
HAL Id: hal-04502927
https://hal.univ-reunion.fr/hal-04502927

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Loop detection in term rewriting using the eliminating
unfoldings
Etienne Payet

To cite this version:
Etienne Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical Com-
puter Science, 2008, 403 (2-3), pp.307-327. �10.1016/J.TCS.2008.05.013�. �hal-04502927�

https://hal.univ-reunion.fr/hal-04502927
https://hal.archives-ouvertes.fr

Loop detection in term rewriting using the

eliminating unfoldings

Étienne Payet

IREMIA - Université de la Réunion, France

Abstract

In this paper, we present a fully automatizable approach to detecting loops in stan-
dard term rewriting. Our method is based on semi-unification and an unfolding
operation which processes both forwards and backwards and considers variable sub-
terms. We also describe a technique to reduce the explosion of rules caused by the
unfolding process. The idea is to eliminate from the set of unfoldings some rules that
are estimated as useless for detecting loops. This is done by an approximation which
consists in pruning the left-hand or right-hand side of the rules used to unfold. The
analyser that we have implemented is able to solve most of the examples from the
Termination Competition’07 that do not terminate due to a loop.

Key words: term rewriting system, non-termination, loop, unfoldings, useless rule

1 Introduction

Proving termination of a term rewriting system (TRS) R consists in prov-
ing that every term only has finite rewritings with respect to R. Termination
of TRSs has been subject to an intensive research (see e.g. [15,41] for sur-
veys) that has given rise to several automatic proof methods. One of the
most powerful is the dependency pair approach [7], recently extended to the
dependency pair framework [23,24], implemented in the termination prover
AProVE [25,22,6]. In comparison, the dual problem, i.e. non-termination, has
hardly been studied. It consists in proving that there exists a term that leads
to an infinite rewriting. Notice that designing non-termination provers is an
important issue as this kind of tools can be used to disprove termination, i.e.
to complement any termination prover. In [24] non-termination checks con-
sist in applying forward or backward narrowing to dependency pairs until the

Email address: epayet@univ-reunion.fr (Étienne Payet).

Preprint submitted to Elsevier 14 May 2008

left-hand side of a narrowed pair semi-unifies with the corresponding right-
hand side. In [47] non-termination checks consist in encoding string rewrite
sequences as propositional formulæ which are satisfiable whenever the cor-
responding sequence includes a looping reduction. In [48] a fragment of the
ancestor graph is constructed and non-termination proofs consist in checking
whether this fragment is cyclic; cyclicity implies that an infinite reduction
exists. In [45] non-termination checks are based on match-bounds and use
a Boolean combination of match-height properties of a given string rewrite
system.

Termination has also been widely studied in logic programming. One of the
approaches that have been introduced so far consists in inferring terminat-
ing classes of queries, i.e. classes where every element only has finite left-
derivations with respect to a given logic program. Several automatic tools
performing termination inference have been designed, e.g. TerminWeb [19] or
cTI [35]. But as for term rewriting, there are only a few papers about the dual
problem, i.e. inference of non-terminating classes of queries (classes where
there exists an element that has an infinite left-derivation). The unfold & in-
fer approach introduced in [38,37] consists in first unfolding the logic program
P of interest to a binary program BP using the operator of [18]. By the results
in [11], a query is non-terminating with respect to BP if and only if it is non-
terminating with respect to P . Then, every rule A←B in BP is examined; if
the body B matches (up to some computed neutral argument positions) the
head A, one can conclude that A is non-terminating with respect to BP , hence
with respect to P .

In theory, the unfold & infer approach also works with TRSs as there exist
several techniques (see for instance [9,14,26,39,4]) to unfold a TRS R to a
TRS U such that if l→ r is a rule of U then l rewrites to r using the rules

of R (written l
+→
R
r). Suppose that l→ r is a rule of U and l semi-unifies

with a subterm r′ of r, i.e. lθ1θ2 = r′θ1 for some substitutions θ1 and θ2.

Then, as l
+→
R
r, we have lθ1

+→
R
rθ1 i.e. lθ1

+→
R
C[r′θ1] for some context C. There-

fore, lθ1
+→
R
C[lθ1θ2], i.e. lθ1 loops with respect to R, which implies that lθ1 is

non-terminating with respect toR. Consequently, unfoldings+semi-unification
provide a simple technique to detect loops, a special form of non-termination.
Notice that the subsumption order is different from that used in logic pro-
gramming, where the body has to match the head, while here lθ1 has to
match r′θ1; this is due to the definition of the operational semantics of both
paradigms. Semi-unification encompasses both matching and unification; for
instance, suppose that f(s(x), y, z)→ f(z, s(y), z) is a rule of U ; f(s(x), y, z)
does not unify with f(z, s(y), z) and f(s(x), y, z) does not match f(z, s(y), z);
however, f(s(x), y, z)θ1θ2 = f(z, s(y), z)θ1 for θ1 = {z/s(x)} and θ2 = {y/s(y)}
so f(s(x), y, z)θ1 = f(s(x), y, s(x)) loops with respect to R.

2

In [36], we initiated the design of an automatic loop detection technique for
TRSs using the unfold & infer approach. We continue this work in the present
paper and we strictly extend the results of [36]. As in [36], we only consider
standard rewriting and disregard the issue of evaluation strategies. In Section 2
we introduce the notations. In Section 3 we consider an unfolding operator that
processes both forwards and backwards and considers variable positions (hence
it generates a superset of the overlap closure [26]). As expected, this unfolding
operator leads to an explosion of the number of generated rules, which directly
affects the naive loop detection analysis that we present in Section 4 and that
consists in a “brute force” enumeration of the unfoldings. Hence in Section 5
and Section 6, we refine this analysis by providing a mechanism that allows
us to eliminate some rules estimated as useless produced by the unfolding
process. The idea is to approximate the unfoldings by pruning the left-hand
or right-hand side of the rules used to unfold. In practice, the refined analysis
is much more efficient than the naive one and is able to detect most of the
TRSs of the Termination Competition’07 [33] that admit a loop. This is shown
in Section 7 where we present the experimental evaluation we conducted using
rewriting systems from the competition. In Section 8 we discuss related works
and we conclude in Section 9 with further improvements.

2 Preliminaries

We briefly present the basic concepts of term rewriting (details can be found
e.g. in [8]) and the notations that we use in the paper.

We let N denote the set of non-negative integers and, for any n ∈ N, [1, n]
denotes the set of all the integers i such that 1 ≤ i ≤ n (if n = 0, then
[1, n] = ∅).

From now on, we fix a finite signature F , i.e. a finite set of function symbols
where every f ∈ F has a unique arity, which is the number of its arguments.
We write f/m ∈ F to denote that f is an element of F whose arity is m ≥ 0.
We also fix an infinite countable set V of variables with F ∩V = ∅. Elements
of F are denoted by f, g, h, 0, 1, . . . and elements of V by x, y, z, . . . The set
of terms over F and V is denoted by T (F ,V). For any t ∈ T (F ,V), we let
Var(t) denote the set of variables occurring in t and Pos(t) denote the set
of positions in t. We let ε denote the root position. When p ∈ Pos(t), we
write t|p to denote the subterm of t at position p. We write t[p← s] to denote
the term obtained from t by replacing t|p with a term s. We say that p is a
(non-)variable position of t if t|p is (not) a variable.

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each i ∈ [1, n], variable xi is mapped to term ti (note that xi may occur

3

in ti). The set of variables {x1, . . . , xn} is the domain of the substitution. We
let Dom(θ) denote the domain of substitution θ. The application of θ to a
syntactic object o is denoted by oθ. The set of instances of o is denoted by
instances(o); this notation is naturally extended to sets of syntactic objects.
For any syntactic objects o and o′, we let mgu(o, o′) denote the (up to variable
renaming) most general unifier of o and o′. We say that o semi-unifies with o′

when there exist some substitutions θ and θ′ such that oθθ′ = o′θ.

The elements (l, r) of T (F ,V)× T (F ,V) are rather written as l→ r. We say
that l is the left-hand side and r is the right-hand side of l→ r. We say that
l→ r is a rewrite rule (or a rule) over F ∪V when l 6∈ V and Var(r) ⊆ Var(l).
A term rewriting system (TRS) over F ∪V is a finite set of rewrite rules over
F ∪ V . In this paper, we consider rules modulo variable renaming. Any new
occurrence of a rule is always renamed apart (i.e. contains fresh variables not
previously met).

Given a TRS R and some terms s and t, we write s→
R
t if there is a rewrite

rule l→ r in R, a substitution θ and a position p in Pos(s) such that s|p = lθ

and t = s[p← rθ]. We let
+→
R

(resp.
∗→
R

) denote the transitive (resp. reflexive

and transitive) closure of →
R

. We say that a term t is non-terminating with

respect to (w.r.t.) R when there exist infinitely many terms t1, t2, . . . such
that t→

R
t1→R t2→R · · · . We say that R is non-terminating if there exists a

non-terminating term w.r.t. R. A term t loops w.r.t. R when t
+→
R
C[tθ] for

some context C and substitution θ. R is looping or admits a loop when there
exists a term that loops w.r.t. R. It is well-known that if a term loops w.r.t.
R then it is non-terminating w.r.t. R.

If Y is an operator from a set E to itself, then for any e ∈ E we let

(Y ↑ 0)(e) = e

(Y ↑ n+ 1)(e) = Y
(
(Y ↑ n)(e)

)
∀n ∈ N .

A total function f is denoted by 7→. If f(x) = x then x is a fixpoint of f . A
poset 〈S ,≤〉 is a set S with a reflexive, transitive and antisymmetric relation
≤. An upper (respectively, lower) bound of S ′ ⊆ S is an element u ∈ S such
that u′ ≤ u (respectively, u′ ≥ u) for every u′ ∈ S ′. A complete lattice is
a tuple 〈S,≤,t,u,m,M〉 where 〈S,≤〉 is a poset where least upper bounds
(denoted by t) and greatest lower bounds (denoted by u) always exist and
m = t∅ = uS is the least element and M = u∅ = tS is the greatest
element. If 〈C ,≤〉 and 〈A,�〉 are posets, then f : C 7→ A is (co-)additive if it
preserves the least upper bounds (respectively, the greatest lower bounds).

4

We recall now the basics of abstract interpretation [12]. Let 〈C,≤〉 and 〈A,�〉
be two posets (the concrete and the abstract domains). A Galois connection is
a pair of monotonic maps α : C 7→ A and γ : A 7→ C such that γα is extensive
and αγ is reductive. It is a Galois insertion when αγ is the identity map i.e.
when the abstract domain does not contain useless elements. This is equivalent
to α being onto, or γ one-to-one. Note that a Galois insertion can always be
derived from a Galois connection by identifying, in the same equivalence class,
all abstract elements having the same concretisation under γ. If C and A are
complete lattices and α is additive (respectively, γ is co-additive), then α is
the abstraction map (respectively, γ is the concretisation map) of a Galois
connection. In a Galois connection, γ induces α and vice versa. Namely, given
γ we can define α(c) = u{a | c ≤ γ(a)}. Hence it is enough to provide γ
in order to specify a Galois connection. An abstract operator f̂ : An 7→ A is
correct w.r.t. f : C n → C if αfγ � f̂ . The composition of correct operators
is correct. If fγ ≤ γf̂ then, by monotonicity, we have αfγ � αγf̂ . If the
abstraction is a Galois insertion, αγ is the identity map, so that we have
αfγ � f̂ . It follows that, in a Galois insertion, f̂ is correct w.r.t. f when
fγ ≤ γf̂ . The advantage of this second formulation of correctness is that
it does not require the use of the abstraction map α. By Tarski’s fixpoint
theorem [42], if f and f̂ are continuous (hence, in particular, additive) on the
complete lattices 〈C,≤,t,u,m,M〉 and 〈A,�,∨,∧, m̂, M̂〉 respectively, then
t0≤n(f ↑ n)(m) is the least fixpoint (lfp) of f and ∨0≤n(f̂ ↑ n)(m̂) is that of

f̂ . Moreover, if f̂ is correct w.r.t. f , then lfp(f̂) is correct w.r.t. lfp(f) [13],
i.e. lfp(f) ≤ γ(lfp(f̂)) in a Galois insertion.

3 Unfolding a TRS

Usually, unfolding a set X of rules using a TRS R consists in performing two
elementary transformations (see e.g. [9,39]):

(Instantiation) if l→ r ∈ X, one can add the new rule (l→ r)θ for any
substitution θ.

