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1. Introduction

Itô Integral against cylindrical Wiener process is a tool that has been developed
to solve stochastic evolution equations in infinite dimension. One can quote
E Mazel Khanin Sinai [9], Pardoux [27], Debussche Vovelle [5], Hairer Weber
[19], Hairer [18], Dotti Vovelle [7], Galimberti Karlsen [12], for examples of
recent studies of stochastic partial differential equations using cylindrical Wiener
processes.

The first construction of this mathematical object is in the paper of Curtain
and Falb [2]. Since this precursory article, many other presentations have been
done by different authors: Métivier, Pellaumail [25], Pardoux, Grorud [16], Da
Prato, Zabczyk [3], Prévôt Rökner, Frieler [28, 11], Gawarecki, Mandrekar, [14],
Hairer [17].

A general comparison of stochastic integrals has already been done by Dalang,
Quer-Sardanions [4]. We can also quote the comparison made by Protter [29],
Bastons and Escudero [1]. In this paper I focus on Itô Integral against cylin-
drical Wiener process, and more precisely, the constructions using elementary
processes. Indeed, we can find in the literature different definitions of elemen-
tary processes, and thus different definitions of Itô integrals, which lead to ‘the
Itô Integral’. It is interesting to prove that those constructions are equivalent.
More than that, it is interesting to understand the links between those elemen-
tary processes, to understand why those definitions of elementary processes are
natural, and from which idea they come from.

If we look in detail, we have four different definitions of elementary processes
in the literature: the one given by Métivier, Pellaumail in [25], the one given by
Da Prato, Zabczyk and Prévot, Röckner, Frieler in [3, 11, 28], the one given by
Gawarecki, Mandrekar in [14], the one given by Hairer in [17]. For the construc-
tion of the integral, all authors give different methods: Métivier Pallaumail use
Doléans measures, Hairer use Cameron-Martin spaces, Da Prato, Zabczyk an-
nounce the almost sure convergence, uniform with respect to the time variable,
of the finite dimensional case to the infinite dimensional case without proving
it, Prévot, Röckner use abstract Hilbert-Schmidt embedding, Gawarecki, Man-
drekar announce that the proofs are similars to the case of Itô integral against
Q-Wiener processes with Q a symmetric, non-negative operator of finite trace.
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In Section 2, I present the difficulties to generalize the standard Brownian
motion in finite dimension to the infinite dimension. I also recall the definitions
of Q-Wiener processes and Hilbert-Schmidt spaces.

In Section 3, I prove the equivalence of Itô integrals against Q-Wiener pro-
cesses, starting by elementary processes of [25], of [3, 11, 28], of [14], of [17].

In Section 4, I explain the construction of Itô integral against cylindrical
Wiener processes of Frieler, Prévôt, Röckner in [11, 28]. I give some correc-
tions on the definition of cylindrical Wiener process and the announcements of
Gawarecki, Mandrekar in [14]. I also present the ideas of Hairer in [17], and the
ideas of Métivier and Pellaumail in [25] for their construction of the Itô integral
against cylindrical Wiener process.

In Section 5, I give a new construction of this integral using the simplest
tools, that is Itô isometries and extension theorem of operators by density. This
construction proves the equivalence of Itô integrals against cylindrical Wiener
processes, starting by elementary processes of [25], of [3, 11, 28], of [14], of [17].

In Section 6, I explain the ideas of Takeyuki Hida which lead to the Gaussian
white noise theory, and then to the Kondratiev spaces in dimension one and in
infinite dimension. As an element of those spaces, I present a definition of cylin-
drical Wiener process, then follows an example verifying the assumptions of the
definition given by Gawarecki and Mandrekar in [14]. I end by a formula which
is a bridge between Itô integral against cylindrical Wiener process and Lebesgue
integral using cylindrical white noise. The bridge is made by the stochastic Wick
product.

Throughout the article, we use the following notations:

• N is the set of natural numbers including 0, that is N = {0, 1, 2, 3, . . .}.
• N

∗ is the set of natural numbers without 0, that is N
∗ = {1, 2, 3, . . .}.

• R is the set of real numbers.
• R

∗ is the set of real numbers without 0.
• R+ is the set of nonnegative real numbers, that is R+ = {x ∈ R | x ≥ 0}.
• R

∗
+ is the set of positive real numbers, that is R

∗
+ = {x ∈ R | x > 0}.

• Let N ∈ N
∗\{1}, R

N denotes the N-ary Cartesian power of R.
• Let H be a separable Hilbert space, L(H,R) denotes the space of all

bounded linear operators from H to R.

2. Wiener processes in infinite dimension

2.1. From the finite dimension to the infinite dimension

In one dimension, a Brownian motion (Bt)t∈R+
is a process taking its values in R,

adapted to some filtration, starting at some value x ∈ R, whose increments are
independent from the past and stationary. More precisely, there exists q ∈ R

∗
+

such that for any 0 < s < t < +∞, the random variable Bt − Bs follows the
normal distribution N (0, (t − s)q). The most commonly used is the version of
Brownian motions with continuous paths, starting at x = 0, with B1 which
follows the standard normal distribution N (0, 1), that is q = 1 (see [30, p. 17]).
This Brownian motion is then called the standard Brownian motion.
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Let N ∈ N
∗\{1}, a N -dimensional Brownian motion, which is a process

taking its values in R
N , has the same definition, replacing x ∈ R by x ∈ R

N and
q ∈ R

∗
+ by a symmetric, non-negative definite square matrix Q of order N with

real coefficients. Then, we obtain the standard Brownian motion when x = 0
and Q is the identity matrix.

Note that in this case (that is when Q is the identity matrix), the N -
dimensional standard Brownian motion can be written

Bt =
N∑

k=1

Bk
t ek

where (ek)1≤k≤N is an orthonormal basis of RN and the
(
Bk

)
k

are independent
real standard Brownian motions (see proposition 2.1.10 of [28] for more details).

In infinite dimension, if (ek)k∈N∗ is an orthonormal basis of a separable
Hilbert space, the problem of existence of the sum arise. In other words, the
problem of existence of the variance of such a process at each time t ∈ R

∗
+

arise: the standard Brownian motion (which is usually called cylindrical Wiener
process) can not be defined immediately, only Q-Wiener processes can be de-
fined, generalizing N -dimensional Brownian motions when Q are symmetric,
non-negative definite matrices. Let us define them.

