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Abstract: Fungal-bacterial combinations have a significant role in increasing and improving plant
health under various stress conditions. Metabolites secreted by fungi and bacteria play an impor-
tant role in this process. Our study emphasizes the significance of secondary metabolites secreted
by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under
normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tol-
erance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions.
The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and
the effect of arsenic on spore size and morphology of S. indica was determined using confocal mi-
croscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone
in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricapry-
late, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal
were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that
spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp.
ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore de-
generation and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an
increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to
S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the
suggested combination of microbial consortium can be used to increase sustainable agriculture by
combating biotic as well as abiotic stress. This is because the metabolites released by the microbial
combination display antifungal and antibacterial properties. The metabolites, besides evading stress,
also confer other survival strategies. Therefore, the choice of consortia and combination partners is
important and can help in developing strategies for coping with As stress.

Keywords: Serendipita indica; arsenic; heavy metal stress; secondary metabolites; Oryza sativa

1. Introduction

Various anthropogenic activities such as mining, modern agricultural practices, and
industrialization have had long-term harmful impacts on the environment [1]. These factors
are responsible for increasing the concentration of heavy metals in soil and water, thus
leading to several environmental issues. Arsenic (As) is a highly toxic heavy metal that
poses risk to millions of people worldwide [2]. Arsenic contamination in drinking water
and groundwater used for irrigation is a global problem that not only affects agricultural
productivity but also the ecosystem, as As uptake occurs in plant roots and is further
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translocated to different plant tissues, including the edible parts, and therefore enters
the ecosystem through the food chain [3]. Arsenite and arsenate are the two forms of
arsenic, arsenite being more toxic. Roots are the prime site of arsenic exposure; thus root
proliferation and extension are affected the most. The translocation of arsenic occurs from
root to shoot, and the uptake in the aerial parts affects plant growth and reproduction by
inhibiting cell division [4]. Therefore, it is essential to remove these heavy metals from the
contaminated soil used for growing crop plants.

Microbes including fungal and bacterial species have the potential to cope with heavy
metal stress. These microbes also aid in the growth and development of plants by increasing
nutrient absorption and assimilation [5]. Microbes release various molecules including
siderophores, extracellular polysaccharides, ammonia, and secondary metabolites that
help plants to cope with biotic and abiotic stress [6]. Secondary metabolites are chemical
substances that protect plants under stress conditions. They are not directly involved in
plant growth and development but indirectly boost plant growth by acting as effective
defense agents against various phytopathogens. They also help in scavenging free radicals
generated during oxidative stress in plants [7].

Metabolites secreted by bacteria and fungi in the rhizosphere are not directly con-
nected with plant growth and reproduction but they participate in rhizosphere ecological
interactions [8]. Lipopeptides, phytohormones, their precursors, antimicrobial peptides,
siderophores, metallothioneins, and volatile organic compounds are some examples of
secondary metabolites released by the microbes [9]. Secondary metabolites, such as acyl-
homoserine lactone (acyl-HSL), that act as autoinducer signaling molecules and help in
cell-to-cell communication and crosstalk are also secreted by some microbes. Siderophores
are some other secondary metabolites released by microbes that help in iron uptake from
surroundings. Siderophores-releasing microbes help in iron uptake by the plants also [9].
Other metabolites including metallothioneins are also secreted by various microbes and
plants. These are the chelating molecules that help in heavy metal detoxification [10]. These
metallothioneins have tiny cysteine-rich proteins which bind with heavy metals thereby
helping in metal storage and detoxification. These metallothioneins are mostly released in
the presence of heavy metals such as Cd2+, Hg2+, Pb2+ and Ar.

In this study, we studied various secondary metabolites released by S. indica alone
and with Zhihengliuella sp. ISTPL4 under normal growth conditions and under arsenic
stress. S. indica is an endophytic fungus that boosts plant growth by colonizing the roots of
various plants and confers resistance against abiotic and biotic stress conditions [11–13].
Zhihengliuella sp. ISTPL4 is an actinobacterium, isolated from Pangong Lake, Ladakh,
Jammu and Kashmir, India. The interaction between Zhihengliuella sp. ISTPL4 and
S. indica has been previously reported in a systemic study [14]. The role of this micro-
bial combination has also been deciphered in plant growth promotion. In the present study,
we checked the significance of secondary metabolites secreted by a combination of S. indica
and Z. sp. ISTPL4 and found out which metabolites are released in response to combined
microbial treatments.

