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Abstract

Concolic testing is a well-known validation technique for imperative and object
oriented programs. In a previous paper, we have introduced an adaptation of this
technique to logic programming. At the heart of our framework lies a specific procedure
that we call “selective unification”. It is used to generate appropriate run-time goals
by considering all possible ways an atom can unify with the heads of some program
clauses. In this paper, we show that the existing algorithm for selective unification
is not complete in the presence of non-linear atoms. We then prove soundness and
completeness for a restricted version of the problem where some atoms are required to be
linear. We also consider concolic testing in the context of constraint logic programming
and extend the notion of selective unification accordingly.

1 Introduction

Concolic testing is a well-known validation technique for imperative and object oriented pro-
grams. Roughly speaking, concolic testing combines concrete and symbolic execution (called
concolic execution) in order to systematically produce test cases that aim at exploring all
feasible execution paths of a program. Typically, one starts with an arbitrary concrete call,
say main(i1, . . . , in) and runs both concrete and symbolic execution on main(i1, . . . , in) and
main(v1, . . . , vn), respectively, where v1, . . . , vn are symbolic variables denoting unknown in-
put values. In contrast to ordinary symbolic execution, the symbolic component of concolic
execution does not explore all possible execution paths, but just mimics the steps of the
concrete execution, gathering along the way constraints on the symbolic variables to follow

∗This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Ciencia,
Innovación y Universidades/AEI under grant TIN2016-76843-C4-1-R and by the Generalitat Valenciana
under grant Prometeo/2019/098 (DeepTrust).
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a particular path. Once a concolic execution terminates,1 one uses the collected constraints
to produce new concrete calls that will explore different paths. For instance, if the collected
constraints are c1, c2, c3, then by solving ¬c1 we get values for the symbolic variables of
main(v1, . . . , vn) so that the resulting concrete call will follow a different execution path.
Other alternative initial calls can be obtained by solving c1 ∧ ¬c2 and c1 ∧ c2 ∧ ¬c3.

We have introduced an adaptation of this technique to logic programming [1]. In contrast
to the case of imperative or object oriented programming, computing the alternatives of a
given execution is more complex in this setting. Consider for instance a predicate p/n defined
by the set of clauses

{H1 ← B1, H2 ← B2, H3 ← B3}

and a goal where the selected atom, p(t1, . . . , tn), only unifies with H1. What are then the
possible alternatives? In principle, one could think that producing a goal where the selected
atom only unifies with H2 and another goal where the selected atom only unifies with H3 is
enough. However, there are five more possibilities: unifying with no clause, unifiying with
both H1 and H2, unifying with both H1 and H3, unifying with both H2 and H3, and unifying
with all three atoms H1, H2 and H3.2 Moreover, we found in [1] that producing goals that
satisfy each of these conditions is far from trivial. This problem, that we call “selective
unification”, can be roughly expressed as follows: given an atom A, a set of positive atoms
H+ and a set of negative atoms H−, we look for a substitution θ (if it exists) for the variables
of A such that Aθ unifies with every atom in H+ but it does not unify with any atom in
H−. Observe that we want Aθ to unify with each atom in H+ separately. To the best of
our knowledge, this problem has not been considered before in the literature. In order to
produce valid run time goals (i.e., appropriate test cases) we also consider a groundness
condition i.e., a set G of variables that we want to be ground by θ.

Let us illustrate the notion of selective unification with a simple example. Consider,
e.g., an atom p(X) and the sets H+ = {p(f(a)), p(f(Y ))}, H− = {p(b)} and G = {X}. A
solution of this selective unification problem is {X/f(a)}, since p(X){X/f(a)} = p(f(a))
unifies with p(f(a)) and also with p(f(Y )) (with different unifiers, though), but it does
not unify with p(b). Moreover, the variable X ∈ G is ground. In contrast, the problem
with atom p(X) and sets H+ = {p(a), p(b)} and H− = {p(c)} is unfeasible since we need a
renaming, e.g., θ = {X/Y }, in order for p(X)θ to unify with both p(a) and p(b), but then
p(X)θ would also unify with p(c).

In [1] we introduced a first algorithm for selective unification. Unfortunately, it was
incomplete. In this paper, we further analyze this problem (see Sect. 3), identifying the
potential sources of incompleteness, proving some properties, and introducing refined algo-
rithms which are sound and complete under some circumstances. In Sect. 4, we also consider
concolic testing in the context of constraint logic programming (CLP) [2, 3], and extend the
notion of selective unification accordingly. Finally, Sect. 5 discusses some related work and
concludes the paper.

1Concrete executions are assumed terminating via termination analysis or timeouts or limits on the
number of inferences.

2In general, though, not all possibilities are feasible.
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2 Preliminaries

We assume some familiarity with the standard definitions and notations for logic program-
ming as introduced in [4] and for constraint logic programming as introduced in [3, 5].
Nevertheless, in order to make the paper as self-contained as possible, we present in this
section the main concepts which are needed to understand our development.

We denote by |S| the cardinality of the set S and by N the set of natural numbers. From
now on, we fix an infinite countable set V of variables together with a signature Σ, i.e., a
pair 〈F,ΠC〉 where F is a finite set of function symbols and ΠC is a finite set of predicate
symbols with F ∩ ΠC = ∅ and (F ∪ ΠC) ∩ V = ∅. Every element of F ∪ ΠC has an arity
which is the number of its arguments. We write f/n ∈ F (resp. p/n ∈ ΠC) to denote that
f (resp. p) is an element of F (resp. ΠC) whose arity is n ≥ 0. A constant symbol is an
element of F whose arity is 0.

A term is a variable, a constant symbol or an entity f(t1, . . . , tn) where f/n ∈ F , n ≥ 1
and t1, . . . , tn are terms. For any term t, we let Var(t) denote the set of variables occurring
in t. This notation is naturally extended to sets of terms. We say that t is ground when
Var(t) = ∅. Positions are used to address the nodes of a term viewed as a tree. A position
p in t, in symbols p ∈ Pos(t), is represented by a finite sequence of natural numbers, where
ε denotes the root position. We let t|p denote the subterm of t at position p and t[s]p the
result of replacing the subterm t|p by the term s. The depth depth(t) of t is defined as:
depth(t) = 0 if t is a variable and depth(f(t1, . . . , tn)) = 1 + max(depth(t1), . . . , depth(tn)),
otherwise. We say that t|p is a subterm of t at depth k if there are k nested function symbols
from the root of t to the root of t|p.

An atomic constraint is an element p/0 of ΠC or an entity p(t1, . . . , tn) where p/n ∈ ΠC ,
n ≥ 1 and t1, . . . , tn are terms. A first-order formula on Σ is built from atomic constraints
in the usual way using the logical connectives ∧, ∨, ¬, →, ↔ and the quantifiers ∃ and
∀. For any formula φ, we let Var(φ) denote its set of free variables and ∃φ (resp. ∀φ) its
existential (resp. universal) closure.

We fix a Σ-structure D, i.e., a pair 〈D, [·]〉 which is an interpretation of the symbols in
Σ. The set D is called the domain of D and [·] maps each f/0 ∈ F to an element of D, each
f/n ∈ F with n ≥ 1 to a function [f ] : Dn → D, each p/0 ∈ ΠC to an element of {0, 1},
and each p/n ∈ ΠC with n ≥ 1 to a boolean function [p] : Dn → {0, 1}. We assume that
the binary predicate symbol = is in Σ and is interpreted as identity in D. A valuation is
a mapping from V to D. Each valuation v extends by morphism to terms. A valuation v
induces a valuation [·]v of terms to D and of formulas to {0, 1}.

Given a formula φ and a valuation v, we write D |=v φ when [φ]v = 1. We write D |= φ
when D |=v φ for all valuations v. Notice that D |= ∀φ if and only if D |= φ, that D |= ∃φ
if and only if there exists a valuation v such that D |=v φ, and that D |= ¬∃φ if and only
if D |= ¬φ. We say that a formula φ is satisfiable (resp. unsatisfiable) in D when D |= ∃φ
(resp. D |= ¬φ).