2.2. A formal definition for cylindrical Wiener processes, a
rigorous definition for Q-Wiener processes

Let (Ω,F ,P) be a probability space, [0, T ] ⊂ R+ a bounded interval of time, and
(Ft)t∈[0,T ] be a complete, right-continuous filtration associated with (Ω,F ,P).
Let (βk)k∈N∗ a sequence of independent real Brownian motions adapted to the
filtration (Ft). A cylindrical Wiener process W is a stochastic process taking its
values in a real Hilbert space (H, 〈. , .〉H), endowed with an orthonormal basis
(ek)k∈N∗ and defined by

W : (ω, t) ∈ Ω × [0, T ] �→ W (ω, t) :=
+∞∑
k=1

βk (ω, t) ek. (2.1)

Usually, the elementary event ω is omitted. We follow this rule in the sequel.
The previous definition is formal, W (t) does not exist in H. Indeed,

E
(
‖W (t) ‖2

H

)
= E

(+∞∑
k=1

βk (t)2
)

=
+∞∑
k=1

t = +∞.

To make it rigorous, we have to use J : H → U a Hilbert-Schmidt embedding,
with U a real separable Hilbert space.

Definition 2.1. Let (H, 〈., .〉H) and (U, 〈., .〉U ) be two real separable Hilbert
spaces, (ek)k∈N∗ be an orthonormal basis of H and (εj)j∈N∗ be an orthonormal
basis of U . A bounded linear operator P : H → U with finite Hilbert-Schmidt
norm, that is

‖P‖2
L2(H,U) :=

+∞∑
k=1

〈P (ek), P (ek)〉U < +∞,
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is called a Hilbert-Schmidt operator. The space of all Hilbert-Schmidt operators
from H to U is denoted by L2(H,U).

Proposition 2.1. L2(H,U) endowed with the bilinear form

∀S, P ∈ L2(H,U), 〈P, S〉L2(H,U) :=
+∞∑
k=1

〈P (ek), S(ek)〉U

is a separable Hilbert space for which (ek ⊗ εj)k,j∈N∗ defined by

ek ⊗ εj := 〈ek, .〉H εj

is an orthonormal basis.

Proof of Proposition 2.1. See pages 155–156 of the thesis of Katja Frieler and
Claudia Prévôt [11].

For example, let us take U = H and J the Hilbert-Schmidt operator from H
to H defined by Jek = 1

kek. We can then define almost surely, ∀t ∈ [0, T ]:

JW (t) :=
+∞∑
k=1

βk (t)Jek. (2.2)

The series converges in H, almost surely and uniformly on [0, T ] (see the proof
of Proposition 2.2. Note that JW (t) is not an element of J (H) (there is a
slight abuse of notation) and that J (H) is dense in H because (kJek)k∈N∗ is
an orhtonormal basis of H.

Let us recall now what is a Q-Wiener process, Q playing the role of the
covariance (operator):

Definition 2.2 (Q-Wiener process). Let Q : H → H be a linear bounded
operator, which is

1. nonnegative, that is 〈h,Q(h)〉H ≥ 0, ∀h ∈ H
2. symmetric, that is 〈Q(h1), h2〉H = 〈h1, Q(h2)〉H , ∀h1, h2 ∈ H

3. with finite trace, that is tr(Q) :=
+∞∑
k=1

〈Q(ek), ek〉H < +∞

Let W : Ω × [0, T ] → H be a stochastic process which

4. is (Ft)t∈[0,T ]-adapted, that is W (t) is Ft-measurable for all t ∈ [0, T ],
5. has its increments independent of the past, that is W (t) −W (s) is inde-

pendent of Fs for all 0 ≤ s ≤ t ≤ T
6. starts from zero P-almost surely, that is W (0) = 0 P-a.s.
7. has P-almost surely continuous trajectories
8. has its increments having the following Gaussian laws:

W (t) −W (s) � N (0, (t− s)Q), ∀0 ≤ s ≤ t ≤ T
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i.e. the characteristic function of W (t) −W (s) can be written

ϕ(h) =
∫
H

exp (i〈h, x〉H)PW (t)−W (s)(dx) = exp
(
−1

2 〈(t− s)Q(h), h〉H
)

∀h ∈ H, (see theorem 6.3.1 of [15])

then W is called a Q-Wiener process in H.

Proposition 2.2. JW defined by (2.2) is a Q-Wiener process in H with co-
variance operator Q := J ◦ J∗ = J2 (J∗ = J is the adjoint operator of J).

Proof of Proposition 2.2. As we have ∀k, j ∈ N
∗

〈ek, J∗ (ej)〉H = 〈J (ek) , ej〉H = 1
k
〈ek, ej〉H ,

we can deduce J∗(ek) = 1
kek = J(ek),∀k ∈ N

∗. Then, the linear bounded
operator Q = J2 is obviously nonnegative, symmetric, with finite trace.

The next step is to prove the Ft-measurability of JW (t), for each t ∈ [0, T ]. To
use the Ft-measurability of the (βk)k∈N∗ , we need the almost sure convergence
of the series JW (t) on a subset Ω̃ ⊂ Ω which does not depend on t such that
P
(
Ω̃
)

= 1. For that, we can use the proof of [14] pages 20–21: partial sums of
‖JW (t)‖2

H are sub-martingales which allows to use a Doob’s maximal inequality
and a Lévy-Itô-Nisio theorem to prove that the series JW converges P-almost
surely uniformly on [0, T ].

Then items 4, 5, 6, 7 and 8 of Definition 2.2 follow from the properties of the
(βk)k∈N∗ .

The theory of integrals against Q-Wiener processes is described for example
in [3], in [28], in [14]. I give some ideas of its construction in the particular case
of integrals against

JW (t) =
+∞∑
k=1

1
k
βk (t) ek

where the integrand Φ takes its values in L2(J(H),R) (see Proposition 3.1 for
the details). In a more general case, the integrand Φ can take its values in
L2(J(H),K) where K is a separable Hilbert space. My aim is to discuss on the
ideas of the construction that is why the scalar case is enough. The first step is to
define Itô integral for elementary processes. Different definitions of elementary
processes can be taken. I will explain why, and I will prove the equivalence
of the definitions of the Itô integrals against Q-Wiener processes starting with
the elementary processes of [25], of [3], of [14], of [17]. Note that elementary
processes of [11, 28, 3] are the same.