2. Materials and Methods
2.1. Microbe Culture and Conditions

The fungal disc of S. indica was inoculated into Hill and Kaefer agar plates and
incubated for 14 days at 28–30 ◦C (with an agitation rate of 120 rpm for broth). Similarly, S.
indica growth was also assessed in combination with Z. sp. ISTPL4. Bacterial culture was
streaked around the periphery after five days of fungal inoculation (5 dafi) [15].

2.2. Effect of Arsenic on Fungal Growth

The arsenic tolerance capability of S. indica was checked individually as well as
in combination under in vitro conditions. The concentration of arsenic used was up to
2.4 mM [16]. Dry cell weight of S. indica alone and in combination was estimated (control
and treated cultures) to check the effect of arsenic on the growth of S. indica [14].
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2.3. Spore Morphology

To study spore morphology SEM studies were carried out for S. indica alone and in
combination with Z. sp. ISTPL4. A section of fungal discs was fixed in 2.5% glutaraldehyde
(control and interaction plates) followed by incubation at room temperature (RT) for 1 h.
After this, samples were centrifuged at 5000 rpm for 5 min followed by washing with 0.1 M
phosphate buffer (pH 7) followed by centrifugation. The resulting pellet was dissolved in
0.1% filter sterilized silver nitrate (AgNO3) solution and then incubated for an hour at RT.
Samples were gradually dehydrated in a series of ethanol from 30–90% for 15 min. The
final step was repeated three times in 100% ethanol for 5 min each. Resulting samples were
dehydrated, air dried and placed in aluminum double adhesive carbon conductive tape
gold-coated specimens in a Quorum Q150ES coater and then observed under a scanning
electron microscope (model Zeiss EVO 18; Raipur, India) [14].

Confocal microscopy was also carried out to check spore size and spore morphology of
S. indica alone and in combination with Z. sp. ISTPL4 under normal growth conditions and
under As stress. Spore isolation was done by adding 1 mL of a 0.02% autoclaved Tween 20
on freshly grown cultures of S. indica alone and with Z. sp. ISTPL4 (control and As-exposed
plates) followed by gentle scraping and centrifugation at 5000 rpm for 10–15 min. The
pellet was mixed with autoclaved distilled water, a spore count was conducted, and their
concentration was maintained at 4.8 × 105 spores/mL. The resulting sample was analyzed
under a Nikon confocal microscope (Model: Nikon A1) at 60× magnification by using
NIS Elements software version 4.6 (Nikon, Tokyo, Japan) (Amity Institute of Microbial
Technology, Amity University, Noida, India) [17].

2.4. Biotransformation of Arsenic

The arsenic oxido-reduction potential of S. indica and Z. sp. ISTPL4 was determined.
For this, nutrient agar was supplemented with 500 ppm of As (V) and the fungal disc was
inoculated followed by an incubation of 15 days at 28 ± 2 ◦C. Spot inoculation of Z. sp.
ISTPL4 was conducted, and the bacterial culture was kept for incubation at 37 ◦C for 72 h.
After fungal and bacterial growth, 100 µL AgNO3 (0.1 M) solution was flooded over the
grown fungal and bacterial plates and a change in color was observed [18].

2.5. Gas Chromatography and Mass Spectroscopy Analysis (GC-MS)

GC-MS analysis was performed for the secondary metabolic profiling in S. indica
alone and in combination with Z. sp. ISTPL4 under normal growth conditions and in the
presence of arsenic stress. The fungal disc was inoculated in H and K broth and then kept
for incubation for 2 weeks. A similar protocol was followed for the combined growth of
S. indica and Z. sp. ISTPL4. The bacterial culture was inoculated in H and K broth after
5 days of fungal inoculation (5 dafi) followed by incubation (2 weeks). A 100 mL sample
was taken and then centrifuged at 9000 rpm for 10 min. The supernatant was collected and
mixed with an equal volume of ethyl acetate. The resulting solution was shaken for 3 h.
The sample was then concentrated on a rotatory evaporator. The final volume was mixed
with methanol. This concentrated sample was used for GC-MS analysis for secondary
metabolite detection.