We fix a set L of admitted formulas, the elements of which are called constraints. We
suppose that L is closed under variable renaming, existential quantification and conjunction
and that it contains all the atomic constraints. We assume that there is a computable
function solv which maps each c ∈ L to one of true or false indicating whether c is
satisfiable or unsatisfiable in D. We call solv the constraint solver.
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Example 1 (CLP(Qlin)) The constraint domain Qlin has <, ≤, =, ≥, > as predicate
symbols, +, −, ∗, / as function symbols and sequences of digits as constant symbols. L is the
set of conjunctions of linear atomic constraints. The domain of computation is the structure
with the set of rationals, denoted by Q, as domain and where the predicate symbols and the
function symbols are interpreted as the usual relations and functions over the rationals. A
constraint solver for Qlin always returning either true or false is described in [6]. �

Example 2 (Logic Programming) The constraint domain Term has “=” as predicate
symbol and strings of alphanumeric characters as function symbols. The domain of compu-
tation is the set of finite trees (or, equivalently, of finite terms), Tree. The interpretation
of a constant is a tree with a single node labeled with the constant. The interpretation of
an n-ary function symbol f is the function fTree : Treen → Tree mapping the trees T1, . . . ,
Tn to a new tree with root labeled with f and with T1, . . . , Tn as child nodes. A constraint
solver always returning either true or false is provided by the unification algorithm. �

Sequences of distinct variables are denoted by
#»

X,
#»

Y or
#»

Z and are sometimes considered
as sets of variables: we may write ∀ #»

X , ∃ #»
X or

#»

X ∪ #»

Y . Sequences of (not necessarily distinct)
terms are denoted by #»s ,

#»
t or #»u . Given two sequences of n terms #»s := (s1, . . . , sn) and

#»
t := (t1, . . . , tn), we write #»s =

#»
t to denote the constraint s1 = t1 ∧ . . . ∧ sn = tn.

A structure D admits quantifier elimination if for each first-order formula φ there exists
a quantifier-free formula ψ such that D |= φ ↔ ψ. D admits variable elimination if for

each quantifier-free formula φ(
#»

X,Y ) there exists a quantifier-free formula ψ(
#»

X) such that

D |= ∃Y φ(
#»

X,Y ) ↔ ψ(
#»

X). For instance, Qlin admits variable elimination via the Fourier-
Motzkin algorithm (see e.g., [7]).

The signature in which all programs and queries under consideration are included is
ΣL := 〈F,ΠC ∪ ΠP 〉 where ΠP is the set of predicate symbols that can be defined in
programs, with ΠC ∩ ΠP = ∅. An atom has the form p(t1, . . . , tn) where p/n ∈ ΠP and
t1, . . . , tn are terms. The definitions and notations on terms (Var, depth, ground,. . . ) are

extended to atoms in the natural way. A rule has the form H ← c∧ #»

B where H is an atom
called the head of the rule, c is a satisfiable constraint, and

#»

B is a finite sequence of atoms.
A program is a finite set of rules. A state has the form 〈d | #»

B〉 where
#»

B is a sequence of
atoms and d is a satisfiable constraint. A constraint atom is a state of the form 〈d | p( #»

t )〉.
A constraint atom of the form 〈c | p( #»

X)〉 is projected when Var(c) ⊆ { #»

X}.
We consider the usual operational semantics given in terms of derivations from states to

states. Let 〈d | p( #»u ),
#»

B〉 be a state and p( #»s ) ← c ∧
# »

B′ be a fresh copy of a rule r. When
solv( #»s = #»u ∧ c ∧ d) = true then

〈d | p( #»u ),
#»

B〉=⇒
r
〈 #»s = #»u ∧ c ∧ d |

# »

B′,
#»

B〉

is a derivation step of 〈d | p( #»u ),
#»

B〉 with respect to r with p( #»s ) ← c ∧
# »

B′ as its input

rule. Let S be the state 〈d | #»

B〉. S is failed if
#»

B is not empty and no derivation step is

possible. S is successful if
#»

B is empty. We write S
+

=⇒
P
S′ to summarize a finite number

(> 0) of derivation steps from S to S′ where each input rule comes from program P . Let
S0 be a state. A sequence of derivation steps S0 =⇒

r1
S1 =⇒

r2
· · · of maximal length is called

a derivation of P ∪ {S0} when r1, r2, . . . are rules from P and the standardization apart
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condition holds, i.e., each input rule used is variable disjoint from the initial state S0 and
from the input rules used at earlier steps.

Substitutions (denoted as θ, σ . . .) and their operations are defined as usual. In particular,
for any substitution θ := {X1/t1, . . . , Xn/tn}, the set Dom(θ) = {X1, . . . , Xn} is called the
domain of θ and Ran(θ) is the set of variables appearing in t1, . . . , tn. We let id denote
the empty substitution. The application of θ to a syntactic object s (a term or an atom) is
usually denoted by sθ rather than θ(s). The composition of θ and σ, written as θσ, is defined
as: X(θσ) = (Xθ)σ for any variable X. We say that θ is idempotent when θθ = θ. We write
θ ≤ σ iff σ = θη for some substitution η. The restriction θ |̀V of θ to a set of variables V is
defined as follows: Xθ |̀V = Xθ if X ∈ V and Xθ |̀V = X otherwise. A syntactic object s1
is more general than a syntactic object s2, denoted s1 ≤ s2, if there exists a substitution θ
such that s2 = s1θ. A variable renaming is a substitution that is a bijection on V. We write
s1 ∼ s2 iff s1 = s2ρ for some variable renaming ρ. A substitution θ is a unifier of s1 and s2
iff s1θ = s2θ; furthermore, θ is the most general unifier of s1 and s2, denoted by mgu(s1, s2)
if, for every other unifier σ of s1 and s2, we have that θ ≤ σ. By abuse of notation, we also
use mgu on a conjunction of equations, i.e., mgu(s1 = t1 ∧ . . . ∧ sn = tn) = θ if siθ = tiθ
for all i = 1, . . . , n and for every other unifier σ of si and ti, i = 1, . . . , n, we have θ ≤ σ. A
syntactic object is linear if it does not contain multiple occurrences of the same variable. A
substitution {X1/t1, . . . , Xn/tn} is linear if t1, . . . , tn are linear and, moreover, they do not
share variables.

3 Selective Unification in Logic Programming

In this section, we consider concolic testing and selective unification in the context of logic
programming. In this setting, a goal is a finite sequence of atoms and the empty goal is
denoted by true. Moreover, a rule has the form H ← #»

B and is rather called a clause. Note
that we only consider definite clauses i.e., clauses whose head consists precisely of one atom.

3.1 Concolic Testing in Logic Programming

We first summarize the framework for concolic testing of logic programs introduced in [1].
On the positive side, in logic programming, the same principle for standard execution,
SLD resolution, can also be used for symbolic execution. On the negative side, computing
alternative test cases is way more complex than in the traditional setting (e.g., for imperative
programs) due to the non-deterministic nature of logic programming computations.

Concolic execution combines both concrete and symbolic execution. However, despite
the fact that the concrete and symbolic execution mechanisms are the same, one still needs to
consider concolic states that combine both a concrete and a symbolic (less instantiated) goal.
Our concolic execution semantics deals with non-determinism and backtracking explicitly,
similarly to the linear operational semantics of [8] for Prolog. In this context, rather than
considering a goal, the semantics considers a sequence of goals that, roughly, represents
a frontier of the execution tree built so far. To be precise, concolic states have the form
〈S ][ S′〉, where S and S′ are sequences of (possibly labeled) concrete and symbolic goals,
respectively. The structure of S and S′ is identical, the only difference being that the atoms
in S′ might be less instantiated. Here, we use the vertical bar “|” as a delimiter for sequence
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(success)
〈trueδ |S ][ trueθ |S′〉 � 〈successδ ][ successθ〉

(failure)
〈(fail, #»

B)δ ][ (fail,
# »

B′)θ〉 � 〈failδ ][ failθ〉

(backtrack)
S 6= ε

〈(fail, #»
B)δ |S ][ (fail,

# »

B′)θ |S′〉 � 〈S ][ S′〉

(choice)
clauses(A,P ) = #»c ∧ #»c = {c1, . . . , cn} ∧ n > 0 ∧ clauses(A′, P ) =

#»
d

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉 c(`( #»c ),`(
#»
d )) 〈(A,

#»
B)c1δ | . . . |(A,

#»
B)cnδ |S

][ (A′,
# »

B′)c1θ | . . . |(A
′,

# »

B′)cnθ |S
′〉

(choice fail)
clauses(A,P ) = ∅ ∧ clauses(A′, P ) = #»c

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉 c(∅,`( #»c )) 〈(fail,
#»
B)δ |S ][ (fail,

# »

B′)θ |S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′, H1) = σ′

〈(A, #»
B)H1←

# »
B1

δ |S ][ (A′,
# »

B′)H1←
# »
B1

θ |S′〉 � 〈(
#  »
B1σ,

#»
Bσ)δσ |S ][ (

#  »
B1σ′,

# »

B′σ′)θσ′ |S′〉

Figure 1: Concolic execution semantics

elements. For instance, (A,
#»

B)cδ | S denotes a sequence of goals ending with the sequence

S and starting with the goal (A,
#»

B)cδ, which itself starts with the atom A, ends with the

sequence
#»

B and is labeled with the substitution δ and the clause c. Given an arbitrary atom
p( #»u ), an initial concolic state has the form 〈p( #»u )id ][ p(

#»

X)id〉, where
#»

X are different fresh
variables and the labels id denote an initial (empty) computed substitution. Here, p( #»u )

can be considered a test case (a concrete goal), while p(
#»

X) is the corresponding call with
unknown, symbolic arguments, that we use to collect the constraints (here: substitutions

for
#»

X) using symbolic execution.