3. Discussion on the construction of Itô integral against a Q-Wiener
process

In this section, we will define the Itô integral of elementary processes Φ ∈
L (H,R) against the Q-Wiener process JW defined in (2.2). The case of a gen-
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eral Q-Wiener process is not different from the case of JW because such a Q
admits a unique square root operator which plays the role of J for JW (see
proposition 2.3.4 of [28]). The aim is to be able to define∫ T

0
Φ (t) dJW (t) :=

+∞∑
k=1

1
k

∫ T

0
Φ (t) ekdβk (t)

with Φ : Ω × [0, T ] → L (H,R). First, each∫ T

0
Φ (t) ek dβk (t)

must exist. It is the case (see e.g. [13] page 121 and chapter 4) if

∀k ∈ N
∗, E

(∫ T

0
(Φ (t) ek)2 dt

)
< +∞. (3.1)

It means that the condition Φ : Ω × [0, T ] → L (H,R) is not sufficient to
define the set of integrands, we also need (3.1). Second, we want that the series

+∞∑
k=1

1
k

∫ T

0
Φ (s) ekdβk (s) (3.2)

converges in L2(Ω). It is satisfied if

E

(∫ T

0

+∞∑
k=1

1
k2 (Φ (t) ek)2 dt

)
< +∞ (3.3)

because for all M,N ∈ N
∗,

E

⎛
⎝(

M∑
k=N

1
k

∫ T

0
Φ (t) ekdβk (t)

)2⎞⎠ =
M∑

k=N

1
k2

⎛
⎝E

(∫ T

0
Φ (t) ekdβk (t)

)2
⎞
⎠

=
M∑

k=N

1
k2E

∫ T

0
(Φ (t) ek)2 dt. (3.4)

The first equality is due to the independence of the (βk)k∈N∗ and the second
equality is due to the one dimensional Itô isometry.

Thus, trying to find necessary conditions to define Itô integral for elementary
processes, we found that the Itô integral must satisfy the Itô isometry by taking
N = 1 and M → +∞ in (3.4):

E

((∫ T

0
Φ (t) dJW (t)

)2 )
=

+∞∑
k=1

1
k2E

∫ T

0
(Φ (t) ek)2 dt.

Starting by defining Itô integral for elementary processes belonging to a normed
space E , the construction requires that the Itô integral belongs to a Banach space
M so that the Itô isometry allows to define an isometry (from E to M), which
can be extended to the completion of E .
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Definition 3.1. Da prato, Zabczyk [3], Frieler, Prévôt [11], Prevôt, Röckner
[28] define an elementary processes Φ : Ω × [0, T ] → L(H,R) if there exists
p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T such that

Φ(t) =
p−1∑
i=0

Φi1]ti,ti+1](t)

where

1. ∀i, Φi : Ω → L(H,R) is Fti-measurable, L(H,R) being endowed with its
Borel σ-algebra

2. ∀i, Φi takes only a finite number of values in L(H,R)

and define naturally the integral

∫ T

0
Φ (t) dJW (t) :=

p−1∑
i=0

Φi (JW (ti+1) − JW (ti)) (3.5)

Remark 3.1. We can notice that the second item is a sufficient condition to
have (3.3):

E

(∫ T

0

+∞∑
k=1

1
k2 (Φ (t) ek)2 dt

)
=

+∞∑
k=1

1
k2E

(
p−1∑
i=0

(Φiek)2 (ti+1 − ti)
)

=
+∞∑
k=1

1
k2

p−1∑
i=0

(ti+1 − ti)E (Φiek)2 .

The values of Φi are for example Φ1
i , . . . ,Φr

i on the subsets Ω1, . . . ,Ωr of Ω.
Those subsets can be the same for all Φi, that is independent of i. Thus

E

(
(Φiek)2

)
=

r∑
j=1

(
Φj

iek

)2
P
(
Ωj

)
≤ max

i,j
‖Φj

i‖2
L(H,R)

and

E

(∫ T

0

+∞∑
k=1

1
k2 (Φ (t) ek)2 dt

)
≤ max

i,j
‖Φj

i‖2
L(H,R) T

+∞∑
k=1

1
k2 < +∞.

Definition 3.2. Gawarecki, Mandrekar in [14] (see combination of p25 and
p28), define an elementary processes Φ : Ω × [0, T ] → L(H,R) if there exists
p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T such that

Φ(t) = Φ−11{0}(t) +
p−1∑
i=0

Φi1]ti,ti+1](t)

where
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1. ∀i, Φi : Ω → L(H,R) is Fti-measurable, L(H,R) being endowed with its
Borel σ-algebra and denoting F−1 := F0.

2. (Φi)i∈{−1,...,p−1} is uniformly bounded in L2 (J(H),R) i.e. there exists a
M ∈ [0,+∞) independent of i and ω ∈ Ω such that ∀i:

‖Φi‖2
L2(J(H),R) :=

+∞∑
k=1

1
k2 (Φi(ek))2 ≤ M < +∞, a.s.

and define naturally the integral

∫ T

0
Φ (t) dJW (t) :=

p−1∑
i=0

Φi (JW (ti+1) − JW (ti))

Remark 3.2. We can notice that the second item is a sufficient condition to
have (3.3):

E

(∫ T

0

+∞∑
k=1

1
k2 (Φ (t) ek)2 dt

)
=

+∞∑
k=1

1
k2E

(
p−1∑
i=0

(Φiek)2 (ti+1 − ti)
)

=
+∞∑
k=1

1
k2

p−1∑
i=0

(ti+1 − ti)E (Φiek)2 ≤ MT.

Remark 3.3. Let us denote EPR the set of elementary processes defined in Def-
inition 3.1 and EGM the set of elementary processes defined in Definition 3.2.
Then

EPR ⊂ EGM .