(Forward unfolding) if l→ r ∈ X, p ∈ Pos(r) and r|p = l′θ for some rule
l′→ r′ ∈ R and some substitution θ, then one can add the new (unfolded)
rule l→ r[p← r′θ].

This can be reformulated using an unfolding operator:

Definition 3.1 (Forward unfoldings using instantiation)

IR(X) =

l→ r[p← r′θ]
l→ r ∈ instances(X), p ∈ Pos(r)

l′→ r′ ∈ R, r|p = l′θ for a substitution θ

 .

5

Example 3.2 (Toyama [43]) Consider:

R =
{

f(0, 1, x)→ f(x, x, x), g(x, y)→x, g(x, y)→ y
}
.

• If we take l→ r as f(0, 1, g(x1, y1))→ f(g(x1, y1), g(x1, y1), g(x1, y1)) (which
is an instance of f(0, 1, x)→ f(x, x, x) ∈ R), p as 1, l′→ r′ as g(x, y)→x
and θ as {x/x1, y/y1}, we get f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) as
an element of IR(R).

• If we take l→ r as f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) ∈ IR(R), p
as 2, l′→ r′ as g(x2, y2)→ y2 and θ as {x2/x1, y2/y1}, then we get the rule
f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) as an element of (IR ↑ 2)(R).

In [4], these transformations are combined into a single one using narrow-
ing [27]: if R = l→ r ∈ X, p is a non-variable position of r, l′→ r′ ∈ R
and r|p and l′ unify, then one can add the new rule (l→ r[p← r′])θ where
θ = mgu(r|p, l′).

Example 3.3 Consider R in Example 3.2. The set of unfoldings of R us-
ing narrowing as described above is empty. Indeed, in the right-hand side of
g(x, y)→x and g(x, y)→ y there are no non-variable subterms. Moreover, in
the right-hand side of f(0, 1, x)→ f(x, x, x) the only non-variable subterm is
f(x, x, x) and no left-hand side of a renamed rule of R unifies with f(x, x, x).

In this paper, we consider the rules l→ r in the unfoldings of R in order to
prove that R admits a loop. If l and r satisfy a criterion that we will precise
later, then we can conclude existence of a loop. Example 3.3 above shows that
if we use the unfolding technique of [4], we get a rather limited approach that
is unable to solve the smallest problems. Indeed, R in Example 3.2 is known
to admit a loop (for instance f(0, 1, g(0, 1)) loops), but as the set of unfoldings
of R is empty, we cannot prove anything. Moreover, we want to design a
completely automatic tool; this does not seem possible from the unfolding
technique of Definition 3.1 which is based on the infinite set of instances of X.
A solution to meet our goals consists in also considering variable subterms in
the technique of [4].

Definition 3.4 (Forward unfoldings) We let

FR(X) =

(l→ r[p← r′])θ
l→ r ∈ X, p ∈ Pos(r)

l′→ r′ ∈ R, θ = mgu(r|p, l′)

 .

Example 3.5 Consider R in Example 3.2.

• If we take l→ r as f(0, 1, x)→ f(x, x, x) ∈ R, p as 1, l′→ r′ as g(x1, y1)→x1

and θ as {x/g(x1, y1)}, we get f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) as
an element of FR(R). We also obtained this rule in Example 3.2.

6

• If we take l→ r as f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) ∈ FR(R),
p as 2, l′→ r′ as g(x2, y2)→ y2 and θ as {x2/x1, y2/y1}, we get the rule
f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) as an element of (FR ↑ 2)(R). We also
obtained this rule in Example 3.2.

Notice that an approach based on Definition 3.4 is theoretically less powerful
than one based on Definition 3.1 because of the following result. However,
Definition 3.4 is usable in practice, unlike Definition 3.1.

Lemma 3.6 FR(X) ⊆ IR(X) always holds, but IR(X) ⊆ FR(X) does not.

The fact that IR(X) is not generally included in FR(X) is not caused by the use
of most general unifiers: the same result holds if one replaces θ = mgu(r|p, l′)
in Definition 3.4 with θ is a unifier of r|p and l′. Consider for instance R =
{f(g(x))→x, 0→ 1}; as f(g(g(0)))→ g(0) is an instance of f(g(x))→x, the
rule R = f(g(g(0)))→ g(1) is an element of IR({f(g(x))→x}); however, we
have R 6∈ FR({f(g(x))→x}) even if we use unifiers instead of most general
unifiers in Definition 3.4.

Definition 3.4 consists in rewriting the right-hand side of the rules of X using
the rules of R forwards. A variant of this technique consists in proceeding
backwards, i.e. in rewriting the left-hand side of the rules of X using the rules
of R backwards.

Definition 3.7 (Backward unfoldings) We let

BR(X) =

(l[p← l′]→ r)θ
l→ r ∈ X, p ∈ Pos(l)

l′→ r′ ∈ R, θ = mgu(l|p, r′)

 .

Clearly, Definition 3.1 can be modified to proceed backwards. This leads to an
operator I ′R which is such that BR(X) ⊆ I ′R(X) always holds but the converse
does not.

Example 3.8 Consider R in Example 3.2.

• If we take l→ r as f(0, 1, x)→ f(x, x, x) ∈ R, p as 1, l′→ r′ as g(x1, y1)→x1

and θ as {x1/0}, we get f(g(0, y1), 1, x)→ f(x, x, x) as an element of BR(R).
• If we take l→ r as f(g(0, y1), 1, x)→ f(x, x, x) ∈ BR(R), p as 2, l′→ r′ as

g(x2, y2)→ y2 and θ as {y2/1}, we get f(g(0, y1), g(x2, 1), x)→ f(x, x, x) as
an element of (BR ↑ 2)(R).

In the sequel of this paper, we decide to unfold both forwards and backwards.
As we also consider variable subterms, we get an unfolding operator whose
underlying principle relies on the paramodulation rule [29]. Using forward
unfoldings only or backward unfoldings only is not sufficient as we have:

7

Lemma 3.9 FR(X) ⊆ BR(X) and BR(X) ⊆ FR(X) do not always hold.

Section 4 provides examples of TRSs that cannot be proved to admit a loop
with forward (backward) unfoldings only.

Definition 3.10 (Unfoldings) We consider the following set of unfoldings
of X w.r.t. R:

UR(X) = FR(X) ∪BR(X) .

The unfolding semantics is defined as follows, in the style of [3].

Definition 3.11 (Unfolding semantics) The unfolding semantics unf (R)
of R is the limit of the unfolding process described in Definition 3.10, starting
from R:

unf (R) =
⋃

n∈N
(UR ↑ n)(R) .

The only differences between unf (R) and the overlap closure [26] of R (de-
noted by OC (R)) are the following. We consider variable subterms while [26]
does not, hence unf (R) is a superset of OC (R). Moreover, in order to com-
pute unf (R), one overlaps unfoldings with the rules of R whereas in order
to compute OC (R), one overlaps closures with closures. The next result is
well-known for overlap closures and straightforwardly extends to unf (R).

Proposition 3.12 ([26]) If l→ r ∈ unf (R) then l
+→
R
r.

4 Inferring terms that loop

The unfoldings of a TRS R can be used to infer terms that loop w.r.t. R.
It suffices to add semi-unification [32] to Proposition 3.12. Semi-unification
encompasses both matching and unification. A polynomial-time algorithm for
semi-unification can be found in [30].

Theorem 4.1 If for l→ r ∈ unf (R) there is a subterm r′ of r such that
lθ1θ2 = r′θ1 for some substitutions θ1 and θ2, then lθ1 loops w.r.t. R.

The set unf (R) is possibly infinite, but for any n ∈ N, (UR ↑ n)(R) is finite
(modulo renaming of variables). So, in order to use Theorem 4.1 as a practical
tool, one can for instance fix a maximum number of iterations of UR. Another
alternative consists in fixing a time limit. Notice that Theorem 4.1 can only
detect terms that loop, hence TRSs which are non-terminating but not looping
cannot be handled.

Example 4.2 Again, consider R in Example 3.2.

8

• As the rule f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) is an element of (FR ↑
2)(R) (see Example 3.5), it belongs to unf (R). As f(0, 1, g(x1, y1))θ1θ2 =
f(x1, y1, g(x1, y1))θ1 for θ1 = {x1/0, y1/1} and θ2 = ∅, we can conclude that
f(0, 1, g(x1, y1))θ1 = f(0, 1, g(0, 1)) loops w.r.t. R. Hence, loopingness of R
can be proved using forward unfoldings only.
• As the rule f(g(0, y1), g(x2, 1), x)→ f(x, x, x) is in (BR ↑ 2)(R) (see Exam-

ple 3.8), it belongs to unf (R). As f(g(0, y1), g(x2, 1), x)θ1θ2 = f(x, x, x)θ1

for θ1 = {y1/1, x2/0, x/g(0, 1)} and θ2 = ∅, we can conclude that the term
f(g(0, y1), g(x2, 1), x)θ1 = f(g(0, 1), g(0, 1), g(0, 1)) loops w.r.t. R. Hence,
loopingness of R can also be proved using backward unfoldings only.

Example 4.3 (Communicated to the author by René Thiemann)

R =
{

f(s(0), s(1), x)→ f(x, x, x), h→ 0, h→ 1
}
.

The rule f(s(h), s(h), x)→ f(x, x, x) is an element of (BR ↑ 2)(R), so it be-
longs to unf (R). As f(s(h), s(h), x)θ1θ2 = f(x, x, x)θ1 for θ1 = {x/s(h)} and
θ2 = ∅, we conclude that f(s(h), s(h), x)θ1 = f(s(h), s(h), s(h)) loops w.r.t. R.
So, loopingness of R can be proved using backward unfoldings only. On the
other hand, the rules h→ 0 and h→ 1 cannot be unfolded forwards. The rule
f(s(0), s(1), x)→ f(x, x, x) can be unfolded forwards, but no resulting rule satis-
fies the semi-unification criterion of Theorem 4.1. So, loopingness of R cannot
be proved using Theorem 4.1 with forward unfoldings only.

Example 4.4 Consider the reversed version of the TRS in Example 4.3:

R−1 =
{

f(x, x, x)→ f(s(0), s(1), x), 0→ h, 1→ h
}
.

The rule f(x, x, x)→ f(s(h), s(h), x) is an element of (FR−1 ↑ 2)(R−1), so it
belongs to unf (R−1) and we get that f(s(h), s(h), s(h)) loops w.r.t. R−1. Hence,
loopingness of R−1 can be proved using forward unfoldings only. On the other
hand, loopingness of R−1 cannot be proved using backward unfoldings only.

Example 4.5 Consider

R =
{

f(s(0), s(1), x, x)→ f(x, x, s(2), s(3)), h→ 0, h→ 1, 2→ h, 3→ h
}
.

The rule f(s(h), s(h), x, x)→ f(x, x, s(2), s(3)) is an element of (BR ↑ 2)(R),
so f(s(h), s(h), x, x)→ f(x, x, s(h), s(h)) belongs to (FR ↑ 2)((BR ↑ 2)(R)).
Hence, this rule is in unf (R). As f(s(h), s(h), x, x)θ1θ2 = f(x, x, s(h), s(h))θ1 for
θ1 = {x/s(h)} and θ2 = ∅, we can conclude that the term f(s(h), s(h), x, x)θ1 =
f(s(h), s(h), s(h), s(h)) loops w.r.t. R. Hence, loopingness of R can be proved us-
ing forward and backward unfoldings together. On the other hand, loopingness
of R cannot be proved using forward unfoldings only or backward unfoldings
only.

9

The next example illustrates the use of semi-unification (in the preceding
examples, unification is sufficient as θ2 is always empty).

Example 4.6 ([24]) Consider

R =
{

f(x, y, z)→ g(x, y, z), g(s(x), y, z)→ f(z, s(y), z)
}
.

The rule f(s(x1), y1, z1)→ f(z1, s(y1), z1) is an element of FR(R), so it belongs
to unf (R). As f(s(x1), y1, z1)θ1θ2 = f(z1, s(y1), z1)θ1 for θ1 = {z1/s(x1)} and
θ2 = {y1/s(y1)}, we conclude that f(s(x1), y1, z1)θ1 = f(s(x1), y1, s(x1)) loops
w.r.t. R.

