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PARADOXICAL DECOMPOSITIONS OF FREE F2-SETS AND THE
HAHN-BANACH AXIOM

MARIANNE MORILLON

Abstract. Denoting by F2 the free group over a two-element alphabet, we show in set-
theory without the axiom of choice ZF that the existence of a (2, 2)-paradoxical decompo-
sition of free F2-sets follows from the conjunction of a weakened consequence of the Hahn-
Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in
ZF of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean
space follows from the same two statements restricted to the set R of real numbers. Our
result is linked to the (m,n)-paradoxical decompositions of free F2-sets previously obtained
by Pawlikowski (m = n = 3, see [11]) and then by Sato and Shioya (m = 3 and n = 2, see
[13]) with the sole Hahn-Banach axiom.

1. Introduction

One form of the Banach-Tarski paradox is the existence of a partition S = S1⊔S2⊔S3⊔S4

of the euclidean unit sphere S of R3 and rotations u, v of the euclidean space R3 such that
S = S1 ⊔u[S2] = S3 ⊔ v[B4] where S1 ∩u[S2] = S3 ∩ v[S4] = ∅. Here the formula Z = X ⊔Y
means that Z = X ∪ Y and that X ∩ Y = ∅. This paradox, which can be viewed as a
duplication of the sphere using 4 pieces, can be obtained (see [15]) using two rotations ρ1
and ρ2 of R3 generating a free subgroup F (for example the two Satô rotations, see [14]), a
partition F = X1 ⊔X2 ⊔X3 ⊔X4 such that F = X1 ⊔ ρ1.X2 = X3 ⊔ ρ2X4, the natural action
of F on the sphere S, and a certain amount of axiom of choice to replicate the previous
paradoxical decomposition of F on each orbit of the action.

Notation 1. Given a family (Ai)i∈I of sets, the notation A = ⊔i∈IAi means that the sets
Ai are pairwise disjoint and that A = ∪i∈IAi.

More generally, given a group G and a left action . : G×X → X of G on a nonempty setX,
given two integers m,n ≥ 2, a (m,n)-paradoxical decomposition of the G-set X is a partition
X = ⊔1≤i≤mAi ⊔ ⊔1≤i≤nBi of X in m + n (nonempty) sets together with m + n elements
a1, . . . , am, b1, . . . , bn ∈ G satisfying X = ⊔1≤i≤mai.Ai = ⊔1≤i≤nbi.Bi: such a decomposition
can be viewed as a duplication of X using m+n pieces. It is known in ZFC (set theory with
the axiom of choice) that denoting by F2 the free group on a two-element alphabet, every
free F2-set has a (2,2)-paradoxical decomposition: the classical proof consists in choosing
an element in each orbit and, using this choice, replicating on each orbit the usual (2,2)-
paradoxical decomposition of the (free) action of F2 by translations on itself (see Example 2).
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In this paper, we work in ZF, set-theory without the axiom of choice, and we denote by
AC the Axiom of Choice. In [11], Pawlikowski obtained a (3, 3)-paradoxical decomposition
of every free F2-set in ZF+HB where HB is the Hahn-Banach axiom (see Section 2.1.2), a
consequence of AC which does not imply AC in ZF. In fact, Pawlikowski used a weak form
of the Hahn-Banach axiom, namely the axiom HBw (see Section 2.2.3): instead of choosing
a point in each orbit, he chose a probability on each orbit and then ended his proof with a
combinatoric argument. As a consequence, a duplication of the sphere of R3 using 6 pieces
was obtained in ZF+HBw.
Recently, Sato and Shioya (see [13]) enhanced Pawlikowski's result: using the same con-

sequence HBw of the Hahn-Banach axiom, they obtained a (3,2)-paradoxical decomposition
of every free right F2-set (and thus a duplication of the sphere using 5 pieces), leaving open
the question of whether a (2,2)-paradoxical decomposition was possible with the sole axiom
HB.
Denoting by F2 the free group on the alphabet {a, b}, and given a free action of F2 on

a nonempty (in�nite) set X, then X endowed with the Cayley graph associated to the two
generators a and b of F2 is a forest, and every orbit of this action is a 4-regular tree. In this
paper, we prove (see Theorem 2) that the existence of a (2, 2)-paradoxical decomposition
�by letters� (see De�nition 2 in Section 2.4) of a free F2-set X is equivalent to the choice
of and �end� in each connected component of the Cayley graph of X. We then prove in
ZF + HBw (see Corollary 1) that one can choose in every orbit T of a free F2-set X, a
�bi-in�nite path� or an �end� of the tree T . We then deduce in ZF + HBw + AC2,end,F2

a (2, 2)-paradoxical decomposition by letters of every free F2-set, where AC2,end,F2 is the
following weak consequence of AC2, the axiom of choice for pairs:

�For every free F2-set X, for every set Ω of orbits of this action, and every
family (PT )T∈Ω such that each PT is a bi-in�nite path of the tree T , there
exists a family (oT )T∈Ω such that for each T ∈ Ω, oT is one of the two ends
of the path PT .�

As a consequence, we obtain in ZF+HBw+AC2,end,R a (2, 2)-paradoxical decomposition
of the unit sphere S of R3 where AC2,end,R is the statement AC2,end,F2 restricted to free
actions of F2 on a set equipotent with the set R of real numbers. Notice that AC2,end,R

is also a consequence of the following statement introduced by Truss (see [16, p. 188], [5,
p. 103, form 140]):

(form 140 of [5]): �Let Ω be the set of all (undirected) in�nite cycles of reals
(graphs whose vertices are real numbers, connected, no loops and each vertex
adjacent to exactly two others). Then there is a function f on Ω such that for
all s ∈ Ω, f(s) is a direction along s.�

On the way, using Corollary 1, we provide (see Section 5.4) another proof in ZF +HBw of
the (3, 2)-paradoxical decomposition of free F2-sets obtained by Sato and Shioya.

The paper is organized as follows: in Section 2, we present various consequences of the
Axiom of Choice which will be used in our paper; in Section 3, we present some results
about Cayley graphs of actions of groups. In Section 4, we prove that a (2, 2)-paradoxical
decomposition by letters of a free F2-set is equivalent to the choice of a 1-out orientation of
each orbit; in Section 5, we prove that the axiom HBw implies the existence of an end or a
bi-in�nite path in every orbit of a free F2-set. In Section 6, we prove that the conjunction
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HBw + AC2,end,F2 implies the existence of a (2, 2)-paradoxical decomposition by letters of
every free F2-set. We notice that the existence of a (2, 2)-paradoxical decomposition by
letters of every free F2-set implies the weak statement AC2,end,F2 (see Remark 7).

2. Weak forms of the Axiom of Choice and paradoxical decompositions

2.1. Some known consequences of the axiom of choice.

2.1.1. Consequences of AC involving choice functions. We work in set theory without the
axiom of choice ZF. Given a family (Xi)i∈I of nonempty sets, a choice function for this
family is a mapping f : I → ∪i∈IXi such that for every i ∈ I, f(i) ∈ Xi. The axiom of
choice is the following statement:

AC (�Axiom of Choice�): �Every family (Xi)i∈I of nonempty sets has a choice
function.�

It is known thatAC is not provable in set-theory ZF. We shall consider various consequences
of AC, accompanied by their assigned number in Howard and Rubin's book (see [5]), for
example:

ACfin (��nite axiom of choice�, form 62): �Every family (Xi)i∈I of nonempty
�nite sets has a choice function.�

Notation 2. Given a set X, we denote by fin(X) the set of �nite subsets of X, and we
denote by fin∗(X) the set of nonempty �nite subsets of X.

A set X is said to satisfy the �nite choice property if there exists a mapping Φ : fin∗(X) →
X such that for every F ∈ fin∗(X), Φ(F ) ∈ F : such a mapping is called a witness of the
�nite choice property on X. The axiom ACfin is thus equivalent to the following one: �Every
set satis�es the �nite choice property.�

Remark 1. If Φ is a witness of the �nite choice property on a set X, then there exists a
mapping Ψ de�nable from Φ associating to each �nite subset F of X a linear order on F .

Proof. For every �nite subset F with at least n ≥ 2 elements, the one-to-one sequence
(x0 = Φ(F ), x1 = Φ(F\{x0}), . . . ) is a one-to-one enumeration of F . □

For every natural number n ≥ 2 we consider the following consequence of ACfin:

AC≤n (�axiom of choice for at most n-element sets�, form 45(n)): �Every
family (Xi)i∈I of nonempty �nite sets with at most n elements has a choice
function.�

In the particular case where n = 2, we get

AC2 (�axiom of choice for pairs�, form 88): �Every family (Xi)i∈I of two-
element �nite sets has a choice function.�

It is known that in ZF, for every natural number n ≥ 3, AC ⇒ BPI ⇒ ACfin ⇒
AC≤n ⇒ AC2, that none of the reverse implications is provable (in particular AC2 does
not imply AC3) and that AC2 is not provable (see [5]).
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2.1.2. Consequences of AC involving probabilities and �lters on boolean algebras. A boolean
algebra is a (commutative) unitary ring (B,⊕,×, 0, 1) such that for every x ∈ B, x× x = x.
Given a boolean algebra (B,⊕,×, 0, 1), then the binary relation ≤B on B de�ned by ∀x, y ∈
B(x ≤B y ⇔ x× y = x) is a lattice-order relation, with �sup� law ∨ : (x, y) 7→ x⊕ y⊕ (x× y)
and inf law ∧ = ×. The lattice (B,≤B) is thus distributive, with smallest element 0 and
greatest) element 1. Notice that for every x ∈ B, xc := 1⊕ x is the unique complement of x
in the lattice (B,≤B).
Given a boolean algebra B and an ordered abelian group (R,+, 0) with positive part R+,

a mapping µ : B → R+ is �nitely additive if for every x, y ∈ B, (x × y = 0 ⇒ µ(x ⊕ y) =
µ(x) + µ(y)) (whence it follows µ(0B) = 0 and ∀x, y ∈ B (x ≤B y ⇒ µ(x) ≤ µ(y))). A
measure on a non trivial boolean algebra B is a �nitely additive mapping µ : B → R+ where
R+ is the positive part of the usually ordered abelian group (R,+). A probability on B is a
measure µ : B → R+ such that µ(1B) = 1 (and thus ∀x ∈ B µ(x) ∈ [0, 1]). A two-valued
probability on B is a probability µ : B → {0, 1}. A �lter on a non trivial boolean algebra B
is a nonempty subset F of B such that 0 /∈ F and satisfying the two following conditions:

(1) ∀x, y ∈ F, x ∧ y ∈ F
(2) ∀x ∈ F ∀y ∈ B (x ≤ y ⇒ y ∈ F )

A ultra�lter on B is a maximal �lter F on B.