Indeed, Let Φ ∈ EPR such that

Φ(t) = 0̄ × 1{0}(t) +
p−1∑
i=0

Φi1]ti,ti+1](t)

where 0̄ : Ω → L(H,R) is a constant random variable for which the unique value
is the null function of L(H,R). For each i, we have

+∞∑
k=1

1
k2 (Φi(ek))2 ≤ max

0≤i≤p−1
1≤j≤r

‖Φj
i‖2

L(H,R)

+∞∑
k=1

1
k2

where the values of Φi are Φ1
i , . . . ,Φr

i on the subsets Ω1, . . . ,Ωr of Ω. Those sub-
sets are the same for all Φi, i.e. independent of i, thus the item 2 of Definition 3.2
is satisfied by Φ.

Proposition 3.1. EPR and EGM endowed with the norm

‖Φ‖E :=
(
E

(+∞∑
k=1

1
k2

∫ T

0
(Φ (t) ek)2 dt

))1/2

, ∀Φ ∈ EGM
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are normed spaces. They are dense subspaces of EPR = EGM which is equal to{
Φ : Ω×[0, T ] → L2 (J(H),R) progressively measurable such that ‖Φ‖E < +∞

}

where J(H) is the separable Hilbert space endowed with the scalar product

〈u, v〉J(H) =
+∞∑
k=1

k2〈u, ek〉H〈v, ek〉H (3.6)

as defined page 25 by [14], or equivalently defined page 42 by [28] as

< J(x), J(y) >J(H)=< x, y >H .

Proof of Proposition 3.1. For [28], it is a consequence of their proposition 2.3.8.
The processes Φ are first supposed to be predictable. But if we look carefully at
the remark 2.5.3, the predictability can be replaced by progressive measurability.

For [14], it is a consequence of their proposition 2.2. The processes Φ are
supposed to be measurable and adapted to the filtration (Ft)t∈[0,T ]. It implies
that there exists a modification of Φ which is progressively measurable. That
is why, we can replace measurable and adapted to the filtration (Ft)t∈[0,T ] by
progressively measurable.

Remark 3.4. It is interesting to notice that if two processes Φ1 and Φ2 belonging
to EGM are modifications one from the other, that is for each t ∈ [0, T ],P(Φ1(t) =
Φ2(t)) = 1, then

‖Φ1 − Φ2‖2
E = E

(+∞∑
k=1

1
k2

∫ T

0
((Φ1 (t) − Φ2 (t))ek)2 dt

)

=
∫ T

0

(+∞∑
k=1

1
k2E ((Φ1 (t) − Φ2 (t))ek)2

)
dt = 0

by using Tonelli’s theorem.

Theorem 3.2. The bounded linear mapping

EPR → L2(Ω)

Φ �→
∫ T

0
Φ(t)dJW (t)

defined by (3.5), can be extended to EPR. Moreover, the extension satisfies the
Itô isometry

‖Φ‖2
E =

∥∥∥∥∥
∫ T

0
Φ(t)dJW (t)

∥∥∥∥∥
2

L2(Ω)

, ∀Φ ∈ EPR

that is
+∞∑
k=1

1
k2E

∫ T

0
(Φ (t) ek)2 dt = E

((∫ T

0
Φ (t) dJW (t)

)2 )
.
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Proof of Theorem 3.2. It is a well known result of functional analysis that can
be found for example in [31], proposition 10.3.

To finalize the comparison of elementary processes for the construction of
Itô integrals against Q-Wiener processes, we are adding a definition related to
the one given by Hairer in [17], page 26, for the construction of Itô integrals
against cylindrical Wiener processes (see Definition 4.1 and the explanations
about formula (4.1)), and a particular case of the definition given by Métivier
and Pellaumail in [25](see Definition 4.4 for the particular case for the construc-
tion of Itô integral against cylindrical Wiener processes).

Definition 3.3. We denote EHai the set of elementary processes Φ : Ω×[0, T ] →
L(H,R) for which there exists p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T
such that

Φ(t) =
p−1∑
i=0

Φi1]ti,ti+1](t)

where

1. ∀i ∈ {0, . . . , p − 1}, Φi : Ω → L(H,R) is Fti-measurable, L(H,R) being
endowed with its Borel σ-algebra,

2. ∀i ∈ {0, . . . , p− 1}, Φi is verifying

E

(+∞∑
k=1

1
k2 (Φiek)2

)
< +∞. (3.7)

Definition 3.4. We denote EMP the set of elementary processes Φ : Ω×[0, T ] →
L(H,R) for which there exists p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T
such that

Φ(t) =
p−1∑
i=0

Φi1Fi×]ti,ti+1](t)

where ∀i ∈ {0, . . . , p− 1}, Fi ∈ Fti and Φi ∈ L(H,R).

We can define the Itô integral of Φ ∈ EMP with respect to the Q-Wiener
process JW defined in (2.2) by∫ T

0
Φ(t)dWt :=

p−1∑
i=0

1Fi

(
Φi

(
JWti+1

)
− Φi (JWti)

)
. (3.8)

Noticing that span(EMP ) = EPR (the proof is the same as the proof of Lem-
ma 5.1), we can extend the integral (3.8) by linearity to reach the integral (3.5)
for all Φ ∈ EPR.

Proposition 3.3. The Itô integral against Q-Wiener processes, constructed
starting from the elementary processes EPR and extended to its completion EPR

by the Itô isometry, is the same as the Itô integral against Q-Wiener processes
constructed starting from the elementary processes EGM or constructed starting
from the elementary processes EHai or constructed starting from the elementary
processes EMP .
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Proof of Proposition 3.3. We have

span(EMP ) = EPR ⊂ EGM ⊂ EHai ⊂ EPR,

thus
span (EMP ) = EPR = EGM = EHai

4. Discussion on the construction of Itô integral against a
cylindrical Wiener process

In this section, we will see how different authors have constructed the Itô inte-
gral against cylindrical Wiener processes, that is how they have overcome the
difficulty that the series

+∞∑
k=1

βk(t)ek

does not converge in L2(Ω;H) for each t ∈ [0, T ], to be able to define∫ T

0
Φ (t) dW (t)

with Φ : Ω× [0, T ] → L (H,R). We have constructed in the previous section the
Itô integral against the Q-Wiener process

JW (t) =
+∞∑
k=1

1
k
βk(t)ek

for integrands Φ satisfying

E

(∫ T

0

+∞∑
k=1

(
1
k

Φ (t) ek
)2

dt

)
< +∞. (4.1)

By a transfer of the 1
k2 from Φ to JW , we can write (4.1):

