
HAL Id: hal-04522690
https://hal.univ-reunion.fr/hal-04522690

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Incremental Integration of Fragmented Knowledge Via
the Edition Protocol of a Shared Knowledge Base

Philippe Martin

To cite this version:
Philippe Martin. Incremental Integration of Fragmented Knowledge Via the Edition Protocol of a
Shared Knowledge Base. 2023 IEEE International Conference on Knowledge Graph (ICKG), Dec
2023, Shanghai, China. pp.126-133, �10.1109/ICKG59574.2023.00021�. �hal-04522690�

https://hal.univ-reunion.fr/hal-04522690
https://hal.archives-ouvertes.fr

Incremental Integration of Fragmented Knowledge
Via the Edition Protocol of a Shared Knowledge Base

Philippe A. Martin
EA2525 LIM, I.T. Department,

University of La Réunion
97400 Saint-Denis, France

Philippe.Martin@univ-reunion.fr

that can discuss with each other to solve ambiguities or other
problems, and ii) the complete or efficient exploitation of those
information by these particular agents, for particular
applications. The second KS kind, here called “general KS”
(gKS), is about letting people represent and relate information
within or between KBs in ways that maximize the retrievability
and exploitation of the KRs by any person and application.
Examples of well-known early works for general KS were
Ontolingua (server, ontologies and vision) [2] and Freebase [3]
(which has been reused to create Google's Knowledge Graph).
Restricted KS and gKS are unfortunately rarely distinguished,
including by the World Wide Web Consortium (W3C).
Regarding KS, the W3C has a “Semantic Web vision” [4] of a
Web of Linked Data [5] which is about restricted KS. Indeed, it
mainly only encourages i) data contributors or managers to
index data by few KRs, and ii) KB contributors to relate their
KB objects to some others in other KBs, thus only lightly
relating mostly independently developed KBs, not creating
cooperatively built KBs. The W3C does not yet advocate
particular gKS related techniques or resources such as top-level
ontologies, ontology alignment, KB quality evaluation, ways to
manage networked KBs (i.e. KBs composed of a network of
other KBs, down to non-networked KBs) and ways to manage
the cooperative building of a same (networked or not) KB.

The problems caused by the implicit contradictions and
redundancies across KBs created by classic knowledge-
sharing approaches. Almost all approaches for shared KB
building or knowledge integration are based on i) manually or
automatically selecting some objects from existing KBs – e.g.
according to logical consistency between knowledge objects
and their domains – and ii) with these objects, creating one or
several consistent KBs or creating several competing modules
to be imported in KBs. Such KBs or modules represent
mutually inconsistent views or theories, e.g. one for Newtonian
physics and one quantum physics. (From now on, “KBs” also
refer to modules.) In these approaches, an implicit assumption
(which the next paragraph challenges) or goal is that an
inference engine exploiting a KB has to – or should – be able to
directly exploit its whole content, i.e., without an automatic
pre-selection between competing views or ideas. With this
assumption, since classic logics and hence most inference
engines cannot handle inconsistencies, i.e., since most KB
management systems do not handle inconsistency-tolerant
logics (e.g. paraconsistent ones or multi-valued ones) or
reasonings (e.g. defeasible ones and those based on belief
revision), the whole KB cannot include competing views or
theories. For gKS purposes, avoiding inconsistencies in a
shared KB cannot be achieved by having a person or a
committee decide whether to accept or not each new statement
submitted to the KB. Indeed, this process is too slow to be
scalable and it is important for gKS to preserve the possibilities
for KR end-users to make selections themselves according to

Abstract—The main approaches to knowledge representation
and sharing (KS) focus on easing the exploitation and exchange
of knowledge representations (KRs) between particular agents or
for particular applications. These approaches lead to the
proliferation of mainly independently developed KR bases (KBs)
which are mutually partially redundant and contradictory, thus
restricting a more general KS. This article shows how a shared
KB edition protocol can support the incremental and cooperative
integration of fragmented knowledge into a (networked or not)
consistent well-organized KB, without manual or automatic
selection between contradictory KRs. To that end, the protocol
helps and enforces i) the setting of particular relations between
“competing” KRs (i.e. those that are contradictory or at least
partially redundant) to compare them and justify their joint
existences in the KB, and ii) a representation of them that keeps
the KB consistent. Besides providing more knowledge search and
inference possibilities, these relations can be exploited by default
or user-defined rules for KR filtering and choices between them.
This article also shows that this approach can be implemented in
various ways and be used with most inference engines.

Keywords—fragmented knowledge, knowledge integration,
knowledge representation, knowledge sharing

I INTRODUCTION

Knowledge and framework for integrating and sharing
fragmented knowledge. Knowledge representations (KRs) are
logic-based representations of semantic relations between real
or imaginary things, stored in a Knowledge Base (KB). A KB
object is either a type, an individual or a statement (an assertion
of relations). KBs are composed of an ontology
– concept/relation types (and individuals) related by relations
defining them – and a base of facts that contains the other
statements. The more relations there are between KB objects
within and between KBs, the better for knowledge inferencing
and retrieval via queries or navigation along relations.
According to [1], “fragmented knowledge” refers to a low or
inadequate organization of such knowledge, and is due to the
absence of a “framework in which to relate the tremendous
volume of ideas, data and insights which every person meets at
work and at home through the years”. As noted in [1],
databases and natural language documents cannot support such
a framework (since, unlike KBs, they do not enable people to
represent and relate their knowledge via semantic relations).

Knowledge sharing goals. Although [1] does not give
requirements for the above-cited framework, the given
descriptions and the claim that this framework does not exist
are indications about the kind of knowledge representation and
sharing (KS) this framework is related to. This article
distinguishes two main kinds. The first one, here called
“restricted KS” is insufficient for the above cited framework.
Indeed, restricted KS is about i) easing the exchange of KRs
between particular agents (businesses, persons or applications)

http://encyclopedia.uia.org/en/problem/fragmentation-knowledge
https://en.wikipedia.org/wiki/Belief_revision
https://en.wikipedia.org/wiki/Belief_revision
https://en.wikipedia.org/wiki/Defeasible_reasoning
https://en.wikipedia.org/wiki/Many-valued_logic
https://en.wikipedia.org/wiki/Paraconsistent_logic
https://www.w3.org/wiki/LinkedData
https://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf
https://www.w3.org/standards/semanticweb/
https://dl.acm.org/doi/pdf/10.1145/2872427.2874809
https://en.wikipedia.org/wiki/Freebase_(database)
https://www.sciencedirect.com/science/article/pii/S1071581996901214/pdfft?isDTMRedir=true&download=true