Proposition 1 (Ultra�lters on a boolean algebra). Let B be a non trivial boolean algebra.

(1) If µ : B → {0, 1} is a two-valued probability, then Uµ := {x ∈ B : µ(x) = 1} is a
ultra�lter of B.

(2) If U is a ultra�lter of B, then MU := {xc : x ∈ U} is a maximal ideal of the ring
(B,⊕,×, 0, 1).

(3) If M is a maximal ideal of B, then the quotient �eld B/M has only two elements 0
and 1 and the quotient mapping µ : B → {0, 1} is a two-valued probability.

Proof. This is quite obvious. □

Remark 2. A �lter F on B is a ultra�lter i� ∀x ∈ B (x ∈ F or xc ∈ F ); equivalently the
�lter F is a ultra�lter of B i� for every x1, x2 ∈ B, (x1 ∨ x2 ∈ F ⇒ (x1 ∈ F or x2 ∈ F )).

Given a nonempty set X, a probability on the set X is a probability on the boolean algebra
(P(X),∆,∩). A probability on X is thus a mapping µ : P(X) → [0, 1] such that µ(X) = 1
and for every disjoint subsets A, B of X, µ(A ⊔B) = µ(A) + µ(B).
We consider the following consequences of AC involving probabilities on boolean algebras:

BPI (�Boolean Prime Ideal�, form 14): For every non trivial boolean algebra
B there exists a two-valued probability µ : B → {0, 1}.
HB (�Hahn-Banach�, form 52): For every non trivial boolean algebra B there
exists a real-valued probability µ : B → [0, 1].

It is known (see [5]) that in ZF, AC ⇒ BPI ⇒ HB, BPI ⇒ ACfin, that none of the
reciprocal implications hold, and that HB is not provable.

2.2. Multiple forms of BPI and HB. The statements BPI and HB are respectively
equivalent to their multiple forms:
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(multiple form ofHB:) For every family (Bi)i∈I of non trivial boolean algebras,
there exists a family (µi)i∈I such that for each i ∈ I, µi : Bi → [0, 1] is a real-
valued probability.

(multiple form of BPI:) For every family (Bi)i∈I of non trivial boolean alge-
bras, there exists a family (µi)i∈I such that for each i ∈ I, µi : Bi → {0, 1} is
two-valued probability.

The equivalence between BPI (resp. HB) and its multiple form is known (see for example
[7]), however we provide a uni�ed proof for sake of completeness. We shall also introduce the
multiple countable forms BPIw andHBw of the statements BPI andHB (see Section 2.2.3).

2.2.1. Measures with values in a reduced power of the �eld of real numbers. Given a �rst
order language L and a L-structure M on a (nonempty) set M , given a nonempty set I we
denote by MI the product L-structure on M I . If F is a �lter on I, we denote by ∼I the
equivalence relation on M I satisfying for every x = (xi)i∈I , y = (yi)i∈I ∈ M I , x ∼I y i�{i ∈
I : xi = yi} ∈ F . The quotient set M I/F endowed with the natural L-structure (see [7],
[4, p. 442-444]) is called the reduced power of the structure M with respect to the �lter F ,
and we denote by MF this L-structure. In particular, a reduced power RF of the ordered
�eld R of real numbers is a lattice-ordered unitary real algebra such that the canonical
one-to-one embedding jF : R → RF is a morphism of R-algebras. Moreover, the subset
L0(RF) := {x ∈ RF : ∃λ ∈ R x ≤ jF(λ)} is a subalgebra of RF .

Lemma 1. Given a family (Bt,⊕t,×t, 0t, 1t)t∈T of boolean algebras, there exists a �lter F
on a set I and a family (mt)t∈T such that for every t ∈ T , mt : Bt → (RF)+ is a �nitely
additive mapping satisfying the following extra conditions for all x, y ∈ Bt:

(1) mt(1t) = 1
(2) mt(x×t y) = mt(x) .RF mt(y) (mt is multiplicative)

Proof. Without loss of generality, we assume that for distinct elements s, t ∈ T , 0s = 0t
(which we denote by 0) and that 1s = 1t (which we denote by 1) and that Bs\{0, 1} and
Bt\{0, 1} are disjoint. Let B := {0, 1} ⊔ ⊔t∈T (Bt\{0, 1}). Let I := RB. We consider the
binary relation R on fin(B) × I such that for every �nite subset F of B and every m ∈ I,
R(F,m) i� the following conditions are satis�ed for every t ∈ T and every x, y ∈ F ∩ Bt:

a) m(0) = 0R and m(1) = 1R
b) m(x× y) = m(x) .R m(y)
c) x× y = 0 ⇒ m(x⊕ y) = m(x) +R m(y)

The binary relation R is concurrent (see [7, p. 125, Section 3]) which means that for every
F ∈ fin(B) there exists m ∈ I such that ∀x ∈ F R(x,m): in fact, given a �nite subset F
of B, the set T0 := {t ∈ T : F ∩ (Bt\{0, 1}) ̸= ∅} is �nite; for each t ∈ T0, let Ct be the
(�nite, non trivial) boolean subalgebra of Bt generated by F ∩Bt; for every t ∈ T0, consider a
ultra�lter Ut of Ct and then, the mapping m : B → {0, 1} such that m(x) = 1 if x ∈ ∪t∈T0Ut

and 0 else. Then R(F,m). For each t ∈ T , let mt : Bt → (RF)+ be the mapping associating
to each x ∈ Bt the equivalence class of (i(x))i∈I in RF : then mt is a �nitely additive mapping
satisfying conditions (1) and (2). □

2.2.2. Multiple forms of BPI and HB. The following result shows that HB and BPI are
both �multiple� axioms. The case of HB was obtained by Luxemburg (see [7, Theorem 7.3]).
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We provide a uni�ed proof for the two statements HB and BPI, which relies on Lemma 1
and on the following result due to Luxemburg:

Theorem 1 ([7]). Let F be a �lter on a set I. Let ρF : L0(RF) → R+ be the mapping
x 7→ inf{t ∈ R : |x| ≤ t}.

(1) The mapping ρF : L0(RF) → R+ is a submultiplicative semi-norm and the set
L1(RF) := {x ∈ L0(RF) : ρF(x) = 0} is a proper ideal of the ring L0(RF).

(2) HB implies the existence of a positive linear form l : L0(RF) → R such that l(1) = 1
(and in particular, for every x ∈ L0(RF), |l(x)| ≤ ρF(x) whence l is null on L1(RF)).

(3) If U is a ultra�lter on I containing F , then L1(RU) is a maximal ideal of the ring
(and thus a hyperplane of the vector space) L0(RU), and the direct sum L0(RU) =
L1(RU)⊕R provides the (unique) multiplicative unitary linear form lU : L0(RU) → R.

(4) BPI implies the existence of a positive multiplicative unitary linear form l : L0(RF) →
R.

Proof. (1) See [7, Section 4]. (2) See [7, Theorem 6.1]. (3) Given x ∈ L0(RU), for every
bounded (xi)i∈I ∈ RI in the equivalence class of x, the family (xi)i∈I converges to some real
number with respect to the ultra�lter U , and this real number, which does not depend on
the representative (xi)i∈I of x, is equal to ρU(x). This implies that ρU : L0(RU) → R is
linear, multiplicative and unitary, so its kernel L1(RU) is a maximal ideal of L0(RU).
(4) Using BPI, let U be a ultra�lter on I containing F . By composing the natural quotient
mapping can : L0(RF) → L0(RU) and the multiplicative linear unitary form lU : L0(RU) → R
we get a multiplicative unitary (positive) linear form lU ◦ can : L0(RF) → R. □

Proposition 2. (1) The axiom HB is equivalent to its �multiple form�.
(2) The axiom BPI is equivalent to its �multiple form�.

Proof. Given a family (Bt)t∈T of non trivial boolean algebras, consider with Lemma 1 a �lter
F on a set I and a family (mt)t∈T of such that for every t ∈ T , mt : Bt → RF is a �nitely
additive and multiplicative measure such that mt(1Bt) = 1.
(1) Using Theorem 1-(2), HB implies a positive, unitary linear form l : RF → R. Then for
each t ∈ T , µt := l ◦mt : Bt → [0, 1] is a probability.
(2) Using Theorem 1-(4), BPI implies a multiplicative unitary linear form l : L0(RF) → R.
Then for each t ∈ T , the probability µt := l ◦ mt on Bt is {0, 1}-valued: given t ∈ T and
x ∈ Bt, y := mt(x) ∈ {0, 1}F thus y2 = y so by multiplicativity of l, l(y) ∈ {0, 1}. □

Remark 3. It is also possible to prove Proposition 2 using coproducts of boolean algebras
built in ZF (see [9, Section 3.3.1 p. 127]).

2.2.3. Multiple countable forms of BPI and HB. We shall consider the following weakened
forms of BPI and HB:

HBw: For every family (Bi)i∈I of non trivial countable boolean algebras, there
exists a family (µi)i∈I such that for every i ∈ I, µi is a probability on Bi.

BPIw: For every family (Bi)i∈I of non trivial countable boolean algebras, there
exists a family (µi)i∈I such that for every i ∈ I, µi : Bi → {0, 1} is a two-
valued probability on Bi.