E

(+∞∑
k=1

∫ T

0
(Φ (t) ek)2

dt

k2

)
< +∞

and remembering that the coefficients 1
k where taken to have an example of

Hilbert-Schmidt embedding which is J (and remembering that the coefficients
1
k2 became a particular case of eigenvalues of a covariance operator for JW
which is Q = J2), it is then easy to understand that to integrate against the
cylindrical Wiener process

W (t) =
+∞∑
k=1

βk (t) ek,

the integrands Φ : Ω × [0, T ] → L2 (H,R) should verify the stronger condition

E

(∫ T

0

+∞∑
k=1

(Φ (t) ek)2 dt
)

< +∞. (4.2)
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4.1. How Frieler, Prévôt and Röckner in [11, 28] have constructed
the integral

Their idea is natural. As they have constructed Itô integrals for Q-Wiener pro-
cesses, as they have transferred the formal cylindrical Wiener process W defined
in (2.1) into another Hilbert space (U, 〈., .〉U ) with the help of any Hilbert-
Schmidt embedding J̃ : H → U , as it implies that J̃W is a Q-Wiener process
in U , they use the integral against J̃W for integrands that are written Φ ◦ J̃−1

to define ∫ T

0
Φ(t)dW (t) :=

∫ T

0
Φ(t) ◦ J̃−1dJ̃W (t)

for all Φ ∈ L2(Ω × [0, T ];L2(H,K),progressively measurable).
Remark 4.1. In a way, we can say that the cylindrical Wiener process, which
does not exist in H, exists in U . In another way, we can say that the formal
cylindrical Wiener process W is still not defined, only the Q-Wiener process J̃W
is well defined, which gives a definition for the Itô integral against cylindrical
Wiener processes. The definition of this integral also raises the question of wether
we can remove J̃−1 and J̃ . A possible answer is in the following section.

4.2. How Martin Hairer in [17] proposed to construct the integral

Definition 4.1. Martin Hairer in [17] page 26, defines an elementary process
Φ : Ω × [0, T ] → L2(H,R) if there exists p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · <
tp = T such that

Φ(t) =
p−1∑
i=0

Φi1]ti,ti+1](t)

where

1. ∀i ∈ {0, . . . , p− 1}, Φi : Ω → L2(H,R) is Fti -measurable, L2(H,R) being
endowed with its Borel σ-algebra.

2. ∀i ∈ {0, . . . , p− 1}, , Φi is verifying

E

+∞∑
k=1

(Φi(ek))2 < +∞.

We will denote the set of such processes as ẼHai.
Actually, to solve stochastic partial differential equations involving a cylin-

drical Wiener process, we need only to integrate against it. So Martin Hairer
proposed to let the cylindrical Wiener processes undefined (no need to use the
Hilbert-Schmidt injection J) because the Itô integral against cylindrical Wiener
process can be constructed without it. We just need to notice that the equalities

∫ T

0
Φ (t) dW (t) =

∫ T

0

p−1∑
i=0

Φi1(ti,ti+1] (t) dW (t)
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=
p−1∑
i=0

∫ ti+1

ti

ΦidW (t) =
p−1∑
i=0

(ΦiW (ti+1) − ΦiW (ti))

are well defined for Φ ∈ ẼHai because each Φi takes its values in L2 (H,R), and
each ΦiW (ti) is defined almost surely by

ΦiW (ti) =
+∞∑
k=1

βk (ti)Φiek.

Then, using the theory of Gaussian measures on infinite dimensional spaces, he
proves the itô isometry for his elementary processes, and extend this isometry
by dense completion of ẼHai to the space

L2(Ω × [0, T ];L2(H,R),progressively measurable).

It is in fact just a remark in his lecture [17]. He gives different ways to construct
cylindrical Wiener processes. They are related to the two next constructions.

4.3. How Gawarecki and Mandrekar in [14] have constructed the
integral

Gawarecki and Mandrekar overcome the problem that the series

+∞∑
k=1

βk(t)ek

does not converge in L2(Ω;H) for each t ∈ [0, T ] by defining a family (indexed
by H) of real Brownian motions:

Definition 4.2. W̃ : Ω× [0, T ]×H → R is called a cylindrical Wiener process
if

1. ∀h ∈ H, W̃ (., ., h) : Ω × [0, T ] → R are Ft-real Brownian motions.
2. ∀t ∈ R, W̃ (., t, .) : H → L2(Ω,R) is linear and continuous.
3. ∀h, h′ ∈ H, s, t ∈ [0, T ], E

(
W̃ (., t, h)W̃ (., s, h′)

)
= min(s, t) < h, h′ >H .

Remark 4.2. I have added the continuity in item 2 of Definition 4.2 as it is done
in [16] or in [25]. In fact, Gawarecki and Mandrekar omitted the continuity and
thus the measurability. But a linear operator is not necessarily measurable, and
without measurability, we can not define the integral for elementary processes
(see the next (4.6)). It is also obvious that they use the continuity just after
their definition p19, they write:

∀h ∈ H, W̃ (., t, h) =
+∞∑
k=1

< h, ek >H W̃ (., t, ek), (4.3)

where the series converges for each t ∈ R in L2(Ω,R).
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Remark 4.3. Instead of having a countable infinity of independent real Brow-
nian motions (βk(t))k∈N∗ , they need an uncountable infinity of real Brown-
ian motions

(
W̃h(t)

)
h∈H

. The existence of such a family is solved replacing{
W̃ (., t, ek)

}
k∈N∗ by a sequence of independent standard real Brownian motions

{βk(t)}k∈N∗ in (4.3) (see also Remark 6.7).
Following the definition of cylindrical Wiener process, the Itô cylindrical in-

tegral is also a family of stochastic processes indexed by R. As explained in
the beginning of the section, the integrands, and thus the elementary processes
must take their values in L2(H,R):

Definition 4.3. Gawarecki and Mandrekar in [14] define an elementary process
Φ : Ω × [0, T ] → L2(H,R) for cylindrical Wiener processes on H if there exists
p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T such that

Φ(t) = Φ−11{0}(t) +
p−1∑
i=0

Φi1]ti,ti+1](t) (4.4)

where

1. ∀i, Φi : Ω → L2(H,R) is Fti-measurable, L2(H,R) being endowed with
its Borel σ-algebra and denoting F−1 := F0.