Example 3 Given a concrete (atomic) goal, p(f(X)), the corresponding initial concolic
state has the form 〈p(f(X))id ][ p(N)id〉, where N is a fresh variable. �

In the following, we assume that every clause c has a corresponding unique label, which we
denote by `(c). By abuse of notation, we denote by `( #»c ) the set of labels {`(c1), . . . , `(cn)},
where #»c = c1, . . . , cn. Also, given an atom A and a logic program P , clauses(A,P ) returns
the sequence of renamed apart program clauses of P whose head unifies with A. The concolic
execution semantics is given by the rules of the labeled transition relation shown in Fig. 1.
Some additional notations will be explained with the corresponding rules.

• The first rules, success and failure, use fresh constants labeled with a computed sub-
stitution to denote a final state: successδ and failδ, respectively.3 Note that we are
interested in both sucessful and (finitely) failing derivations. Rule backtrack applies
when the first goal in the sequence finitely fails, but there is at least one alternative

3We note that the semantics only considers the computation of the first solution for the initial goal. This
is the way most Prolog applications are used and, thus, the semantics models this behaviour in order to
consider a realistic scenario. But if one wish to test a non-deterministic predicate p, one can add a clause
top← p(

#»
X), fail. and start a concolic execution with the initial state 〈topid ][ topid 〉.
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〈p(f(X))id ][ p(N)id〉

 choice
c({`1,`2},{`1,`2,`3}) 〈p(f(X))`1id |p(f(X))`2id ][ p(N)`1id |p(N)`2id〉

 unfold
� 〈true{X/a} |p(f(X))`2id ][ true{N/f(a)} |p(N)`2id〉

 success
� 〈success{X/a} ][ success{N/f(a)}〉

Figure 2: Concolic execution for 〈p(f(X))id ][ p(N)id〉

choice. In these three rules, we deal with the concrete and symbolic components of
the concolic state in much the same way. Also, the steps are labeled with an empty
label “�”.

• Rule choice represents the first stage of an SLD resolution step. If there is at least
one clause whose head unifies with the leftmost atom of the concrete goal, this rule
introduces as many copies of a goal as clauses returned by function clauses. Moreover,
we label each copy of the goal (A,

#»

B) with a matching clause. If there is at least one
matching clause, unfolding is then performed by rule unfold using the clause labeling
the goal. Otherwise, if there is no matching clause, rule choice fail returns fail so
that either rule failure or backtrack applies next. A relevant point here is that the
steps with rules choice and choice fail are labeled with a term of the form c(L1, L2),
where L1 are the labels of the clauses matching the selected atom in the concrete goal
and L2 are the labels of the clauses matching the selected atom in the corresponding
symbolic goal. Note that L1 ⊆ L2 since the concrete goal is always an instance of
the symbolic goal. These labels are essential to compute alternative test cases during
concolic testing, as we will see below.

• Essentially, one can say that the application of rules choice and unfold amounts to an
unfolding step with plain SLD resolution. However, this is only true for the concrete
component of the concolic state. Note that regarding the symbolic component, we do
not consider all matching clauses,

#»

d , but only the clauses matching the concrete goal
(i.e., #»c ). This is a well known behavior in concolic execution: symbolic execution is
restricted to only mimic the steps of the corresponding concrete execution.

Example 4 Consider the following logic program:

(`1) p(f(a))← true. (`2) p(f(b))← true. (`3) p(c)← true.

and the initial state 〈p(f(X))id ][ p(N)id〉. Concolic execution proceeds as shown in Fig. 2.
�

Concolic testing aims at computing “test cases” (concrete atomic goals in our context) that
cover all execution paths. Of course, since the number of paths is often infinite, one should
consider a timeout or some other method to ensure the termination of the process. Note
that concolic testing methods are typically incomplete. A concolic testing algorithm should
follow these steps:

7



1. Given a concrete goal, we construct the associated initial concolic state and run con-
colic execution. We assume that concrete goals are terminating and, thus, this step is
always finite too.

2. Then, we consider each application of rule choice in this concolic execution. Consider
that the step is labeled with c(L1, L2). Here, we are interested in looking for instances
of the symbolic goal that match the clauses of every set in ℘(L2) \L1 since the set L1

is already considered by the current execution.4

3. Checking the feasibility for each set in ℘(L2) \ L1 is done as follows. Let A be the
selected atom in the symbolic goal and let L ∈ ℘(L2) \ L1 be the considered set of
clauses. Let H+ be the atoms in the heads of the clauses in L (i.e., the clauses we want
to unify with) and let H− be the atoms in the heads of the clauses in L2 \L (i.e., the
clauses we do not want to unify with). Then, we are looking for a substitution, θ, such
that Aθ unifies with each atom in H+ but it does not unify with any atom in H−. This
is what we call a selective unification problem (see Sect. 3.2). As mentioned before,
this is the first time such a unification problem has been considered in the literature.
Usually, we also add another constraint: some variables must become ground by θ.
This last requirement is needed to ensure that Aθ is indeed a valid concrete (run time)
goal and, thus, its execution terminates.5

4. Finally, for each selective unification problem which is solvable, we have a new concrete
goal (i.e., a new test case) and the process starts again. Moreover, one should keep
track of the concrete goals already considered and the paths already explored in order
to avoid computing the same test case once and again.

Let us now illustrate the concolic testing procedure with a simple example.

Example 5 Consider again the program of Ex. 4, together with the initial goal p(f(X)).
For simplicity, we will not consider a groundness condition in this example. Let us start
with the concolic execution shown in Fig. 2. Given the label c({`1, `2}, {`1, `2, `3}), we have
to consider the sets in ℘({`1, `2, `3}) \ {`1, `2}, i.e.,

{∅, {`1}, {`2}, {`3}, {`1, `3}, {`2, `3}, {`1, `2, `3}} .

Therefore, our first selective unification problem, associated to the empty set, considers the
atom p(N) and the sets H+ = ∅ and H− = {p(f(a)), p(f(b)), p(c)}. A solution is, e.g.,
{N/a} and, thus, p(N){N/a} = p(a) is another test case to consider.

As for the second set, {`1}, the selective unification problem considers the atom p(N)
and the sets H+ = {p(f(a))} and H− = {p(f(b)), p(c)}. Here, the only solution is {N/f(a)}
and, thus, the atom p(N){X/f(a)} = p(f(a)) is another test case to consider.

The process goes on producing the test cases p(f(b)) (for the set {`2}), p(c) (for the set
{`3}), and p(N) (for the set {`1, `2, `3}), the remaining problems being unfeasible. �

4Here, we denote by ℘(S) the powerset of a set S. Moreover, for simplicity, we often use the label of a
clause to refer to the clause itself.

5Which variables should be ground can be selected by instantiation mode declarations or by termination
analysis, as some analysers for logic programming can infer subsets of argument positions such that if these
arguments are ground, the computation is finite.
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3.2 The Selective Unification Problem (SUP)

We write A1 ≈ A2 to denote that the atoms A1 and A2 unify for some substitution.