their particular needs. Similarly, gKS cannot use solutions that
discard knowledge which may be of interest to some users or
for some applications, e.g. solutions based on selecting only
consensual KRs or only KRs from a largest consistent subset of
the KB. Automatically dispatching submitted statements into
various KBs for each of these KB to be internally consistent
– e.g., as in the Co4 protocol [6] for building consensual KBs –

is also not scalable: with such a method, the number of required
KBs can grow exponentially and these consensual KBs may be
mostly redundant with one another. More generally, any
approach that leads to creating new KBs which are inconsistent
or at least partially redundant with each other without explicitly
representing inter-KB relations between the mutually inconsistent
or partially redundant objects – e.g. the classic approach of
using different files for different versions of a KB, hence
different KBs without inter-KB relations between objects –
makes the whole body of knowledge harder and harder to
manage for gKS purposes. Indeed, i) such an approach leads to
globally less inter-related objects between the KBs (even if the
absolute number of inter-relations between the KBs increases,
their relative number decreases, i.e., there are many more
objects without direct or indirect relations with objects in other
KBs), and hence ii) such an approach forces each KB creator
interested in reusing some KBs to choose between them or
select knowledge from them and integrate them, thus creating
yet another KB partially redundant or inconsistent with these
KBs and with few inter-KB relations to allow automatic
comparisons or choices between all the objects of these KBs.

Consistent KBs relating competing knowledge objects
for enabling people and inference engines to choose
between them or compare them. This article shows that the
previously cited assumption is incorrect and that not making it
provides a solution to the above-listed problems. Here are four
underlying reasons. First, a loss-less integration of KBs into a
shared one is possible: competing knowledge objects – i.e.
those representing concepts or ideas that contradict each other
or are at least partially redundant with each other – can be
stored into a shared logically consistent KB using various
complementary means such as contexts representing who
created or believe in the ideas and the precisions making them
true (times, places, modalities, etc.). Second, a cooperatively-
built KB can have an edition protocol which, when it detects
that an object addition or update would create an inconsistency
or redundancy with an already existing object in the KB,
requests the entering of at least one relation between these
objects that justifies the update (e.g. a relation of correction
and/or specialization, with, optionally, arguments justifying
why this new relation is correct according to its author). Thus
and third, in the cases when the used inference engine has to
choose between competing statements for making inferences to
answer a query, the engine can perform this choice according
to default rules (e.g., “choose the correcting statement unless it
has itself been more justifiably corrected) or rules given by the
author of the query. If the engine is not able to perform such
choices, e.g. because it is not able to exploit the given rules, the
edition protocol must be generalized to an input-output (I/O)
protocol that also handles search/update queries and knowledge
display; to obtain the adequate results, this protocol must then
exploit features of the used KB system (e.g. partitions in its
workspace) and of the used engine. Fourth, to cope with the
possible proliferation of competing objects, query results – and,
more generally, the display or not of objects in the KB – can be
adapted according to default display rules (e.g., “do not show

the content of justifiably corrected statements, just show
symbols showing that they exist and allowing to access their
content”) or display rules given by the author of the query.

Requirements; general model and shared KB editing
rules based on these requirements. Section II first introduces
the two general representation requirements that this approach
entails for the KB. Then, it details the consequences of these
requirements for the KB objects, especially the types of the
relations needed to connect competing objects for organizing
them, justifying their existence wrt. each other, and thus
choosing between them via rules and, more generally, avoiding
the above-cited problems that these competing objects would
otherwise create. Some core default rules for the previously
cited edition protocol are also given. These types are defined in
an ontology here referred to as “TopOntolForGKS” [7], and the
rules will be too. Several of these rules were hardcoded in the
shared KB server created by the author of this article: WebKB-
2 [8]. This tool is now re-engineered to exploit this ontology
(which the users of this server can extend) and thus i) let KB
creators define protocol rules for their KB, e.g. by extending
the default ones, and, similarly, ii) let KB users define their
own rules for automatic choices between competing objects or
for display rules. For the proposed approach to work, the KB
edition protocol rules ensure that when a KR update made by
one user has consequences on another user's knowledge, this
update is not destructive but additive, i.e., made via the
addition of relations – e.g. correction relations with argument
relations for the correction. In Section II, the edition rules are
high-level, i.e., they are independent of the used KRL
(Knowledge Representation Language) and used inference
engine. Since this genericity is possible, designing a particular
logic or KRL for implementing such rules would be pointless,
at least for gKS. When the competing KB objects are statements,
the proposed approach could be seen as a formal argumentation
framework [9]; however, unlike such other frameworks, this
approach remains purely logical and does not introduce new
inference rules nor a new logic. Indeed, the edition protocol can
exploit an existing inference engine to detect when objects are
competing and then suggest probably relevant relations for
connecting these objects. This approach is complete if all pairs
of competing objects are detected and then related, but this is
not an all-or-nothing approach: simply, the fewer pairs are
missed, the less the above-cited problems are likely to occur and
compound. This approach can also be applied to a networked
KB for avoiding contradictions and redundancies between its
component KBs and within them, but additional rules for
forwarding knowledge and queries between the component
KBs are needed. This article does not introduce these other rules.

Representations or implementations. Section III shows
how the edition (or I/O) protocol can i) work with most KRLs,
even those not particularly expressive, and ii) be represented or
implemented in different ways, e.g., constraints, queries or
functions (hardcoded or given by the users). These two points
show that the proposed approach could be adopted to extend
existing shared KB systems, even if they do not handle
contexts (but implementing turnarounds could be a bit
cumbersome for the developers and maybe the end-users).

Answered research questions. These sections answer the
following research question: how to support an incremental
integration of fragmented knowledge via a shared KB edition
(or I/O) protocol that i) is generic wrt. the used inference
engine, and ii) does not restrict what knowledge can be entered

https://cdn.aaai.org/ocs/12872/12872-57528-1-PB.pdf
https://en.wikipedia.org/wiki/Argumentation_framework#Logic-based_argumentation_frameworks
https://en.wikipedia.org/wiki/Argumentation_framework#Logic-based_argumentation_frameworks
http://www.webkb.org/
http://www.webkb.org/
http://www.webkb.org/kb/top/d_TopOntolForGKS.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html

in the KB (except when this knowledge is outside the stated
domain of the KB; in this case, if the KB is part of a networked
KB, the knowledge can be automatically forwarded to a more
relevant KB of this networked KB)? For readability and
conciseness purposes, further comparisons between approaches
or methods are made within the sections, when the principles
and their rationale are presented, not in a separate section.