2. (Φi)i∈{−1,...,p−1} is uniformly bounded in L2 (H,R) i.e. there exists a M ∈
[0,+∞) independent of i and ω ∈ Ω such that ∀i:

‖Φi‖2
L2(H,R) :=

+∞∑
k=1

(Φi(ek))2 ≤ M < +∞, a.s. (4.5)

We will denote ẼGM the set of such elementary processes. They define the Itô
cylindrical stochastic integral of Φ with respect to the cylindrical process W̃
defined in Definition 4.2 by the family((∫ T

0
Φ(t)dW̃t

)
(x)

)
x∈R

:=
(

p−1∑
i=0

W̃ti+1 (Φ∗
i (x)) − W̃ti (Φ∗

i (x))
)

x∈R

(4.6)

where each Φ∗
i ∈ L(R, H) is the adjoint operator of Φi defined by

Φ∗
i (x) = x

+∞∑
k=1

Φi(ek)ek, ∀x ∈ R. (4.7)

Remark 4.4. It is important to notice that the stochastic process

(ω, t) �→
(
φ∗
i (ω, x), W̃ (ω, t, .)

)
�→ W̃ (ω, t, φ∗

i (ω, x))

does not have the same properties as W̃ (., ., h) at fixed h ∈ H. It loses item 1
and 3 of Definition 4.2. It means that the following proposition (page 27 of [14])
can not be proved easily by using directly the assumptions of Definition 4.2:
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Proposition 4.1 (Itô Isometry). Let Φ be an elementary process as defined in
Definition 4.3, then we have ∀x ∈ R

(
E

((∫ T

0
Φ(t)dW̃t

)
(x)

)2 )
=

∫ T

0
E‖Φ∗(t)(x)‖2

Hdt (4.8)

where

Φ(t)∗ = Φ∗
−11{0}(t) +

p−1∑
i=0

Φ∗
i 1]ti,ti+1](t)

and the Φ∗
i as in (4.7).

It is necessary to give another definition of elementary processes, the one
given by Métivier and Pellaumail to prove the Proposition 4.1

4.4. How Métivier and Pellaumail in [25] have constructed the
integral

Definition 4.4. Métivier and Pellaumail define an elementary process (they call
it simple process) Φ : Ω× [0, T ] → L2(H,R) for cylindrical Wiener processes on
H, if there exists p ∈ N

∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T such that

Φ(t) =
p−1∑
i=0

Φi1Fi1]ti,ti+1](t)

where ∀i ∈ {0, . . . , p− 1}, Fi ∈ Fti and Φi ∈ L2(H,R). We will denote ẼMP the
set of such elementary processes.

They define the Itô cylindrical stochastic integral of Φ with respect to the
cylindrical process W̃ defined in Definition 4.2 by the family
((∫ T

0
Φ(t)dW̃t

)
(x)

)
x∈R

:=
(

p−1∑
i=0

1Fi

(
W̃ti+1 (Φ∗

i (x)) − W̃ti (Φ∗
i (x))

))
x∈R

(4.9)
where each Φ∗

i ∈ L(R, H) is the adjoint operator of Φi defined by

Φ∗
i (x) = x

+∞∑
k=1

Φi(ek)ek, ∀x ∈ R. (4.10)

Proposition 4.2 (Itô Isometry). Let Φ be an elementary process as defined
in 4.4, then we have ∀x ∈ R

(
E

((∫ T

0
Φ(t)dW̃t

)
(x)

)2 )
=

∫ T

0
E‖Φ∗(t)(x)‖2

Hdt (4.11)
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where

Φ(t)∗ =
p−1∑
i=0

Φ∗
i 1Fi1]ti,ti+1](t)

and the Φ∗
i as in (4.10).

Proof of the Itô Isometry (4.11) of Proposition 4.2 for elementary processes
belonging to ẼMP

For all x ∈ R, i ∈ {0, . . . , p− 1}, we have by items 1 and 2 of Definition 4.2:
(
E 1Fi

(
W̃ti+1

(
x

+∞∑
k=1

Φi(ek)ek

)
− W̃ti

(
x

+∞∑
k=1

Φi(ek)ek

))2 )

= x2
P(Fi)

(
E

(+∞∑
k=1

W̃ti+1 (Φi(ek)ek) − W̃ti (Φi(ek)ek)
)2 )

= x2
P(Fi)

(
E

(+∞∑
k=1

Φi(ek)
(
W̃ti+1 (ek) − W̃ti (ek)

))2 )
,

then by continuity of the norm of L2(Ω,R), we can write it

= x2
P(Fi)

(
lim

N→+∞
E

(
N∑

k=1

Φi(ek)
(
W̃ti+1 (ek) − W̃ti (ek)

))2 )
,

then by item 1 and 3 of Definition 4.2, we write it

= x2
P(Fi)

(
lim

N→+∞

N∑
k=1

(Φi(ek))2 (ti+1 − ti)
)

= P(Fi) (ti+1 − ti) ‖Φ∗
i ‖

2
H .

For all x ∈ R, i, j ∈ {0, . . . , p− 1} such that i < j, we have by properties of real
Brownian motions that 1Fi1Fj (W̃ti+1 (Φ∗

i (x)) − W̃ti (Φ∗
i (x))) is independent of

(W̃tj+1 (Φ∗
i (x)) − W̃tj (Φ∗

i (x))) and

E

(
1Fi1Fj

(
W̃ti+1 (Φ∗

i (x))−W̃ti (Φ∗
i (x))

)(
W̃tj+1 (Φ∗

i (x))−W̃tj (Φ∗
i (x))

))
= 0

thus (
E

(
p−1∑
i=0

1Fi

(
W̃ti+1 (Φ∗

i (x)) − W̃ti (Φ∗
i (x))

))2 )

=
p−1∑
i=0

P(Fi) (ti+1 − ti) ‖Φ∗
i ‖

2
H =

p−1∑
i=0

∫ ti+1

ti

E1Fi‖Φ∗
i (x)‖2

Hdt

=
∫ T

0
E‖Φ∗(t)‖2

Hdt.
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Remark 4.5. In the previous proof, we can replace ‖Φ∗
i ‖2

H by x2‖Φi‖2
L2(H,R)

because both are equal to x2
+∞∑
k=1

(Φi(ek))2. It is then natural to replace x by 1 to

have the following definition of Itô integral against cylindrical Wiener processes
and the Itô isometry for elementary processes:

