human primates were exposed and cannulated with an
intravascular balloon catheter to induce endothelial denudation and were then analyzed by
electronic microscopy. The migration of VSMCs from the media to the intima as well as their
subsequent proliferation were observed within 4 days after injury. After 28 days, the injured
intima consisted in multiple layers of VSMCs surrounded by collagen and elastic fibers.
Similarities of this in vivo model of vascular injury to the early stages of atherosclerosis
strongly supported the role of VSMCs in the development of atherosclerosis [218].

3.1. The Limits of Experimentations on Animal Models

Animal experimentation presents a particular interest for the study of atherosclerosis.
It allows the investigation of different factors that may influence or directly participate in
atherogenesis such as the impact of specific genes or the impact of a diet on a population
sharing the same intestinal flora (limitation of the influences of the environment and
dietary habits). In addition, it allows ex vivo analysis (for example immunohistology) at
early stages of atherosclerosis and also permits investigation of additional atherosclerosis
aggravating factors (accelerated atherosclerosis models by proximal middle cerebral artery
occlusion, or carotid abrasion) [219,220]. The study by Yin et al. was designed to determine
and compare the lipid profiles of different animal models to a common lipid profile of
Human dyslipidemia [221].

Among the profiles obtained, that of diabetic rhesus non-human primates was the
most similar to the human dyslipidemic profile. However, the use of the murine models
remains the rule, due to their rapid reproduction, low cost and the ability to develop some
sort of early atheroma [222,223].

However, whereas cholesterol is predominantly transported in LDL particles in hu-
mans, the major cholesterol-transporting lipoproteins in mice are high density lipoproteins
(HDLs), likely owing to the absence of cholesteryl ester transfer protein (CETP) expres-
sion in mice [224]. Beyond this major difference between human and mouse lipoprotein
metabolisms, other substantial differences in the development of atherosclerosis can be
noted between patients and this animal model. Although in both humans and mice
atherosclerosis appears to develop in regions with disturbed blood flow, the primary sites
of atheroma formation in mice are the carotid arteries and aorta, but not the coronary
arteries. Also, both thick intima and fibrous cap are major features of early atherosclerosis
in humans but are not present in mice. Plaque rupture followed by thrombosis is the main
cause of heart attack in humans but is very rare in mouse models [225,226]. Calcifica-
tion is frequently observed in ruptured plaques in humans but is uncommon in mouse
models [227].

Despite these significant differences, transgenic mouse models such as ApoE-deficient
mice have emerged as a widely used, cheap, convenient and reliable animal model for
investigation of human atherosclerosis.
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3.2. From Formation to Destruction of the Fibrous Cap: The Crucial Role of Macrophages

During the necrotic core expansion, a second structure can be observed on the luminal
side of the intima: the fibrous cap. Composed of macrophages, VSMCs and ECM proteins
(type I, III, IV and V collagen, elastin), this intimal thickening plays a determinant role in
the evolution of atherosclerostic plaques [228–230]. In fact, mechanical stress (shear stress),
lipid accumulation and endogenous factors (proteases, abundance of macrophages, low
number of SMCs, low synthesis of collagen) contributes to the thinning of the fibrous cap
and may promote its rupture [231,232].

Macrophage-derived matrix metalloproteinases (MMPs) have long been observed
in human vulnerable atherosclerotic plaques and described as a factor promoting the
destabilization of the fibrous cap [233,234]. The type of secreted MMPs depends on the
macrophage phenotype and environmental factors. For example, MMP-1 (collagenase-1),
MMP-3 (stromelysin) and MMP-9 (gelatinase B) can be produced under the influence
of ox-LDL, NF-κB activation or in response to growth factors [235,236]. An imbalance
between MMP production by macrophages and the levels of their tissue inhibitors (TIMPs)
promotes plaque destabilization [237,238]. Furthermore, recent studies showed the impli-
cation of macrophage MMP-8 and -9 on VSMC proliferation and differentiation into osteo-
clasts, suggesting that macrophages would probably orchestrate SMC responses [239,240].
Macrophages and monocytes are described as the major source of protease nexin-1 (PN-1),
a serine protease inhibitor (serpin) that may also regulate plaque (de)stabilization [241,242].

A greater concentration of macrophages expressing CD68+, CD11c+ were found
in patients suffering from symptomatic acute ischemic attack while asymptomatic pa-
tients showed greater amounts of macrophages expressing CD163+ [243]. Analysis by
Virmani et al. demonstrated the influence of macrophages in the context of vulnerable
plaques. Macrophages respectively constituted 14 +/− 10% and 26 +/− 20% of thin cap
fibroatheroma (n = 15) and ruptured plaques (n = 25) whereas SMC represented 6.6 +/−
10.4% and 0.002 +/− 0.004% [244,245]. Other studies underlined the correlation between
macrophage-derived monocytes with the presence of ruptured plaques in patients suffering
from coronary artery disease [246,247].