Definition 6 (Selective Unification Problem, P) Let A be an atom, G be a set of vari-
ables with G ⊆ Var(A) and H+ and H− be finite sets of atoms such that: the elements of
A∪H+ ∪H− are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−. The selective
unification problem for A with respect to H+, H− and G consists in determining whether
the following set of substitutions is empty:

P(A,H+,H−, G) =

σ|̀Var(A)

∣∣∣∣∣∣
∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground

 .

The substitutions in P(A,H+,H−, G) (if any) are the solutions of the problem. We say that
the problem is satisfiable when it has a solution, i.e., P(A,H+,H−, G) 6= ∅.

Example 7 We illustrate the notion of selective unification with several examples below.

• Let A = p(X), H+ = {p(a), p(b)}, H− = ∅ and G = ∅. Then, the empty substitution
is a solution, i.e., id ∈ P(A,H+,H−, G), as p(X) unifies with p(a) and p(b).

• Let A = p(X), H+ = {p(a), p(b)}, H− = {p(f(Z))} and G = ∅. This problem has
no solution, i.e., P(A,H+,H−, G) = ∅. Indeed, one cannot find an instance of A that
unifies with both atoms in H+ and does not unify with p(f(Z)).

• Let A = p(X), H+ = {p(s(Y ))}, H− = {p(s(0))} and G = {X}. There are infinitely
many solutions, among them we find {X/sn+2(0)} for n ∈ N. For instance, let us
check that σ = {X/s(s(0))} is a solution. We have Aσ = p(s(s(0))). Moreover, Aσ
and p(s(Y )) unify while Aσ and p(s(0)) do not unify, and Xσ is ground.

• Let A = p(X,Y ), H+ = {p(a, b), p(Z,Z)} and H− = ∅ = G. Then, id, {X/a} and
{Y/b} are solutions. For instance, let us check that σ = {X/a} is a solution. We have
Aσ = p(a, Y ), hence Aσ unifies with p(a, b) and with p(Z,Z). Moreover, as H− and
G are empty, the last two conditions of P(A,H+,H−, G) are trivially true. �

3.3 A Sound Algorithm for the SUP

When the considered signature is finite, the following algorithm is sound and complete for
solving a selective unification problem for an atom A with respect to H+, H− and G: first,
bind the variables of A with all the terms of depth 0. If all the corresponding substitutions
are not members of P(A,H+,H−, G), then try with all the terms of depth 1. We keep
increasing the considered term depth until a solution is found. Here, we prove that there
exists a finite number n such that, if a solution has not been found when considering the
terms of depth n, then the problem is not satisfiable.

For simplicity, in the next result we consider that both A and H+ are linear.

Theorem 8 (Decidability) Let A be a linear atom with G ⊆ Var(A), H+ be a finite set
of linear atoms and H− be a finite set of atoms such that all atoms are pairwise variable
disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, checking that P(A,H+,H−, G) 6= ∅ is
decidable.
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Proof: Here, we assume the naive algorithm sketched above. Let us first consider that
all atoms in {A} ∪ H+ ∪ H− are linear. Let k be the maximum depth of the atoms in
{A} ∪ H+ ∪H−. Consider the set

Θ′ = {θ | Dom(θ) ⊆ Var(A), depth(Aθ) ≤ k + 1} .

On Θ′, we define the binary relation θ1 ' θ2 iff Aθ1 ∼ Aθ2. The relation ' is an equivalence
relation. Let Θ = Θ′/'. The set Θ is usually large but finite. Now, we proceed by
contradiction and assume that the problem is satisfiable but there is no solution in Θ i.e.,
P(A,H+,H−, G) 6= ∅ and P(A,H+,H−, G) ∩Θ = ∅.

Let σ be one of such solutions i.e., σ ∈ P(A,H+,H−, G) and σ 6∈ Θ. Let k′ be the
maximum depth of the atoms in H+. We have k′ ≤ k. Let s1, . . . , sn be the non-variable
terms at depth k′+1 or higher in Aσ and let p1, . . . , pn be their respective position. Trivially,
all atoms in H+ should have a variable at depth k′ or lesser in order to still unify with Aσ.
Therefore, replacing s1, . . . , sn by any term in Aσ, one gets and an atom that still unifies
with all atoms in H+. Formally, (. . . (Aσ[t1]p1) . . .)[tn]pn ≈ H for all H ∈ H+ and for all
terms t1, . . . , tn.

Now, let us consider the negative atoms. Let us focus on the worst case, where the
maximum depth of the atoms in H− is k ≥ k′. Since ¬(Aσ ≈ H) for all H ∈ H− and
(. . . (Aσ[t1]p1) . . .)[tn]pn ≈ H for all H ∈ H+ and for all terms t1, . . . , tn, let us choose terms

t′1, . . . , t
′
n such that

{
¬((. . . (Aσ[t′1]p1) . . .)[t′n]pn ≈ H) for all H ∈ H− and
(. . . (Aσ[t′1]p1) . . .)[t′n]pn has depth k + 1.

Note that this is always possible since, in the worst case, for each term in the atoms of H− at
depth k, we might need a term at depth k+ 1 (when the term in the atom of H− is the only
constant of the signature, so we need to introduce a function symbol and another constant
if the argument should be ground). Let σ′ be a substitution such that Dom(σ′) ⊆ Var(A)
and Aσ′ = (. . . (Aσ[t′1]p1) . . .)[t′n]pn . Then, σ′ ∈ P(A,H+,H−, G) with σ′ ∈ Θ and, thus, we
get a contradiction. � Extending the above result to
non-linear atoms is not difficult but it is tedious since we have to consider a higher depth
that may depend on the multiple occurrences of the same variables. For instance, given a
non-linear atom A = p(X, f(f(X))) with H+ = {p(f(a), f(Y ))}, considering solutions up
to depth 2 (the maximum depth of the considered atoms) is not enough. Here, one would
need a substitution σ = {X/f(a)} so that the depth of p(X, f(X))σ = p(f(a), f(f(f(a))))
is 4. In general, when considering non-linear atoms, there still exists a finite depth k such
that the set Θ (as in the proof above) is finite, but the considered depth might be higher.
On the other hand, we conjecture that the above naive algorithm would also be complete
for infinite signatures (e.g., integers) since the number of symbols in the considered atoms
is finite. Nonetheless, such algorithms may be so inefficient that they are impractical in the
context of concolic testing.

We note that the set P(A,H+,H−, G) is usually infinite. Moreover, even when consid-
ering only the most general solutions in this set, there may still exist more than one.

Example 9 Consider A = p(X,Y ), H+ = {p(Z,Z), p(a, b)}, H− = {p(c, c)} and G =
∅. Then, both substitutions {X/a, Y/U} and {X/U, Y/b} are most general solutions in
P(A,H+,H−, G). In principle, any of them is equally good in our context. �
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In [1], we have introduced a stepwise method that, intuitively speaking, proceeds as follows:

• First, we produce some “maximal” substitutions θ for A such that Aθ still unifies with
the atoms in H+. Here, we use a special set U of fresh variables with Var({A}∪H+ ∪
H−)∩U = ∅. The elements of U are denoted by U , U ′, U1. . . Then, in θ, the variables
from U (if any) denote positions where further binding might prevent Aθ from unifying
with some atom in H+.

• In a second stage, we look for another substitution η such that θη is a solution of the
selective unification problem, i.e., θη ∈ P(A,H+,H−, G). Here, we basically follow
a generate and test algorithm (as in the naive algorithm above), but it is now much
more restricted thanks to the bindings in θ and the fact that binding variables from
U is not allowed.

In the following, we recall the selective unification algorithm from [1] that was conjectured
to be complete. Here, we prove that it is indeed incomplete and we identify the two sources
of incompleteness.

3.3.1 Dealing with the Positive Atoms

In the first stage, we use the variables from the special set U to replace disagreement pairs
(see [4] p. 27). Roughly speaking, given terms s and t, a subterm s′ of s and a subterm t′

of t form a disagreement pair if the root symbols of s′ and t′ are different, but the symbols
from s′ up to the root of s and from t′ up to the root of t are the same. For instance,
X, g(a) and b, h(Y ) are disagreement pairs of the terms f(X, g(b)) and f(g(a), g(h(Y ))). A
disagreement pair t, t′ is called simple if one of the terms is a variable that does not occur
in the other term and no variable of U occurs in t, t′.

Definition 10 (Positive Unification Algorithm, SU+) Input: an atom A and a set
of atoms H+ such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+.

Output: a substitution θ.