GC-MS analysis was carried out in a Perkin-Elmer GC Clarus 500 system, which
included an Elite-5MS (5% diphenyl/95% dimethyl poly siloxane) fused capillary column
(30 × 0.25 µm ID × 0.25 µm df) and an AOC-20i auto-sampler and Gas Chromatograph
interfaced to a Mass Spectrometer (GC-MS). An electron ionization device with an ioniza-
tion energy of 70 eV was used in electron impact mode for GC-MS detection. A split ratio
of 10:1 was used with an injection volume of 2 µL and helium gas (99.999%) was used as
the carrier gas at a steady flow rate of 1 mL/min. The temperature of the ion source was
200 ◦C, the injector was kept at 250 ◦C, and the oven was set at 110 ◦C (isothermal for two
minutes) which was further increased by 10 ◦C/min to 200 ◦C, and 5 ◦C/min to 280 ◦C,
and stopped with a 9-min isothermal at 280 ◦C. Mass spectra with fragments from 45 to
450 Da and a scan interval of 0.5 s were obtained at 70 eV. The GC-MS was run for 36 min,
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with a solvent delay of 0 to 2 min. By comparing the average peak area of each component
to the total areas, the relative percentage amount was determined. The Turbo-Mass ver-5.2
software was utilized to handle mass spectra and chromatograms. Metabolite identification,
retention time (R.T.) and mass to charge ratio (m/z) was analyzed as listed in the NIST
library [19–21].

2.6. Clustered Heatmap of Metabolites

A heatmap of common metabolites secreted by the individual culture of S. indica as
well as in combination with Z. sp. ISTPL4 under normal growth conditions and in the
presence of As stress was prepared by versatile matrix visualization and analysis software
(https://software.broadinstitute.org/morpheus/ (accessed on 1 June 2022)).

2.7. Statistical Method

The experiments were repeated five times. Statistical analysis was conducted utilizing
two-way ANOVA and student’s t test (p < 0.05) using online OPSTAT software (version 6.8).
All the variables were subjected to statistical analysis.

3. Results
3.1. Microbial Conditions

The growth of S. indica was checked alone and with Z. sp. ISTPL4 by measuring the hy-
phal radius and spore size was measured using scanning electron microscopy (Figure 1a–d).
S. indica growth was assessed under varying concentrations of As and it was observed
that S. indica was able to survive at 1.9 mM concentration (Figure 2). Growth of S. indica
under normal conditions was (3.1 ± 0.025 cm) and it decreased up to (1.6 ± 0.01 cm) at
1.9 mM As concentration. S. indica growth was assessed in combination with Z. sp. ISTPL4.
S. indica when grown in combination with Z. sp. ISTPL4 was able to grow at 2.4 mM
concentration. The hyphal radius of S. indica was (2.9 ± 0.01 cm) when grown with Z. sp.
ISTPL4 under normal growth conditions and it reduced (1.4 ± 0.03 cm) in the presence of
As (Figure 2a–d).

The dry cell weight of S. indica alone as well as in combination with Z. sp. ISTPL4 was
measured in the control as well as in the presence of As. The dry cell weight of S. indica
was 69% higher than dry cell weight of S. indica under As stress. Similarly, dry cell weight
of combination of S. indica and Z. sp. ISTPL4 was 51% more than the dry cell weight of the
combination of S. indica and Z. sp. ISTPL4 under arsenic stress (Figure 2e).

3.2. Spore Morphology

Increased spore size of S. indica was observed in the presence of Z. sp. ISTPL4
(18 ± 0.75 µm) as compared to its individual culture (14 ± 0.24 µm) under normal growth
conditions and confocal microscopy under normal growth conditions in scanning electron
microscopy (Figure 1c–d). The spore size of S. indica decreased by 18% at 1.9 mM concentra-
tion and by 15% when used in combination with Z. sp. ISTPL4 at 2.4 mM concentration of
As as observed under a confocal microscope. Increase in concentration beyond this resulted
in spore degeneration and hyphae fragmentation (Figure 3a–d). The spore count was also
decreased at higher concentration of arsenic. It was 4.59 × 105 spores/mL in S. indica under
normal growth conditions and it reduced to 3.68 × 103 spores/mL at 1.9 mM concentration
of arsenic. Similarly, the spore count of S. indica was slightly higher 4.65 × 105 spores/mL,
when it was grown in presence of Z. sp. ISTPL4 and at 2.4 mM concentration, it decreased
to 4 × 103 spores/mL.