Definition 4.5. We define the Itô integral of elementary processes Φ ∈ ẼMP

with respect to the cylindrical process W̃ defined in Definition 4.2 by
∫ T

0
Φ(t)dW̃t :=

(∫ T

0
Φ(t)dW̃t

)
(1) (4.12)

and have the following Itô isometry:
(
E

(∫ T

0
Φ(t)dW̃t

)2 )
=

∫ T

0
E‖Φ(t)‖2

L2(H,R)dt (4.13)

Remark 4.6. The interest of defining the family (4.9) is more visible for the
general case of integrands Φ taking values in L2(H,K) where K is a separable
Hilbert space. Indeed, if (fj)j∈N∗ is an orthonormal basis of K, then the formula
(4.12) becomes:

∫ T

0
Φ(t)dW̃t :=

+∞∑
j=1

(∫ T

0
Φ(t)dW̃t

)
(fj) fj

Remark 4.7. Métivier and Pellaumail use Doléans measures and the space of
2-cylindrical martingales to finish their construction. I take an other way to
finish the construction of the Itô integral against cylindrical Wiener processes:
I slowly enlarge the space of integrands to the space, slightly modified, of ele-
mentary processes defined by [3, 28, 11], then to the space, slightly modified, of
elementary processes defined by [14], then to the space of progressive processes
taking values in L2(H,R).

5. A construction of the Itô integral against cylindrical Wiener
process, using suitable elementary processes and Itô isometries

Lemma 5.1. The linear span of ẼMP is the linear space of elementary processes
Φ : Ω × [0, T ] → L2(H,R) for which there exists p ∈ N

∗,
0 = t0 < t1 < · · · < ti < · · · < tp = T such that

Φ(t) =
p−1∑
i=0

Φi1]ti,ti+1](t) (5.1)

where
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1. ∀i, Φi : Ω → L2(H,R) is Fti-measurable, L2(H,R) being endowed with
its Borel σ-algebra

2. ∀i, Φi takes only a finite number of values in L2(H,R)

We denote this linear space ẼPR.

Proof of Lemma 5.1. Let Φ1,Φ2 ∈ ẼMP , we can always find a partition of [0, T ]
such that

Φ1(t) =
p−1∑
i=0

Φ1
i1F 1

i
1]ti,ti+1](t) and Φ2(t) =

p−1∑
i=0

Φ2
i1F 2

i
1]ti,ti+1](t)

thus

(Φ1 + Φ2)(t) =
p−1∑
i=0

Φi1]ti,ti+1](t)

with ∀i:
Φi = (Φ1

i + Φ2
i )1F 1

i ∩F 2
i

+ Φ1
i1F 1

i \F 2
i

+ Φ2
i1F 2

i \F 1
i

Thus ẼMP ⊂ ẼPR.
Now, let Φ ∈ ẼPR such that Φ(t) =

∑p−1
i=0 Φi1]ti,ti+1](t). To prove that ẼPR ⊂

span
(
ẼMP

)
, it suffices to prove that for each i ∈ {0, . . . , p − 1},Φi can be

written as a linear combination of processes of the form ϕ1F with ϕ ∈ L2(H,R)
and F ∈ Fti . But Φi takes only a finite number of values in L2(H,R), say
ϕi
j ∈ L2(H,R) on Ωi

j where
(
Ωi

j

)
j∈Ji is a finite partition of Ω and ϕi

j1
�= ϕi

j2
,

∀j1 �= j2 ∈ J i. Then
Φi =

∑
j∈Ji

ϕi
j1Ωi

j
. (5.2)

Φi being Fti-measurable, ∀j ∈ J i, Ωi
j = Φ−1

i

({
ϕi
j

})
∈ Fti .

Definition 5.1. We define the Itô integral of elementary processes Φ ∈ ẼPR =
span

(
ẼMP

)
with respect to the cylindrical process W̃ defined in Definition 4.2

by ∫ T

0
Φ(t)dW̃t :=

p−1∑
i=0

∑
j∈Ji

∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t (5.3)

with p ∈ N
∗, 0 = t0 < t1 < · · · < ti < · · · < tp = T and

Φ(t) =
p−1∑
i=0

⎛
⎝∑

j∈Ji

ϕi
j1Ωi

j

⎞
⎠1]ti,ti+1](t),

described in Lemma 5.1 and formula (5.2). The integrals on the right-hand side
of the equality (5.3) are defined in Definitions 4.4 and 4.5.
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Lemma 5.2. For elementary processes Φ ∈ ẼPR = span
(
ẼMP

)
and the cor-

responding Itô integral defined in Definition 5.1 belonging to L2(Ω,R), we have
the following Itô isometry:

(
E

(∫ T

0
Φ(t)dW̃t

)2 )
=

∫ T

0
E‖Φ(t)‖2

L2(H,R)dt (5.4)

Proof of Lemma 5.2. Using the notations of Definition 5.1, we have

(
E

(
p−1∑
i=0

∑
j∈Ji

∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)2)

= E

p−1∑
i=0

∑
j∈Ji

(∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)2

+
p−1∑
i=0

∑
j∈Ji

p−1∑
n=0

∑
m∈Jn

n 	=i or m 	=j

E

((∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)

×
(∫ T

0
ϕn
m1Ωn

m
1]tn,tn+1](t)dW̃t

))
.

In the last term, if i �= n, and e.g. i < n, then by independence and properties
of real Brownian motions, we have

E

((∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)
×
(∫ T

0
ϕn
m1Ωn

m
1]tn,tn+1](t)dW̃t

))

= E

(
1Ωi

j

(
W̃ti+1

(
ϕi ∗
j (1)

)
− W̃ti

(
ϕi ∗
j (1)

) )

× 1Ωn
m

(
W̃tn+1 (ϕn ∗

m (1)) − W̃tn (ϕn ∗
m (1))

))

= E

(
1Ωi

j

(
W̃ti+1

(
ϕi ∗
j (1)

)
− W̃ti

(
ϕi ∗
j (1)

) )

× 1Ωn
m

)
E

((
W̃tn+1 (ϕn ∗

m (1)) − W̃tn (ϕn ∗
m (1))

))
= 0.