1. Let B := {A} ∪ H+.

2. While simple disagreement pairs occur in B do

(a) non-deterministically choose a simple disagreement pair X, t (respectively, t,X)
in B;

(b) B := Bη, where η = {X/t}.6

3. While |B| 6= 1 do

(a) non-deterministically choose a disagreement pair t, t′ in B;

(b) replace t, t′ with a fresh variable from U .

6I.e., we construct a new set by applying η to each atom of B and we assign this new set to B.
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4. Return θγ, where B = {B}, Aθ = B, Dom(θ) ⊆ Var(A), and γ is a variable renaming
for the variables of Var(Aθ)\U with fresh variables from V\U .

We denote by SU+(A,H+) the set of non-deterministic substitutions computed by this algo-
rithm.

Observe that the step (2a) involves two types of non-determinism:

• Don’t care non-determinism, when there are several disagreement pairs X, t (or t,X)
for different variables. In this case, we can select any of them and continue with the
next step. The final solution would be the same no matter the selection. This is
also true for step (3a), since the order in which the non-simple disagreement pairs are
selected will not affect the final result.

• Don’t know non-determinism, when there are several disagreement pairs X, t (or t,X)
for the same variable X. In this case, we should consider all possibilities since they
may give rise to different solutions.

Example 11 Let A = p(X,Y ) and H+ = {p(a, b), p(Z,Z)}. Therefore, we start with B :=
{p(X,Y ), p(a, b), p(Z,Z)}. The algorithm then considers the simple disagreement pairs in B.
From X, a, we get η1 := {X/a} and the action (2b) sets B to Bη1 = {p(a, Y ), p(a, b), p(Z,Z)}.
The substitution η2 := {Y/b} results from Y, b and the action (2b) sets B to Bη2 = {p(a, b), p(Z,Z)}.
Now, we have two don’t know non-deterministic possibilities:

• If we consider the disagreement pair a, Z, we have a substitution η3 := {Z/a} and
action (2b) then sets B to Bη3 = {p(a, b), p(a, a)}. Now, no simple disagreement pair
occurs in B, hence the algorithm jumps to the loop at line 3. Action (3b) replaces
the disagreement pair b, a with a fresh variable U ∈ U , hence B is set to {p(a, U)}.
As |B| = 1 the while loop of line 3 stops and the algorithm returns the substitution
{X/a, Y/U}.

• If we consider the disagreement pair b, Z instead, we have a substitution η′3 := {Z/b},
and action (2b) sets B to Bη′3 = {p(a, b), p(b, b)}. Now, by proceeding as in the previous
case, the algorithm returns {X/U ′, Y/b}.

Therefore, SU+(A,H+) = {{X/a, Y/U}, {X/U ′, Y/b}}. �

We note that the algorithm in Def. 10 assumes that the input atom A is always more
general than the final atom B so that the last step (line 4) is well defined. An invariant
proving that this is indeed the case can be stated as follows:

Proposition 12 The following statement is an invariant of the loops at lines 2 and 3 of
the algorithm: A ≈ B for all B ∈ B and A ≤ B′ for some B′ ∈ B.

Proof: By induction on the iteration n of each loop. �
Now we prove termination and soundness of the algorithm. To this end, we prove ter-

mination of each loop together with some invariants, see Prop. 14 and Prop. 15 below. The
proof of these propositions relies on the following technical result.

Lemma 13 Suppose that Aθ = Bθ for some atoms A and B and some substitution θ.
Then we have Aθη = Bηθη for any substitution η with [Dom(η) ∩ Var(B)] ∩ Dom(θ) = ∅
and Ran(η) ∩ Dom(θη) = ∅.
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Proof: For any X ∈ Var(B),

• either X 6∈ Dom(η) and then Xηθη = Xθη

• or X ∈ Dom(η) and then Xηθη = (Xη)θη = Xη because Ran(η) ∩ Dom(θη) = ∅.
Moreover, X 6∈ Dom(θ) because [Dom(η) ∩ Var(B)] ∩ Dom(θ) = ∅, so Xθη = Xη.
Finally, Xηθη = Xθη.

Consequently, Bηθη = Bθη. As Aθ = Bθ, we have Aθη = Bθη i.e., Aθη = Bηθη. �

Proposition 14 The loop at line 2 always terminates and the following statement is an
invariant for it: for each A′ ∈ {A} ∪ H+ there exists B ∈ B and a substitution θ such that
A′θ = Bθ and Var(B) ∩ Dom(θ) = ∅.

Proof: Action (2b) reduces the number of simple disagreement pairs in B, which implies
termination. The invariant can be proved by induction on the iteration n of the loop using
Lemma 13. �

Proposition 15 The loop at line 3 always terminates and the following statement is an
invariant for it: for each A′ ∈ {A} ∪ H+ there exists B ∈ B and a substitution θ such that
A′θ = Bθ, Dom(θ) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(B) ∩ Dom(θ) ⊆ U .

Proof: Action (3b) reduces the number of disagreement pairs in B, which implies termina-
tion. The invariant can be proved by induction on the iteration n of the loop using Prop. 14
in the base case. �

The next theorem states termination and soundness of the Positive Unification Algo-
rithm 10. Note that this result was incomplete in [1] since the condition on Ran(η) was
missing.

Theorem 16 Let A be an atom and H+ be a set of atoms such that all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+. The algorithm in Def. 10 with input A
and H+ always terminates. Moreover, for all θ ∈ SU+(A,H+), we have that Aθη ≈ H
for all H ∈ H+ and for any idempotent substitution η with Dom(η) ⊆ Var(Aθ)\U and
Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅.

Proof: Termination of the algorithm results from Prop. 14 and Prop. 15.
Upon termination of the loop at line 3 we have |B| = 1. Let B be the element of B

with Aθ = B and let θ′ ∈ SU+(A,H+) be a renaming of θ for the variables of Aθ\U . By
Prop. 15, we have that for all H ∈ H+ there exists a substitution µ such that Aθµ = Hµ
and the following conditions hold:

• Dom(µ) ⊆ (Var(H+ ∪ {A}) ∪ U) and

• Var(Aθ) ∩ Dom(µ) ⊆ U .

Trivially, there exists a unifier µ′ forAθ′ andH too, and the same conditions hold: Dom(µ′) ⊆
(Var(H+ ∪ {A}) ∪ U) and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

Now, in order to apply Lemma 13, we need to prove the following conditions:
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• [Dom(η)∩Var(Aθ′)]∩Dom(µ′) = ∅. This is trivially implied by the fact thatDom(η) ⊆
Var(Aθ′)\U and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

• Ran(η) ∩ Dom(µ′η) = ∅. First, since Dom(µ′η) ⊆ Dom(µ′) ∪ Dom(η), we prove
a stronger claim: Ran(η) ∩ Dom(µ′) = ∅ and Ran(η) ∩ Dom(η) = ∅. The second
condition is trivially implied by the idempotency of η. Regarding the first condition, it
is implied byRan(η)∩(Var(H+∪{A})∪U) = ∅ since Dom(µ′) ⊆ (Var(H+∪{A})∪U),
which is true.

Therefore, by Lemma 13, we have that Aθ′ηµ′η = Hµ′η and, thus, Aθ′η unifies with H.
Hence, we have proved that Aθ′η unifies with every atom in H+. �

3.3.2 Dealing with the Negative Atoms

Now we deal with the negative atoms and the groundness constraints.

Definition 17 (Selective Unification Algorithm, SU) Input: an atom A with G ⊆
Var(A) a set of variables, and two finite sets H+ and H− such that all atoms are
pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Generate – using a fair algorithm – pairs (θ, η) with θ ∈ SU+(A,H+) and η an idem-
potent substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U and Ran(η) ∩
(Var(H+ ∪ {A}) ∪ U) = ∅; otherwise, return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−); otherwise, return fail.

3. Return θηγ (restricted to the variables of A), where γ is a variable renaming for Aθη
with fresh variables from V\U .

We denote by SU(A,H+,H−, G) the set of non-deterministic (non-failing) substitutions
computed by the above algorithm.

Note that step (1) above is don’t know non-deterministic and, thus, all substitutions in
SU+(A,H+) should in principle be considered. On the other hand, computing the first
solution of the above algorithm is enough for concolic testing.