3.3. Biotransformation of Arsenic

The biotransformation potential of S. indica and Z. sp. ISTPL4 was checked on the
basis of the color change of fungal and bacterial cultures. Color change to brown in fungal
cultures indicated transformation ability of As (V) (arsenate) to As (III) (arsenite). The
ability of the fungal strain to bring conversion was discovered after 72 h of incubating

https://software.broadinstitute.org/morpheus/
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fungal and bacterial plates. Contact of silver nitrate with As (V) (already present in media)
produced a brownish precipitate, while the association with As (III) produced a pale yellow
precipitate. The results of the arsenic transformation ability of S. indica indicated brown
color formation which denotes that this fungus has certain genes which are involved in
arsenic transformation. Z. sp. ISTPL4 revealed no change in color which indicated no
conversion of arsenic to other forms (Figure 4a–d).
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Figure 1. Growth of (a) Serendipita indica (Fungus) alone (b) in the presence of Zhihengliuella sp.
ISTPL4 (Bacteria) on a Hill and Kaefer agar plate (c) morphology of S. indica spores visualized using
scanning electron microscopy (SEM) at Magnification: 2910×; voltage: 10 Kv; scale: 10 µm. (d) Spore
morphology of S. indica in presence of Z. sp. ISTPL4 at Magnification: 2000×; voltage: 10 Kv; scale:
10 µm.

3.4. Production of Secondary Metabolites

Secondary metabolite production in S. indica alone as well as in combination with Z.
sp. ISTPL4 was checked under normal growth conditions and under As stress (Figure 5a,b).
GC-MS studies revealed the presence of 69 metabolites secreted by S. indica under normal
conditions and 47 metabolites under As stress. Among these metabolites, 23 metabo-
lites are common including 2,4-Di-tert-butylphenol having a retention time of 12.910 and
molecular weight 206, 1,2-Benzenedicarboxylic acid with a retention time of 17.125 and
molecular weight of 278, respectively (Table 1). 2-Ethylbutyric acid, eicosyl ester, 2-hydroxy-
1(hydroxtmethyl)ethyl ester, Octocrylene 2-propenoic acid and Squalene e 2,6,10,14,18,22-
Tetracosahaxaene are some of the metabolites secreted by culture of S. indica alone and
under arsenic stress. A total of 67 metabolites were secreted by the combination of S. indica
and Z. sp. ISTPL4 under normal conditions, and 37 metabolites were secreted under arsenic
stress (Figure 6a,b). Similarly, 16 metabolites were common including Cyclo(L-prolyl-L-



Microorganisms 2024, 12, 405 6 of 19

valine), hexahydro-3-(2-methylpropyl), Eicosane, 2,4-Di-tert-butylphenol, L-Proline and
Heneicosane (Table 1). All these metabolites are involved in antibacterial, antifungal, and
antioxidant activities while some of them have important roles in plant growth promotion
under various environmental conditions. These metabolites are also represented in the
form of venn diagram (Figure 7a,b). Figure 8 shows the clustered heatmap of the secondary
metabolites. These metabolites include volatile organic compounds (VOCs), hydrocarbons,
amino acids, fatty acids and vitamins. Hierarchical clustering analysis (HCA) shows the
comparison of common metabolites based on the area percentage detected. A heatmap
ranging from red (high) to blue (low) denoted the concentration of each metabolite detected.
The numerical data of metabolites were normalized to allow for clustering and color scaling
based on the concentration of compounds. In Figure 8a, compounds that appeared as red
were considered highly abundant, and Figure 8b showed that an equal ratio of red and
blue colored compounds appeared.
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Figure 2. Growth of S. indica alone (a) under normal growth condition (2.9 ± 0.01 cm) (b) in As
stress (1.6 ± 0.01 cm; 1.9 mM) (c) in presence of Z. sp. ISTPL4 under normal growth condition
(2.5 ± 0.05 cm), (d) in presence of As stress (1.4 ± 0.03 cm; 2.4 mM) and (e) shows the difference in
dry weight of S. indica alone, in the presence of arsenic stress, in combination with Z. sp. ISTPL4 and
under arsenic stress after microbial inoculation. According to the student’s t-test, asterisks showed
significant differences: ‘*’: p ≤ 0.05; ‘**’: p ≤ 0.01).
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Table 1. List of common metabolites secreted by S. indica alone and in combination with Z. sp. ISTPL4
under normal growth conditions and in presence of As stress.