II GENERAL MODEL AND RULES FOR A SHARED KB

II.A General Requirements And Terminology

Two requirements to be enforced by the KB editing
protocol of a cooperatively-built KB server. The two most
general requirements (or sets of requirements) of the proposed
approach are presented in the next two paragraphs and were
justified in the introduction. The next three subsections show
which kinds of objects needs to be taken into account and how.
Unlike a private KB, a (networked or not) shared KB requires a
KB server (generally reusing a Web server) which manages the
updates and enforces the editing rules via a KB edition
protocol. To this day, almost all shared KB servers had no KB
edition protocol: once they allow a user to update a KB, this
user is allowed to update any object in it, even if it was created
by another user (and, sometimes, as in Freebase [3], even if this
makes the KB inconsistent).

The object ownership requirement. The owner of an
object is a (representation of the) user that created the object
(e.g. the creator of a Web document where the object was
extracted) and, more generally, the (group of) agent(s) that can
update the object. The present requirement is that i) this
ownership is represented in the KB, ii) only the owner of this
object is allowed to make a destructive update to it, and iii) if
this non-additive update has consequences for the knowledge
of other users, the original object should first be manually or
automatically “cloned” (see details below) to avoid these
consequences. The words “source” and “owner” will now be
used interchangeably, depending on which seems more natural.

 Object source representation. For objects that can be
inconsistent with each other – i.e., as explained below,
for statements that are not definitions – representing its
source should use a relation from the statement to
express that its source is both its creator and believer.
This statement is thus contextualized by this believer
relation – it is then here called a “belief” (even though
the proposed is not at all akin to belief revision) – and
inconsistencies are technically avoided. E.g., “John
believes that birds fly” is not inconsistent with “Jack
believes that most healthy adult carinate birds are able
to fly” even though what John and Jack believe here are
contradictory (and hence competing) ideas.

 Object cloning. The cloning of an object (that is used
by other objects) before it is destructively updated by its
owner, means that: i) the protocol first asks the author
of the update if this author can create the versions of the
object before and/or after the update and relate them via
a relation of type pm:previous-version (defined in
TopOntolForGKS), ii) if the author can indicate this
relation, the protocol considers the previous version as
the clone; otherwise, the protocol creates the clone (i.e.,
from a semantic viewpoint, the original version) by
giving the to-be-updated object a new owner (e.g. any
of the owner of previously cited other objects, as long as

this keeps the KB consistent), then iii) wherever the
identifier of the to-be-updated object was used, the
protocol replaces it by the identifier of the clone, and
finally iv) the update of the considered object is
performed. If this update is a modification, not a
removal, the new object is competing with the clone and
hence the protocol also follows the edition rules
necessary to comply with the next requirement.

The competing object comparison requirement.
Competing objects should be connected by correction,
specialization or equivalence relations in order to i) organize
these objects via these transitive comparison relations,
ii) represent which object is specialized and/or corrected, and
iii) when necessary, allow people and inference engines to
choose which object is the most relevant according to the user's
preferences or goals. E.g., a user John can represent that “John
believes that `most healthy adult carinate birds are able to fly´
is a corrective specialization of Jack's belief `birds fly´ ” (a
corrective specialization relation is one that would express a
specialization relation if it was not a correction relation).
Competing objects generally have different sources, e.g.
successive versions of the same KB. When changes are directly
made within a shared KB, a newly modified object and its
clone (in the above-described sense) are competing objects.

Rationale of the used terminology. In some KR-related
terminologies, unlike in this article, the word “relation” is only
used for referring to a relationship between real-world entities
while other words are used for referring to the representations
of such relations, e.g. “predicate” in Predicate logics,
“property” in RDF and some knowledge graph formalisms
[10], or “edge” in another [11]. In this article, the words
“relation”, “types”, “statements”, “meta-statements” and
“contexts” have the meanings given in the introduction because
i) these are common meanings in KRLs, e.g. in Conceptual
Graphs [12], and ii) these words are more intuitive, general
(hence not tied to a particular formalism) and easy-to-use. As a
quick reminder, a (KR) “object” is either a type, individual or
statement, and a type is either a class or a relation type.

II.B Consequences For Terms

The object ownership requirement for terms. Objects
that are terms – atomic terms (types or individuals) or
composed terms (expressions that are not atomic terms nor
statements) – do not assert anything. Hence, they cannot be
inconsistent with each other and cannot be contextualized.
However, a term identifier can have a source relation (e.g. a
creator relation) to represent its source, e.g. an ontology or a
user of the KB. Instead of explicitly using such a relation, an
atomic term identifier can include the identifier of its source as
a prefix or suffix, as long as this makes the source identifier
automatically retrievable. E.g., in W3C KRLs such as
RDF/XML and Turtle, if dc:creator is declared as referring to
a creator relation type (alias, “Property” in these KRLs), with
dc being declared as an abbreviation for a URI of the Dublin
Core ontology, inference engines understanding these KRLs
can “dereference” dc:creator to retrieve and access the
Dublin Core ontology. An update of a term is an update of its
identifier or of its definitions. Conversely, an update of a
definition (e.g. a subtype relation) is an update of a term. Only
the term owner should be allowed to make this update. A
modification is here seen as a removal followed by an addition.

https://www.w3.org/2001/tag/awwsw/issue57/20110327/#depends
http://www.jfsowa.com/cg/cgif.htm
http://www.jfsowa.com/cg/cgif.htm
https://kgbook.org/
https://mitpress.ublish.com/ebook/knowledge-graphs-fundamentals-techniques-and-applications-preview/12636/23
https://en.wikipedia.org/wiki/Belief_revision

The competing object comparison requirement for
terms. Since terms do not assert anything, a set of terms cannot
be inconsistent but two terms can be compared by an exclusion
relation: for types, this means that they cannot share subtypes
or instances; for individuals, this means that they are different.
Similarly, terms can have partially or fully redundant meanings
in the sense that two terms can be compared via a
specialization or equivalence relation: a type can be subtype or
equivalent to another; an individual can be instance of a type,
identical to another individual or can specialize another. E.g.,
pm:Camberra-in-2020 (an individual representing the
Australian capital city in 2020, with pm referring to the author
of this term and of this article) specializes pm:Camberra-
between-2000-and-2023. When two terms in a (networked or
not) KB have an exclusion, specialization or equivalence
relationship (for terms, this is what “competing” translates
into), this relationship should be represented – for gKS
purposes and for the reasons given in the introduction. This
representation may be direct or indirect: if this engine cannot
deduce the relation based on definitions associated with the
terms, the relationship needs to be manually represented. This
representation is ensured by the shared KB edition protocol.