The soundness of the selective unification algorithm is a straightforward consequence of
Theorem 16 and the fact that the algorithm in Def. 17 is basically a fair generate-and-test
procedure. Unfortunately, the selective unification algorithm is not complete in general, as
illustrated below. Ex. 18 shows that the algorithm cannot always compute all the solutions
while Ex. 19 shows that it may even find no solution at all for a satisfiable instance of the
problem.

Example 18 Consider the atom A = p(X1, X2) with G = {X1} and the sets

H+ = {p(X, g(X)), p(Z,Z)} and H− = {p(g(b),W )} .

Here, we have

SU+(A,H+) = {{X1/X
′, X2/U}︸ ︷︷ ︸
θ1

, {X1/U,X2/g(X ′)}︸ ︷︷ ︸
θ2

} .
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The algorithm is able to compute the solution {X1/g(a), X2/U} from θ1, η = {X ′/g(a)} and
γ = id. However, it cannot compute {X1/g(a), X2/g(X ′)} ∈ P(A,H+,H−, G). �

The algorithm fails here because the instantiation of variables from U is not allowed. In [1],
it was incorrectly assumed that any binding of a variable from U will result in a substitution
θ′ such that Aθ′ does not unify will all the atoms in H+ anymore. However, the universal
quantification was not right. For each variable from U , we can only ensure that there exists
some term t such that binding this variable to t will result in a substitution that prevents
A from unifying with some atom in H+. Therefore, since the algorithm of Def. 17 forbids
the bindings of the variables in U , completeness is lost. We will propose a solution to this
problem in the next section.

Example 19 Consider A = p(X1, X2), H+ = {p(X, a), p(b, Y )}, H− = {p(b, a)} and
G = ∅. Here, we have SU+(A,H+) = {{X1/b,X2/a}} so the algorithm in Def. 17 fails.
However, the following substitution {X1/Z,X2/Z} is a solution, i.e., {X1/Z,X2/Z} ∈
P(A,H+,H−, G). �

Unfortunately, we do not know how to generate such non-linear solutions except with the
naive semi-algorithm mentioned at the beginning of this section, which is not generally useful
in practice. Therefore, in the next section we will rule out these solutions.

3.4 The Linear Case

In this section, we introduce an alternative to recover the completeness of the selective
unification algorithm. In the following, we only consider a subset of the solutions, namely
those which are linear :

Plin(A,H+,H−, G) = {σ ∈ P(A,H+,H−, G) | σ is linear} .

Hence, we rule out solutions like those in Ex. 19 since we do not know how to produce
them using a constructive algorithm. We refer to Plin(A,H+,H−, G) as the solutions to the
linear selective unification problem. Below, we introduce an algorithm for solving the linear
problem which is sound and complete when the atoms in A and H+ are linear.

3.4.1 Dealing with the Positive Atoms

Formally, we are concerned with the following unification problem:

Definition 20 (Positive Linear Unification Problem, P+
lin) Let A be a linear atom and

let H+ be a finite set of linear atoms such that all atoms are pairwise variable disjoint and
A ≈ B for all B ∈ H+. Then, the positive linear unification problem for A with respect to
H+ consists in determining whether the following set is empty:

P+
lin(A,H

+) = {σ|̀Var(A)| (∀H ∈ H
+ : Aσ ≈ H) and σ is linear} .

Let us recall that we do not want to find a unifier between A and all the atoms in H+,
but a substitution θ such that Aθ still unifies with each atom in H+ independently. So this
problem is different from the usual unification problems found in the literature.

Clearly, |P+
lin(A,H+)| ≥ 1 since the identity substitution is always a solution to the

positive linear unification problem. In general, though, the set P+
lin(A,H+) is infinite.
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Example 21 Let us consider A = p(X) and H+ = {p(f(Y )), p(f(g(Z)))}. Then, we have
{id , {X/f(X ′)}, {X/f(g(X ′))}, {X/f(g(a))}, {X/f(g(f(X ′)))}, . . .}} ⊆ P+

lin(A,H+), which
is clearly infinite. �

Therefore, in the following, we restrict our attention to so called maximal solutions:

Definition 22 (Maximal Solution) Let A be a linear atom and H+ be a finite set of
linear atoms such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+.
We say that a substitution θ ∈ P+

lin(A,H+) is maximal when the following conditions hold:

1. for any idempotent substitution γ with Dom(γ) ⊆ Var(Aθ)\U and Ran(γ)∩(Var(H+∪
{A}) ∪ U) = ∅, (θγ) |̀Var(A) is still an element of P+

lin(A,H+),

2. for any variable U ∈ Var(Aθ) ∩ U , we have that (θ{U/t})|̀Var(A) is not an element of

P+
lin(A,H+) for all non-variable term t, and

3. for any X/t ∈ θ and for all non-variable term t|p, replacing it by a non-variable term
rooted by a different symbol will result in a substitution which is not an element of
P+
lin(A,H+) anymore.

We let max (A,H+) denote the set of maximal solutions in P+
lin(A,H+).

Intuitively speaking, given a maximal solution θ, the first condition implies that (θγ) |̀Var(A)

is still a solution of the positive linear unification problem as long as no variables from U are
bound. The second and third conditions mean that the rest of the symbols in θ cannot be
changed, i.e., binding a variable from U with a non-variable term or changing any constant
or function symbol by a different one will always result in a substitution which is not a
solution anymore.

Example 23 Consider, e.g., A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}. Here,
we have {X1/X

′, X2/X
′′} ∈ P+

lin(A,H+) but it is not a maximal solution, i.e., {X1/X
′, X2/X

′′} 6∈
max (A,H+) since binding X ′′ to, e.g., a, will result in a substitution which is not in
P+
lin(A,H+). In contrast, {X1/f(g(Z ′)), X2/U} is a maximal solution. However, any sub-

stitution of the form {X1/f(g(t)), X2/U} for any non-variable term t is not a maximal
solution since the third condition will not hold anymore (one can change the symbols in-
troduced by t and still get a solution in P+

lin(A,H+)). The substitution {X1/f(Y ′), X2/U}
is not a maximal solution as well since binding Y ′ to, e.g., a, will result in a substitution
which is not in P+

lin(A,H+), hence the first condition does not hold. And the same applies
to {X1/f(U ′), X2/U}, which is not a maximal solution either since we can bind U ′ to g(X ′)
and still get a substitution in P+

lin(A,H+). �

In contrast to P+
lin(A,H+), the set max (A,H+) is finite, since it is bounded by the depth

of the terms in H+. Actually, for linear atoms in {A} ∪ H+, there is only one maximal
solution.

Proposition 24 Let A be a linear atom and H+ be a finite set of linear atoms such that all
atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, the set max (A,H+)
is a singleton (up to variable renaming).
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Proof: We proceed by contradiction. Assume that there are two maximal solutions σ, θ ∈
max (A,H+), where X/s ∈ σ and X/t ∈ θ for some variable X ∈ Var(A). Consider that
s and t differ at position p such that s|p and t|p are rooted by a different symbol. We
distinguish the following cases:

• If s|p and t|p are rooted by different constant or function symbols, we get a contradic-
tion by condition (3) of maximal solution.

• If s|p is rooted by a constant or function symbol, while t|p is rooted by a variable from
U (or viceversa), we get a contradiction by condition (2) of maximal solution.

• If s|p is rooted by a constant or function symbol, while t|p is rooted by a variable from
V\U (or viceversa), we get a contradiction either by condition (1) or (3) of maximal
solution.

• Finally, if s|p is rooted by a variable from U , while t|p is rooted by a variable from
V\U (or viceversa), we get a contradiction either by condition (1) or (2) of maximal
solution.

Therefore, the set max (A,H+) is necessarily a singleton. � Moreover, the following key
property holds: a maximal solution can always be completed in order to get a solution to
the linear unification problem when it is satisfiable. In order to prove this result, we need
to recall the definition of parallel composition of substitutions, denoted by ⇑ in [9].

Definition 25 (Parallel Composition [9]) Let θ1 and θ2 be two idempotent substitu-
tions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =

{
mgu(θ̂1 ∧ θ̂2) if θ̂1 ∧ θ̂2 has a solution (a unifier)
fail otherwise

where θ̂ denotes the equational representation of a substitution θ, i.e., if θ = {X1/t1, . . . , Xn/tn}
then θ̂ = (X1 = t1 ∧ · · · ∧Xn = tn).