5 Eliminating useless rules

The analysis described in the preceding sections leads to an explosion of the
number of unfolded rules. In order to prove that the TRS of Example 3.2
admits a loop, one has to compute (UR ↑ 2)(R); the set ∪0≤n≤2(UR ↑ n)(R)
consists of 450 rules and can be easily generated by any modern personal
computer. However, 450 is quite a big number for such a small TRS. In order
to prove that the TRS of Example 4.5 admits a loop, one has to compute
(UR ↑ 4)(R); the set ∪0≤n≤4(UR ↑ n)(R) consists of 204 867 rules, which
took the computer of the author (a 2.33GHz Intel Core 2 Duo) 7 minutes to
compute!

A solution to reduce this explosion consists in designing a mechanism that
eliminates the unfolded rules that are useless for proving loopingness. On the
basis of Theorem 4.1, we say that a rule is useless for a TRS R when it cannot
be unfolded with R to a rule l→ r where l semi-unifies with a subterm of r.

Example 5.1 Consider R in Example 4.3 again:

R =
{

f(s(0), s(1), x)→ f(x, x, x), h→ 0, h→ 1
}
.

UR(R) contains the rule

R = f(s(0), s(1), h)→ f(0, h, h)

obtained from unfolding f(s(0), s(1), x)→ f(x, x, x) forwards using h→ 0. The
unfoldings of R w.r.t. R have the form

f(s(· · ·), s(· · ·), h)→ f(0, t1, t2)

where t1, t2 ∈ {h, 0, 1}. Hence, the left-hand side of every unfolding of R does
not semi-unify with a subterm of the corresponding right-hand side. Therefore,
R is useless and can be safely eliminated.

10

An idea to detect useless rules is to concentrate first on the full right-hand
side (not on its inner subterms); if the full right-hand side is useless, then
the rule is replaced with a set of rules obtained from the left-hand side and
inner subterms of the right-hand side. The intuition is to eliminate as many
subterms as possible from the right-hand side.

Example 5.2 UR(R) in Example 5.1 also contains the rule

f(s(0), s(1), f(s(0), s(1), x1))→ f(f(x1, x1, x1), f(s(0), s(1), x1), f(s(0), s(1), x1))

obtained from unfolding f(s(0), s(1), x)→ f(x, x, x) forwards using itself. Let l
be the left-hand side of this unfolded rule and r be its right-hand side. The
unfoldings of l→ r w.r.t. R have the form

f(s(· · ·), s(· · ·), f(· · ·))→ f(f(· · ·), f(· · ·), f(· · ·)) .

The left-hand side of every unfolding does not semi-unify with the correspond-
ing right-hand side. Of course, this is not sufficient to completely eliminate
l→ r because, by Theorem 4.1, we have to consider every subterm of the right-
hand sides. However, an idea is to replace l→ r with the rules l→ r|1, l→ r|2
and l→ r|3 i.e. l→ f(x1, x1, x1) and l→ f(s(0), s(1), x1) and to test the useless-
ness of these new rules with a similar process.

So, we say that a rule is root-useless for R when it cannot be unfolded with R
to a rule l→ r such that l semi-unifies with r (root in root-useless comes from
the fact that we concentrate on the full right-hand sides, i.e. the subterms at
root position). Notice that every useless rule is also root-useless but not vice
versa; hence, using root-uselessness as an approximation of uselessness, one
may remove some rules which are actually useful for proving non-termination.

Example 5.3 Let R =
{

f(0)→ g(1), g(1)→ g(f(0))
}

. The unfoldings of R =

f(0)→ g(1) ∈ (UR ↑ 0)(R) are the elements of

U =
{

f(0)→ g(1), f(0)→ g(f(0)), f(0)→ g(g(1)), f(0)→ g(g(f(0))), . . .
}
.

As the left-hand side of every rule in U does not semi-unify with the corre-
sponding right-hand side, R is root-useless and the idea of Example 5.2 consists
in replacing it in (UR ↑ 0)(R) with the rule f(0)→ 1, the unfoldings of which
do not allow to conclude non-termination. On the other hand, as the left-hand
side of f(0)→ g(f(0)) ∈ U semi-unifies with the subterm f(0) of its right-hand
side, R is not useless for R and, by Theorem 4.1, f(0)→ g(f(0)) establishes
non-termination of R.

The eliminating mechanism that we present from now is an extension of that
of [36] i.e. it provides a better approximation of the useless rules (see Section 7
and Section 8.2). We also use a formalisation that is different from that of [36].

11

The technique is based on the detection of root-useless rules; although it may
remove some useful rules, it gives good results in practice (see Section 7).

5.1 Root-useless rules

In Section 6, an underapproximation of the set of root-useless rules is computed
using an abstract fixpoint. The corresponding concrete setting is described
below.

We denote by R(F ,V) the powerset of T (F ,V) × T (F ,V). Then R(F ,V) is
partially ordered by the relation ≤ defined as:

∀X,X ′ ∈ R(F ,V), X ≤ X ′ iff instances(X) ⊆ instances(X ′) .

The poset 〈R(F ,V),≤〉 can be extended to a complete lattice. It suffices to
consider the standard set union as least upper bound t and the intersection
of the sets of instances as greatest lower bound u.

Definition 5.4 (t,u) For any I ⊆ N and {Xi}i∈I ⊆ R(F ,V), we let

t
i∈I
Xi = ∪

i∈I
Xi and u

i∈I
Xi = ∩

i∈I
instances(Xi) .

For instance, {f(x, 1)→ f(x, 1)} u {f(0, x)→ f(0, x)} = {f(0, 1)→ f(0, 1)}.

Proposition 5.5 〈R(F ,V),≤,t,u,∅, T (F ,V)×T (F ,V)〉 is a complete lat-
tice.

Notice that the least (w.r.t. ≤) fixpoint of UR is the empty set. So, in order
to capture the unfoldings of a rule with a least fixpoint, we introduce the
following operator.

Definition 5.6 (Unfoldings of a rule) Let R be a rewrite rule. For any set
X ∈ R(F ,V), we let

UR,R(X) = UR(X) ∪ {R} .

The next proposition implies that for any rewrite rule R, the least fixpoint
(lfp) of UR,R always exists and lfp(UR,R) = tn∈N(UR,R ↑ n)(∅).

Proposition 5.7 For any rewrite rule R, the operator UR,R is continuous on
〈R(F ,V),≤,t,u,∅, T (F ,V)× T (F ,V)〉.

We have:

Lemma 5.8 For any rewrite rule R, lfp(UR,R) = ∪n∈N(UR ↑ n)({R}).

12

So, we will consider the following fixpoint definition of root-useless rules.

Definition 5.9 (Root-useless rule) A rule R is root-useless for R when no
element l→ r of lfp(UR,R) is such that l semi-unifies with r.

5.2 Eliminating unfoldings

Our elimination function transforms a root-useless ruleR to a (possibly empty)
set of rules that are not root-useless by considering the subterms of the right-
hand side of R.

Definition 5.10 (Elimination function) Let l→ r be a rule. We define

elimR(l→ r) =


if l→ r is not root-useless for R then {l→ r}

else if r = f(t1, . . . , tm) then
⋃

i∈[1,m] elimR(l→ ti)

else ∅

For any set X of rewrite rules, we let elimR(X) =
⋃

R∈X
elimR(R).

Now we can define a new unfolding operator that eliminates root-useless rules
from the result provided by UR.

Definition 5.11 (Eliminating unfoldings) Let X be a set of rewrite rules.
The eliminating unfoldings of X w.r.t. R are defined as

EUR(X) = elimR(UR(X)) .

This operator allows us to define the eliminating counterpart of the unfolding
semantics.

Definition 5.12 (Eliminating unfolding semantics) We define the elim-
inating unfolding semantics of R as the limit of the unfolding process described
in Definition 5.11, starting from elimR(R):

eunf (R) =
⋃

n∈N
(EUR ↑ n)(elimR(R)) .

The relevance of a loop detection analysis based on these notions is clarified
by the following correctness result. In contrast to Theorem 4.1, we do not
consider the subterms of the right-hand sides as eunf (R) splits the right-hand
sides by means of the elimination function elimR(R):

13

Theorem 5.13 (Correctness) If for l→ r ∈ eunf (R) there are some sub-
stitutions θ1 and θ2 such that lθ1θ2 = rθ1 then lθ1 loops w.r.t. R.

6 Approximating root-useless rules

In this section, we approximate root-useless rules by means of an abstraction
that consists in pruning the left-hand or right-hand side of the rules used to
unfold.

6.1 Our abstract domain

From now on, we consider an infinite countable set V̂ of new variables, disjoint
from V , that are used in the pruning process. Terms are cut by replacing each
subterm that is ignored with a new variable from V̂ . Therefore, we consider
the subset of T (F ,V ∪ V̂) × T (F ,V ∪ V̂), every element of which does not
contain multiple occurrences of a variable from V̂ . Let R(F ,V∪V̂) denote this
subset. Each variable of V̂ occurring in an element of R(F ,V ∪V̂) corresponds
to any term in T (F ,V). This is formalised by the following concretisation
function.

Definition 6.1 (Concretisation) The concretisation of R ∈ R(F ,V ∪V̂) is
denoted by γ(R) and is defined as:

γ(R) =
{
Rσ̂ ∈ T (F ,V)× T (F ,V) | σ̂ a substitution, Dom(σ̂) ⊆ V̂

}
.

The concretisation of X ⊆ R(F ,V ∪ V̂) is γ(X) =
⋃

R∈X
γ(R).

We denote by R(F ,V ∪ V̂) the powerset of R(F ,V ∪ V̂) where we identify
the elements having the same (modulo ≤) concretisation. Then R(F ,V ∪ V̂)
is partially ordered by the relation � defined as:

∀X,X ′ ∈ R(F ,V ∪ V̂), X � X ′ iff γ(X) ≤ γ(X ′) .

The poset 〈R(F ,V ∪ V̂),�〉 can be extended to a complete lattice. It suffices
to consider the standard set union as least upper bound ∨ and the intersection
of the instances of the concretisations as greatest lower bound ∧. Notice that
by instances we still mean instances over F ∪ V (not over F ∪ V ∪ V̂), as in
the concrete setting.

Definition 6.2 (∨,∧) For any I ⊆ N and {Xi}i∈I ⊆ R(F ,V ∪ V̂), we let

∨
i∈I
Xi = ∪

i∈I
Xi and ∧

i∈I
Xi = ∩

i∈I
instances(γ(Xi)) .

14

Proposition 6.3 〈R(F ,V ∪V̂),�,∨,∧,∅,R(F ,V ∪V̂)〉 is a complete lattice.

We have:

Proposition 6.4 For any I ⊆ N and {Xi}i∈I ⊆ R(F ,V ∪ V̂),

u
i∈I
γ(Xi) = γ

(
∧
i∈I
Xi

)
.

As a consequence of Proposition 6.4, γ is co-additive and hence it is the con-
cretisation map of a Galois connection (Section 2). Moreover, as we identify all
elements of R(F ,V∪V̂) having the same concretisation, γ is the concretisation
map of a Galois insertion.

Definition 6.5 The complete lattice 〈R(F ,V ∪V̂),�,∨,∧,∅,R(F ,V ∪V̂)〉 is
our abstract domain. Its elements stand silently for their equivalence class.

6.2 Abstract unfoldings of a rule

The pruning function that we consider only keeps the root of the terms.

Definition 6.6 (Pruning) For any x ∈ V and any f(t1, . . . , tn) ∈ T (F ,V),

prune(x) = x̂1 and prune(f(t1, . . . , tm)) = f(x̂1, . . . , x̂m)

where x̂1, . . . , x̂m are distinct variables from V̂ not previously met.

The definitions and results below are parametric in a TRS R and a rewrite
rule R, both over F ∪ V .

The abstract counterpart of the unfolding operator UR,R (Section 5.1) is de-
fined hereafter. The intuition consists in computing a finite and easily obtain-
able set that approximates the structure of the unfoldings of R.

Example 6.7 Consider the following TRS:

R =
{

f(h(x), s(0))→ f(h(x), g(x)), g(s(x))→ s(g(x)), g(0)→ 0
}

and R = g(s(x))→ s(g(x)) ∈ (UR ↑ 0)(R). The unfoldings of R all have the
form g(· · ·)→ s(· · ·). The left-hand side of these unfoldings does not semi-
unify with the corresponding right-hand side, hence R is root-useless. So, R is
removed from (UR ↑ 0)(R) and function elimR replaces it with g(s(x))→ g(x),
whose root-uselessness is then checked.