The axiom BPIw (and thus HBw) is a consequence of the following axiom of choice for
countable sets (which does not imply BPI in ZF, see for example Mathias' model M3 -[5,
p. 149]-):
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ACω (form 85): Every family (Xi)i∈I of countable nonempty sets has a choice
function.

Proposition 3. (1) ACω is equivalent to the following statement: �For every family
(Xi)i∈I of countable sets, there exists a family (≤i)i∈I such that for each i ∈ I, ≤i is
a well order on Xi.�

(2) ACω ⇒ BPIw ⇒ HBw.

Proof. (1) Let (Xi)i∈I be a family of countable sets. Using ACω, consider a choice function
Φ for the family of countable subsets of ∪i∈IXi. For each i ∈ I, Φ induces a choice function
Φi : P(Xi)\{∅} → Xi associating to each nonempty (countable) subset S of Xi an element
of S. Each mapping Φi provides a well order ≤i on Xi.
(2) Let (Bi)i∈I be a family of countable boolean algebras. Using ACω, we choose for each
i ∈ I a well order ≤i on Bi. For each i ∈ I, using this well order ≤i, de�ne an ordinal
αi and a one-to-one family (xi

t)t∈αi
of Bi such for every t ∈ αi, x

i
t /∈ bool({xi

s : s < t})
and such that bool({xi

s : s ∈ αi}) = Bi. For each t ∈ αi, let Bi
t be the boolean algebra

bool({xi
s : s < t}) = ∪s<tBi

s; then for each i ∈ I, one can de�ne by recursion on t ∈ αi a
{0, 1}-probability µi on Bi. □

2.3. Paradoxical decompositions of G-sets.

2.3.1. Left and right G-sets. Given a group (G, ∗, 1) and a nonempty set X, a left action
(resp. right action) of G on X is a mapping . : G × X → X (resp. . : X × G → X) such
that for every g1, g2 ∈ G and every x ∈ X, e.x = x and g2.(g1.x) = (g2 ∗ g1).x (resp. x.e = x
and (x.g1).g2 = x.(g1 ∗ g2)).
Given a left (resp. right) action . of a group G on a set X, for every g ∈ G, the mapping

x 7→ g.x (resp. x 7→ x.g) is a permutation of X which is called the g-translation and is
denoted by tg. A left G-set (resp. right G-set) is a nonempty set X endowed with a left
(resp. right) action of G on X.

2.3.2. Orbits and free actions. Given an action . of a group G on a nonempty set X, the
binary relation R := {(x, tg(x)) : x ∈ X; g ∈ G} on X is an equivalence relation on X and
the equivalence classes of R are called the orbits of the action . on X. The action . of G on
X is free if for every g ∈ G\{e}, the translation tg : X → X does not have any �xed point.

Example 1. Given a group (G, ∗, 1), then ∗ : G×G → G is both a left and right action of G
on G which admits only one orbit. This action is free and is called the action by translations
of G on itself.

2.3.3. Paradoxical decompositions of right G-sets.

De�nition 1. Given a left (resp. right) action . of a group G on a nonempty set X,
given two integers m,n ≥ 2, a (m,n)-paradoxical decomposition of the G-set X is a par-
tition X = ⊔1≤i≤mAi ⊔ ⊔1≤i≤nBi of X in m + n (nonempty) sets together with m + n
elements a1, . . . , am, b1, . . . , bn ∈ G satisfying X = ⊔1≤i≤mai.Ai = ⊔1≤i≤nbi.Bi (resp. X =
⊔1≤i≤mAi.ai = ⊔1≤i≤nBi.bi).

A (2, 2)-paradoxical decomposition of a right G-set X is thus a partition X = A1 ⊔ A2 ⊔
B1⊔B2 of X in four (nonempty) sets together with four elements a1, a2, b1, b2 ∈ G satisfying
X = A1.a1 ⊔ A2.a2 = B1.b1 ⊔ B2.b2. Equivalently, a (2, 2)-paradoxical decomposition of a
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right G-set X is a partition X = A1 ⊔ A2 ⊔ B1 ⊔ B2 of X in four (nonempty) sets endowed
with two elements c1, c2 ∈ G satisfying X = A1 ⊔A2.c1 = B1 ⊔B2.c2 (consider c1 = a2 ∗ a−1

1

and c2 = b2 ∗ b−1
1 ).

2.4. Free groups. Given a nonempty set A, we denote by A∗ the free monoid on A i.e.
the set of words (sequences) on the alphabet A endowed with the usual concatenation law
∗: this law is associative and the empty word ε is the neutral element of this law.
We denote by F (A) the free group on the alphabet A (see [2, Def. 2.1.7 p. 31]): this group

is obtained as follows. Consider a one-to-one mapping u of A onto a subset A− which is
disjoint from A. Denoting by u−1 : A− → A the inverse bijection of u, then ι := u∪u− is an
involution of the new alphabet C := (A ⊔ A−). For each x ∈ C, we denote by x− the letter
ι(x) in the alphabet C. We consider on the monoid C∗ the congruence ≡ generated by the
binary relation {(c ∗ c−, ε) : c ∈ C}. Then the quotient monoid C∗/ ≡ is a group which is
called the free group on the alphabet A.

Remark 4 (Another construction of the free group on an alphabet A). We consider on C∗

the equivalence relation R generated by {(w1 ∗ c ∗ c− ∗ w2, w1 ∗ w2) : w1, w2 ∈ C∗; c ∈ C}.
A word w ∈ C∗ is said to be reduced if the word w has no factor of the form c ∗ c− where
c ∈ C. Denoting by R(A) the set of reduced words on the alphabet C, let ρ : C∗ → R(A)
be the reduction mapping associating to each w ∈ C∗ the unique element of R(A) which
is R-equivalent to w. We endow R(A) with the binary operation . satisfying for every
w1, w2 ∈ R(A), w1.w2 := ρ(w1 ∗w2). Then (R(A), .) is a group which is isomorphic with the
free group F (A).

De�nition 2 ((2, 2)-paradoxical decomposition by letters of a free F2-set). If F2 is the free
group on the alphabet {a, b}, given a right (resp. left) action . of F2 on a set X, a (2, 2)-
paradoxical decomposition by letters is a (2, 2)-paradoxical decomposition X = A1 ⊔ A2 ⊔
B1⊔B2 such that X = A1⊔A2.a

− = A3⊔A4.b
− or, equivalently, X = A1.a⊔A2 = A3.b⊔A4

(resp. X = A1 ⊔ a−.A2 = A3 ⊔ b−.A4 or, equivalently, X = a.A1 ⊔ A2 = b.A3 ⊔ A4).

Notation 3. If F is the free group on a (nonempty) alphabet A, for each c ∈ A ⊔ A−, we
denote by Γ(c) the set of elements w ∈ F (A) which correspond to reduced words beginning
with the letter c.

Example 2 (The classical (2, 2)-paradoxical decomposition by letters of the free group F2).
Let F2 be the free group over the 2-element alphabet A = {a, b}. We consider the (free)
left action . of F2 by translations on itself. Then F2 has the following (2, 2)-paradoxical
decomposition by letters: F2 = Γ(b) ⊔ Γ(b−) ⊔

(
Γ(a) ⊔ R

)
⊔
(
Γ(a−)\R

)
where R := {a−n :

n ∈ N}. Then F2 =
(
b−.Γ(b)

)
⊔ Γ(b−) =

(
a−.(Γ(a) ⊔R)

)
⊔
(
Γ(a−)\R

)
.

Proof. See [15, p.28, Fig. 3.2]. □

3. Cayley graphs of actions

3.1. Graphs.

3.1.1. Paths and cycles. A graph on a set V is a binary relation R on V which has no loops
(∀x ∈ V x��Rx) and which is symmetric (∀x, y ∈ V (xRy ⇒ yRx)). Given a graph R on a
set V , elements of V are called the vertices of the graph, and pairs of (distinct) elements
x, y ∈ V such that xRy are called the edges of the graph. A graph G on a set V is thus
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de�ned by a subset E of the set [V ]2 of two-element subsets of V : we also denote by (V,E)
such a graph G. Given some vertex v of a graph G = (V,E), the neighbourhood of v is the
set N(v) of vertices w such that {v, w} is an edge of the graph; if N(v) is �nite, then the
cardinal of N(v) is the degree of v. If for every vertex v of G the neighbourhood of v is �nite,
then the graph G is said to be locally �nite; moreover, if there exists some natural number
n such that the degree of every vertex of G is n, then the graph G is said to be n-regular.
A subgraph of a graph G = (V,E) is a graph (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

A subgraph G′ = (V ′, E ′) of G = (V,E) is induced if E ′ = E ∩ [V ′]2. Given two graphs
G = (V,E) and G′ = (V ′, E ′), a graph morphism from G to G′ is a mapping f : V → V ′

such that for every edge e = {x, y} of G, {f(x), f(y)} is an edge of the graph G′. A
graph isomorphism from G to G′ is a bijective morphism f : (V,E) → (V ′, E ′) such that
f−1 : (V ′, E ′) → (V,E) is also a graph morphism (equivalently, it is a bijection f : V → V ′

such that for every x, y ∈ V , {x, y} is an edge of G if and only if {f(x), f(y)} is an edge of
G′).

Example 3 (Paths). Given some natural number n ≥ 1, the graph on the set {0, . . . , n} with
set of edges {{i, i + 1} : i ∈ {0, . . . , n − 1}} is called the path Pn; every graph isomorphic
with Pn is called a n-path. A path is a n-path for some natural number n ≥ 1. Given a
path (V,E), the two vertices with degree 1 are called the extremities of the path, the other
vertices have degree 2. The length of a n-path is the number n of edges of this path; notice
that the number of vertices of a n-path is n+ 1.