Proposition 26 Let A be a linear atom and H+ be a finite set of linear atoms such that
all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+. Let θ ∈ max (A,H+)
be the maximal solution for A and H+. If Plin(A,H+,H−, G) 6= ∅ then there exists some
substitution γ such that θγ ∈ Plin(A,H+,H−, G).

Proof: For simplicity, we consider that A = p(X), H+ = {p(t1), . . . , p(tn)} and H− =
{p(s1), . . . , p(sm)}. Since the atoms are linear, the claim would follow by a similar argument.
Let θ = {X/t} ∈ max (A,H+) be the maximal solution. Hence, we have t ≈ ti for all
i = 1, . . . , n. Let σ ∈ Plin(A,H+,H−, G) be a solution to the selective unification problem.
By definition of maximal solution, there may be other solutions to the positive unification
problem, but every introduced symbol cannot be different if we want to still unify with
all terms t1, . . . , tn by condition (3) in the definition of maximal solution. Therefore, both
substitutions must be compatible, i.e., we have θ ⇑ σ = δ 6= fail. Furthermore, taking into
account the negative atoms in H− as well as the groundness constraints with respect to
G, δ can only introduce further bindings, but would never require to generalize any term
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introduced by θ and, thus, δ can be decomposed as θγ, with θγ ∈ Plin(A,H+,H−, G). �
Therefore, computing the maximal solution suffices to check for satisfiability. Here, we
use again the algorithm in Def. 10 for computing the maximal solution, with the following
differences: i) first, both A and the atoms in H+ are now linear; ii) step (2a) is now don’t
care non-deterministic, so the algorithm will return a single solution, which we denote by
SU+

lin(A,H+).

Proposition 27 Let A be a linear atom and H+ be a finite set of linear atoms such that
all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, SU+

lin(A,H+) =
max (A,H+).

Proof: The fact that SU+
lin(A,H+) returns a singleton is trivial by definition, since the

algorithm has no don’t know non-determinism and no step admits a failure.
Regarding the fact that θ is a maximal solution, let us prove that all three conditions

in Def. 22 hold. The first condition of maximal solution follows by Theorem 16, which
is proved for the more general case of arbitrary (possibly non-linear) atoms. The third
condition holds from the fact that in step (2) of SU+

lin only symbols from the atoms A and
H+ are introduced following a mgu-like algorithm; therefore they are possibly not necessary,
but cannot be replaced by different symbols and still unify with all the atoms in H+. Finally,
the second condition derives from step (3) of SU+

lin where non-simple disagreement pairs are
replaced by fresh variables from U and, thus, any binding to a non-variable term would
result in Aθ not unifying with some atom of H+. �

3.4.2 Dealing with the Negative Atoms

The algorithm SU in Def. 17 is now redefined as follows.

Definition 28 (Linear Selective Unification Algorithm, SU lin) Input: a linear atom
A with G ⊆ Var(A) a set of variables, and two finite sets H+ and H− such that the
atoms in H+ are linear and all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Let {θ} = SU+
lin(A,H+). Generate – using a fair algorithm – linear idempotent substi-

tutions η such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U and Ran(η) ∩ (Var(H+ ∪
{A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.

3. Return θηγ (restricted to the variables of A), where γ is a variable renaming for Aθη
with fresh variables from V\U .

We denote by SU lin(A,H+,H−, G) the set of non-deterministic (non-failing) substitutions
computed by the above algorithm.

Example 29 Consider again A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}, to-
gether with H− = {p(f(g(a)), c)} and G = {X1}. The algorithm for linear positive unifi-
cation returns the maximal substitution {X1/f(g(Z ′)), X2/U}. Therefore, the algorithm for
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linear selective unification would eventually produce a solution of the form θ = {X1/f(g(b)), X2/X
′}

since Aθ = p(f(g(b)), X ′) unifies with p(f(Y ), a) and p(f(g(Z)), b) but not with p(f(g(a)), c)
and, moreover, X1 is ground. However, if we consider a non-maximal solution, the algorithm
in Def. 17 may fail, even if there exists some solution to the linear selective unification prob-
lem. This is the case, e.g., if we consider the non-maximal solution {X1/f(g(a)), X2/U}.
�

Theorem 30 (Soundness) Let A be a linear atom with G ⊆ Var(A), H+ be a finite set of
linear atoms and H− be a finite set of atoms such that all atoms are pairwise variable disjoint
and A ≈ B for all B ∈ H+∪H−. Then, we have SU lin(A,H+,H−, G) ⊆ Plin(A,H+,H−, G).

Proof: The claim follows from Prop. 27 by assuming that the don’t know non-deterministic
substitutions considered in step (1) of the algorithm of Def. 28 are obtained by a fair generate-
and-test algorithm which produces substitutions systematically starting with terms of depth
0, then depth 1, etc., as in the naive algorithm described at the beginning of Sect. 3.3. � The
following result states the completeness of our algorithm. In principle, we do not guarantee
that all solutions are computed using our algorithms, even for the linear case. However, we
can ensure that if the linear selective unification problem is satisfiable, our algorithm will
find at least one solution (which is sufficient in the context of concolic testing).

Theorem 31 (Completeness) Let A be a linear atom with G ⊆ Var(A), H+ be a fi-
nite set of linear atoms and H− be a finite set of atoms such that all atoms are pair-
wise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. If Plin(A,H+,H−, G) 6= ∅ then
SU lin(A,H+,H−, G) 6= ∅.

Proof: By Prop. 26, if Plin(A,H+,H−, G) 6= ∅ and θ is the computed maximal solution,
then there exists a substitution γ such that (θγ) |̀Var(A)∈ Plin(A,H+,H−, G). Moreover,
such a substitution γ can be obtained by a fair generate-and-test algorithm such as that
considered in Def. 28. Finally, the claim follows by Prop. 27 which ensures that the algorithm
in Def. 10 will always produce the maximal solution for A and H+. �

Example 32 Consider again A = p(X1, X2) and H+ = {p(f(Y ), a), p(f(g(Z)), b)}, to-
gether with H− = {p(g(W ), c)} and G = ∅. The algorithm for linear positive unification
returns the maximal substitution {X1/f(g(Z ′)), X2/U}. Therefore, it is impossible that the
algorithm in Def. 17 could produce a solution like {X1/f(X ′), X2/X

′′} ∈ Plin(A,H+,H−, G).
�

In the next section, we extend the notion of selective unification to constraint logic
programs.

4 Selective Unification in Constraint Logic Program-
ming

4.1 Concolic Testing in Constraint Logic Programming

Extending the concolic testing framework from logic programs to CLP is not difficult. In
this section, we focus on the main differences and also show an example that illustrates the
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technique in this setting.
First, the concolic execution semantics for the CLP case is basically equivalent to that

in Fig. 1 by replacing goals with states of the form 〈c | #»

B〉 and by considering the usual
unfolding rule for CLP programs. Furthermore, the function clauses is now redefined as
follows. Given a state 〈d | p( #»u )〉 and a set of rules P , we have

clauses(〈d | p( #»u )〉, P ) = {p( #»s )← c ∧ #»

B ∈ P | solv( #»s = #»u ∧ c ∧ d) = true} .

Concolic testing then proceeds basically as in the logic programming case. The main dif-
ference, though, is that the selective unification problems now deal with states and CLP
programs rather than goals and logic programs. Let us consider a choice step labeled with
c(L1, L2). Here, given a set L ∈ ℘(L2) \ L1, the sets H+ and H− are built as follows:

H+ = {〈c |H〉 | H ← c ∧ #»

B ∈ L}
H− = {〈c |H〉 | H ← c ∧ #»

B ∈ L2 \ L} .

The groundness condition, if any, will now require some variables to have a fixed value in a
given constraint (see Sect. 4.2).

Example 33 Consider the following CLP(Qlin) program:

(`1) p(X)← X ≤ 0. (`2) p(X)← X ≥ 0 ∧X < 10.

and a choice step labeled with c({`1}, {`1, `2}), where the symbolic state is 〈true | p(N)〉.
Hence, we have to consider the sets in ℘({`1, `2}) \ {`1} = {∅, {`2}, {`1, `2}}.

Our first selective unification problem, associated to the empty set, considers the state
〈true | p(N)〉 and the sets H+ = ∅ and H− = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉}. A
solution is, e.g., N ≥ 10 . Thus, 〈N ≥ 10 | p(N)〉 is another test case to consider.