Now consider R′ = f(h(x), s(0))→ f(h(x), g(x)) ∈ (UR ↑ 0)(R). The left-hand
side of R′ does not semi-unify with the right-hand side. But the right-hand

15

side can be unfolded to a term t of the form f(h(x), s(· · ·)), as the second rule
of R has the form g(s(x))→ s(· · ·). The left-hand side of R′ may semi-unify
with t. Hence, we consider that R is not root-useless for R.

The idea is to approximate the structure of the terms obtained when rewriting
the subterms of R (in the second part of Example 6.7, s(· · ·) is an approx-
imation of some rewritings of subterm g(x)). This is done by pruning the
left-hand or right-hand side of the rules of R during the unfolding process.
The pruning function we consider (Definition 6.6) only keeps the roots of the
terms; another alternative is to use a depth(k) cut, where k is a parameter of
the analysis, but our technique still can detect many root-useless rules (see
Section 7). In the definition below, we again consider variable positions but
not for the elements of V̂ . Moreover, we do not apply the most general unifiers
(in contrast to Definition 3.4 and Definition 3.7) as we want to get a finite
least fixpoint (see Theorem 6.15 below).

Definition 6.8 (Abstract unfoldings of a rule) Let X ∈ R(F ,V ∪ V̂).
Then,

ÛR,R(X) = F̂R(X) ∪ B̂R(X) ∪X ∪ {R}
where

F̂R(X) =

l̂→ r̂[p← prune(r′)]
R̂ = l̂→ r̂ ∈ X, p ∈ Pos(r̂), r̂|p 6∈ V̂

l′→ r′ ∈ R, r̂|p unifies with l′


and

B̂R(X) =

l̂[p← prune(l′)]→ r̂
R̂ = l̂→ r̂ ∈ X, p ∈ Pos(l̂), l̂|p 6∈ V̂

l′→ r′ ∈ R, l̂|p unifies with r′

 .

The next proposition implies that the least fixpoint of ÛR,R is lfp(ÛR,R) =

∨
n∈N

(ÛR,R ↑ n)(∅).

Proposition 6.9 The abstract unfolding operator ÛR,R is continuous on the

complete lattice 〈R(F ,V ∪ V̂),�,∨,∧,∅,R(F ,V ∪ V̂)〉.

Notice that unlike UR,R(X) (Definition 5.6), the set ÛR,R(X) includes X. This
is an essential point to ensure that the following correctness result holds.

Proposition 6.10 (Correctness) For any X ∈ R(F ,V ∪ V̂) we have

UR,R(γ(X)) ≤ γ(ÛR,R(X)) .

Example 6.11 LetR = {f(0, x)→ h(x), 1→ 2}, X = {f(0, x)→ h(h(x̂))} and
R = f(0, x)→ h(x). Then, f(0, x)→ h(h(1)) ∈ γ(X) (it is obtained by in-

16

stantiating the rule of X with {x̂/1}). Unfolding this rule forwards, we get
f(0, x)→ h(h(2)). This rule is in γ(X) but not in γ(F̂R(X) ∪ B̂R(X) ∪ {R}).
The point is that we concretise X and then unfold a rule at a position that is
not a permitted position of the corresponding abstract rule. Such an unfolding
cannot be captured by F̂R and B̂R.

From Proposition 6.10 and the framework of abstract interpretation (Sec-
tion 2), we directly get the following correctness result.

Theorem 6.12 (Correctness) lfp(UR,R) ≤ γ(lfp(ÛR,R)).

Therefore, lfp(ÛR,R) provides a presentation of a superset of lfp(UR,R). This
presentation can be used to approximate root-useless rules as we have:

Theorem 6.13 (Root-Useless rule) Suppose that for all l→ r ∈ lfp(ÛR,R),
l does not semi-unify with r. Then, R is root-useless for R.

The operator ÛR,R can be used to eliminate root-useless rules in a fully auto-

matic loop detection analysis as lfp(ÛR,R) is finite. We prove this below. As

we did in the case of T (F ,V ∪V̂)×T (F ,V ∪V̂), we suppose that the elements
of T (F ,V ∪ V̂) do not contain multiple occurrences of a variable from V̂ and
we identify the subsets of T (F ,V ∪ V̂) having the same concretisation (γ is
straightforwardly extended to such subsets). Since the definition of F̂R(X)
neither changes nor considers the left-hand sides of rules in X, we can mimic
F̂R(X) by just applying it on the right-hand sides (see DR below). The same
is true for B̂R and AR below.

Definition 6.14 (Descendants, ascendants) For any T ⊆ T (F ,V ∪ V̂),

DR(T) =

t[p← prune(r′)]
t ∈ T, p ∈ Pos(t), t|p 6∈ V̂

l′→ r′ ∈ R, t|p unifies with l′


and

AR(T) =

t[p← prune(l′)]
t ∈ T, p ∈ Pos(t), t|p 6∈ V̂

l′→ r′ ∈ R, t|p unifies with r′

 .

The descendants and the ascendants of t ∈ T (F ,V ∪ V̂) w.r.t. R are respec-
tively ∆R(t) = ∪n∈N(DR ↑ n)({t}) and ∇R(t) = ∪n∈N(AR ↑ n)({t}).

For any t ∈ T (F ,V ∪ V̂), as there are finitely many subterms in t and as R
is finite, then ∆R(t) and ∇R(t) are finite and there exist nd, na ∈ N such that
∆R(t) = ∪n≤nd

(DR ↑ n)({t}) and ∇R(t) = ∪n≤na(AR ↑ n)({t}). The next

theorem establishes that lfp(ÛR,R) is finite and can be obtained by finitely

17

iterating AR starting from the left-hand side of R and DR starting from the
right-hand side of R.

Theorem 6.15 (Finiteness) Let l and r be the left-hand and right-hand side
of R, respectively. Then, lfp(ÛR,R) = ∇R(l)×∆R(r).

Example 6.16 (Example 6.7 continued)

lfp(ÛR,R) = ∇R(g(s(x)))×∆R(s(g(x)))

where

∇R(g(s(x))) =
{

g(s(x)), g(g(x̂1)), g(s(f(x̂2, x̂3))), g(s(g(x̂4)))
}

∆R(s(g(x))) =
{

s(g(x)), s(s(x̂5)), s(0), s(g(f(x̂6, x̂7))), s(g(s(x̂8))), s(g(0))
}
.

Every element l→ r ∈ lfp(ÛR,R) is such that l does not semi-unify with r. So,
R is root-useless for R.

The set of descendants of a term t provides an over-approximation of the set
of forward narrowings of t. Similarly, the set of ascendants of t provides an
over-approximation of the set of backward narrowings of t. This resembles the
dependency-pair analysis described in [24] where loop detection is performed
using forward or backward narrowing, considering variable positions in some
particular cases. One difference with our approach is that we compute the
descendants and the ascendants in order to approximate root-useless rules (not
to detect loops directly) and that, in Theorem 6.15, we mix the ascendants
of l with the descendants of r. In contrast, [24] either considers the backward
narrowings of l or the forward narrowings of r.

7 Experimental evaluation

We have implemented the techniques of this paper in our analyser NTI (Non-
Termination Inference). The current version NTI’08 is available from

http://personnel.univ-reunion.fr/epayet

Elimination of root-useless rules really decreases the number of generated rules
but the analysis is still expensive as our unfolding technique processes both
forwards and backwards and considers variable positions. Notice that mixing
forward and backward unfoldings is not always necessary for detecting loops
(Section 4 provides some examples). Hence, by default our tool runs three
analyses in parallel: one with forward unfoldings only, one with backward
unfoldings only and one with forward and backward unfoldings together. The

18

process that terminates first “kills” the others. This default setting can be
easily overridden by the user who can select one unfolding direction only.

7.1 Term rewriting

We have run 1 NTI’08 on the 129 non-terminating TRSs of the sub-category
standard rewriting of the Termination Competition’07 [33]. We fixed a 2
minute time limit for each TRS. We get the results in Figure 1 where we
also report the performance of the three best 2 tools of the competition that
we have run in the same conditions as NTI’08. For each tool, we indicate

AProVE’07 NTI’08 on NTI’08 off NTI’07 TTT2’07

128/129 128/129 122/129 117/129 69/129

1 maybe 1 time out 7 time out
7 time out

60 maybe5 don’t know

5min 33s 16min 08s 14min 52s

161 869 rules 1 163 354 rules 205 632 rules

Fig. 1. Results regarding the TRSs of the Termination Competition’07

the number of successful non-termination proofs and the answers when failure
occurs. If relevant, we also report the total time elapsed and the number of un-
folded rules. AProVE’07, NTI’07 and TTT2’07 respectively refer to the version
of AProVE [25,22,6], NTI and TTT2 [28,44] used in the Termination Compe-
tition’07. NTI’07 3 implements the techniques of [36], i.e. forward unfoldings
and non-variable positions only. In the column NTI’08 on (resp. NTI’08 off),
we present the results of our current analyser with elimination of root-useless
rules on (resp. off). We do not indicate the timing of AProVE’07 as this tool is
specialised to solve termination problems i.e. it first performs a termination
analysis and starts the non-termination proof only when this analysis fails.
TTT2’07 performs its non-termination test before any termination analysis
but, as this test is very simple, nearly 100% of the time is spent for a termi-
nation proof attempt; hence, we do not indicate the total time of TTT2’07 as
well. As NTI’08 runs three processes in parallel, for each TRS we only count
the rules generated by the successful process that terminates first; if no pro-
cess is successful within the time limit, then we count the rules generated by

1 using a 2.33GHz Intel Core 2 Duo with 2Gb DDR2 SDRAM
2 in the category TRS, sub-category standard rewriting, regarding non-termination
only
3 Actually, two versions of NTI’07, denoted by NTI and NTI2 in [33], are used in
the Termination Competition’07. NTI2 is a corrected version of NTI, the parser of
which does not work properly. In this paper, NTI’07 refers to NTI2.

19

the process computing forward and backward unfoldings together.

We observe in Figure 1 that compared to NTI’08 off, NTI’08 on globally
achieves a 85% reduction (approximately) of the number of unfolded rules
and runs 3 times faster. Moreover, the detection of root-useless rules does not
cause any major slowdown; the NTI’08 on average time regarding the success-
ful proofs is 1.67 second per TRS whereas that of NTI’08 off is 0.92 second
per TRS. Although it computes forward and backward unfoldings together
and considers variable positions, NTI’08 on generates fewer rules and globally
runs faster than NTI’07. This is because NTI’07 reaches the time limit for 7
TRSs; non-termination of 6 of these TRSs is solved by NTI’08 on (in less than
1 second for three TRSs, in 6 seconds for one TRS and in 70 seconds for two
TRSs). The sets of successfully solved TRSs corresponding to each tool are
related as follows:

TTT2’07 ⊂ [NTI’07,NTI’08 off] ⊂ [NTI’08 on,AProVE’07] .

AProVE’07 successfully solves TRCSR/Ex1 GM99 iGM while NTI’08 on does not
and NTI’08 on successfully solves nontermin/AG01/#4.19 while AProVE’07
does not. Apart from these TRSs, AProVE’07 and NTI’08 on handle the same
systems. The non-terminating term computed by AProVE’07 in the case of
TRCSR/Ex1 GM99 iGM can be inferred from iteration 7 of the unfolding operator
UR. We let NTI’08 on run for 3 hours on TRCSR/Ex1 GM99 iGM; it computed
iteration 0 (13 rules), iteration 1 (277 rules), iteration 2 (4 393 rules), iteration
3 (49 387 rules), iteration 4 (422 275 rules) and “only” the first 158 164 rules
of iteration 5. We then run NTI’08 on with unfolding of variable positions
disabled; we got the complete non-termination proof in less than 6 seconds
with 6 298 unfolded rules generated!

NTI’07 answers don’t know for 5 TRSs. don’t know happens when an itera-
tion of the eliminating unfolding operator is empty. Emptiness can be caused
by the eliminating technique of NTI’07 that removes some rules which are
actually useful; it also can be due to the unfolding operator which only pro-
cesses forwards without considering variable positions (hence some useful rules
may not be computed). For each failure of NTI’07, the table in Figure 2 indi-
cates whether NTI’08 on can solve the problem (2 minute time limit). When
NTI’08 on is successful, we report the unfolding direction and the use of vari-
able positions (no indication means that considering variable positions is not
necessary). NTI’08 on is not able to solve cime4 with forward unfoldings only,
#4.13 without considering variable positions and OvCons* with forward un-
foldings only or backward unfoldings only. This possibly explains why these
problems cannot be solved by NTI’07 as it does not unfold backwards nor
consider variable positions. NTI’07 fails on jwno1-6, #4.19, 2.05, Hamming
and Ex4 DLMMU04 FR because its eliminating mechanism removes some useful
rules (which are not removed by the mechanism of NTI’08 on).