3.3. VSMCs Are Indissociable from Fibrous Cap Formation and Rupture

The chronic deposition of LDLs in the subendothelial space results in pathological inti-
mal thickening followed by fibroatheroma characterized by the formation of the fibrous cap
surrounding the necrotic core in an attempt of healing, thus promoting plaque stability. A
recent multicolored VSMC lineage-tracing study in apoE-deficient mice showed that in the
early stages of atherosclerosis, the fibrous cap consists in average of 70% of VSMC-derived
cells and that a small but significant percentage (7%) of VSMC-derived cells expressed the
macrophage marker mac3 [186]. Interestingly, they also showed that many phenotypes of
VSMC-derived cells in atherosclerotic lesions mainly originate from the clonal expansion
of only a few medial VSMCs [186]. VSMCs located in the fibrous cap maintain the fibrous
cap integrity and thickness by secreting proteoglycans and collagens [233]. In accordance
with this hypothesis, Rheker et al. observed that VSMCs colocalize with collagen syn-
thesis in fibrous caps of human arteries [229]. Moreover, early evidence showed that a
reduced number of VSMCs resulted in plaque thinning and vulnerability to rupture [248].
More recently, two VSMC-lineage tracing studies highlighted that both KLF4 and octamer-
binding transcriptional factor 4 (OCT4), a key player involved in regulating pluripotency
in embryonic stem cells, respectively displayed pro- and anti-atherogenic properties due
to their effects on VSMC phenotype and fibrous cap thickness. While KLF4 appears to
decrease fibrous cap thickness and plaque stability by promoting the phenotypic transition
of VSMCs to mesenchymal stem cells and macrophage like pro-inflammatory cells, OCT4
may activate VSMC migration and proliferation from the media to the fibrous cap and
therefore contribute to its consolidation [99,249]. Unexpectedly, Gomez et al. showed that
inhibition the pro-inflammatory cytokine IL-1β in apoE−/− mice increased plaque fragility
by reducing fibrous cap thickness due to increased numbers of macrophages and reduced
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VSMCs and collagen content. These findings suggest that IL-1β has both detrimental and
protective effects in early and late atherosclerosis, respectively [250].

In addition, senescent VSMCs secrete less collagen but release large amounts of MMPs
such as MMP-1, MMP2, MMP-3, MMP-8 and MMP-9, therefore contributing to the degra-
dation of the structural matrix that normally strengthens the fibrous cap [240,251,252].
Although the role of VSMCs in the formation of fibrous plaque is undeniable, the mecha-
nisms by which they modulate the fibrous cap thickness and therefore the plaque stability
remains to be established.

3.4. Intraplaque Hemorrhage and Neovascularization

In the context of advanced atherosclerosis, intraplaque hemorrhage is a key event.
The presence of fragile vessels near the necrotic core enhances monocyte and macrophage
invasion and promotes red blood cells extravasation [253]. Finn et al. showed that in-
traplaque hemorrhage macrophages (stimulated by hemoglobin) differ from necrotic core
macrophages that tend to accumulate lipids. Indeed, it has been observed that hemoglobin
impacts on macrophage differentiation and prevents foam cell formation by downregulat-
ing the expression of scavenger receptors [254].

It is well established that intraplaque neovessels originate from adventitial vaso vaso-
rum close to the vascular lesions [255]. Although intraplaque neovessels lack VSMCs [256],
recent evidence suggests a role for VSMCs in angiogenesis. It was shown that both mRNA
and protein levels of vascular endothelial growth factor-A (VEGF-A) were upregulated in
medial SMCs following PPARγ activation by lipid mediators in early human atheromatous
aortas [154,257]. Earlier in vitro studies have also shown that VEGF-A can be expressed by
SMCs and that endothelial cells cultured on collagen with SMC-conditioned medium be-
came spindle shaped, exhibited an increased proliferative activity and could be organized
in capillary-like branching cord structures in collagen gels [258,259]. In addition, it has
been shown that SMCs can express angiopoietin-1, a glycoprotein promoting the formation
of endothelial tight junctions, thereby reducing endothelial permeability and stabilizing
vessels [251]. Intriguingly, VSMCs can also express angiopoietin-2 [245]. In contrast with
angiopoietin-1, angiopoietin-2 may be associated with unstable plaque microvessels due to
its association with an increased MMP-2 activity [252].

Although further investigations are needed to understand precisely how VSMCs
stimulate intraplaque neovascularization, the abovementioned studies demonstrate their
angiogenic properties and their pivotal role in the formation of neovessels. Also, whether
VSMCs improve or impair neovessel stabilization remains unclear.