A walk in the graph G = (V,E) is a sequence (vi)0≤i≤n of vertices such that n ≥ 1 and
such that for each natural number i < n, {vi, vi+1} is an edge of G: the vertex v0 is the origin
of the walk and vn is the target of the walk. The graph G is said to be connected if for every
distinct vertices x, y ∈ V , there exists a walk in G with origin x and target y (equivalently,
there exists in G a path with extremities x and y). Given a connected graph G = (V,E),
consider the mapping dG : V ×V → N associating to each (x, y) ∈ V ×V the natural number
0 if x = y and the length of a shortest path with extremities x and y if x ̸= y. Then dG is a
distance on V which is called the graphic distance associated to the connected graph G on
V .

Example 4 (Cycles). Given some natural number n ≥ 3, the graph on {0, . . . , n − 1} with
set of edges {{i, i+1} : i ∈ {0, . . . , n−2}}∪{{n−1, 0}} is called the cycle Cn; ; every graph
isomorphic with Cn is called a n-cycle. A cycle is a n-cycle for some natural number n ≥ 3.
Every vertex of a cycle has degree 2.

3.1.2. Trees. A forest is a graph G = (V,E) such that no subgraph of G is a cycle. A tree
is a connected forest. A leaf of a tree is a vertex with degree 1 in this tree. Every �nite tree
with at least two vertices has at least two leaves. Given a tree T = (V,E), if L is a subset of
the set of leaves of T , then the subgraph induced by the tree T on V \L is still a tree. Notice
that a �nite tree with at least 3 vertices has at least one vertex which is not a leaf.

De�nition 3 (center of a �nite tree). Given a �nite nonempty tree T , the process of removing
leaves from the tree while it has at least 3 vertices leads to the choice of a vertex x or an
edge {y, z} of T : we call this set {x} or {y, z} the center of the �nite nonempty tree T .

Notation 4 (segment in a tree). If x and y are two distinct vertices of a tree T = (V,E),
there exists a unique path in T with extremities x and y: the set of vertices on this path is
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called the segment with extremities x and y and is denoted by [x, y] or [y, x]; if x = y, then
we de�ne [x, x] := {x}.

Notation 5 (generated subtree). Given a tree T on a set V , if W is a subset of V , the graph
induced by the tree T on ∪x,y∈W [x, y] is a tree: we denote by tr(W ) this tree which is the
smallest subtree of T including W .

Notice that if W is a �nite subset of vertices of a tree, then the generated subtree tr(W )
is also �nite; also notice that every leaf v of tr(W ) belongs to W .

3.2. Oriented graphs. Given a graph G = (V,E), an orientation of the graph G is a choice
function for the set E of edges i.e. a mapping o : E → V such that for every edge e = {x, y}
of G, o(e) ∈ {x, y}. The axiom AC2 implies (and is equivalent to the fact that) that every
graph has an orientation. An oriented graph on a set V is a graph G = (V,E) endowed with
an orientation o : E → V . Equivalently, an oriented graph corresponds to a binary relation
R on V which has no loops (∀x ∈ V x��Rx) and is antisymmetric (for every x, y ∈ V , if x ̸= y
and xRy then y��Rx). Given an oriented graph R on V , couples (x, y) in R are called the
arcs of the oriented graph. If v is a vertex of an oriented graph, the out-degree of v is the
number of vertices w such that (v, w) is an arc of the oriented graph, and the in-degree of
v is the number of vertices w such that (w, v) is an arc. A source of an oriented graph is a
vertex v with in-degree 0 and a sink is a vertex with out-degree 0.

Proposition 4. If (Ti = (Vi, Ei, oi))i∈I is a family of �nite nonempty oriented trees, then
(Vi)i∈I has a choice function.

Proof. For each i ∈ I, consider the center Zi of the tree; if Zi is an edge e of the tree Ti,
then oi(e) is a vertex vi of Ti, else Zi is a singleton {vi}, and (vi)i∈I is a choice function for
(Vi)i∈I . □

3.3. A su�cient condition for the �nite choice property on an oriented tree. We
recall (see Section 2.1.1) that a set X satis�es the �nite choice property if X has a witness of
the �nite choice property i.e. a mapping Φ : fin∗(X) → X such that for every F ∈ fin∗(X),
Φ(F ) ∈ F .

De�nition 4. Given a graph G = (V,E), a neighbour choice in G is a mapping f : V → V
such that for each v ∈ V , if N(v) ̸= ∅ then f(v) ∈ N(v). A double neighbour choice on a
graph G = (V,E) is an ordered pair (f1, f2) of neighbour choices on G such that for each
v ∈ V which has at least two neighbours, f1(v) ̸= f2(v).

Example 5. If X is a free F2-set, every subgraph G = (V,E) of the forest X has a double
neighbour choice.

Proof. We linearly order the set {n, s, e, w} of cardinal points. We then de�ne a �rst neigh-
bour choice f1 : V → V : given some vertex v ∈ V , if v has at least one neighbour in G, we
de�ne f1(v) := v.c where c is the �rst element in {n, e, s, w} such that v.c is a neighbour of
v in G, else f1(v) := v. We de�ne a second neighbour choice f2 : V → V in the same way:
for each v ∈ V , if v has at least two distinct neighbours in G, we de�ne f2(v) := v.c where
c is the �rst element in {n, e, s, w} such that v.c is a neighbour of v which is distinct from
f1(v), else f2(v) := f1(v). □
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Proposition 5. Let T = (V,E, o) be an oriented tree with at least two vertices. If T has a
double neighbour choice (f1, f2), then there exists on V a witness of the �nite choice property
which is de�nable from (f1, f2) and o.

Proof. We de�ne a witness Φ of the �nite choice property on V . Given a nonempty �nite
subset F of V , we consider the generated tree tr(F ). Using Proposition 4, we choose a vertex
r ∈ tr(F ). Using (f1, f2), we build a one-to-one walk (vi)0≤i≤n of tr(F ) with origin r and
target a leaf vn of tr(F ): then vn ∈ F and we de�ne Φ(F ) := vn. □

3.4. Rays and ends of a graph. Given a graph G = (V,E), a ray of G is a one-to-one
sequence (xn)n∈N of vertices of the graph such that for each n ∈ N, {xn, xn+1} is an edge of
the graph. Two rays x = (xn)n∈N and y = (yn)n∈N of G are said to be equivalent if there exists
a ray z = (zn)n∈N of G such that {xn : n ∈ N}∩{zn : n ∈ N} and {yn : n ∈ N}∩{zn : n ∈ N}
are both in�nite. This binary relation on the set of rays of G is obviously re�exive and
symmetric; it is also transitive (see [3]). Equivalence classes of this equivalence relation are
called the ends of the graph G.

Proposition 6. Let T = (V,E) be a tree.

(1) Given two distinct rays x = (xn)n∈N and y = (yn)n∈N of T , then I := {xn : n ∈ N} ∩
{yn : n ∈ N} is either ∅ or a singleton or a segment joining two vertices v1, v2 of T or
there exists m0, n0 ∈ N such that I = {xn : n ∈ N, n ≥ m0} = {yn : n ∈ N, n ≥ n0}.

(2) Two equivalent rays of T with the same origin are equal.
(3) If (xn)n∈N is a ray of T , for every vertex y ∈ V , there exists a (unique) ray with

origin y which is equivalent to (xn)n∈N.

Proof. (1) We �rst notice that the subgraph T ′ induced by T on I is connected (because T
is a tree), and that every vertex of T ′ has at most two neighbours. If I is �nite then T ′ is
empty or a singleton or a (�nite) path; if I is in�nite and if T ′ has a vertex v of degree 1
then T ′ is a ray with origin v; the case where every vertex of T ′ has degree 2 does not occur
since T ′ is a subgraph of a ray.
(2) This follows from the fact that the tree has no cycles.
(3) Let xn0 be the element of {xn : n ∈ N} closest to y. If xn0 = y then the ray (xk)k≥n0

has origin y and is equivalent to the ray x. If xn0 ̸= y then the ray with origin y which is
the concatenation of the one-to-one walk leading from y to xn0 and of the ray (xk)k≥n0 is
equivalent to the ray {xn : n ∈ N}. □

3.5. Right G-sets and their Cayley graphs.

3.5.1. The Cayley graph of a free right G-set. Given a free right action . of a group (G, ∗, 1)
on a nonempty set X and a subset C of G generating the group G, given two distinct
elements x, y in X, then, there exists at most one element g ∈ C such that x.g = y. The
binary relation RC = {(x, x.c) : c ∈ C} on X is called the C-Cayley relation associated
to the free action . of G. If 1 /∈ C, then RC has no loops and if C is stable by inversion
(c ∈ C ⇒ c−1 ∈ C or equivalently, C = C−1) then RC is symmetric; if 1 /∈ C and if C = C−1,
then RC is a graph and is called the C-Cayley graph of the free right action . on X.

Proposition 7. Let (G, ∗, 1) be a group and let C be a subset of G generating G such that
1 /∈ C and C = C−1. Given a free right action . of the group G on a nonempty set X and
denoting by RC the C-Cayley graph of the action ., then:
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(1) The connected components of the graph RC are the orbits of the action.
(2) For every x ∈ X, the mapping fx : C → N(x) associating to each c ∈ C the element

x.c is bijective.
(3) If there is a subset A of C such that C = A ⊔ A−1, then the graph RC has an

orientation which is de�nable from A and the action . of G on X.

Proof. (1) is almost obvious.
(2) If x ∈ X, the neighbourhood of x in the graph RC is Nx = {c.x : c ∈ C} so the mapping
fx : c 7→ c.x from C to N(x) is one-to-one since G acts freely on X.
(3) Denoting by E the set of edges of the graph RC , we de�ne an orientation o : E → X
of RC : given an edge e of the graph RC , there exists exactly one element x ∈ X and one
element a ∈ A and such that e = {x, x.a}: we de�ne o(e) := x. Then o : E → V is a choice
function for the family of edges of the graph RC , which is de�nable from A and the action .
of G on X. □

3.5.2. Free actions of free groups and regular trees.

Proposition 8. Let A be a nonempty alphabet and let F be the free group on A. Let . be a
free right-action of F on a nonempty (in�nite) set X. Let C := A ⊔A− and let G = (X,E)
be the C-Cayley graph of this action. Then,

(1) The graph G is a forest, and thus the (connected) subgraph induced by G on each
orbit is a tree.