KB edition protocol for term additions. Before
permanently accepting the addition of a new term that is
submitted to the KB by a user, the protocol checks that this
term has an automatically retrievable source and that, between
this term and each other term already existing in the KB, there
is i) a (direct or not) relation either stating that one of these two
terms specializes the other or stating that none of these terms
can specialize the other (e.g. because there is an exclusion
relation between them), and ii) a (direct or not) relation either
stating that these two terms are equivalent or stating that they
cannot be equivalent (e.g., because one is a strict specialization
of the other, as opposed to a “specialization or equivalent”
term). [13] shows a way to implement such checks.

Compliance easiness. An easy way for KB contributors to
comply with this protocol is to declare and organize types using
subtype partitions (e.g., via owl:disjointUnionOf constructs
for classes in OWL) and similar complementary constructs that
indicate whether the specializations of a term are exclusive (in
addition to specifying that the specializations are strict). The
ontology that the author of this article named Sub [14] declares
and organizes such constructs (as well as the relation types they
are based on) and partially or fully defines them in various
KRLs (e.g., in OWL [15], these constructs can only be fully
defined for classes, not for relation types, nor for individuals).
Using such constructs does not take more time than only using
specialization relations but leads to the assertion of more
relations and makes the manually entered KRs more readable.

Completeness advantage example. With respect to the
existence or not of the specialization, equivalence and
exclusion relations between terms, complying with the
previously cited requirement makes the KB complete in the
following sense: using the “closed-world assumption” (i.e., any
statement not represented in the KB is assumed to be false) and
the “unique name assumption” (i.e., different identifiers are
assumed to refer to different things) do not lead to any more
inferences regarding the above-cited relations – in other words,
at least wrt. these relations, the KB supports these inferences
without having to make these assumptions. This for example
means that any term or statement in the KB can be searched not
only for what they represent – via the specialization and

equivalence relations; these are the classic conceptual
searches – but also i) for what are they are exclusive with (as
with a search for healthy birds that cannot fly), and ii) for what
they are not exclusive with. E.g., assume that the notion of
“Emergency-lodging” is added to the KB and represented as a
specialization of “Lodging”. If this type has been represented
as not exclusive with “Sports-hall”, some sports halls could be
automatically found to be adequate emergency lodgings in case
of a natural disaster. On the other hand, if “Lodging” was
represented as exclusive with “Sports-hall”, the notions of
“Emergency-lodging” and “Classic-lodging” may first be
represented as exclusive subtypes of “Lodging” and the
exclusion between “Lodging” and “Sports-hall” updated to be
an exclusion between “Classic-lodging” and “Sports-hall” (in
the way allowed by the next paragraph).

KB edition protocol for a non-additive term update
(hence, directly or not, for the removal of an identifier or a
defining relation of a term). As previously implied by the
above given two general requirements, if the update has no
consequence on other users' objects (i.e., if this term, its
equivalences and specializations are not used in these objects,
and hence its update cannot change their meanings), there is
nothing to do. On the other hand, if there are consequences, the
protocol should first retrieve or generate the clone of the
original term and then, if the update was a modification, handle
it as a term addition – hence, ask for a relevant relation
between the new term and its clone, after suggesting one such
relation if it can. In the example given at the end of the
previous paragraph, the exclusion relation between “Lodging”
and “Sports-hall” is updated but, since the relation is a defining
one for these two terms, the protocol handles this update as a
modification of these terms. Thus, assuming this update has
consequences on knowledge from sources other than the
exclusion updater, the protocol first asks this agent for a
pm:previous-version relation. Here, the agent can – and
hence does – provide such a relation: “Classic-lodging” is the
clone and subtype of what “Lodging” referred to before the
distinction between “Emergency-lodging” and “Classic-
lodging” was introduced. The update of the exclusion relation
is performed if it does not make the KB inconsistent and if the
required relations for competing objects are represented (here,
they are represented, thanks to the representation of the
specialization of “Lodging” by “Classic-lodging”).

II.C Consequences For Definitions

The object ownership requirement for definitions. Since
a definition relates a term identifier to a definition body, a
specification of the definition creator is not mandatory: by
default, it can be assumed to be the creator of the term identifier.

The competing object comparison requirement for
definitions. Definitions are always “true, by definition”: the
meaning of the term they define is whatever the definition
specifies (thus, if a definition of a term is self-contradictory,
this term refers to “something impossible”). Thus, like terms,
definitions cannot be “believed in” nor “corrected by someone
that is not the creator of the defined term”. If a new definition
of a term is added by the creator of this term and is competing
with earlier definitions of this term from this creator, the new
definition cannot be accepted: this is a modeling mistake. If a
new definition of a term is added by another user and is
competing with earlier definitions of this term from its creator,
this definition also cannot be accepted: this other user has
misinterpreted the intended meaning of the term. Finally,

../../../../../../kb/it/o_KR/p_kEvaluation/ontology/sub/index.html
../../../../../../kb/it/o_KR/p_kEvaluation/ontology/sub/index.html
../../../../../../kb/it/o_KR/p_kEvaluation/ontology/sub/index.html

definitions are not organized via direct relations between
themselves but via the terms they define.

II.D Consequences For Beliefs

The object ownership requirement for “beliefs”
(statements that are not definitions). In this article, as above
introduced, a belief is a statement with an outermost context
representing the creator and believer of this statement. Other
contexts – i.e. other meta-statements specifying precisions that
make them true (times, places, modalities, etc.) – can be used.

The competing object comparison requirement for
beliefs. Beliefs can be false and hence corrected. Thus, the five
kinds of primitive relations with which they can be compared
and organized – i.e. those that represent i) their partial or full
redundancy, or ii) which statements correct which ones – are
relations of equivalence, specialization (which between two
statements means that the relation destination represents more
information), implication (alias “=>”; this is sometimes also a
generalization), correction (a subtype of pm:previous-
version) and exclusion. For statements, an exclusion relation
(alias “=>!”) means that the premise implies the negation of the
conclusion and, at least in classical logics, that the conclusion
implies the negation of the premise. As previously justified,
gKS requires that the used inference engine knows (e.g., by
deduction) whether each one of these five primitive relations
exists or not between each pair of competing beliefs.