3.5. Towards Plaque Calcification

Calcification is one of the processes that occurs in advanced plaques. Macrophage
cytokines and bone morphogenetic proteins contribute to plaque calcification by promoting
osteogenic differentiation of VSMCs [260–262]. In addition, the presence of cholesterol
crystals associated with calcifications can be a potential marker of plaque vulnerability.
Indeed, studies showed that macrophage accumulation was associated with cholesterol
crystals and calcifications in atherosclerotic lesions of patients suffering from acute coronary
syndrome or myocardial infarction [263–265].

VSMCs are closely linked to both medial and intimal calcification [266]. Indeed,
VSMCs can differentiate in a number of cell types besides macrophage-like cells, including
osteogenic, chondrocytic and osteoclastic cells, resulting in the downregulation of contrac-
tile protein expression such as smooth muscle protein-22α (SM22α) and αSMA [267,268].
They may express osteochondrogenic markers including osteopontin, osteocalcin and
alkaline phosphatase [266]. Osteogenesis is controlled by many cell regulatory proteins,
themselves regulated by physiological and mechanical stimuli. For example, Runx2 and
BMP2 are osteogenic markers inducing major changes in VSMC phenotype and subse-
quent calcification [269,270]. Consistent with this, patients with a rare autosomal recessive
disorder caused by a loss of MGP, an inhibitor of BMP2-mediated calcification, display
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more cartilage and vascular calcification than controls [271]. Among all physiological and
mechanical changes promoting VSMC phenotypic switch towards osteogenic, chondrocytic
and osteoclastic-like cellular phenotypes, ROS-induced oxidative stress [272,273], VSMC
senescence [274], mechanical stress [275,276] and apoptosis [277,278] appear as the most
detrimental.

4. Promising Macrophage and VSMC Targeting Therapeutic Strategies

To date, most strategies to reduce the risk of atherosclerotic cardiovascular events
have been based on lipid lowering treatments in order to limit lipid deposition in artery
walls. However, large clinical trials such as FOURIER (Further Cardiovascular Outcomes
Research With PCSK9 Inhibition in Subjects with Elevated Risk), have shown that even
aggressive LDL-C lowering up to 30 mg/dL with a combination of statins and PCSK9,
inhibitors failed to protect 100% of patients from another cardiovascular event [279]. This
suggests that other factors independent of LDL-C levels play a role in atherosclerotic plaque
development. Macrophage-induced inflammation obviously appears to be the number
one suspect responsible for this residual risk. Many therapeutic trials aiming at increasing
HDL-C levels have failed to show a significant effect on reducing major cardiovascular
events, in spite of an improved reverse-cholesterol transport [280]. Different strategies
including the use of pharmacological drugs were designed to raise HDL levels and thus
promote macrophage cholesterol efflux. In particular, CETP inhibitors were disappoint-
ing for the prevention of cardiovascular events despite increased HDL levels [281]. The
notion of HDL functionality was introduced, suggesting that increasing HDL-C alone was
not sufficient to prevent atherosclerotic complications. In addition to their function of
reverse cholesterol transport, HDLs display anti-inflammatory functions that particularly
target macrophages. Injections of reconstituted HDLs or their signature apolipoprotein,
apolipoprotein A-I (apoA-I), induced reduction in macrophage content as well as signif-
icant decrease of inflammatory M1 and increase in anti-inflammatory M2 macrophage
markers in mouse plaques [282–285]. While apoA-I is best known to activate cholesterol
efflux, its beneficial effect on macrophage polarization appears as a good opportunity for
further reducing cardiovascular risk in patients. Clinical trials using CER001 have been
disappointing in spite of an improvement of the lipid profile [286,287]. The same strategy
with different endpoints is under evaluation using CSL112 (CSL Behring), based on the
injection of reconstituted HDLs in patients with acute coronary syndrome (AEGIS-II). The
results of this study will be available by 2024 (ClinicalTrials.gov Identifier: NCT03473223).
Yu and colleagues used nanoparticles containing the synthetic LXR agonist GW3965 (GW)
to increase cholesterol efflux from macrophages and hence, promote reverse cholesterol
transport from atherosclerotic lesions in LDLR−/− mice. Animals treated with nanopar-
ticles showed a 30% reduction in macrophage content compared with control mice [288].
Similarly, Guo et al. used nanoparticles carrying the LXR agonist, T0901317 (T1317) to
increase cholesterol efflux in macrophages in vitro and in APOE-deficient mice. Nanoparti-
cles significantly increased cholesterol efflux from lipid-laden macrophages in vitro and
induced plaque regression in mice [289]. As VSMCs also greatly participate in the forma-
tion of foam cells, regression of plaques in mice treated with LXR agonists might also be
caused by the reduction in VSMC-derived foam cell content. However, VSMC-derived
foam cells lack the cellular machinery to properly efflux accumulated cholesterol. For
instance VSMCs have reduced expression of ABCA1 [215,290], and low expression of
lysosomal acid lipase (LAL) [104] compared with macrophages. As a result, increasing
ABCA1 and LAL expression in foam cells (especially in VSMCs) seems to be a promising
therapeutic strategy to reduce atherosclerotic plaque burden.