20

problem NTI’07 NTI’08 on

secret05/cime4 don’t know backwards

Waldmann/jwno1 don’t know forwards

Waldmann/jwno4 don’t know forwards

Waldmann/jwno6 don’t know forwards

nontermin/AG01/#4.13 don’t know
forwards

variable positions

nontermin/AG01/#4.19 time out forwards

SK90/2.05 time out forwards

higher-order/Bird/Hamming time out forwards

TRCSR/OvConsOS nosorts-noand FR time out forwards+backwards

TRCSR/OvConsOS nosorts noand GM time out forwards+backwards

TRCSR/Ex4 DLMMU04 FR time out forwards

TRCSR/Ex1 GM99 iGM time out time out

Fig. 2. Failures of NTI’07

iterations 0 1 2 3 4 5 6 8

TRSs 71 13 21 7 8 5 2 1

time (s) 0.02 0.04 0.04 0.96 9.70 2.31 35.74 43.23

rules 1 9 28 2 595 4 525 1 659 15 207 17 061

Fig. 3. Iterations of the eliminating unfolding operator

In Figure 1, the number of iterations of the eliminating unfolding operator that
is computed by NTI’08 on for each successful proof ranges from 0 to 8; the
number of TRSs, average time (in seconds) and average number of unfolded
rules corresponding to each number of iterations are given in Figure 3. For 71
TRSs, NTI’08 on stops the proof at iteration 0 i.e. it directly gets a looping
term from the rules of the system under analysis; these TRSs are trivially
non-terminating. TTT2’07 was able to prove non-termination of TRSs in this
set only as it just checks whether the left-hand side of a rule is contained in its
right-hand side; as this simple check can be performed very fastly, the average
proof time of TTT2’07 regarding the successful proofs is 0.06 second.

21

7.2 String rewriting

We have also run NTI’08 on the 66 non-terminating string rewriting systems 4

(SRSs) of the Termination Competition’07 [33] (sub-category standard rewrit-
ing). We used the same machine as for term rewriting (see footnote 1) and
fixed a 2 minute time limit for each SRS. Notice that:

Theorem 7.1 ([21]) A SRS admits a loop if and only if its forward closure
contains a rule of the form t→utv (where t, u and v are strings).

The forward closures of a SRS correspond to its forward unfoldings where
variable positions are disregarded. Hence, we have run NTI’08 with forward
unfoldings only and variable positions disabled. We get the results in Figure 4
where we also report the performance of the three best 5 tools of the compe-
tition that we have run in the same conditions as NTI’08. Matchbox’07 refers

Matchbox’07 NTI’08 on NTI’08 off NTI’07 AProVE’07

65/66 46/66 22/66 15/66 6/66

1 maybe 20 time out 44 time out
41 time out 37 maybe

10 don’t know 23 time out

50min 39s 01h 32min 54s 01h 23min 30s

861 597 rules 2 486 121 rules 756 658 rules

Fig. 4. Results regarding the SRSs of the Termination Competition’07

to the version of Matchbox [45,34] used in the Termination Competition’07
and NTI’08 on (resp. NTI’08 off) corresponds to our current analyser with
elimination of root-useless rules on (resp. off), forward unfoldings only and
no unfolding of variable subterms. We do not report the timings of Match-
box’07 and AProVE’07 as these tools first perform a termination analysis and
start the non-termination proof only when this analysis fails. More precisely,
Matchbox’07 first applies a cheap termination method (e.g. simplex method
for additive weights), then it performs loop detection and finally it applies an
expensive termination method (matrices).

We observe in Figure 4 that compared to NTI’08 off, NTI’08 on globally
achieves a 65% reduction (approximately) of the number of unfolded rules
and is 42 minutes faster. The NTI’08 on average time regarding the successful
proofs is 13.89 seconds per SRS whereas that of NTI’08 off is 10.63 seconds

4 NTI’08 classically converts a SRS into a TRS and proves non-termination of the
resulting TRS
5 in the category SRS, sub-category standard rewriting, regarding non-termination
only

22

problem NTI’07 NTI’08 on

HofWald/1 don’t know X

secret2007/matchbox/num-514 don’t know X

secret2007/matchbox/num-530 don’t know X

Waldmann07a/size-11-alpha-3-num-15 don’t know X

Waldmann07a/size-12-alpha-2-num-11 don’t know time out

Waldmann07a/size-12-alpha-2-num-18 don’t know X

Waldmann07b/size-12-alpha-3-num-233 don’t know X

Waldmann07b/size-12-alpha-3-num-475 don’t know time out

Waldmann07b/size-12-alpha-3-num-540 don’t know time out

Waldmann07b/size-12-alpha-3-num-90 don’t know X

Fig. 5. Failures of NTI’07

per SRS. Non-termination of Waldmann07b/size-12-alpha-3-num-20 is suc-
cessfully proved by NTI’08 on, NTI’08 off and NTI’07 but not by Matchbox’07.
If we disregard this SRS, the sets of successfully solved SRSs corresponding
to each tool are related as follows:

AProVE’07 ⊂ NTI’07 ⊂ [NTI’08 off,NTI’08 on] ⊂ Matchbox’07 .

Every SRS that is successfully handled by NTI’08 off is also successfully han-
dled by NTI’08 on, except Waldmann07b/num-243 where NTI’08 on removes
some rules that are actually useful. This SRS is not solved by NTI’07 either.
NTI’07 reaches the time limit for 41 SRSs and answers don’t know for 10 oth-
ers. The table in Figure 5 indicates for each don’t know of NTI’07 whether
NTI’08 on can solve the problem (2 minute time limit). These results may look
surprising at first glance as NTI’08 on unfolds SRSs forwards only without con-
sidering variable positions, exactly as NTI’07. Hence, both tools should provide
the same results. However, NTI’08 on and NTI’07 estimate useless rules dif-
ferently and NTI’08 on’s estimation is better (i.e. removes fewer useful rules)
than that of NTI’07 (see Section 8.2). NTI’08 on globally generates more rules
than NTI’07 (see Figure 4) but is able to conclude non-termination in more
cases.

Although Theorem 7.1 holds, as the useless rule estimation and the time limit
introduce a loss of precision, one may wonder if using forward and backward
unfoldings with variable positions (as in Section 7.1) would provide more
positive answers (regarding non-termination) and accelerate the proofs. We
also run NTI’08 with elimination of root-useless rules and variable positions
enabled, 3 proofs in parallel (forward only, backward only and forward and
backward mixed) and a 2 minute time limit. We only got 36 successful proofs

23

iterations 0 1 3 5 6 7 8 9 10

SRSs 1 2 3 5 2 1 1 5 2

time (s) 0.37 0.06 0.06 0.07 0.78 0.14 0.14 20.49 2.80

rules 1 23 6 37 290 62 104 1 636 1 587

iterations 11 12 13 14 15 17 18 19 20

SRSs 2 1 1 5 1 3 2 1 1

time (s) 1.76 2.51 25.88 6.99 7.97 12.72 46.92 11.12 10.70

rules 1 536 1 378 9 588 2 482 6 205 10 164 12 764 6 106 6 012

iterations 23 24 25 26 27 29

SRSs 1 2 1 1 1 1

time (s) 97.81 11.14 51.25 36.28 92.74 2.20

rules 33 032 6 713 32 141 13 197 14 325 1 153

Fig. 6. Iterations of the eliminating unfolding operator

with a total amount of 698 673 unfolded rules and a global proof time of
1h 07min 51s.

In Figure 4, the number of iterations of the eliminating unfolding operator that
is computed by NTI’08 on for each successful proof ranges from 0 to 29; the
number of SRSs, average time (in seconds) and average number of unfolded
rules corresponding to each number of iterations are given in Figure 6.

8 Related work

8.1 Overlap Closure

[26] introduces the overlap closure of a TRS, an unfolding operation that pro-
cesses both forwards and backwards. The only differences with Definition 3.11
herein are that the overlap closure does not consider variable positions (hence
Definition 3.11 provides a superset of the overlap closure) and in order to com-
pute unf (R), one has to overlap the unfoldings with the rules of R whereas in
order to compute the overlap closure of R one has to overlap closures with clo-
sures. [26] proposes a method for proving uniform termination of TRSs. First
the authors prove that the rewriting relation of a finite set of rules is uniformly
terminating if and only if it is both globally finite and acyclic; this result is
not related to term rewriting only. Then they provide a sufficient condition
to global finiteness that can be syntactically checked. Finally they establish
that if a TRS R is right-linear or left-linear and →

R
is globally finite, then →

R
is uniformly terminating if and only if the overlap closure of R contains no

24

rule of the form t→ t. The technique we use herein does not consider global
finiteness and is able to detect loops only. On the other hand, we unfold vari-
able positions and use semi-unification, which encompasses equality between
the left-hand and right-hand side of rules.

In [21] the authors use the forward closure [14], a restricted form of the overlap
closure with forward reductions only, to characterize the existence of loops in
string rewriting. They prove that a SRS R admits a loop if and only if the
forward closure of R contains a rule of the form t→utv (where t, u and v are
strings). We considered this result in our experiments, see Section 7.2.

8.2 Comparison with [36]

This paper continues the work initiated in [36] where we used the unfolding
technique of [4] which only processes forwards. Hence, the analysis presented
in [36] is strictly less powerful than that of this paper as it is unable to prove
loopingness of TRSs requiring backward unfoldings (e.g. Example 4.3 and Ex-
ample 4.5). Moreover, the unfolding technique of [4] does not consider variable
subterms, which led us to introduce the augmented version of a TRS in [36].
Roughly speaking, a TRS is augmented by replacing every variable in its rules
with the left-hand sides of its original rules. Unfolding from an augmented
TRS is not as powerful as unfolding from the original TRS using variable
positions. For instance, loopingness of

R =

 f(0, 1, x)→ f(x, x, x), f(x, y, z)→ 2, 0→ 2, 1→ 2,

g(x, x, y)→ y, g(x, y, y)→x


cannot be proved from the augmented version of R whereas it can be with
variable positions. This TRS corresponds to problem #4.13.trs in the Termi-
nation Problem Data Base 6 . It was given by Drosten in [16] and is successfully
solved by NTI’08 (on and off). The estimation of useless rules described in Sec-
tion 5 and Section 6 is better than that of [36] in the sense that it removes
fewer useful rules. More precisely, both estimations behave similarly except for
the unfolded rules l→ r where l and r have different roots. In this case, [36]
only considers the roots of the rewritings of r; if the root of l is one of these,
then l→ r is kept, otherwise it is removed. Of course, this is not sufficient as
we also have to consider the strict subterms of the rewritings of r, as l may
semi-unify with one of them. We do so in this paper by defining an eliminat-
ing unfolding operator that splits r into its (strict and non-strict) subterms.
In [36], splitting is only applied to iteration 0 of the unfolding operator (i.e.
to the rules of the augmented form of the TRS under analysis).

6 available from http://www.lri.fr/~marche/termination-competition/

25

8.3 AProVE 1.2

AProVE [25,22,6] is a very powerful tool for automatically proving termination
and non-termination of TRSs (it also handles several other formalisms as logic
programs, functional programs, . . .) Version 1.2 implements the general con-
cept of dependency pair framework for combining termination techniques in a
modular way [23]. Termination problems are solved by repeatedly decompos-
ing them into smaller sub-problems and non-termination proofs are only per-
formed on those sub-problems that are detected as possibly non-terminating.
A major advantage is that the non-termination proofs only have to regard a
subset of the rules. Considering subsets of rules resembles what we do herein as
we use an eliminating mechanism to remove rules that do not contribute to a
non-termination proof. One difference is that our technique may remove some
rules which are actually useful for proving non-termination (see Example 5.3).
In contrast, non-termination proofs in AProVE only regard the sub-problems
that the tool could not prove terminating, hence a useful sub-problem for
non-termination is never unconsidered.

The idea of the dependency pair framework is to treat a set of dependency
pairs P together with a TRSR (initially, P is the set of dependency pairs ofR)
and to prove absence/presence of infinite (P ,R)-chains instead of examining
→
R

. Intuitively, a dependency pair corresponds to a function call and a chain

represents a possible sequence of calls. In comparison, our approach directly
works with the rules (not the dependency pairs) but our eliminating process
splits the right-hand sides of the unfolded rules (Definition 5.10). If a rule l→ r
is split into l→ ti where the root of ti is not a defined symbol, then l→ ti is
necessarily detected as root-useless because the roots of the ascendants of l
are defined symbols and the descendants of ti all have the same root as ti.
Hence, our approach resembles the dependency pair method from that point
of view.