Compliance easiness. As for terms, complying with this
requirement is not difficult. One reason is that the protocol can
do most of the work, as described in the next paragraphs.
Another reason is that the given primitive relations can easily
be combined: since some of these four relations imply some of
the others or their negations, only one derived relation needs to
be manually set between competing beliefs (or none if it is
inferrable by the used engine). E.g., in TopOntolForGKS,
i) pm:non-corrective_specialization-only (alias “pm:_”)
is defined as subtype of pm:specialization as well as an
exclusion to pm:correction and pm:implication (alias “=>”),
and ii) pm:corrective-implication-and-generalization
(alias “pm:c=>_/^”) is defined as subtype of correction,
pm:implication and the inverse of pm:specialization. As
these examples illustrate, to define the type of a derived
relation, one may need inverse relations (to get the correct
direction for the required relation) and subtype relations (to
give more precisions). Since the proposed approach is meant to
be generic, pm:implication is a general type that does not
specify a particular logic (thus, allowing the use of any
inference engine able to handle the representations in the KB,
even if it cannot fully exploit them from a logical completeness
viewpoint). A statement requiring a particular logic can still be
represented, e.g., unidirectional rules can use a type such as
pm:unidirectional-implication (alias “=>>” in KIF, the
Knowledge Interchange Format [16]), and default rules can use
a type such as pm:Statement-not-inconsistent-with-the-
rest-of-the-KB (alias “consis” in KIF). Via these last two
types, the documentation of KIF represents rules that use the
closed world assumption and default rules such as the next one:
“If something is a bird and if it is not inconsistent that this
thing flies, then this thing flies”.

KB edition protocol for term additions. When a user of a
shared KB submits a statement addition, the protocol can
i) transform the statement into a belief (indeed, the user has to
log in for making updates and hence is known), ii) most often

detect whether the new belief competes with one already in the
KB, and then iii) suggest a relation to connect these two
beliefs. E.g., if the engine has detected that the new belief
contradicts and specializes an already entered one, the protocol
can ask whether the user believes that there is a corrective-
specialization relation from this other belief to the new one.
Indeed, in the classic case where the two beliefs are formally
represented, the inference engine exploited by the protocol can
often detect when the beliefs are partially/fully redundant
– e.g., detect that “at least three healthy birds fly” specializes
and implies that “at least two birds fly” – or contradictory.
More precisely, the used inference engine can make this
detection when the KB has the necessary knowledge and when
this engine has the necessary inferencing capabilities. In the
case where some statements are not formally represented, some
tools such as ChatGPT-4 can (as verified by the article author)
i) correctly translate a natural language sentence into a formal
representation (in a common notation; without using a
particular ontology but relating the used terms to those defined
in the KB can also be done semi-automatically), and
conversely, and ii) detect whether two sentences have an
equivalence, specialization or contradiction relationship.

KB edition protocol for a non-additive belief update.
When necessary, for its knowledge removal part, such an
update also leads to belief cloning (and possibly term cloning)
in the way implied by the above given two general requirements.

II.E Evaluation of the Above Analysis and of Belief Trustability

Completeness of the above analysis (and hence of the
ontology – or generic model – required by this approach).

 Terms, definitions and beliefs form a partition (i.e. a
complete set of exclusive types) for the KB objects. For
example, when a KRL object is not a first-order entity
in the KB (e.g. a quantifier when used in a statement),
i.e., when it cannot itself have relations, it is not a KB
object; on the other hand, when it can have relations
(e.g. a type for a quantifier such as a type representing
the classic universal quantifier, “ ”), it is a term.∀
However, this partition requires each universally
quantified statement to be represented by its authors as
either a belief or a definition. As shown above and
below, this distinction – hence, the added precision – is
valuable. E.g., the rule “if S is a square then S is a
rectangle with 4 equal sides” should be represented as a
definition for a square. On the other hand, observations
(including those expressed by rules) – e.g., “all cars
(have been observed to) have 4 wheels” and its rule-
based version “if C is a car, then (by observation
generalization) C has 4 wheels” should be represented
as beliefs (the author of which can be the observer).
Axioms can always be translated into definitions. E.g.,
the Euclidian “parallel postulate” can be translated into
a definition for the concept type Euclide:Parallel or
the relation type Euclide:parallel; then, statements
based on this postulate have to be represented using one
of these types. Similarly, if statements use the alethic
modality “necessarily true”, distinguishing them as
either definitions or beliefs is needed. To ease the
representation of such precision, TopOntolForGKS
defines types such as pm:universal-quantifier-for-
a-definition (alias pm:any, or simply any in FCG and
Formalized English (FE) [17] KRLs created by the
author of this article to ease the representation of

../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.E
../../../../../papers/2023ickg/ickg23.html#II.D

expressive kinds of knowledge), pm:universal-
quantifier-for-a-belief (alias pm:each),
pm:implication-for-a-definition (alias “pm:-=>”),
pm:implication-for-a-belief (alias “pm:.=>”; a
pm:=> relation between beliefs is implicitly a pm:.=>
relation), pm:supertype-for-definition (alias
“pm:-/^”) and pm:supertype-for-a-belief (alias
“pm:./^”).

 The two considered general requirements, as well as the
primitive relations for achieving these requirements, are
all those which i) when used, enable the avoidance of
inconsistencies, or ii) directly represent and organize
contradictory and partially or fully redundant objects.
More precisions, if required by some rules, can then be
given based on these representations.

Evaluation of the trustability of beliefs based on “=>”
and “=>!” relations. Any statement – e.g., a correction
relation or, equivalently, a statement composed of two
statements related by a correction relation – can be supported
using an implication that has it as conclusion, and, similarly,
contradicted via a “=>!” relation. When a belief corrects
another one, this correction has not been contradicted, the user
has not represented a distrust in people such as the author of the
correction (e.g. people that do not have an academic degree in
ornithology when their statements are about birds), and a
choice has to be made between the two beliefs (e.g., for making
an inference), a natural default rule seems to be “choose the
correcting belief”. To allow rules to take into account all
supports and contradictions in a logical way, TopOntolForGKS
i) relies on the “=>!” and “=>” relations for contradictions and
supports (it does not propose a pm:argument relation or other
argumentation relations that are not logic-based), and
ii) formally and recursively defines the statement types
pm:Successfully-supported_statement, pm:Successfully-
contradicted_statement and other types that help define
these two types. A statement is “successfully supported”, i.e., is
of the first type, if i) it has not been “successfully
contradicted”, each of its supports has not been “successfully
contradicted” and is supported by at least one other statement
(except for the case a user represents that she likes particular
things or prefers certain things over other ones; indeed, it is
difficult to give a supporting argument in this case and the
assumption is that lying about likings or preferences would
generally be more detrimental than beneficial), or ii) it cannot
be false, i.e., it is a definition. A statement is “successfully
contradicted” if it has been contradicted by at least one
“successfully supported” statement. Unlike other
argumentation-based frameworks [9], this one does not
introduce new inference rules and hence remains purely
logical, e.g., it does not have rules such as the classic “a
statement that has more arguments that a competing statement
can be considered as more likely to be true than this last one”
(majority based credulous inference [9]). Thus, as a default
rule, “choose the correcting belief unless it has been
successfully contradicted” seems to be a logical choice and it
encourages knowledge providers to add contradictions or
supports to beliefs, thus leading other users to reformulate their
knowledge and making the KB more and more precise.
Nothing prevents a user to create a rule that leads to more
dangerous choices and thus to different knowledge inferencing,
filtering and display. Since such rules are statements that are
not beliefs, they should be represented as definitions and are