(2) The graph G has an orientation de�nable from A and the action . of F on X.
(3) If A satis�es the �nite choice property (and in particular if A is �nite), the forest G

has a double neighbour choice and X also satis�es the �nite choice property.

Proof. (1) If G has a cycle for some natural number n ≥ 3, let V1 := {x0, . . . , xn−1} be a
n-element subset of X such that for each i ∈ {0, . . . , n − 1}, {xi, xi+n1} is an edge of G,
where +n is the additive law on {0, . . . , (n − 1)} modulo n. For every i ∈ {0, . . . , n − 1},
let ci be the element of C such that xi.ci = xi+n1. Then x0.(c0 ∗ · · · ∗ cn−1) = x0. Since the
action . of F on X is free, the word (c0 ∗ · · · ∗ cn−1) reduces to the neutral element in F ; it
follows that there exists i ∈ {0, . . . n − 2} such that ci+1 = c−i and thus xi+n2 = xi which is
contradictory.
(2) Using Proposition 7, the graph G has an orientation (de�nable from A and the action .
of F on X).
(3) For every x ∈ X, denote by fx : C → N(x) the bijection c 7→ x.c. Since A (and thus
C) satis�es the �nite choice property, the family of bijections (fx)x∈X allows to de�ne a
double neighbour choice (f1, f2) on the forest G. With Proposition 5, the double neighbour
choice (f1, f2) on the oriented forest G implies a witness of the �nite property on X (which
is de�nable from (fx)x∈X and a witness of the �nite choice property on X). □

4. Paradoxical decompositions of free F2-sets, ends and 1-out orientations

4.1. 1-out oriented graphs. An orientation o of a graph G is said to be 1-out if every
vertex of the oriented graph (G, o) has out-degree 1. Notice that if a graph G = (V,E) has
a 1-out orientation, then V is in�nite (because every �nite oriented graph with at least two
vertices has at least one source and at least one sink).
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Notation 6 (ray [x, o) w.r.t. a 1-out orientation o). Given a 1-out orientation o of a graph
G on a set V , and given x ∈ V , there exists a unique sequence (xn)n∈N of V with origin
x0 := x such that for every n ∈ N, (xn, xn+1) is an arc of the oriented graph (G, o). If the
sequence (xn)n∈N is one-to-one (which is the case if G is a forest), then (xn)n∈N is called the
oriented ray with origin x with respect to the 1-out orientation o and it is denoted by [x, o).

Proposition 9 (A natural bijection between ends and 1-out orientations of a tree). Let
T = (V,E) be a tree.

(1) If o is a 1-out orientation on T , then, for all x, y ∈ V , the rays [x, o) and [y, o) are
equivalent. The end corresponding to the (equivalent) rays [x, o) for x ∈ V is called
the end associated to the 1-out orientation o in the tree T .

(2) If β is an end of T , then
-For every y ∈ V , the end β contains a unique ray ρy,β with origin y.
-For every edge e = {x, y} of T , either x ∈ ρy,β or y ∈ ρx,β
-The mapping o : E → V such that for every edge e = {x, y}, o(e) = y if x ∈ ρy,β

and o(e) = x if y ∈ ρx,β is a 1-out orientation of T .

Proof. (1) Let xn0 the vertex in [x, o) closest to y. If xn0 = y, [y, o) = (xn)n≥n0 is equivalent
to the ray [x, o), else, let w = (v0 = y, . . . , vp = xn0) be the one-to-one walk from y to xn0 ;
then for each i ∈ {0, . . . , p− 1}, o({vi, vi+1}) = vi (induction on p) and thus the ray [y, o) is
the concatenation of the walk w and of the ray (xn)n≥n0 so [x, o) and [y, o) are equivalent.
(2) -Let (xn)n∈N be a ray in the equivalence class β. Using Proposition 6, there exists a
unique ray ρy,β with origin y which is equivalent to (xn)n∈N i.e. which belongs to β.
-Given an edge {x, y} of the tree T , assume that y /∈ ρx,β. Then the vertex xn0 in ρx,β

which is closest to y is not equal with y. If xn0 ̸= x, then there is a cycle of the graph G
containing the vertices y, xn0 and x, which is contradictory. So xn0 = x and thus x ∈ ρy,β.
-The mapping o is an orientation of the graph G. Moreover, if x ∈ V , then, denoting by

(xn)n the ray ρx,β, then for every neighbour y of x, o({x, y}) = x if y = x1, and o({x, y}) = y
if y ̸= x1, so the out-degree of x with respect to the orientation o is 1. □

4.2. (2,2)-paradoxical decompositions by letters of free F2-sets and 1-out orien-
tations of the Cayley-graphs. From now on, we shall denote by F2 the free group on the
two-element alphabet A := {e, n} (East, North). We denote by s (South) the inverse of n in
F2 and we denote by w (West) the inverse of e in F2. Then C := A ⊔ A− = {n, s, e, w} (C
is the set of the four cardinal points). Denoting by ε the neutral element of the group F2,
F2 = {ε} ⊔ ⊔c∈CΓ(c) (see Notation 3).

For each free F2-set X, we separate edges of the forest X into �horizontal� edges and
�vertical� edges: an edge of X is horizontal if it is of the form {x, x.e} (or equivalently
of the form {y, y.w}) and it is vertical if it is of the form {x, x.n} (or equivalently of the
form {y, y.s}). We then consider the following orientation o of X: every horizontal edge
e = {x, x.e} of X is oriented from west to east i.e. o(e) := x, and every vertical edge
e = {x, x.n} is oriented from south to north i.e. o(e) := x. Notice that with respect to this
orientation, every vertex of X has out-degree 2 and in-degree 2 and thus the orientation o is
not a 1-out orientation of the forest X.

13



Theorem 2. Let . be a free right-action of the group F2 on a nonempty (in�nite) set X. Let
C = {e, n, w := e−1, s := n−1} and let G be the C-Cayley graph of the action . on X. The
followings data are equivalent:

(1) A (2, 2)-paradoxical decomposition by letters of the free right F2-set X;
(2) A 1-out orientation of the forest G (or equivalently -see Proposition 9- the choice of

an end in each connected component of the forest G)

Proof. (1) ⇒ (2). Assuming that X = Xn ⊔Xs ⊔Xe ⊔Xw is a partition of X in four pieces
such that X = Xn ⊔ Xs.s = Xe ⊔ Xw.w, we shall de�ne a 1-out orientation o of the forest
G. For each vertex x ∈ X, if x ∈ Xn, we orient the vertical edge a = {x, x.n} in the �north
direction� i.e we de�ne o(a) := x, else x ∈ (Xs).s and we orient the edge a in the �south
direction� i.e. we de�ne o(a) := x.n. In the same way, if x ∈ Xe we orient the horizontal
edge a = {x, x.e} in the east direction and de�ne o(a) := x, else x ∈ (Xw).w and we de�ne
o(a) := x.e. We thus obtain an orientation o of the forest G. Moreover, if x ∈ X, since
X = Xn ⊔Xs ⊔Xe ⊔Xw, there exists exactly one element c ∈ {n, s, e, w} such that x ∈ Xc,
and it is easy to check that y := x.c is the only neighbour of x such that o({x, y}) = x. It
follows that the orientation o of G is 1-out.
(2) ⇒ (1). Assume that o is a 1-out orientation of the graph G. Given a vertex x ∈ V ,
denote by y the (unique) neighbour of x such that o({x, y}) = x; if c is the element of C such
that y = x.c, then we place x in Xc. Of course, X = Xn ⊔Xe ⊔Xw ⊔Xs. Let us check that
X = Xn ⊔Xs.s = Xe ⊔Xw.w (whence we get a (2, 2)-paradoxical decomposition by letters
of X). First, Xn ∩ Xs.s = ∅ because if x ∈ Xn, then o({x, x.n}) = x and thus x.n /∈ Xs.
Moreover, if x ∈ X, either o({x, x.n}) = x and then x ∈ Xn, or o({x, x.n}) = x.n and thus
x.n ∈ Xs so x ∈ Xs.s whence X = Xn ∪Xs.s. The equality X = Xe ⊔Xw.w can be proved
in the same way. □

Remark 5 (A new (2,2)-decomposition of the free group F2). The (free) right action of F2

by translations on itself is (2, 2)-paradoxical by letters using the classical decomposition
(see Example 2). Our Theorem 2 provides another (2, 2)-paradoxical decomposition by
letters of this action: consider the Cayley graph T of the action (with respect to the set
C := {e, n, w, s} of generators), and consider a 1-out orientation o of the tree T (for example
the 1-out orientation de�ned by the end containing the ray (ε.(nk))k∈N (with origin ε and �full
north� direction). The partition F2 = Ve⊔Vn⊔Vw ⊔Vs is de�ned as follows: for every vertex
v ∈ F2, if c is the element of C such that v.c is the successor of v with respect to o, then put
v in Vc. Then F2 = Vn ⊔ Vs.s = Ve ⊔ Vw.w and thus a (2, 2)-paradoxical decomposition of F2

by letters has been de�ned.

5. HBw implies an end or a bi-infinite path in every orbit of a free F2-set

So far we have only de�ned �nite paths. We now de�ne a bi-in�nite path as an in�nite
connected graph in which the degree of every vertex is 2. Notice that a bi-in�nite path
is a tree in which every vertex has degree 2. The aim of this Section is to prove that the
consequence HBw of the Hahn-Banach axiom implies the choice of an end or a bi-in�nite
path in every orbit of a free F2-set (see Corollary 1).