The techniques implemented in AProVE for proving non-termination are de-
scribed in [24]. They can detect loops only, exactly as our approach. Given
(P ,R) as above, the idea consists in narrowing the dependency pairs in P until
the left-hand side of a narrowed pair semi-unifies with the corresponding right-
hand side. Narrowing operations are performed either directly with the rules
of R (forward narrowing) or with the reversed rules (backward narrowing).
To select forward or backward narrowing, heuristics are introduced: if P ∪R
is right- and not left-linear, then forward narrowing is performed; otherwise
backward narrowing is used and if P ∪ R is not left-linear then narrowing is
also permitted on variable subterms. Notice that the set of descendants (resp.
ascendants) of a term t (end of Section 6) provides an over-approximation of
the set of forward (resp. backward) narrowings of t but we compute the de-
scendants and the ascendants in order to approximate root-useless rules (not

26

to detect loops directly). Moreover, in Theorem 6.15, for any rule l→ r we
mix the ascendants of l with the descendants of r. We also mix forward and
backward unfoldings in Definition 3.11. In contrast, [24] either considers the
backward narrowings of the left-hand sides or the forward narrowings of the
right-hand sides of the dependency pairs. Our tool NTI’08 does not implement
any heuristic to select forward/backward narrowing and to permit/forbid un-
folding of variables. Instead, by default NTI’08 always unfold variables and
runs 3 proofs in parallel: one with forward unfoldings only, one with backward
unfoldings only and one with forward and backward unfoldings together. In
practice, the results are comparable to those of AProVE on TRSs (see Sec-
tion 7.1).

The elimination technique presented in this paper can be easily integrated into
a non-termination analysis which works on dependency pairs (as in [24]). Given
a set of dependency pairs P together with a TRSR, one can use Theorem 5.13
where eunf (R) is replaced with⋃

n∈N
(EUR ↑ n)(elimR(P))

and root-uselessness of a rule R is detected with lfp(ÛR,R) and Theorem 6.13.

8.4 Matchbox

Matchbox [45,34] is a tool that implements powerful techniques for detecting
loops in string rewriting. The 2007 version handles SRSs and their reverse
concurrently (as a SRS is non-terminating if and only if its reverse is non-
terminating). It also enumerates the forward closures using a priority queue
of closures initialised with the SRS of interest; smallest closures are extracted
first and for each successor Matchbox’07 checks for loop and inserts into the
queue. In parallel with forward closures, Matchbox’07 also extracts transport
systems [46] and checks whether they are looping (as if a rewriting system
admits a looping transport system then it admits a loop). The combination
of these techniques is very powerful (see Figure 4) and the transport system
approach is able to find long loops very efficiently. NTI’08 also enumerates clo-
sures but it does not use priority queues and does not implement the transport
system technique.

8.5 TORPA

TORPA (Termination Of Rewriting Proved Automatically) [48] is a powerful
tool for proving and disproving termination of SRSs. It implements a com-

27

bination of different techniques (for instance the dependency pair method)
and starts the non-termination proof only when the termination analysis has
failed. The non-termination proof technique consists in generating a directed
graph with labelled nodes which is a fragment of the ancestor graph described
in [31,20]. The graph GR corresponding to a SRS R is such that if there is

a path from a node labelled by u to a node labelled by u′ then u
+→
R
u1u

′u2

for some strings u1 and u2. Therefore, if GR admits a cycle, then an infinite
reduction (corresponding to a loop) exists for R.

8.6 TTT2

TTT2 (Tyrolean Termination Tool 2) [28,44] is a powerful tool for automat-
ically proving and disproving termination of rewrite systems. It implements
the dependency pair method and computes the strongly connected compo-
nents (SCC) of an over-approximation of the dependency graph; each SCC is
processed separately by a recursive algorithm that uses a bunch of different
methods. Hence, several comments we made in Section 8.3 are also applicable
to TTT2. Unlike our approach, the non-termination proof technique of TTT2
does not enumerate closures until a looping one is found. During the Termina-
tion Competition’07, TTT2 employed only a simple non-termination check (it
checked whether the left-hand side of a rule is contained in its right-hand side)
performed before any termination analysis. Notice however that a more elegant
and powerful method is being implemented for SRSs. In order to get smaller
SCCs it tries to remove rules which cannot contribute to a non-terminating
sequence. Then, it encodes rewrite sequences as propositional formulæ; if a
formula is satisfiable then the corresponding sequence includes a looping re-
duction [47]. The formulæ are handled by the SAT solver MiniSat [17].

8.7 Other related works

In [5,2], the authors define a framework for the static analysis of the unsatisfi-
ability of equation sets. This framework uses a loop-checking technique based
on a graph of functional dependencies. Notice that in order to eliminate useless
rules within our approach, an idea would consist in using the results of [5,2]
as we are also interested in a form of satisfiability: is a pair of terms (l, r)
unfoldable to (l′, r′) such that l′ semi-unifies with r′? However, [5,2] consider
unification instead of semi-unification because the aim of the authors is to
detect non-termination of narrowing. We are also aware of the work described
in [10] where the authors consider a graph of terms to detect loops in the
search tree. The graph of terms is used within a dynamic approach whereas
our paper and [5,2] consider a static approach.

28

In [1], the authors present a generic scheme for debugging functional programs
modeled as TRSs. The debugging methodology is based on abstract interpre-
tation and proceeds by approximating a continuous immediate consequence
operator by means of a depth(k) cut. This is related to our work as in Sec-
tion 6 we also approximate a continuous operator by pruning the left-hand or
right-hand side of rewrite rules.

9 Conclusion

Although it removes many root-useless rules, the loop detection analysis im-
plemented in NTI’08 still suffers from the explosion of the search space. A
solution to extend the applicability and reduce the cost of our approach con-
sists in underapproximating the unfoldings. The current version of our analyser
increments a depth k, starting from zero, and proceeds as follows: during the
computation of the unfoldings, a generated rule l→ r is discarded if the depth
of l or r is more than k (notice that for a given value of k, the set of the
unfoldings whose depth is not more than k is finite); if no rule satisfying the
semi-unification criterion of Theorem 5.13 is found, then k is incremented by
one. Hence, for each value of k, the analyser computes a subset of the un-
foldings. Another candidate to underapproximation is the method described
in [40] which does not consider subsets of the set C being approximated but
some set C ′ such that C ′ ∩ C 6= ∅ instead.

Another possibility to reduce the search space consists in integrating our ap-
proach into the dependency pair method, i.e. to apply it to the strongly
connected components of the dependency graph that are detected as pos-
sibly non-terminating. This would reduce the number of unfolded rules as
the unfolding process would only consider a subset of the dependency pairs.
Moreover, the heuristics implemented in AProVE to permit/forbid unfold-
ing of variables would possibly lead to more successful proofs (for instance,
TRCSR/Ex1 GM99 iGM is not solved by NTI’08 unless variable positions are not
unfolded, see Section 7.1).

Acknowledgments

The author thanks the anonymous referees for their numerous helpful com-
ments on this work. He also thanks Johannes Waldmann and Harald Zankl
for explanations regarding the non-termination proof techniques implemented
in Matchbox and TTT2 respectively.

29

References

[1] Maŕıa Alpuente, Marco Comini, Santiago Escobar, Moreno Falaschi, and
Salvador Lucas. Abstract diagnosis of functional programs. In Michael Leuschel,
editor, Proc. of the 12th International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR’02), volume 2664 of Lecture Notes
in Computer Science, pages 1–16. Springer-Verlag, 2003.

[2] Maŕıa Alpuente, Moreno Falaschi, and Ferdinando Manzo. Analyses
of unsatisfiability for equational logic programming. Journal of Logic
Programming, 311(1–3):479–525, 1995.

[3] Maŕıa Alpuente, Moreno Falaschi, Gines Moreno, and Germán Vidal. Safe
folding/unfolding with conditional narrowing. In Michael Hanus, Jan Heering,
and Karl Meinke, editors, Proc. of Algebraic and Logic Programming, 6th
International Joint Conference (ALP/HOA 97), volume 1298 of Lecture Notes
in Computer Science, pages 1–15. Springer-Verlag, 1997.

[4] Maŕıa Alpuente, Moreno Falaschi, Gines Moreno, and Germán Vidal. Rules +
strategies for transforming lazy functional logic programs. Theoretical Computer
Science, 311(1–3):479–525, 2004.

[5] Maŕıa Alpuente, Moreno Falaschi, Maŕıa José Ramis, and Germán Vidal.
Narrowing approximations as an optimization for equational logic programs. In
Maurice Bruynooghe and Jaan Penjam, editors, Proc. of the 5th International
Symposium on Programming Language Implementation and Logic Programming
(PLILP’93), volume 714 of Lecture Notes in Computer Science, pages 391–409.
Springer-Verlag, 1993.

[6] AProVE’s web site. http://aprove.informatik.rwth-aachen.de/.

[7] Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

[8] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge,
1998.

[9] Rod M. Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, 1977.

[10] Jacques Chabin and Pierre Réty. Narrowing directed by a graph of terms. In
G. Goos and J. Hartmanis, editors, Proc. of the 4th International Conference on
Rewriting Techniques and Applications (RTA’91), volume 488 of Lecture Notes
in Computer Science, pages 112–123. Springer-Verlag, 1991.

[11] Michael Codish and Cohavit Taboch. A semantics basis for termination analysis
of logic programs. Journal of Logic Programming, 41(1):103–123, 1999.

[12] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unifed lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proc. of the 4th Symposium on Principles of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

30

[13] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. of the 5th Symposium on Principles of
Programming Languages (POPL’78), pages 84–96. ACM, 1978.

[14] Nachum Dershowitz. Termination of linear rewriting systems. In Proc. of
the 8th International Colloquium on Automata, Languages and Programming
(ICALP’81), volume 115 of Lecture Notes in Computer Science, pages 448–458.
Springer, 1981.

[15] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3(1 & 2):69–116, 1987.

[16] Klaus Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung
algebraischer Spezifikationen. Springer Verlag, Berlin, 1989.

[17] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Proc. of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT’03),
volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer-
Verlag, 2004.

[18] Maurizio Gabbrielli and Roberto Giacobazzi. Goal independency and call
patterns in the analysis of logic programs. In Proc. of the ACM Symposium
on Applied Computing (SAC’94), pages 394–399. ACM Press, 1994.

[19] Samir Genaim and Michael Codish. Inferring termination condition for logic
programs using backwards analysis. In Robert Nieuwenhuis and Andrei
Voronkov, editors, Proc. of Logic for Programming, Artificial intelligence and
Reasoning (LPAR’01), volume 2250 of Lecture Notes in Computer Science,
pages 685–694. Springer-Verlag, 2001.

[20] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Deciding termination
for ancestor match-bounded string rewriting systems. Technical report,
National Institute of Aerospace, Hampton, VA, 2004.

[21] Alfons Geser and Hans Zantema. Non-looping string rewriting. RAIRO
Theoretical Informatics and Applications, 33:279–301, 1999.

[22] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2:
Automatic termination proofs in the dependency pair framework. In Ulrich
Furbach and Natarajan Shankar, editors, Proc. of the 3rd International Joint
Conference on Automated Reasoning (IJCAR’06), volume 4130 of Lecture Notes
in Artificial Intelligence, pages 281–286. Springer-Verlag, 2006.

[23] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency
pair framework: combining techniques for automated termination proofs. In
Franz Baader and Andrei Voronkov, editors, Proc. of the 11th International
Conference on Logic for Programming, Artificial intelligence and Reasoning
(LPAR’04), volume 3452 of Lecture Notes in Artificial Intelligence, pages 210–
220. Springer-Verlag, 2004.

31

[24] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and
disproving termination of higher-order functions. In Bernhard Gramlich, editor,
Proc. of the 5th International Workshop on Frontiers of Combining Systems
(FroCoS’05), volume 3717 of Lecture Notes in Artificial Intelligence, pages 216–
231. Springer-Verlag, 2005.

[25] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Automated termination proofs with AProVE. In Vincent van Oostrom,
editor, Proc. of the 15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume 3091 of Lecture Notes in Computer Science,
pages 210–220. Springer-Verlag, 2004.