As for the second set, {`2}, the selective unification problem considers the state 〈true | p(N)〉
and the sets H+ = {〈X ≥ 0 ∧X < 10 | p(X)〉} and H− = {〈X ≤ 0 | p(X)〉}. Here, a possible
solution is N > 0 ∧ N < 10. Thus, the state 〈N > 0 ∧N < 10 | p(N)〉 is another test case
to consider.

Finally, for the set {`1, `2}, the selective unification problem considers the state 〈true | p(N)〉
and the sets H+ = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉} and H− = ∅, where the only
solution is N = 0. Thus, our final alternative test case is the state 〈N = 0 | p(N)〉. �

4.2 The Constraint Selective Unification Problem (CSUP)

In this section, we generalize Def. 6 to CLP. Let A1 = 〈c1 | p( #»u )〉 and A2 = 〈c2 | p( #»s )〉 be
two constraint atoms with no common variable. We write A1 ≈ A2 or A1 unifies with A2 to
denote that D |= ∃( #»u = #»s ∧ c1 ∧ c2). For simplicity, in the following definition, we consider

that the constraint atom has the form 〈cA | p(
#»

X)〉. There is no loss of generality since any

arbitrary constraint atom 〈c | p( #»u )〉 can be trivially transformed into 〈 #»u =
#»

X ∧ c | p( #»

X)〉.

Definition 34 (Constraint Selective Unification Problem, P) Let A be a constraint

atom of the form 〈cA | p(
#»

X)〉 with G ⊆ Var(A). Let H+ and H− be finite sets of constraint
atoms such that all constraint atoms, including A, are pairwise variable disjoint and A ≈ B
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for all B ∈ H+ ∪H−. Then, the constraint selective unification problem for A with respect
to H+, H− and G consists in determining whether the following set of constraints is empty:

P(A,H+,H−, G) =

cA ∧ c
∣∣∣∣∣∣∣∣∣∣

cA ∧ c is satisfiable
∧ c is variable disjoint with H+ ∪H−
∧ ∀H ∈ H+ : 〈cA ∧ c | p(

#»

X)〉 ≈ H
∧ ∀H ∈ H− : ¬(〈cA ∧ c | p(

#»

X)〉 ≈ H)
∧ each X ∈ G is fixed within cA ∧ c

 .

The constraints c in P(A,H+,H−, G) (if any) are the solutions of the problem.

Intuitively, to solve a CSUP, we consider any constraint c such that 〈cA ∧ c | p(
#»

X)〉 still
unifies with all the positive constraint atoms while preventing any unification with the
negative constraint atoms and ensuring that the variables in G have a fixed value.

Note that X ∈ G is fixed within cA∧c is the equivalent of the groundness condition of the
LP case and we keep calling it the groundness condition in the CLP case. Some constraint
solvers might give to X the required value, but it is not mandatory as it can be expressed
in first order logic by stating that, within cA ∧ c, X has exactly one value. For instance, X

is fixed within c(X,
#»

X) is equivalent to D |= ∃X
(
∃ #»

Xc(X,
#»

X) ∧ ∀Y ∀ #»

Y
(
c(Y,

#»

Y )→ X = Y
))

.

Example 35 (CLP(Qlin)) We illustrate the notion of selective unification in the context
of CLP(Qlin) with the next examples.

• Let A := 〈0 ≤ X ∧X ≤ 5 | p(X)〉, H+ := {〈4 ≤ Y | p(Y )〉}, H− := {〈Z < 2 | p(Z)〉}
and G = {X}. There is an infinite number of solutions, among which one can find
the constraint c ≡ (X = 9/2). It is equivalent to the satisfiable constraint (0 ≤
X ∧ X ≤ 5 ∧ X = 9/2) and it entails that X is ground. Moreover, the constraint
(X = Y ∧ 4 ≤ Y ∧ X = 9/2) is satisfiable while (X = Z ∧ Z < 2 ∧ X = 9/2) is
unsatisfiable.

• Let A := 〈0 ≤ X ∧X ≤ 5 | p(X)〉, H+ := {〈4 ≤ Y1 | p(Y1)〉, 〈Y2 ≤ 1 | p(Y2)〉}, H− :=
{〈2 < Z ∧ Z < 3 | p(Z)〉} and G = ∅. There is no solution here. Intuitively, if there
is a solution on the left of 2, then it excludes the first positive atom or if there is a
solution to the right of 3, then it excludes the second positive atom. So one cannot find
a conjunction of atomic constraints that include the elements of H+ and exclude the
element of H− because the set of points described by such a conjunction is convex. �

The following general result holds in CLP.

Theorem 36 (Undecidability) It is undecidable whether an arbitrary instance of the
CSUP has a solution.

Proof: We provide a complete proof in [10] which can be summarized as follows. We
consider any Turing machine M and any word w and we define an instance PM,w of the
generic CSUP in a constraint logic programming language CLP(A), the class of constraints
of which is a strict subclass of the array property fragment introduced in [11]. We encode
the tape of M as an array and we define PM,w so that M accepts w if and only if PM,w
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has a solution. Then the theorem results from the fact that it is undecidable whether an
arbitrary Turing machine accepts an arbitrary word. �

However, we have identified some decidable classes of CSUP instances. Their definition
rely on the next two properties of the constraint structure D under consideration.

Definition 37 We let (A1) and (A2) denote the following properties of D.

• (A1) D admits variable elimination.

• (A2) The negation of any atomic constraint is equivalent to a finite disjunction of
atomic constraints.

Example 38 Qlin satisfies these properties. It admits variable elimination. The set of
predefined predicate symbols is ΠC = {</2,≤/2,=/2,≥/2, >/2}. The negation of each
atomic constraint is an atomic constraint, except for =/2 whose negation is defined by a
disjunction of atomic constraints, i.e., ¬(X = Y ) ≡ (X < Y ∨X > Y ). �

(A1) and (A2) are sufficient conditions on the constraint domain to solve the CSUP
without the groundness condition (i.e., when G = ∅). The following results can be found in
[10]:

Theorem 39 If (A1) and (A2) hold, then it is decidable whether an arbitrary instance of
the CSUP with G = ∅ has a solution.

By relying on specific properties of CLP(Qlin) which allow to pick a ground value sat-
isfying a constraint, one can even extend Theorem 39 to any instance of the CSUP (i.e.,
when G 6= ∅):

Theorem 40 In CLP(Qlin), it is decidable whether an arbitrary instance of the CSUP has
a solution.

5 Related Work and Conclusion

In this paper, we have studied the soundness and completeness of selective unification, a
relevant operation in the context of concolic testing of logic programs. We have reconsidered
the algorithm provided in [1]: we have improved its correctness result (a condition was
missing in [1]) and we have identified its main sources of incompleteness. Then, we have
introduced several refinements so that the procedure is now sound and complete with respect
to linear solutions. For the non-linear case, the decidability of the selective unification
problem is an open problem.

We are not aware of any other work that deals with the kind of unification problems
that we study in this paper. We have also considered concolic testing in the framework of
constraint logic programming. We have extended the notion of selective unification accord-
ingly and we have sketched that the selective unification problem is generally undecidable
for CLP. This paper is both an extended version of [12] and a summary of [10], where the
extension to CLP is fully described. We have included all the proofs that were missing
in [12] about soundness and termination of the algorithm for positive unification ([12] only
provides a portion of the soundness proof).

22



Constructive negation in LP [13] and CLP [14] is related to our work. Its starting point
stems from the desire to extract constructive information from the proof of a negative sub-
goal, in contrast to the usual negation as failure rule. In [14], Stuckey introduced admissible
closedness as a sufficient condition over constraint structures for a practical use of construc-
tive negation. This property is weaker than quantifier elimination. Stuckey showed that
properties (A1) and (A2) of Sect. 4.2 imply admissible closedness. Moreover, CLP(H) (the
constraint domain of finite trees with equality and quantified disequality) does not admit
quantifier elimination but is admissible closed. More recently, Dovier et al. proved that
admissible closedness was also a necessary condition for constructive negation in CLP [15].
So this concept could be a promising tool for studying concolic testing for logic programming
from a CLP perspective.

Finally, we are also working on an improved concolic testing scheme [16] which supports
negative constraints and defines selective unification problems as constraints on Herbrand
terms. This approach opens the door to an SMT-based implementation of a concolic testing
tool that, hopefully, will scale better to larger applications.
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