5.1. Conic probabilities on a tree.
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Notation 7 (Cone Γ(x, y) in a tree). Given a tree T = (V,E), for each edge e = {x, y} of
T , we denote by Γ(x, y) the connected component of y in the subgraph (V,E\{e}). The set
Γ(x, y) is called the cone of origin x in the direction y.

Notice that the origin x of a cone Γ(x, y) of a tree T does not belong to the cone Γ(x, y). If
a tree T has at least two vertices, for every vertex x of T , the singleton {x} is the intersection
of the cones Γ(n, x) with origin a neighbour n of x.

Notation 8 (the boolean algebra BT associated to a tree T ). If a tree T = (V,E) has at
least two vertices, we denote by BT the boolean subalgebra of P(V ) generated by the cones
of the tree T .

If a vertex v of a tree T has a �nite degree, then {v} = ∩y∈N(v)Γ(y, v) is the intersection of
a �nite set of cones of T , so if the tree T is locally �nite, then BT contains all �nite subsets of
V and the atoms of BT (i.e. the minimal non null element of the poset BT ) are the singletons
{v} where v ∈ V . Notice that if the tree T is countable (for example if T is an orbit of a
free F2-set X), then the set of cones of the tree T is also countable, so the boolean algebra
BT is also countable and thus one can de�ne in ZF a ultra�lter on BT .
A ultra�lter U on a boolean algebra B is principal if there exists an atom a ∈ B such that

{a} ∈ U .

De�nition 5. A conic probability on a tree T is a probability on the boolean algebra BT .

Proposition 10. Given a locally �nite tree T = (V,E), the following data are equivalent:

(1) a non principal ultra�lter on BT ;
(2) a 1-out orientation of the tree T .

Proof. (1) ⇒ (2). Given a non principal ultra�lter U on BT , for every x ∈ V , V = {x} ⊔
⊔y∈N(v)Γ(x, y) thus there exists a (unique) neighbour y of x such that Γ(x, y) ∈ U : we denote
this neighbour by nx. Moreover, if {x, y} is an edge of T , either y = nx or x = ny: in fact,
if y ̸= nx then Γ(x, nx) ⊆ Γ(y, x) and thus Γ(y, x) ∈ U so ny = x. Let o be the orientation
on T such that for each edge {x, y} of T , o({x, y}) = x i� y = nx. Then the orientation o is
1-out.
(2) ⇒ (1). Given a 1-out orientation o of T , let us denote by s : V → V the mapping
associating to every x ∈ V the neighbour y of x such that o({x, y}) = x. We consider the set
C = {Γ(x, s(x)) : x ∈ V }. Then the set C of cones generates a �lter F on BT . This �lter is
a (non trivial) ultra�lter on BT : if a cone Γ(x, y) of BT does not belong to F , then y ̸= s(x)
whence s(y) = x so Γ(y, x) ∈ F ; since Γ(y, x) is the complement of Γ(x, y) in BT and since
cones of the tree T generate the boolean algebra BT , the �lter F of BT is a ultra�lter on
BT . □

5.2. Balanced vertices of a tree endowed with a conic probability.

Notation 9. Given a conic probability µ on a tree T , for every real number ε > 0, we denote
by Bε(T, µ) the set {x ∈ T : ∀y ∈ N(x) µ(Γ(x, y)) ≥ ε}.

Elements of Bε(T, µ) are said to be ε-balanced with respect to µ. Elements of B(T, µ) :=
∪ε>0Bε(T, µ) are said to be balanced with respect to µ.

Notice that if µ is a conic probability on a tree T , if x is a �nite degree vertex of T and if
x is not balanced, then x has a neighbour y such that µ(Γ(x, y)) = 0.

15



Lemma 2. Let T = (V,E) be a locally �nite tree such that there exists a witness ΦV of the
�nite choice property on V . For every a ∈ V and every in�nite subset A of V there exists a
ray (xn)n∈N of the tree T with origin a which is de�nable from T and ΦV and such that the
set A ∩ {xn : n ∈ N} is in�nite.

Proof. We de�ne by recursion a ray (xn)n∈N with origin a such that for every n ∈ N,
Γ(xn, xn+1) ∩ A is in�nite. We consider the rooted tree T at a endowed with its usual
partial order ⪯a: if x, y ∈ T , then x ⪯a y i� x belongs to the path with extremities a and y.
Using ΦV , we de�ne the following ray (xn)n∈N: x0 = a and, for every n ∈ N, xn+1 = ΦV (F )
where F = {y ∈ N(xn) : xn ≺a y and (Γ(xn, y) ∩ A) is in�nite}. □

Theorem 3. Let T = (V,E) be a tree such that for every x ∈ V , N(x) is �nite with at
least 3 elements, and such that there exists a witness ΦV of the �nite choice property on V .
Assume that µ is a conic probability on the tree T .

(1) For every ε > 0, the set Bε(T, µ) is �nite.
(2) If there exists some µ-balanced vertex in T , then there exists a µ-balanced vertex in

T which is de�nable from T , ΦV and µ.

Proof. (1) Let ε be some real number such that ε > 0. If Bε(T, µ) is in�nite, using Lemma 2,
consider some ray (xn)n∈N with an in�nity of vertices in Bε(T, µ). Let A be the in�nite set
{xn : xn ∈ Bε(T, µ)}. For every x ∈ A, the degree of x is ≥ 3 so there exists at least one
cone with origin x which is disjoint from the set {xn : n ∈ N}: let C be the (in�nite) set of
cones with origin at some point x ∈ A and which are disjoint from the set {xn : n ∈ N}.
Then C is an in�nite set of pairwise disjoint cones. Consider N cones in C for some integer
such that N > 1

ε
. Then the µ-measure of the union of these N cones is ≥ Nε > 1 and this

is contradictory! It follows that Bε(T, µ) is �nite (with cardinal ≤ 1
ε
).

(2) If T contains some µ-balanced vertex, let n0 be the �rst element of N∗ such that B 1
n0

(T, µ)

is nonempty. Since B 1
n0

(T, µ) is �nite, ΦV allows to choose a µ-balanced vertex v in B 1
n0

(T, µ)

(and v is thus de�nable form T , µ and ΦV ). □

5.3. Conic probabilities on a tree without any balanced vertex.

Notation 10. Given an (in�nite) locally �nite tree T = (V,E) with at least two elements,
and given a conic probability µ on T , for every ε > 0 we denote by B′

ε(T, µ) the set of
vertices x ∈ V having exactly one neighbour y such that µ(Γ(x, y)) = 0 and such that
min({µ(Γ(x, z)); z ∈ N(x)\{y}}) ≥ ε.

We also denote by B′(T, µ) the set ∪ε>0Bε(T, µ) of vertices x ∈ V having exactly one
neighbour y such that µ(Γ(x, y)) = 0.

Lemma 3. Let T = (V,E) be a tree such that for every x ∈ V , N(x) is �nite with at least
four elements, and such that there exists a witness ΦV of the �nite choice property on V .
Assume that µ is a conic probability on the tree T without any balanced vertices.

(1) For every ε > 0, the set B′
ε(T, µ) is �nite.

(2) If B′(T, µ) is nonempty, then there is a vertex in B′(T, µ) which is de�nable from T ,
µ and ΦV .

Proof. (1) Assume that B′
ε(T, µ) is in�nite. Using Lemma 2, there exists a ray (xn)n∈N such

that the set A := B′
ε(T, µ)∩{xn : n ∈ N} is in�nite. For every x ∈ A, there are at least three

16



cones C with origin x such that µ(C) ≥ ε, so there exists at least one cone C with origin
x which is disjoint from the ray {xn : n ∈ N} and such that µ(C) ≥ ε: let Cx be the set of
such cones C. The cones belonging to ∪x∈ACx are pairwise disjoint and have µ-measure ≥ ε.
It follows that A is �nite (with cardinality ≤ 1

ε
): this is contradictory!

(2) This follows from the fact that B′(T, µ) = ∪n∈N∗B′
1/n(T, µ) where each B′

1/n(T, µ) is
�nite. □

Theorem 4. Let T = (V,E) be a 4-regular tree such that there exists a witness ΦV of the
�nite choice property on V . Assume that µ is a conic probability on the tree T . Then there
is an end or a vertex (and thus an end) or a bi-in�nite path of T which is de�nable from T ,
µ and ΦV .

Proof. If V contains at least one µ-balanced vertex, then ΦV allows to choose a µ-balanced
vertex in B(T, µ) (which is �nite, see Theorem 3). Else, for every x ∈ V , at least one cone
of origin x has a null µ-measure. If the set B′(T, µ) is nonempty, then, using Lemma 3,
ΦV chooses a vertex in B′(T, µ). We now assume that B(T, µ) = B′(T, µ) = ∅: then, for
every vertex x of T , there are at least two neighbours y1 and y2 of x such that µ(Γ(x, y1)) =
µ(Γ(x, y2)) = 0. If for every x ∈ V , exactly three distinct cones with origin x have a null
µ-measure, then we get an 1-out orientation o (and thus an end) of the tree T : in fact, for
each edge {x, y} of T , then either µ(Γ(x, y)) = 1 or µ(Γ(y, x)) = 1; we de�ne o({x, y}) = x
i� µ(Γ(x, y)) = 1. Let FV be the �nite subset {x ∈ V : µ({x}) > 0}: if FV is nonempty,
then ΦV allows to choose some vertex in V .
We now assume that FV is empty (and thus every �nite subset of V has a null µ-measure),

and that for every x ∈ V , at least two cones with origin x have a null measure, and that the
set P of vertices x such that there exist exactly two cones with origin x with null measure
is nonempty. If x ∈ P , then the two neighbours of x which do not belong to the x-cones
of null measure also belong to P : if one of these two neighbours y does not belong to P ,
then there are 3 cones with origin y and null measure so µ({y}) = µ(Γ(x, y)) > 0 which is
contradictory with FV = ∅. It follows that the set P is a bi-in�nite path of V (de�nable
from T , µ and ΦV ). □

Corollary 1. (1) Let G = (V,E) be a 4-regular forest swhich has a witness ΦV of the
�nite choice property on V . Then HBw implies the choice of an end or a bi-in�nite
path in each connected component of G.