[26] John V. Guttag, Deepak Kapur, and David R. Musser. On proving uniform
termination and restricted termination of rewriting systems. SIAM Journal of
Computing, 12(1):189–214, 1983.

[27] Michael Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19,20:583–628, 1994.

[28] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Techniques
and features. Information and Computation, 205(4):474–511, 2007.

[29] Steffen Hölldobler. Foundations of Equational Logic Programming, volume 353
of Lecture Notes in Artificial Intelligence. Springer, Berlin, 1989.

[30] Deepak Kapur, David R. Musser, Paliath Narendran, and Jonathan Stillman.
Semi-unification. Theoretical Computer Science, 81:169–187, 1991.

[31] Winfried Kurth. Termination und konfluenz von semi-Thue-systemen mit nur
einer regel. PhD thesis, Technische Universität Clausthal, Germany, 1990.

[32] D.S. Lankford and David R. Musser. A finite termination criterion. Unpublished
Draft, USC Information Sciences Institute, Marina Del Rey, CA, 1978.

[33] Claude Marché and Hans Zantema. The termination competition. In Franz
Baader, editor, Proc. of Term Rewriting and Applications, 18th International
Conference (RTA’07), volume 4533 of Lecture Notes in Computer Science, pages
303–313. Springer-Verlag, 2007.

[34] Matchbox’s web site. http://dfa.imn.htwk-leipzig.de/matchbox/.

[35] Fred Mesnard and Roberto Bagnara. cTI: a constraint-based termination
inference tool for iso-prolog. Theory and Practice of Logic Programming, 5(1–
2):243–257, 2005.

[36] Étienne Payet. Detecting non-termination of term rewriting systems
using an unfolding operator. In Germán Puebla, editor, Proc. of
the 16th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’06), volume 4407 of Lecture Notes in Computer
Science, pages 194–209. Springer-Verlag, 2007.

32

[37] Étienne Payet and Fred Mesnard. Non-termination inference for constraint
logic programs. In Roberto Giacobazzi, editor, Proc. of the 11th International
Symposium on Static Analysis (SAS’04), volume 3148 of Lecture Notes in
Computer Science, pages 377–392. Springer-Verlag, 2004.

[38] Étienne Payet and Fred Mesnard. Non-termination inference of logic programs.
ACM Transactions on Programming Languages and Systems, 28, Issue 2:256–
289, March 2006.

[39] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for transforming
functional and logic programs. ACM Computing Surveys, 28(2):360–414, 1996.

[40] David A. Schmidt. A calculus of logical relations for over- and
underapproximating static analyses. Science of Computer Programming,
64(1):29–53, 2007.

[41] Joachim Steinbach. Simplification orderings: history of results. Fundamenta
Informaticae, 24:47–87, 1995.

[42] Alfred Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

[43] Yoshihito Toyama. Counterexamples to the termination for the direct sum of
term rewriting systems. Information Processing Letters, 25(3):141–143, 1987.

[44] TTT2’s web site. http://colo6-c703.uibk.ac.at/ttt2.

[45] Johannes Waldmann. Matchbox: A tool for match-bounded string rewriting.
In Vincent van Oostrom, editor, Proc. of the 15th International Conference on
Rewriting Techniques and Applications (RTA’04), volume 3091 of Lecture Notes
in Computer Science, pages 85–94. Springer-Verlag, 2004.

[46] Johannes Waldmann. Compressed loops (draft). Available at
http://dfa.imn.htwk-leipzig.de/matchbox/methods/, 2007.

[47] Harald Zankl and Aart Middeldorp. Nontermination of string rewriting using
SAT. In Proc. of the 9th International Workshop on Termination (WST’07),
pages 52–55, 2007.

[48] Hans Zantema. Termination of string rewriting proved automatically. Journal
of Automated Reasoning, 34(2):105–139, 2005.

10 Proofs

10.1 Additional notations and results

For any substitution θ and any set of variables V , we let θ|V denote the
substitution obtained from θ by restricting its domain to V . For any renaming
γ, we denote by γ−1 the unique substitution such that γγ−1 = γ−1γ = ∅. The
substitution γ−1 is also a renaming.

33

10.2 Proof of Lemma 3.6

Proof.

• Let l1→ r1 ∈ FR(X). Then by Definition 3.4, there exist R = l→ r ∈ X,
p ∈ Pos(r), l′→ r′ ∈ R and θ = mgu(r|p, l′) such that

l1→ r1 = (l→ r[p← r′])θ .

Therefore, lθ→ rθ is an instance of a rule of X, p ∈ Pos(rθ), l′→ r′ ∈ R and
rθ|p = r|pθ (because p ∈ Pos(r)) with r|pθ = l′θ (because θ = mgu(r|p, l′)).
So, by Definition 3.1, lθ→ rθ[p← r′θ] ∈ IR(X). As rθ[p← r′θ] = r[p← r′]θ
(because p ∈ Pos(r)), we have l1→ r1 ∈ IR(X).
• Consider R = {f(g(x))→x, 0→ 1}. Then,

FR({f(g(x))→x}) = {f(g(0))→ 1, f(g(f(g(x))))→x} .

Moreover, f(g(g(0)))→ g(0) is an instance of f(g(x))→x from which we get
f(g(g(0)))→ g(1) ∈ IR({f(g(x))→x}). Therefore,

IR({f(g(x))→x}) 6⊆ FR({f(g(x))→x}) .

2

10.3 Proof of Lemma 3.9

Proof.

• Let R = {f(0)→ g(1), 1→ 2}. Then, f(0)→ g(2) ∈ FR({f(0)→ g(1)}) and
BR({f(0)→ g(1)}) = ∅. Hence, FR({f(0)→ g(1)}) 6⊆ BR({f(0)→ g(1)}).
• Let R = {f(0)→ g(1), 2→ 0}. Then, f(2)→ g(1) ∈ BR({f(0)→ g(1)}) and
FR({f(0)→ g(1)}) = ∅. Hence, BR({f(0)→ g(1)}) 6⊆ FR({f(0)→ g(1)}).

2

10.4 Proof of Theorem 4.1

Proof. Suppose that there is l→ r in unf (R) and a subterm r′ of r such

that lθ1θ2 = r′θ1 for some substitutions θ1 and θ2. By Proposition 3.12, l
+→ r.

Since →
R

is stable, we have lθ1
+→
R
rθ1 i.e. lθ1

+→
R
C[r′θ1] for some context C i.e.

lθ1
+→
R
C[lθ1θ2]. Hence, lθ1 loops w.r.t. R. 2

34

10.5 Proof of Proposition 5.5

The proof of Proposition 5.5 follows from the lemmas below.

Lemma 10.1 ≤ is a partial order on R(F ,V).

Proof. Reflexivity and transitivity follow from those of ⊆. Let us check anti-
symmetry. Let X,X1 ∈ R(F ,V). Suppose that X ≤ X1 and X1 ≤ X. Then,
we have instances(X) ⊆ instances(X1) and instances(X1) ⊆ instances(X).
So, instances(X) = instances(X1), i.e. X and X1 are equal up to variable
renaming, hence they denote the same element of R(F ,V). 2

Lemma 10.2 For any I ⊆ N and any {Xi}i∈I ⊆ R(F ,V), the least upper
bound of {Xi}i∈I is ti∈IXi.

Proof. For all j ∈ I, Xj ⊆ ∪i∈IXi so instances(Xj) ⊆ instances(∪i∈IXi) i.e.
Xj ≤ ∪i∈IXi i.e. Xj ≤ ti∈IXi. Hence, ti∈IXi is an upper bound of {Xi}i∈I .

Let B be another upper bound of {Xi}i∈I . Then for all i ∈ I, we have
Xi ≤ B i.e. instances(Xi) ⊆ instances(B). Therefore, ∪i∈I instances(Xi) ⊆
instances(B) i.e. instances(∪i∈IXi) ⊆ instances(B). Hence, ∪i∈IXi ≤ B i.e.
ti∈IXi ≤ B.

So, ti∈IXi is a least upper bound of {Xi}i∈I . As ≤ is antisymmetric, there is
only one least upper bound. 2

Lemma 10.3 For any I ⊆ N and any {Xi}i∈I ⊆ R(F ,V), the greatest lower
bound of {Xi}i∈I is ui∈IXi.

Proof. Let j ∈ I. We have ∩i∈I instances(Xi) ⊆ instances(Xj) so ui∈IXi ⊆
instances(Xj). Therefore, instances(ui∈IXi) ⊆ instances(instances(Xj)) i.e.
instances(ui∈IXi) ⊆ instances(Xj) i.e. ui∈IXi ≤ Xj. Consequently, ui∈IXi is
a lower bound of {Xi}i∈I .

Let B be another lower bound of {Xi}i∈I . Then for all i ∈ I, we have B ≤ Xi

i.e. instances(B) ⊆ instances(Xi). So, instances(B) ⊆ ∩i∈I instances(Xi) i.e.
instances(B) ⊆ ui∈IXi. Hence, instances(instances(B)) ⊆ instances(ui∈IXi)
i.e. instances(B) ⊆ instances(ui∈IXi) i.e. B ≤ ui∈IXi.

So, ui∈IXi is a greatest lower bound of {Xi}i∈I . As ≤ is antisymmetric, there
is only one greatest lower bound. 2

Lemma 10.4 ∅ is the least element of 〈R(F ,V),≤〉.

Proof. ∅ is a least element of 〈R(F ,V),≤〉. Moreover, as ≤ is antisymmetric,
there is only one least element. 2

35

Lemma 10.5 T (F ,V)× T (F ,V) is the greatest element of 〈R(F ,V),≤〉.

Proof. T (F ,V) × T (F ,V) is a greatest element of 〈R(F ,V),≤〉. Moreover,
as ≤ is antisymmetric, there is only one greatest element. 2

10.6 Proof of Proposition 5.7

As FR and BR are additive on 〈R(F ,V),≤,t,u,∅, T (F ,V)×T (F ,V)〉, so is
UR. Therefore, for any rewrite rule R, UR,R is additive, hence continuous.

10.7 Proof of Lemma 5.8

First, we need a lemma.

Lemma 10.6 Let R be a rewrite rule. For any n ∈ N, we have

(UR,R ↑ n+ 1)(∅) =
⋃
i≤n

(UR ↑ i)({R}) .

Proof. By induction on n, using the definition of UR,R and the fact that UR
is additive. 2

We can now prove Lemma 5.8:

Proof. By Proposition 5.7, lfp(UR,R) = t
n∈N

(UR,R ↑ n)(∅) = ∪
n∈N

(UR,R ↑
n)(∅). Moreover,

∪
n∈N

(UR,R ↑ n)(∅) = ∪
1≤n

(UR,R ↑ n)(∅)

= ∪
1≤n

∪
i≤n−1

(UR ↑ i)({R}) by Lemma 10.6

= ∪
0≤n

(UR ↑ n)({R})

2

10.8 Proof of Theorem 5.13

First, we need a lemma and a proposition.

Lemma 10.7 Let R be a TRS and l′→ r′ be a rule. Then, for any rule l→ r ∈
elimR(l′→ r′), we have l = l′ and r is a subterm of r′.

36

Proof. If elimR(l′→ r′) is empty, then the result holds vacuously. Otherwise,
proceed by structural induction on r′. 2

Proposition 10.8 Let n ∈ N. For any l→ r ∈ (EUR ↑ n)(elimR(R)), there
exists l′→ r′ ∈ (UR ↑ n)(R) such that l = l′ and r is a subterm of r′.

Proof. By induction on n using Lemma 10.7 and the definition of EUR, UR,
FR and BR. 2

We can now prove Theorem 5.13:

Proof. As l→ r ∈ eunf (R), then by Definition 5.12 there exists n ∈ N such
that l→ r ∈ (EU ↑ n)(elimR(R)). Hence, by Proposition 10.8, there exists
l′→ r′ ∈ (UR ↑ n)(R), i.e. l′→ r′ ∈ unf (R) by Definition 3.11, such that l = l′

and r is a subterm of r′. So, as lθ1θ2 = rθ1 for some substitutions θ1 and θ2,
by Theorem 4.1 we have that lθ1 loops w.r.t. R. 2

10.9 Proof of Proposition 6.3

The proof of Proposition 6.3 follows from the lemmas below.

Lemma 10.9 � is a partial order on R(F ,V ∪ V̂).

Proof. Reflexivity and transitivity follow from those of ≤. Antisymmetry
follows from that of ≤ and the fact that we identify the elements of R(F ,V∪V̂)
having the same concretisation modulo ≤. 2

Lemma 10.10 For any I ⊆ N and any {Xi}i∈I ⊆ R(F ,V ∪ V̂), the least
upper bound of {Xi}i∈I is ∨i∈IXi.