S. No. Metabolites
(S. indica/S. indica; As)

Metabolites
(S. indica + Z. sp. ISTPL4/S. indica + Z. sp. ISTPL4; As)

1 2,4-Di-tert-butyl-phenol) phosphate 2,4-Di-tert-butyl-phenol) phosphate
2 Cyclo(L-prolyl-L-valine) Cyclo(L-prolyl-L-valine)
3 1,2-Benzenedicarboxylic acid, bis (2-methyl propyl) ester 1,2-Benzenedicarboxylic acid, bis (2-methyl propyl) ester

4 7,9-Di-tert-butyl-1-oxaspiro (4,5)
deca-a-6,9-diene-2,8-dione 7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-a-6,9-diene-2,8-dione

5 Hexadecenoic acid, methyl ester Hexadecenoic acid, methyl ester
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Table 1. Cont.

S. No. Metabolites
(S. indica/S. indica; As)

Metabolites
(S. indica + Z. sp. ISTPL4/S. indica + Z. sp. ISTPL4; As)

6 Pyrrole[1,2-a]pyrazine-1,4-dione, hexahyd
dro-3-(2-methyl propyl) octadecanoic acid, 3-oxo-, ethyl ester

7 1,2-Benzenedicarboxylic acid, butyl octyl ester Olean-18-ene
8 Methyl stearate L-Proline
9 2-Ethylbutyric acid, eicosyl ester Glycerol 1-palmitate

10 2-(4-Hydroxy-4-methyl-tetrahydro-pyran-3-ylamino)-3-
(1H-indol-2-yl)-propionic acid Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester

11 Lycopene Octadecanoic acid, 2,3-dihydroxypropy ester

12 Hexadecanoic acid, 2-hydroxy-1-(hydro oxymethyl)
ethyl ester Methyl stearate

13 Bis(2-ethylhexyl) phthalate Pyrrolo[1,2-a]pyrazine-1,4-dione, hexa
hydro-3-(2-methylpropyl)-

14 Octocrylene 2-Propenoic acid, Tetradecane
15 Octadecanoic acid, 2,3-dihydroxypropyl ester Eicosane
16 Squalene e 2,6,10,14,18,22-Tetracosahexaene, Heneicosane
17 Phenol, 2,4-bis (1,1-dimethyl ethyl)-, phosphite
18 Tris (2,4-di-tert-butyl phenyl) phosphate
19 Octahydro-2H-pyrido(1,2-a)pyrimidin-2-one
20 Olean-18-ene
21 l-Leucine
22 L-Proline
23 Ergotaman-3′,6′,18-trione
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Figure 8. Gas chromatography-mass spectrometry (GC-MS) spectrum comparison (a) clustered
heatmap of common metabolites secreted by S. indica alone under normal growth conditions and in
presence of As stress (b) heatmap showing common metabolites secreted by combination of S. indica
and Z. sp. ISTPL4 under normal growth conditions and in presence of As stress; heatmap ranging
from red to blue shows high to low abundance of metabolites detected.

4. Discussion

Microorganisms release various secondary metabolites to cope with abiotic stress
resulting in better plant growth performance, increased photosynthesis, and the production
of antioxidants [21]. Besides bacteria, fungal species also confer abiotic stress tolerance
in plants by helping them to adapt to a variety of conditions, such as heat, salinity, cold,
drought, and toxic metals [22]. Fusarium culmorum, Azotobacter, Pseudomonas, Curvularia pro-
tuberata, Piriformospora indica, Neotyphodium lolii, and Trichoderma have all been documented
to confer abiotic stress tolerance [23]. Among these, S. indica is a plant-growth-promoting
root endophytic fungus. It plays an important role in defending plants from adverse biotic
and abiotic factors [24,25]. The role of various secondary metabolites secreted by S. indica



Microorganisms 2024, 12, 405 11 of 19

alone and in combination with Z. sp. ISTPL4 was studied in the present study. S. indica
growth was also checked in the presence of arsenic individually and in combination with Z.
sp. ISTPL4. It was reported that S. indica was able to grow up to 1.9 mM and up to 2.4 mM
in combination with Z. sp. ISTPL4 in the culture conditions. Mohd et al. (2017) studied
P. indica growth under arsenite (III) and arsenate (V) stress and observed a reduction in
the growth of fungus at higher As concentrations [16]. The spore morphology and size of
S. indica alone and in combination was also assessed under control conditions and in As
stress. It was observed that the hyphae and spores were intact at 1.9 mM As concentration
and hyphae started fragmenting and spores degenerated beyond 1.9 mM concentration of
As in S. indica alone. Similarly, spore size and morphology of S. indica in combination with
Z. sp. ISTPL4 was observed in up to 2.4 mM concentration of arsenic. The morphology of
S. indica spores was also checked in the presence of Cd by Dabral et al. 2019. It was observed
that spore germination inhibited beyond a 0.1 mM concentration of Cd [26].