then organized via the specialization relations between the
terms they define. Thus, in the shared KB server, they can be
retrieved and used by other users than their creators.

Resolution of conflicts (caused by different
terminologies, preferences or beliefs) between knowledge
providers by leading these agents to inter-relate and precise
their representations. This conflict resolution approach is the
one underlying the previously described shared KB edition
protocol and belief evaluation framework. Since agents are led
to give more precisions, and since the different agents represent
the same world, the approach enables these agents not to have
recurring superficial interactions (via the shared KB). An
interaction between two agents committed to fully solving their
conflict via the approach stops when the added precision makes
these agents agree that their conflict was caused by different
terminologies (hence definitions and used logics), preferences
or fact sources for their beliefs (with, ideally, an agreement on
which sources are correct). The interaction may also stop
because one of the agents gives up, e.g., upon understanding
that a previous mistake has been made and that giving more
details will expose that mistake. Unlike in wikis or shared KB
servers that do not have editing protocols, edit wars are not
possible with the proposed approach.

III EXAMPLES OF IMPLEMENTATION METHODS

Rationale for the references to Web knowledge
representation/query/constraint languages advocated by
the W3C. The next subsections refer to Linked Data related
languages because they now are the most well-known and to
show that the proposed approach can be implemented with the
relatively poorly expressive W3C languages that are referred to
below (the W3C also proposes RIF-FLD – the Rule
Interchange Format for Logic Dialect – to support more
expressiveness). These particular languages of the W3C are
relatively poorly expressive because, as argued in the
introduction, the languages of Linked Data are mainly meant
for Restricted KS, e.g. for the complete or efficient exploitation
of KRs by applications; furthermore, it is then also easier for
the W3C industrial members to comply with the adopted
recommendations. E.g., RDF [18] is mainly a structural model
for conjunctive existential logic formulas, and almost all KRLs
(except those for propositional Logics) enable the
representation of such formulas. However, RDF Full allows
formula directly on types (i.e., types can have non-predefined
relations) while Description Logics based KRLs often do not,
e.g., most inference engines supporting RDF+OWL – or, more
precisely an OWL profile [15] such as OWL-EL, OWL-RL or
OWL-QL – do not support RDF Full.

III.A Representations of the Required Kinds of Objects

Object ownership. The lexical approach described in
Section II.B works with any KRL, and more complex
ownership schemes (e.g. for handling different kinds of
authorizations) can be specified with RDF+OWL.

Contexts. A context is a meta-statement representing a
condition for the inner statement to be true. Few KRLs allow
non-predefined kinds of contexts but many – perhaps most –
KRLs, e.g. RDF, allow the reification of (some kinds of)
statements and thereby the representation of meta-statements –
since creating meta-statements with RDF reification can be
very cumbersome, some extensions have been proposed, e.g.
“Named graphs” (which are usable via SPARQL [19]) and

https://www.w3.org/TR/sparql11-query/#namedGraphs
../../../../../papers/2023ickg/ickg23.html#III.A
../../../../../papers/2023ickg/ickg23.html#SharedKB_HighLevelRules

RDF-star [20]. If the KRL does not have specific features for
meta-statements, they can still be represented in a cumbersome
but semantically correct way via the “Context Slices” design
pattern [21]. If contexts are only used for representing believer
relations, and thereby beliefs, this last solution may not be too
cumbersome. Since few inference engines understand contexts,
most engines handle them as normal meta-statements, hence as
normal statements. This is not a problem if the KB edition (or
I/O) protocol knows the way – or various ways – the beliefs are
represented in the KB since it can then perform the necessary
checks and queries via functions, sub-queries or constraints (as
shown by the next sub-section) and, when necessary, perform
some memory management for the inference engine to provide
correct results. E.g., assuming that the protocol is implemented
by a SPARQL endpoint with an OWL-2 DL entailment regime
[22], since OWL-2 inference engines do not handle contexts,
one of the ways for the protocol to make such an engine work
on beliefs and implement the above-cited occasional “choices
between competing beliefs” is to i) store beliefs from different
sources in different named graphs, ii) make choices between
competing beliefs according to the default rules or the
preferences of the user that sent the last search/update
SPARQL query to be executed, iii) copy the inner statements
of the chosen beliefs to the “default graph” (the one the
inference engine works on), iv) directly or indirectly make the
inference engine work, v) display the result of the last query,
and vi) do the necessary cleaning in the default graph before
handling another query. This is only an example for
explanation purposes: such memory management (i.e. such
knowledge object temporary copying) is not always possible
nor necessary depending on the used KB system: alternative ad
hoc ways can be used, e.g., based on the “Context Slices”
design pattern.

The advocated relations and the distinction between
definitions and beliefs. Most KRLs are not expressive enough
to represent – in a way that is not ad hoc – all the types of
TopOntolForGKS, but most KRLs are able to declare them
(and relate them by specialization relations). This is sufficient
for the advocated relations to be used in the KB and taken into
account by a protocol that understands their special meanings.
Similarly, most KRLs enable the distinction between
definitions and beliefs. Although most KRLs would not allow
the use of types such as pm:each or pm:implication-for-a-
belief, most KRLs have a special syntax for definitions.
RDF+OWL is one of the exceptions: as in most Description
Logics, the supertype relations (rdfs:subClassOf and
rdfs:subPropertyOf) and some other relations are used for
representing definitions; however, the documents about the
semantics of OWL (e.g. [23]) use the classic universal
quantifier, “ ”, for defining the allowed universal expressions∀
and hence these relations are not restricted to making
definitions. If RDF Full is usable, a solution is to consider that
if these relations have no believer context, they are definitions.
In the common case where RDF Full is not usable, a solution is
for knowledge providers to give a type to the OWL expressions
involved in making universal statements (hence, more
precisely, to give a type to particular “OWL restrictions” using
rdf:type relations), e.g. the type pm:Owl-restriction-for-a-
belief). An alternative is, within these expressions, to use a
particular relation that the protocol can interpret as signaling
that these expressions are about beliefs instead of definitions.