Proof. Let j ∈ I. We have Xj ⊆ ∪i∈IXi, hence γ(Xj) ⊆ γ(∪i∈IXi), hence
instances(γ(Xj)) ⊆ instances(γ(∪i∈IXi)). Therefore, Xj � ∪i∈IXi i.e. Xj �
∨i∈IXi. Consequently, ∨i∈IXi is an upper bound of {Xi}i∈I .

Let B be another upper bound of {Xi}i∈I . Then for all i ∈ I, Xi � B i.e.
instances(γ(Xi)) ⊆ instances(γ(B)). Consequently, ∪i∈I instances(γ(Xi)) ⊆
instances(γ(B)) which yields instances(∪i∈Iγ(Xi)) ⊆ instances(γ(B)) i.e.
∪i∈Iγ(Xi) ≤ γ(B). Therefore, we have γ(∪i∈IXi) ≤ γ(B) i.e. ∪i∈IXi � B
i.e. ∨i∈IXi � B.

So, ∨i∈IXi is a least upper bound of {Xi}i∈I . As � is antisymmetric, there is
only one least upper bound. 2

Lemma 10.11 For any I ⊆ N and any {Xi}i∈I ⊆ R(F ,V ∪ V̂), the greatest
lower bound of {Xi}i∈I is ∧i∈IXi.

37

Proof. Let j ∈ I. We have ∩i∈I instances(γ(Xi)) ⊆ instances(γ(Xj)), so
∧i∈IXi ⊆ instances(γ(Xj)). Hence, γ(∧i∈IXi) ⊆ γ(instances(γ(Xj))). As no

element of V̂ occurs in instances(γ(Xj)), then γ(∧i∈IXi) ⊆ instances(γ(Xj)).
So instances(γ(∧i∈IXi)) ⊆ instances(instances(γ(Xj))) ⊆ instances(γ(Xj))
i.e. ∧i∈IXi � Xj. Consequently, ∧i∈IXi is a lower bound of {Xi}i∈I .

Let B be another lower bound of {Xi}i∈I . Then for all i ∈ I, we have B � Xi

i.e. instances(γ(B)) ⊆ instances(γ(Xi)). Consequently, instances(γ(B)) ⊆
∩i∈I instances(γ(Xi)) i.e. instances(γ(B)) ⊆ ∧i∈IXi. Therefore, we have that
γ(instances(γ(B))) ⊆ γ(∧i∈IXi). As no element of V̂ occurs in instances(γ(B))
we have instances(γ(B)) ⊆ γ(∧i∈IXi). Hence, instances(instances(γ(B))) ⊆
instances(γ(∧i∈IXi)) i.e. instances(γ(B)) ⊆ instances(γ(∧i∈IXi)) i.e. B �
∧i∈IXi.

So, ∧i∈IXi is a greatest lower bound of {Xi}i∈I . As � is antisymmetric, there
is only one greatest lower bound. 2

Lemma 10.12 ∅ is the least element of 〈R(F ,V ∪ V̂),�〉.

Proof. ∅ is a least element of 〈R(F ,V ∪ V̂),�〉. Moreover, as � is antisym-
metric, there is only one least element. 2

Lemma 10.13 R(F ,V ∪ V̂) is the greatest element of 〈R(F ,V ∪ V̂),�〉.

Proof. R(F ,V ∪ V̂) is a greatest element of 〈R(F ,V ∪ V̂),�〉. Moreover, as �
is antisymmetric, there is only one greatest element. 2

10.10 Proof of Proposition 6.4

Proof. By Definition 6.2, we have γ(∧i∈IXi) = γ(∩i∈I instances(γ(Xi))). So,
γ(∧i∈IXi) = ∩i∈I instances(γ(Xi)) because ∩i∈I instances(γ(Xi)) contains no
element of V̂ . Hence, by Definition 5.4, γ(∧i∈IXi) = ui∈Iγ(Xi). 2

10.11 Proof of Proposition 6.9

Proof. As F̂R and B̂R are additive on 〈R(F ,V ∪ V̂),�,∨,∧,∅,R(F ,V ∪ V̂)〉,
so is ÛR,R. Hence, ÛR,R is continuous. 2

10.12 Proof of Proposition 6.10

First we need some additional results.

38

Proposition 10.14 For all X ∈ R(F ,V ∪ V̂) we have

FR(γ(X)) ⊆ instances(γ(F̂R(X) ∪X)) .

Proof. Let l→ r ∈ FR(γ(X)). Then by Definition 3.4, there exist R1 =
l1→ r1 ∈ γ(X), p ∈ Pos(r1), l

′→ r′ ∈ R and θ = mgu(r1|p, l′) such that

l→ r = (l1→ r1[p← r′])θ .

As l1→ r1 ∈ γ(X), there exists l̂→ r̂ ∈ X such that l1→ r1 ∈ γ(l̂→ r̂). Then
by Definition 6.1, there is a substitution σ̂ such that Dom(σ̂) ⊆ V̂ and

l1→ r1 = (l̂→ r̂)σ̂ .

• Suppose that p 6∈ Pos(r̂) or that p ∈ Pos(r̂) with r̂|p ∈ V̂ . Then, there

exists p̂ ∈ Pos(r̂) such that r̂|p̂ ∈ V̂ and r1|p is a subterm of σ̂(r̂|p̂), i.e.
σ̂(r̂|p̂)|q = r1|p for a position q of σ̂(r̂|p̂). As r̂|p̂ is a variable that occurs only

once in l̂→ r̂, we can define the substitution η̂ as:

η̂(x̂) = σ̂(x̂) ∀x̂ ∈ V̂ \ {r̂|p̂}

η̂(r̂|p̂) = σ̂(r̂|p̂)[q← r′]

and we have l̂η̂ = l̂σ̂ = l1 and r̂η̂ = r1[p← r′]. Then,

l→ r = (l̂→ r̂)η̂θ .

We have l̂→ r̂ ∈ X, (l̂→ r̂)η̂ ∈ T (F ,V) × T (F ,V) and Dom(η̂) ⊆ V̂ . So,
(l̂→ r̂)η̂ ∈ γ(X). Hence, l→ r ∈ instances(γ(X)). As X ⊆ F̂R(X) ∪X,

l→ r ∈ instances(γ(F̂R(X) ∪X)) .

• Suppose that p ∈ Pos(r̂) and r̂|p 6∈ V̂ . Then, as r1 = r̂σ̂, we have r1|p = r̂|pσ̂.
As θ = mgu(r1|p, l′), we have r1|pθ = l′θ, so

r̂|pσ̂θ = l′θ .

Let γ be a renaming such that (l′→ r′)γ is variable disjoint with l̂→ r̂. Let

η = σ̂θ|Var(r̂|p) and η′ = γ−1θ|Var(l′γ) .

Then, η ∪ η′ is a well-defined substitution because l′γ is variable disjoint
with r̂|p. We have:

r̂|p(η ∪ η′) = r̂|pη = r̂|pσ̂θ = l′θ = (l′γ)γ−1θ = (l′γ)η′ = (l′γ)(η ∪ η′) .

Hence, r̂|p and l′γ unify. Therefore, we have:

39

· l̂→ r̂ ∈ X,
· p ∈ Pos(r̂) with r̂|p 6∈ V̂ ,
· (l′→ r′)γ ∈ R,
· r̂|p and l′γ unify,
· prune(r′γ) = prune(r′).
Consequently by Definition 6.8,

l̂→ r̂[p← prune(r′)] ∈ F̂R(X) .

As function prune introduces new variables from V̂ , we can define the sub-
stitution η̂ as:

η̂(x̂) = σ̂(x̂) ∀x̂ ∈ V̂ \ Var(prune(r′))

prune(r′)η̂ = r′

and we have l̂η̂ = l̂σ̂ = l1 and r̂[p← prune(r′)]η̂ = r̂σ̂[p← prune(r′)η̂] =
r̂σ̂[p← r′] = r1[p← r′]. Therefore,

l→ r = (l̂→ r̂[p← prune(r′)])η̂θ

with l̂→ r̂[p← prune(r′)] ∈ F̂R(X), (l̂→ r̂[p← prune(r′)])η̂ ∈ T (F ,V) ×
T (F ,V) and Dom(η̂) ⊆ V̂ . So, (l̂→ r̂[p← prune(r′)])η̂ ∈ γ(F̂R(X)). Hence,
l→ r ∈ instances(γ(F̂R(X))). As F̂R(X) ⊆ F̂R(X) ∪X, we have

l→ r ∈ instances(γ(F̂R(X) ∪X)) .

2

Proposition 10.15 For all X ∈ R(F ,V ∪ V̂), FR(γ(X)) ≤ γ(F̂R(X) ∪X).

Proof. Let R ∈ instances(FR(γ(X))). Then, R = R1θ1 for R1 ∈ FR(γ(X))
and a substitution θ1. By Proposition 10.14, R1 = R2θ2 for R2 ∈ γ(F̂R(X)∪X)
and a substitution θ2. Hence, R = R2θ2θ1, i.e. R ∈ instances(γ(F̂R(X)∪X)).
So, we have proved that instances(FR(γ(X))) ⊆ instances(γ(F̂R(X)∪X)) i.e.
FR(γ(X)) ≤ γ(F̂R(X) ∪X). 2

Proposition 10.16 For all X ∈ R(F ,V ∪ V̂) we have

BR(γ(X)) ⊆ instances(γ(B̂R(X) ∪X)) .

Proof. The proof is similar to that of Proposition 10.14. 2

Proposition 10.17 For all X ∈ R(F ,V ∪ V̂), BR(γ(X)) ≤ γ(B̂R(X) ∪X).

Proof. The proof is similar to that of Proposition 10.15. 2

40

We can now prove Proposition 6.10:

Proof. By Propositions 10.15 and 10.17,

FR(γ(X)) ∪BR(γ(X)) ∪ {R} ≤ γ(F̂R(X) ∪X) ∪ γ(B̂R(X) ∪X) ∪ {R}

with {R} = γ({R}) and

γ(F̂R(X) ∪X) ∪ γ(B̂R(X) ∪X) ∪ γ({R}) = γ(F̂R(X) ∪ B̂R(X) ∪X ∪ {R}) .

So, UR(γ(X)) ∪ {R} ≤ γ(F̂R(X) ∪ B̂R(X) ∪X ∪ {R}) i.e.

UR,R(γ(X)) ≤ γ(ÛR,R(X)) .

2

10.13 Proof of Theorem 6.13

Proof. By contraposition. Suppose that R is not root-useless for R i.e.,
by Definition 5.9, that there exists l→ r ∈ lfp(UR,R) with lθ1θ2 = rθ1 for
some substitutions θ1 and θ2. As l→ r ∈ lfp(UR,R), by Theorem 6.12 l→ r ∈
instances(γ(lfp(ÛR,R))) i.e.

l→ r = (l̂→ r̂)σ̂θ

for l̂→ r̂ ∈ lfp(ÛR,R) and some substitutions σ̂ and θ. Then, we have

l̂(σ̂θθ1)θ2 = (l̂σ̂θ)θ1θ2 = lθ1θ2 = rθ1 = (r̂σ̂θ)θ1 = r̂(σ̂θθ1)

i.e. l̂ semi-unifies with r̂. 2

10.14 Proof of Theorem 6.15

The proof follows from the lemmas below.

Lemma 10.18 For all n ∈ N, (ÛR,R ↑ n)(∅) ⊆ ∇R(l)×∆R(r).

Proof. By induction on n using Definitions 6.8 and Definition 6.14. 2

Lemma 10.19 ∇R(l)×∆R(r) ⊆ lfp(ÛR,R).

Proof. Let l′→ r′ ∈ ∇R(l)×∆R(r). Then, there exist n,m ∈ N such that l′ ∈
(AR ↑ n)({l}) and r′ ∈ (DR ↑ m)({r}). In Definition 6.8 and Definition 6.14,
we do not use the mgu’s and the selected element R′ ofR to compute the result

41

(we just need to know that some terms unify and we only consider the root of
the left-hand or right-hand side of R′). Therefore, l′→ r′ ∈ (F̂R ↑ m)((B̂R ↑
n)({R})). Notice that we have (F̂R ↑ m)((B̂R ↑ n)({R})) ⊆ lfp(ÛR,R). So,

l′→ r′ ∈ lfp(ÛR,R). 2

42