An Increase of 69% in dry cell weight was observed in S. indica when compared
with dry cell weight of S. indica under arsenic stress. Similarly, the dry cell weight of the
combined culture of S. indica and Z. sp. ISTPL4 was 51% more than a combined culture
of S. indica and Z. sp. ISTPL4 under arsenic stress. The spore morphology of S. indica was
also checked under normal conditions and in arsenic stress by confocal microscopy. It was
observed that the spore degenerated beyond a 1.9 mM concentration of arsenic and beyond
2.4 mM in the microbial combination of S. indica and Z. sp. ISTPL4. The results of the
spore count of S. indica under arsenic stress was measured which indicated a reduction
in spore count to 3.68 × 103 spores/mL at 1.9 mM concentration compared to the control
(4.59 × 105 spores/mL). The spore count of S. indica in the presence of Z. sp. ISTPL4
was also measured, which indicated an increased spore count (4.65 × 105 spores/mL)
under normal growth conditions, and it was reduced to 4 × 103 spores/mL. The spore
germination and spore size of S. indica alone as well as in the presence of Z. sp. ISTPL4
was also determined under normal growth conditions which indicated an increased spore
size and germination of S. indica in the presence of Z. sp. ISTPL4 than its respective control
(S. indica) [14].

The arsenic biotransformation ability of S. indica and Z. sp. ISTPL4 was confirmed.
The results of arsenic biotransformation in S. indica indicated the formation of a brown-
colored precipitate (Figure 4), which indicated the conversion of arsenate (v) to arsenite
(III). Mohd et al. (2017) also reported the bioaccumulation and biotransformation ability
of S. indica under arsenic stress [16]. In the case of Z. sp. ISTPL4, there was no change in
color observed but the findings of whole genome sequencing indicated the presence of
arsenic-resistant genes in Z. sp. ISTPL4 [18,27].

In this study, we reported the significance of various metabolites secreted by S. in-
dica alone and in combination with Z. sp. ISTPL4 under normal and in arsenic stress.
These metabolites regulate plant growth and development under stress conditions by
acting as antioxidants which scavenge free radicals generated in plants during oxidative
stress [28,29]. A total of 69 metabolites were produced in S. indica under normal conditions
and 47 metabolites were produced in As stress (Supplementary File S3). Among all the
metabolites analyzed, 23 metabolites were common (Table 1). These metabolites include
1,2-Benzenedicarboxylic acid, 2-ethylbutyric acid, eicosyl ester, Octocrylene 2-propenoic
acid, squalene 2,6,10,14,18,22-Tetracosahaxaene, phenol and, 2,4-bis(1,1-dimwthylethyl)-
phosphite. The chromatogram of each metabolite has been shown in Supplementary Files
S1 and S4. Similarly, 67 metabolites were secreted by a combination of S. indica and Z.
sp. ISTPL4 under normal conditions and 37 metabolites were secreted by a combina-
tion of S. indica and Z. sp. ISTPL4 under arsenic stress (Supplementary File S4). Among
them, 16 metabolites were common including Cyclo(L-prolyl-L-valine), hexa hydro-3-
(2-methylpropyl), Eicosane, 2,4-Di-tert-butylphenol, methyl ester, Methyl stearate and
L-Proline (Table 1). These metabolites have different functions such as antifungal activities,
antimicrobial activities, and antioxidant activities [28–30]. Some of these metabolite such
as glycine, Quinoline-4-carboxamide 2-phenyl-N-n.-octyl are antimicrobial and reduces
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stress in plants [31,32]. Other metabolites including Dodecane, 4,6-dimethyl, Tetradecane,
I-Hexadecanol, Nonadecane and, Heneicosane were also identified in the individual culture
of S. indica. Similarly, 5-Azacytosine, N,N,O-trimethyl, 5-Nitroso-2,4,6-triaminopyrimidine,
d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal, 5-Nitroso-2,4,6-triaminopyrimidine were
secreted by combination of S. indica and Z. sp. ISTPL4. These metabolites have antimicro-
bial, antioxidant and nematicidal activities. I-hexadecanol is a major volatile compound
produced by molds and acts as an antifeedant in different species of aphids [23,25,32,33].
Heneicosane has antimicrobial activities against Streptococcus pneumonia and Aspergillus fu-
migatus and Cyclo(L-propyl-L-valine) is a class of diketopiperazines (DKPs). These metabo-
lites are mainly involved in interactions between mixed microbial communities [33,34].
The secretion of this metabolite by microbes can be a possible reason for the positive inter-
action of S. indica and Z. sp. ISTPL4. Other metabolites including l-(+)-Ascorbic acid 2,6-
dihexadecanoate, Docosanoic acid, ethyl ester, Isopropyl palmitate, 2-Methyltetracosane,
n-Hexane, 13-Docosenamide (Z) have been reported. These metabolites play a crucial
role in antiallergic, antibacterial, antioxidant, termiticide and antiviral activity, antimi-
crobial and free radical scavenging activity [35,36]. Tetratriacontyl heptafluorobutyrate,
myristic acid, glycidyl ester, tetradecanoic acid, 2-Propenoic acid, 3-(4-methoxyphenyl)
are the metabolites released by S. indica in the presence of As. These metabolites have
antifungal and antimicrobial activity [6,34,37]. Metabolites including 2,3-dihydroxypropyl
ester Stearin, Eicosane, 3-Indol-1-yl-propionic acid, methyl ester and, Glycerol tricaprylate,
have antimicrobial, antifungal, probiotics and antioxidant activities [38–40]. L-Proline,
glycine, squalene, heptadecane, 7,9 di-tert butyl-1-oxaspiro(4,5) deca-a-6,9-diene-2,8-dione,
Dodecane,4,6-dimethyl, Tridecanoic acid, 12-methyl-, methyl ester, 2-methyl tetracosane
and quercetin play an essential role in plant growth and development under abiotic
stress [41–45]. These metabolites protect plants under stress by acting as antioxidants,
promoting signaling cascade in plants for enhancing plant growth and scavenging free
radicals generated during oxidative stress in plants. Quercetin is a polyphenolic compound
with antioxidant properties secreted by microbial combinations.