Another macrophage-targeting therapeutic strategy consists in reprogramming macro-
phages towards an anti-inflammatory phenotype M2. Schistosoma mansoni–derived
soluble egg antigens (SEAs) contain a broad range of components that exert immune
responses in vitro and in vivo [291]. Wolfs and colleagues showed that in hyperlipidemic
LDLR−/− mice, SEA treatment showed a reduction in plaque size of 44% associated
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with a general anti-inflammatory M2 macrophage phenotype characterized by high IL-10
production and diminished IL-12, NO and TNF-α secretion [292].

The predominant role of VSMCs in atherogenesis (Figure 3) has been clearly shown
by recent in vivo studies. They suggest that targeting the transition of VSMCs from a
contractile to a synthetic phenotype may be a promising strategy for prevention and
reduction of cardiovascular risks. To our knowledge, no study on a potential treatment
targeting VMSC phenotypic transition has yet been initiated. However, many single-cell
RNA sequencing studies are currently being carried out and will undoubtedly provide
valuable information on key genes that might be targeted for the development of innovative
VSMCs-targeting strategies [293–297].

Figure 3. Role of VSMCs in atherosclerosis. (A) Pre-atherosclerosis: An excess of circulating LDL particles favors their
passage into the sub-endothelial space where they undergo oxidation mediated by surrounding cells and enhanced by the
presence of extracellular matrix compounds. This diffuse intimal thickening contains synthetic VSMCs and their secretory
products elastin and proteoglycans. VSMCs may also express scavenger receptors, allowing them to ingest oxidized LDLs
in a non-regulated fashion and leading to the formation and accumulation of foam cells. (B) Macrophage infiltration, VSMC
migration and foam cell formation: Monocytes enter the arterial wall and differentiate into macrophages, whereas medial
VSMC migrate the intima, where they accumulate LDL particles and become foam cells. (C) Fibrous cap and necrotic core
formation and calcification: Synthetic VSMCs are responsible for the formation of the fibrous cap, which prevents plaque
rupture. However, apoptotic VSMCs also participate in the formation of a necrotic core. Finally, VSMCs may adopt an
osteoblast-like cell phenotype, resulting in plaque calcification. EE: Endothelial cells; DIT: Diffuse Intimal Thickening; IEL:
Internal elastic lamina.

5. Conclusions

As described in this review, macrophages and VSMCs play key roles in atherosclerosis.
Recent studies suggest that the contribution of VSMCs in atherosclerosis is supported by
their ability to change phenotype to form foam cells, phagocytes and osteoblasts, or by
their ability to build the fibrous cap. These elements are confirmed by older observations
highlighting the contribution of VSMCs to the diffuse thickening of the intima in the early
stages of atherosclerosis. In this review of the literature, we intended to confront two
different points of view of atherogenesis considering that macrophages are the driving
force of this pathology whereas VSMCs are passive bystanders and the other way around.
The paradigm that puts macrophages in the center stage is changing with the emergence
of new technologies such as cell lineage tracing. Most of the evidence obtained for the
characterization of atheroma cell composition comes from immunohistology, based on
antibodies directed against supposedly specific markers. The plasticity of VSMCs has
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been underestimated and their capacity to express phagocytic markers common to those
expressed by macrophages (CD36, CD68) changed the story. In addition, most of the data
accumulated over the last 30 years comes from mouse models, which are very different
from humans. First, mice have an inverse lipid profile relative to humans, as they transport
cholesterol mostly in HDLs while humans use essentially LDLs. Second, the blood count
is also inverted compared to humans: mice mainly have mononuclear leukocytes, while
humans have a majority that are polynuclear cells. Since lipids, and particularly LDL-C
and leukocytes are the main protagonists of atherogenesis, mouse models may produce
enormous bias in the understanding of this pathology. As far as leukocytes are concerned,
more and more publications underline the role of polynuclear neutrophils in all stages
of atherosclerosis, especially since the discovery of neutrophil extracellular traps [298].
Neutrophils are not the focus of the present review but would deserve more attention as a
source of proteases (elastase, cathepsin G, MMP-9...) and pro-oxidant enzymes (myeloper-
oxidase, NADPH oxidase...). They are by far the first type of leukocytes (65–70%) in
humans, while lymphocytes and monocytes are the most represented white cells in mouse
blood (>70%). Caution should thus be exercised in the interpretation of data obtained from
mouse studies, as the distribution of lipids and leukocytes is completely different from that
of humans. The involvement of VSMCs in atherogenesis is increasingly documented and
the modulation of their phenotypic change may represent future therapeutic options.
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