III.B Implementations for the KB Edition (or I/O) Protocol

Hardcoded or user-written functions. A cooperatively-
built KB system can have a fully hardcoded I/O protocol, as in
WebKB-2 [8]. It can also be mainly implemented by
interpreted functions stored in the ontology (like other
definitions) and called by the small hardcoded part when
search/update queries and knowledge display are performed.
Since FCG (alias FL), the main KRL of WebKB-2, now
supports function definitions and has primitive functions for
searching, updating, displaying knowledge objects and calling
the inference engine, the I/O protocol of WebKB-2 is now re-
engineered via such interpreted functions to be much more
flexible and allow any of its users to write or select extended
versions of such functions.

Search/update queries and transformation
languages/systems. In some KB servers, e.g. SPARQL
endpoints, the user can write queries for searching or updating
the KB. Such interpreted queries are generally not as flexible as
interpreted functions but they can be sufficient for supporting a
KB edition protocol – furthermore, some SPARQL systems
also allow their users to write functions that can call SPARQL
queries, e.g. Corese [24], an RDF+OWL based SPARQL
system which supports an OWL-2 DL entailment regime [22]
for the queries. As for functions, the protocol can be hardcoded
or not. E.g., when performing the updates, the KB server can
execute hardcoded protocol rules, either directly or by
enriching the user submitted query for these rules to be
executed. In this case, the server can also allow the user to
select (via some predefined relations or functions) between
different predefined options. Alternatively or additionally, the
KB server – or a separate server – can provide the user with a
tool that transforms search/update queries into ones that also
enforce a KB editing protocol. Then, this tool can allow the
user to extend and combine some of the provided functions. A
security risk is that some users could modify the generated
enriched queries in a way that does not respect the basic rules
selected by the owner of the KB server. To generate these
enriched queries, transformation languages or systems that
exploit knowledge representations can be reused; Corese
supports a language to write such transformations on RDF
knowledge or SPARQL queries.

Constraints. KB constraints are rules – generally, KB
checking rules – that are triggered when the KB is in the process
of being updated, and that authorize or not the update. SHACL
(Shapes Constraint Language) [25] only allows particular kinds of
checking on RDF structures and hence could not be used for
implementing a KB editing protocol. However, SPIN (SParql
Inferencing Notation) [26] could be used in RDF KB systems that
handle this language since it allows the storage and triggering of
SPARQL queries. Furthermore, [27] showed how SPARQL
queries can be designed for checking constraints expressed in an
RDF+OWL based KRL within the checked KB, hence not
queries for checking particular constraints but generic queries for
checking constraints. [27] illustrates this approach with various
constraints, some of which check the existence of relations such
as those advocated in Section II.B (and [13] also uses SPARQL
to check these relations). The works of [27] and [13] have been
experimentally checked in a SPARQL endpoint handled by
Corese. Thus, these works could be merged and extended to
create SPARQL queries for executing protocol rules expressed in
an RDF+OWL based KRL within the KB where these rules
should apply.

../../../../../../doc/papers/quatic18/index.html
https://www.w3.org/Submission/spin-modeling/
http://spinrdf.org/
http://spinrdf.org/
http://slideplayer.com/slide/8793390/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/sparql11-entailment/
https://project.inria.fr/corese/
http://www.webkb.org/
../../../../../papers/2023ickg/ickg23.html#III.A
../../../../../papers/2023ickg/ickg23.html#III.A
../../../../../papers/2023ickg/ickg23.html#III.A
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/sparql11-entailment/
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
https://arxiv.org/pdf/1406.3399v2

IV CONCLUSION

Approaches. The introduction quickly compared various
approaches to knowledge sharing (KS), hence to its integration
of fragmented knowledge, and the general ideas of an approach
supporting general KS, thus not based on i) particular logics,
typically inconsistency-tolerant ones, ii) manual or automatic
knowledge selection to eliminate contradictions, and iii) the
creation of partially independently developed KBs (e.g., via the
manual or semi-automatic selection of knowledge from other
KBs), hence KBs that are mutually partially contradictory or
redundant, without inter-KB object-relating connections
allowing these KBs to be automatically integrated into a single
consistent KB or queried as a single KB (e.g. a networked one).

Proposed framework. Section II presented a building
block for achieving this general KS or integration: two general
high-level requirements – regarding object ownership and
competing object comparison – to be enforced by a KB editing
protocol and their consequences on which kinds of knowledge
objects the protocol should be based on (i.e., terms, definitions
and beliefs) and how: i) additive modifications via the
systematic setting of particular complementary kinds of
relations (with TopOntolForGKS including the necessary types
to set these relations and thus let default rules or user rules
exploit them for knowledge inferencing, filtering and display),
and ii) object cloning before destructive modifications, as a
complementary way to ensure loss-less knowledge integration.
This answered the listed research questions and provided the
“fragmented knowledge integration framework” hoped by [1].
As explained and illustrated, this approach also has advantages
for searches – and, more generally, inferencing – since, the KB
is “complete with respect to the advocated relations” (in the
previously given sense) if the KB is sufficiently formal and the
protocol fully implemented.

Implementations. Section III showed that most KRLs can
represent the required kinds of objects, and that the protocol
can be implemented in different ways, hence that most shared
KB systems could be extended to adopt the approach, fully or
partially. However, as with any knowledge-based system
(KBS), the more genericity or flexibility is required, the more
the used system must be able to handle knowledge
expressiveness and be built from scratch with genericity in
mind. This is why WebKB-2 was originally built without
reusing an existing KBS and why it has now been re-
engineered since it is now aimed to be generic with respect to
i) KRLs (via a user-extendable KRL ontology), helper
knowledge inferencing systems, and underlying database
management systems, and ii) knowledge input-output protocols
and knowledge exploitation functions (via its user-extendable
ontology of default I/O rules and interpretable functions).