The study suggests that an active efflux system operates in the removal of arsenic by
S. indica and Z. sp. ISTPL4. S. indica and Z. sp. ISTPL4 uptakes arsenate through phosphate
transporters (Ars C) and converts it into arsenite by arsenate reductase. The converted
form of arsenite (III) is then shunted out. The presence of the ArsC gene is also reported
in Z. sp. ISTPL4 which also confers arsenic tolerance ability of this actinobacterium. This
combination of microbes can be used to mitigate the toxic effects of arsenic in the contami-
nated environments and increase sustainable agriculture in the soils that are contaminated
(Figure 9).
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5. Conclusions

Our study concluded the significance of various metabolites secreted by S. indica alone
and in combination with Z. sp. ISTPL4 under normal environmental conditions and in the
presence of arsenic stress. The secretion of Cyclo(L-propyl-L-valine) by both S. indica and
Z. sp. ISTPL4 indicated the possible reason for their interaction. Also, the arsenic tolerance
ability of S. indica was checked individually and in combination with Z. sp. ISTPL4 in this
study. Results of the biotransformation experiment also indicated the arsenic tolerance
ability of S. indica and Z. sp. ISTPL4. However, these microbes can be used to mitigate
arsenic stress. The presence of various metabolites also indicated the capability of S. indica
and Z. sp. ISTPL4 in plant growth and stress alleviation under various biotic and abiotic
factors. Our data are largely confirmed by other scientific literature, which has shown that
these microbial strains can efficiently remove arsenic from contaminated environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12020405/s1, Supplementary File S1: Mass frag-
mentation pattern and structural elucidations of common metabolites secreted by Serendipita indica
under normal growth conditions and in presence of arsenic stress; Supplementary File S2: Mass
fragmentation patterns and structural elucidations of common secondary metabolites secreted by
Serendipita indica and Zhihengliuella sp. ISTPL4 under normal growth conditions and in the pres-
ence of arsenic stress; Supplementary File S3: Secondary metabolites production by Serendipita
indica and Zhihengliuella sp. ISTPL4 under normal growth conditions and in presence of As stress;
Supplementary file S4: Secondary metabolites production by Serendipita indica and Zhihengliuella sp.
ISTPL4 under normal growth conditions and in presence of As stress. Refs. [40–154] can be found in
Supplementary Materials.
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