(2) In particular, if . is a free right action of the free group F2 on a nonempty (in�nite)
set X, then HBw implies the choice of an end or a bi-in�nite path in each orbit of
X.

Proof. (1) Let Ω be the set of connected components of the forest G. UsingHBw, we consider
a family (µT )T∈Ω such that for every orbit T , µT is a probability on BT . With Theorem 4
and Φ, we deduce an end or a bi-in�nite path in every orbit. (2) is a consequence of (1) and
Proposition 8. □

5.4. The axiom HBw implies (2, 3)-paradoxical decompositions of free F2-sets. In
this Section, we use Corollary 1 to give a proof of Shioya and Sato's (3, 2)-paradoxical
decomposition of free F2-sets in ZF+HBw (see [13]).

Proposition 11 ([13]). In ZF+HBw, every free F2-set X has a (3, 2)-paradoxical decomposi-
tion of the form X = Xn⊔Xs⊔Xe⊔Xw⊔Xr such that X = Xn⊔(Xs).s = Xe⊔(Xw).w⊔(Xr).e.
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Proof. Given a free F2-set X, HBw provides (see Corollary 1) the choice of a bi-in�nite
path or an end in each orbit of X. Moreover, X satis�es the �nite choice property (see
Proposition 8-(3)): let Φ be a witness of the �nite choice property on X. Using Theorem 2,
each orbit ω in which an end (or equivalently a 1-out orientation) has been chosen has a
natural (2, 2)-paradoxical decomposition by letters: ω = ωn ⊔ ωs ⊔ ωe ⊔ ωw = ωn ⊔ (ωs).s =
ωe ⊔ (ωe).w. We now consider the case of an orbit ω in which a bi-in�nite path Pω has been
chosen. We consider the orientation o of Pω in which every horizontal edge is oriented from
west to east and every vertical edge is oriented from south to north. If the oriented graph
(Pω, o) has no sources and no sinks, then the orientation o of Pω is 1-out so it de�nes an end
of Pω and thus an end of the tree ω so using again Theorem 2, this end provides a (2, 2)-
paradoxical decomposition by letters of ω. If the set of sources of Pω is nonempty and �nite,
then, using the witness Φ, we choose one source x and a neighbour y of x in Pω; we then
consider the ray of Pω with origin x containing y: this ray de�nes again a 1-out orientation
of Pω and thus an end of ω and a (2, 2)-paradoxical decomposition by letters of ω. If the set
of sources of Pω is nonempty and in�nite but contained in a ray of Pω, then we may consider
the smallest ray containing the set of sources (the intersection of all rays containing the set
of sources) and thus we get an end of ω (which provides a (2, 2)-paradoxical decomposition
by letters of ω).
We now assume that the set of sources of the oriented bi-in�nite path Pω is in�nite but
contained in no ray of Pω: in this case, there is at least one sink between two distinct
sources and thus the set of sinks is also in�nite and not contained in any ray. In this case,
we now describe a (3, 2)-paradoxical decomposition ω = ωn ⊔ ωs ⊔ ωe ⊔ ωw ⊔ ωr such that
ω = ωn ⊔ (ωs).s = ωe ⊔ (ωw).w ⊔ (ωr).e:

(1) Each vertex v of the bi-in�nite path Pω which is neither a sink neither a source is
associated with its natural direction: east direction if v is the source of an horizontal
edge, north direction if v is the source of an horizontal edge; we place v in ωe in the
�rst case and ωn in the second case;

(2) Sources of Pω are placed in the set ωn;
(3) For each source v of Pω, vertices strictly west of v but on the same horizontal as v

(i.e. of the form v.wn where n ≥ 1) are placed in the set ωr;
(4) Sinks of Pω are also placed in ωr;
(5) each other vertex v is outside Pω and not of the form s.(wn) where s is a source of

Pω and n ∈ N∗: we consider the one-to-one walk (v0 = v, v1, . . . , vn) leading from v
to the path Pω, and we place v in ωc where c is the cardinal point such that v1 = v.c.

We �nally, for each c ∈ {n, s, e, w} we de�ne the set Xc := ∪ω∈Ωωc, and we de�ne Xr :=
∪ω∈Ωωr (where ωr := ∅ if the paradoxical decomposition of the orbit ω is (2, 2)). It is easy to
check that X = Xn⊔Xs⊔Xe⊔Xw⊔Xr and that X = Xn⊔(Xs).s = Xe⊔(Xw).w⊔(Xr).e. □

6. (2, 2)-paradoxical decompositions using HBw and weak forms of AC2

6.1. A bi-in�nite path in a tree is equivalent to two distinct ends of this tree. A
bi-in�nite path P = (V,E) has exactly two 1-out orientations: each 1-out orientation of P
corresponds to one of the two linear orders on V such that for each edge e = {x, y} of P , x
and y are consecutive in the linear order. Each of these two 1-out orientations is equivalent
to one of the two ends of the bi-in�nite path.

Proposition 12. Given a tree T = (V,E), the following data are equivalent:
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(1) A bi-in�nite path in T
(2) Two distinct ends (or equivalently, two distinct 1-out orientations) of the tree T .

Proof. ⇒ Given a bi-in�nite path P of the tree T , the path P has exactly two distinct ends,
which de�ne two distinct ends of T . ⇐ Assume that β1 and β2 are two distinct ends of T .
They are equivalent to two 1-out orientations o1 and o2 of the tree T . Let P be the set of
vertices x ∈ V such that [x, o1) ∩ [x, o2) = {x}. Then P is nonempty: consider some vertex
v of T ; consider the two (non equivalent) rays [v, o1) and [v, o2); then [v, o1) ∩ [v, o2) is a
segment [v, x]; and the tree T induces on [x, o1) ∪ [x, o2) a bi-in�nite path equal to P . □

6.2. Weak consequences of AC2.

6.2.1. Choice of an end in bi-in�nite paths. We consider the following consequences of AC2

for bi-in�nite paths:

AC2,end: Given a family (Pi)i∈I of bi-in�nite paths, there is a family (oi)i∈I
such that for each i ∈ I, oi is a 1-out orientation of the bi-in�nite path Pi.

AC2,end,o: Given a family (Pi)i∈I of oriented bi-in�nite paths, there is a family
(oi)i∈I such that for each i ∈ I, oi is a 1-out orientation of the bi-in�nite path
Pi.

AC2,end,o−n: Given a family (Pi)i∈I of oriented bi-in�nite paths, if there exists
a family (fi)i∈I such that for each i ∈ I, fi is a neighbour choice on Pi, then
there is a family (oi)i∈I such that for each i ∈ I, oi is a 1-out orientation of
the bi-in�nite path Pi.

AC2,end,F2 : Given a free F2-set X, for every family (Pi)i∈I of bi-in�nite paths
of the forest X, there is a family (oi)i∈I such that for each i ∈ I, oi is a 1-out
orientation of the bi-in�nite path Pi.

Of course, AC2 ⇒ AC2,end ⇒ AC2,end,o ⇒ AC2,end,o−n ⇒ AC2,end,F2 .

6.2.2. The two halves of a bi-in�nite path. Given a bi-in�nite path P = (V,E) there exists a
unique partition {V0, V1} of V such that for every i ∈ {0, 1}, every vertex x ∈ Vi has its two
neighbours in V1−i. The two sets V0 and V1 are called the two halves of the bi-in�nite path
P . Notice that the two halves of a bi-in�nite path P = (V,E) are maximal independent
subsets of the graph P . We now consider the following consequences of AC2 for bi-in�nite
paths:

AC2,h: For every family (Pi)i∈I of bi-in�nite paths, there exists a family
(Hi)i∈I such that for each i ∈ I, Hi is a half of Pi.

AC2,h,o: For every family (Pi)i∈I of oriented bi-in�nite paths, there exists a
family (Hi)i∈I such that for each i ∈ I, Hi is a half of Pi.

AC2,h,o−n: For every family (Pi)i∈I of oriented bi-in�nite paths, if there exists
a family (fi)i∈I such that for each i ∈ I, fi is a neighbour choice on Pi, then
there exists a family (Hi)i∈I such that for each i ∈ I, Hi is a half of Pi.

AC2,h,F2 : Given a free F2-set X, for every family (Pi)i∈I of bi-in�nite paths
of the forest X, there is a family (Hi)i∈I such that for each i ∈ I, Hi is a half
of the bi-in�nite path Pi.

Of course, AC2 ⇒ AC2,h ⇒ AC2,h,o ⇒ AC2,h,o−n ⇒ AC2,h,F2 .
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6.2.3. Coherently oriented intervals of an oriented bi-in�nite path.

De�nition 6. A mono-in�nite path is an in�nite tree with one point of degree 1 and all other
vertices with degree 2: the vertex with degree 1 is called the extremity of the mono-in�nite
path.

Given a bi-in�nite path P = (V,E), a nonempty connected subgraph (V ′, E ′) of P is
either a (�nite) path of P or a mono-in�nite path or the bi-in�nite path P itself. Connected
subgraphs of P with at least two vertices are called the intervals of P .

If (P = (V,E), o) is an oriented bi-in�nite path, an interval I of P is said to be coherently
oriented with respect to o or o-coherent if for every v ∈ I which is not an extremity of I, v has
in-degree 1 (i.e. out-degree 1) with respect to the orientation o. The oriented bi-in�nite path
(P = (V,E), o) is the union of maximal o-coherent intervals. For each maximal o-coherent
interval I of P , the o-coherent orientation of I is induced by one of the two 1-out orientations
of P ; moreover, if I is �nite, then I has exactly one source and one sink and the source and
the sink of I are the extremities of I. The intersection of two distinct maximal o-coherent
intervals of P is ∅ or a singleton {v} where v is a source or a sink of P . Two maximal
o-coherent intervals I and J of P are said to be adjacent if I ∩ J is a singleton (whence
I ̸= J).