REFERENCES

1 Union of International Associations (UIA), “The Encyclopedia of World
Problems & Human Potential,” encyclopedia.uia.org. http://encyclopedia
.uia.org/en/problem/fragmentation-knowledge (accessed July 31, 2023).

2 A. Farquhar, R. Fikes, and J. Rice, “The Ontolingua Server: a tool for
collaborative ontology construction,” International Journal of Human-
Computer Studies, Elsevier 1997, Volume 46, Issue 6, pp. 707–727.

3 T.P. Tanon, T. Pellissier, D. Vrandečić, and S. Schaffert, From Freebase
to Wikidata: The Great Migration, WWW 2016, 25th International
Conference on World Wide Web, pp. 1419–1428.

4 N. Shadbolt, T. Berners-Lee, and W. Hall, The Semantic Web Revisited,
IEEE Intelligent Systems, 2006, vol. 21, no. 3, pp. 96-101.

5 World Wide Web Consortium (W3C), “LinkedData,” www.w3.org.
https://www.w3.org/standards/semanticweb/ (accessed July 31, 2023).

6 J. Euzenat, “Corporate memory through cooperative creation of
knowledge bases and hyper-documents,” KAW 1996 (36), Canada.

7 Ph.A. Martin, “Top-level Ontology For General Knowledge Sharing,”
www.webkb.org. http://www.webkb.org/kb/top/d_upperOntology.html
(accessed July 31, 2023).

8 Ph.A. Martin, “Collaborative knowledge sharing and editing,”
International Journal on Computer Science and Information Systems
(IJCSIS), Volume 6, Issue 1, pp. 14–29.

9 J. Delobelle, A. Haret, S. Konieczny, J.G Mailly, J. Rossit, and S.
Woltran, “Merging of abstract argumentation frameworks,” 2016
Principles of Knowledge Representation and Reasoning.

10 M. Kejriwal, C.A. Knoblock, and P. Szekely, Knowledge graphs:
Fundamentals, Techniques, and Applications. MIT Press, 2021.

11 A. Hogan, E. Blomqvist, M. Cochez, C. d'Amato, G.D. Melo, C.
Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, and A.C.N.
Ngomo, “Knowledge graphs,” ACM Computing Surveys, 2021, 54(4).

12 J.F. Sowa,. “Knowledge Representation: Logical, Philosophical, and
Computational Foundations,” Brooks/Cole Publishing Co., CA., 2000.

13 Ph.A. Martin, O. Corby, and C. Faron Zucker, Ontology Design Rules
Based On Comparability Via Certain Relations, Semantics 2019,
Germany, LNCS 11702, pp. 198-214.

14 Ph.A. Martin, “The Sub Ontology in Turtle,” www.webkb.org.
http://www.webkb.org/kb/it/o_KR/p_kEvaluation/ontology/sub/
(accessed July 31, 2023).

15 W3C, “OWL 2 Web Ontology Language Profiles (Second Edition) –
W3C Recommendation 11 December 2012”, www.w3.org.
http://www.w3.org/TR/owl2-profiles/ (accessed July 31, 2023).

16 M.R. Genesereth, and R.E. Fikes. “Knowledge interchange format -
version 3.0: reference manual,” Technical Report Logic-92-1, Stanford
University, CA, USA, 1992.

17 Ph.A. Martin, “Knowledge representation in CGLF, CGIF, KIF, Frame-
CG and Formalized-English,” ICCS 2002, 10th International Conference
on Conceptual Structures, Springer, LNAI 2393, pp. 77-91.

18 World Wide Web Consortium (W3C), “RDF 1.1 Concepts and Abstract
Syntax – W3C Recommendation 25 February 2014”, www.w3.org.
https://www.w3.org/TR/rdf11-concepts/ (accessed July 31, 2023).

19 W3C, “SPARQL 1.1 Query Language – W3C Recommendation 21
March 2013,” www.w3.org. https://www.w3.org/TR/sparql11-query/
(accessed July 31, 2023).

20 W3C, “RDF-star and SPARQL-star.” Final Community Group Report –
Final Community Group Report 17 December 2021,” www.w3.org.
https://www.w3.org/2021/12/rdf-star.html (accessed July 31, 2023).

21 C. Welty, “Context Slices,” ontologydesignpatterns.org (2010).
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
(accessed July 31, 2023).

22 W3C, “SPARQL 1.1 Entailment Regimes – W3C Recommendation 21
March 2013,” www.w3.org. http://www.w3.org/TR/sparql11-entailment/
(accessed July 31, 2023).

23 W3C, “OWL 2 Web Ontology Language Direct Semantics – W3C
Recommendation 11 December 2012,” www.w3.org.
https://www.w3.org/TR/owl2-direct-semantics/ (accessed July 31, 2023).

24 O. Corby, and C. Faron-Zucker, “STTL: A SPARQL-based
Transformation Language for RDF,” WEBIST 2015, 11th International
Conference on Web Information Systems and Technologies, Portugal.

25 W3C, “Shapes Constraint Language (SHACL) – W3C Recommendation
20 July 2017,” www.w3.org. https://www.w3.org/TR/shacl/ (accessed
July 31, 2023).

26 W3C, “SPIN - Modeling Vocabulary – W3C Member Submission 22
February 2011,” www.w3.org. https://www.w3.org/Submission/spin-
modeling/ (accessed July 31, 2023).

27 Ph.A. Martin, Evaluating Ontology Completeness via SPARQL and
Relations-between-classes based Constraints,” IEEE QUATIC 2018,
11th International Conference on the Quality of Information and
Communications Technology, pp. 255–263, Coimbra, Portugal.

../../../../../../doc/papers/quatic18/index.html
../../../../../../doc/papers/iccs02/index.html
../../../../../../kb/it/o_KR/p_kEvaluation/ontology/sub/
../../../../../../doc/papers/sem19/index.html
../../../../../../doc/papers/informatics10/ijcsis11.pdf
../../../../../../kb/top/d_upperOntology.html
../../../../../../kb/top/d_upperOntology.html
../../../../../../kb/top/d_upperOntology.html
../../../../../papers/2023ickg/ickg23.html#SharedKB_HighLevelRules

	I Introduction
	II General Model And Rules For a Shared KB
	II.A General Requirements And Terminology
	II.B Consequences For Terms
	II.C Consequences For Definitions
	II.D Consequences For Beliefs
	II.E Evaluation of the Above Analysis and of Belief Trustability

	III Examples of Implementation Methods
	III.A Representations of the Required Kinds of Objects
	III.B Implementations for the KB Edition (or I/O) Protocol

	IV Conclusion
	References