Lemma 4. Let (P = (V,E), o) be an oriented bi-in�nite path, such that each maximal
o-coherent interval of P is �nite.

(1) The set ZP of maximal o-coherent intervals of P endowed with the adjacency relation
is a bi-in�nite path.

(2) If I and J are two adjacent elements of ZP , then their o-orientations come from the
two distinct 1-out orientations of P ; it follows that if I and J are at an even distance
in the graph ZP , then their o-orientations come from the same 1-out orientation of
P . In particular, each half of the bi-in�nite path ZP de�nes one of the two 1-out
orientations of P .

(3) The bi-in�nite path ZP has a neighbour choice g which is de�nable from o.
(4) If P has a neighbour choice fP : V → V , then the bi-in�nite path ZP has an orien-

tation de�nable from o and fP .

Proof. (1) The adjacency relation is irre�exive and symmetric so it de�nes a graph on ZP .
Moreover, given an element I of ZP , there are exactly two intervals adjacent with I so ZP

endowed with the adjacency relation is a bi-in�nite path.
(2) Trivial.
(3) We de�ne a neighbour choice g on the bi-in�nite path ZP as follows: given some vertex I
of ZP , and denoting by v the source of the interval I endowed with its o-coherent orientation,
then we de�ne g(I) as the interval in ZP containing v but distinct from I.
(4) We de�ne an orientation t of ZP : given two adjacent maximal o-coherent intervals I and
J of P , and denoting by v the vertex in I ∩ J , then w := fP (v) ∈ (I ∪ J)\(I ∩ J): we de�ne
t({I, J}) := I if w ∈ I and J else. □

6.2.4. AC2,h,o−n implies AC2,end,o−n.

Proposition 13. AC2,h,o−n ⇒ AC2,end,o−n.
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Proof. Let (Pi = (Vi, Ei), oi, fi)i∈I be a family such that for each i ∈ I, Pi = (Vi, Ei) is a
bi-in�nite path, oi is an orientation of the path Pi and fi is a neighbour choice on the path
Pi. Then, P has a double neighbour choice, so using Proposition 5, there is a family (Φi)i∈I
such that each Φi is a witness of the �nite choice property on Vi. Let T be the set of i ∈ I
such that Pi has at least one in�nite maximal o-coherent interval.
-If i ∈ T , then either Pi has exactly one maximal in�nite o-coherent interval, and this

interval de�nes an end of Pi, or Pi has exactly two in�nite maximal o-coherent intervals: let
v1 and v2 be their extremities, let v3 = Φi({v1, v2}) and let v4 = fi(v3): then the ray of P
with origin v3 and containing v4 de�nes an end of Pi.
-If i ∈ I\T then each maximal o-coherent interval of Pi is �nite: let Zi be the bi-in�nite

path of maximal oi-coherent intervals of Pi endowed with the adjacency relation. Then, the
path Zi has a neighbour choice gi, and since Pi has a neighbour choice fi, the path Zi has
an orientation ti de�nable from oi and fi. Applying AC2,h,o−n to the family (Zi, si, gi))i∈I\T
of oriented bi-in�nite paths endowed with neighbour choices, for each i ∈ I\T we choose a
half Hi of Zi: this half de�nes a 1-out orientation of Pi (or equivalently an end of Pi). □

6.2.5. The existence of Z-chameleons imply AC2,end,o−n. Given some integer n ≥ 2, a cyclic
n-chameleon on a set X is a mapping χ : P(X) → Z/nZ such that for every subset A
of X and every x ∈ X\A, χ(A ⊔ {x}) = χ(A) +n 1 where +n is the additive law of the
(abelian) quotient group Z/nZ. Chameleons were introduced by Mathias (see [8]). One can
also de�ne in a similar way Z-chameleons (see [9]): a Z-chameleon on a set X is a mapping
χ : P(X) → Z such that for every subset A of X and every x ∈ X\A, χ(A⊔{x}) = χ(A)+1
where + is the additive law of the (abelian) group Z. Given a commutative �eld K, we
consider the following statement:

D(K) (�non null dual�) �For every non null vector space E over K, there exists
a non null linear form f : E → K.�

The following statement is a consequence of D(Q) (see [9, Theorem 4]):

ch(Z) (�existence of Z-chameleons�): �For every set X there exists a Z-
chameleon on X.�

Notice that the statement ch(Z) is �multiple�: given a family (Xi)i∈I of sets, ch(Z) implies
a chameleon χ on X := ∪i∈IXi, and for each i ∈ I, the mapping χi : A 7→ χ(A) from P(Xi)
to Z is still a chameleon on Xi.

Remark 6. It was pointed out by Andreas Blass (see [1]) that given a commutative �eld K,
the statement D(K) is equivalent to form 284 of [5]: �A system of linear equations over a
�eld K has a solution in K if and only if every �nite sub-system has a solution in K.�

Proposition 14. Let (Pi = (Vi, Ei))i∈I be a family of bi-in�nite paths.

(1) The axiom ch(Z) implies the existence of a family (ei)i∈I such that for each i ∈ I, ei
is a singleton or an edge of Pi.

(2) Moreover, if for each i ∈ I, the path Pi is endowed with an orientation oi, then ch(Z)
implies the existence of a choice function (vi)i∈I for the family (Vi)i∈I .

(3) If in addition, for each i ∈ I the path Pi is endowed with an orientation oi and a
neighbour choice fi, then ch(Z) implies the existence of a family (ρi)i∈I such that for
each i ∈ I, ρi is a ray of Pi.
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Proof. (1) With ch(Z), for each i ∈ I, we consider a Z-chameleon χi on the set Vi. Given
an orientation o of Pi, for every vertex v of Pi we denote by Iv,o the set of vertices of the ray
[v, o) of Pi; then there exists a unique v ∈ Pi such that χ(Iv,o) = 0. Denoting by o1 and o2 the
two orientations of Pi, let x and y be the elements of Pi such that χi(Io1,x) = χi(Io2,y) = 0:
if x = y let ei = {x} = {y} else, let ei be the center of the �nite path with extremities x and
y: then ei is a singleton or an edge of Pi.
(2) For each i ∈ I, if ei is a singleton then let vi be the element of ei else let vi := oi(ei):
then vi ∈ Vi.
(3) For each i ∈ I, consider the neighbour wi := fi(vi) and then the ray with origin vi which
contains wi. □

Corollary 2. ch(Z) ⇒ AC2,h,o−n.

Proof. Given a family (Pi = (Vi, Ei), oi, fi)i∈I of oriented bi-in�nite paths Pi endowed with a
neighbour choice fi, using Proposition 14, the axiom ch(Z) allows to choose a ray ρi in each
path Pi, and this ray de�nes an end of Pi. □

6.3. HBw+AC2,end,F2 and (2, 2)-paradoxical decompositions by letters of free F2-
sets.

Corollary 3. HBw+AC2,end,F2 implies the existence of a (2, 2)-paradoxical decomposition
by letters in every free F2-set.

Proof. With HBw, we choose in each orbit an end or a bi-in�nite path (see Corollary 1). In
case a bi-in�nite path has been chosen, with AC2,end,F2 , we choose in this bi-in�nite path
one of the two ends of the path: this end yields an end of the orbit. Using Theorem 2, we
deduce a (2, 2)-paradoxical decomposition by letters of the free F2-set X from the choice of
an end in each orbit. □

Remark 7. The axiom AC2,end,F2 is a consequence of the existence of a (2, 2)-paradoxical
decomposition by letters of every free F2-set.

Proof. Use Theorem 2. □

6.4. Paradoxical decompositions of the sphere and the solid ball of R3.

6.4.1. (2, 2)-paradoxical decompositions by letters of the sphere of R3. The two Satô rotations
ρ1 and ρ2 generate a subgroup G of SO3(R) which is isomorphic with F2. This group acts
naturally on the unit sphere S = S(0, 1) of R3. Each rotation r of R3 has exactly two
(antipodal) �xed points in S, so the set D of �xed points of rotations in G is countable: here,
S is linearly orderable (since S and R are equipotent) so the family of pairs (fix(g))g∈G has a
choice function and thusD = ⊔g∈G fix(g) is also countable. It follows that the family of orbits
of theG-setD has a choice function and this implies in ZF a (2, 2)-paradoxical decomposition
of the F2-set D by letters (see [13] or [15, Theorem 5.5 p.64-65]). Using HBw+AC2,end,R, we
consider a (2, 2)-paradoxical decomposition by letters of the free F2-set S\D. We get a (2, 2)-
paradoxical decomposition by letters of S by joining these two decompositions. Likewise, a
(2, 2)-paradoxical decomposition by letters of the F2-set B\{(0, 0, 0)} = ⊔0<r≤1S(0, r) can
be obtained.
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6.4.2. (3, 2)-paradoxical decompositions of the solid ball of R3. The (2, 2)-paradoxical decom-
position of B\{(0, 0, 0)} can be transformed in the classic way and in ZF (see [13] or [15,
Theorem 5.7 p.66-67]) into a (3, 2)-paradoxical of the solid unit ball B(0, 1) (which is thus
also a consequence of HBw +AC2,end,F2).

6.5. A diagram. All the implications in Figure 1 hold in ZFA (set theory without the
Axiom of Choice, weakened to allow �atoms�):

(1) The statement MC is the Multiple Choice axiom: �Every set satis�es the �nite
choice property.� and is equivalent to AC in ZF (see [6], [5]). The implications
MC ⇒ D(Q) ⇒ ch(Z) hold in ZFA and can be found in [9].

(2) The statement R is Rado's selection Lemma (form 99 in [5]). The proof of BPI ⇒ R
is in [12] and the proof of R ⇒ HB is in [10].

(3) HM is Hall's in�nite marriage theorem (form 107 of [5]).

Question 1. Which reciprocal arrows hold between the consequences ofAC2 of the diagram?
Notice that in ZFA, MC does not imply AC2 whence AC2,h,o−n does not imply AC2.
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Figure 1. Summary diagram
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