In the same last term, if i = n and j �= m, then 1Ωi
j
(ω)1Ωi

m
(ω) = 0, ∀ω ∈ Ω.

Thus
(
E

(
p−1∑
i=0

∑
j∈Ji

∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)2)
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=
p−1∑
i=0

∑
j∈Ji

E

(∫ T

0
ϕi
j1Ωi

j
1]ti,ti+1](t)dW̃t

)2

+ 0

=
p−1∑
i=0

∑
j∈Ji

E

∫ T

0

∥∥∥ϕi
j1Ωi

j
1]ti,ti+1](t)

∥∥∥2

L2(H,R)
dt

=
p−1∑
i=0

∑
j∈Ji

E

∫ T

0

∥∥ϕi
j

∥∥2
L2(H,R) 1Ωi

j
1]ti,ti+1](t)dt =

∫ T

0
E‖Φ(t)‖2

L2(H,R)dt.

Lemma 5.3. ẼPR is a dense linear subspace of ẼGM defined in Definition 4.3
when the linear spaces are endowed with the norm

‖Φ‖ẼMP
:=

(
E

(+∞∑
k=1

∫ T

0
(Φ (t) ek)2 dt

))1/2

, ∀Φ ∈ ẼGM . (5.5)

Proof of Lemma 5.3. Let Φ ∈ ẼPR, it can be written

Φ(t) =
p−1∑
i=0

Φi1]ti,ti+1](t)

as in (5.1). Thus, using the decomposition (5.2) of Φi, we obtain

+∞∑
k=1

(Φi(ek))2 ≤
p−1∑
i=0

∑
j∈Ji

∥∥ϕi
j

∥∥2
L2(H,R) < +∞,

thus
ẼPR ⊂ ẼGM .

Now, let Φ ∈ ẼGM and Φi in the decomposition (4.4) of Φ with i �= −1. As
L2(H,R) is separable, there exists a countable dense subset of Φi(Ω), that we
will denote

{
hi
k, k ∈ N

∗}.
Let us define for m ∈ N

∗, ω ∈ Ω:

• dim(ω) := min
1≤k≤m

{∥∥hi
k − Φi(ω)

∥∥2
L2(H,R)

}
• kim(ω) := min

{
1 ≤ k ≤ m such that dim(ω) =

∥∥hi
k − Φi(ω)

∥∥2
L2(H,R)

}
• Hi

m(ω) := hki
m(ω)

then
hi
m(Ω) ⊂

{
hi

1, . . . , h
i
m

}
.

To prove the Fti -measurability of Hi
m, we start by

dim : (Ω,Fti) −→ (R,B (R))
ω �−→ min

1≤k≤m

{∥∥hi
k − Φi(ω)

∥∥2
L2(H,R)

}
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which is measurable because Φi is Fti-measurable, then

kim : (Ω,Fti) −→ ({1, . . . ,m},P ({1, . . . ,m}))
ω �−→ min

{
1 ≤ k ≤ m such that

dim(ω) =
∥∥hi

k − Φi(ω)
∥∥2
L2(H,R)

}

which is measurable because, denoting ϕi
k(ω) :=

∥∥hi
k − Φi(ω)

∥∥2
L2(H,R), for any

fixed k ∈ {2, . . . ,m}, we have
(
kim

)−1 ({k}) =
(
dim − ϕi

k

)−1 ({0})
⋂

1≤k̃<k

(
dim − ϕi

k̃

)−1 (R∗)

and (
kim

)−1 ({1}) =
(
dim − ϕi

1
)−1 ({0}) .

We finish by proving the Fti-measurability of each Hi
m, noticing that for all

s ∈ {1, . . . ,m}, (
Hi

m

)−1 ({
hi
s

})
=

(
kim

)−1 ({s}) .

Hence the sequence of processes (Hm)m∈N∗ whose elements are defined for each
m ∈ N

∗ by

Hm(ω, t) :=
p−1∑
i=0

Hi
m(ω)1]ti,ti+1](t),∀(ω, t) ∈ Ω × [0, T ] (5.6)

is a good candidate to converge towards Φ ∈ ẼGM with the norm ‖.‖ẼMP
because

its elements are in ẼPR. Indeed, we have

E

∫ T

0
‖Hm(t) − Φ(t)‖2

L2(H,R) dt =
p−1∑
i=0

(ti+1 − ti)E
∥∥Hi

m − Φi

∥∥2
L2(H,R)

and
m �→

∥∥Hi
m − Φi

∥∥2
L2(H,R)

is almost surely a decreasing sequence, uniformly bounded by 4M (M being the
bound in (4.5)). Moreover, by density of

{
hi
k, k ∈ N

∗} in Φi(Ω), we have

lim
m→+∞

dim = 0, almost surely

that is
lim

m→+∞

∥∥Hi
m − Φi

∥∥2
L2(H,R) = 0, almost surely

then the dominated convergence theorem allows us to conclude.
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Definition 5.2. By Lemma 5.3, the Itô isometry defined and proved in Lem-
ma 5.2 has a unique extension to the linear space ẼGM (see Definition 4.3)
for which the Itô integral is an isometry. Thus we can define the Itô integral of
elementary processes Φ ∈ ẼGM with respect to the cylindrical process W̃ defined
in Definition 4.2 by

∫ T

0
Φ(t)dW̃t := lim

n→+∞

∫ T

0
Φn(t)dW̃t (5.7)

where (Φn)n∈N
⊂ ẼPR is a sequence converging towards Φ ∈ ẼGM with the norm

‖.‖ẼMP
defined by (5.5)

Proposition 5.4. ẼGM is a dense linear subspace of

Λ2(H,R) :=
{

Φ : Ω × [0, T ] → L2 (H,R) progressively measurable

such that ‖Φ‖ẼMP
< +∞

}

when they are endowed with the norm ‖.‖ẼMP
defined in (5.5)

Proof of Proposition 5.4. It is an adaptation of the proof of proposition 2.2.
page 28 in [14], which is a generalization of the proof pages 26–28 in [26].

Let Φ ∈ Λ2(H,R), the sequence (Φn)n∈N
defined for each n ∈ N by:

Φn(ω, t) =
{ n

‖Φ(ω,t)‖L2(H,R)
Φ(ω, t) if ‖Φ(ω, t)‖L2(H,R) > n

Φ(ω, t) otherwise

has each term bounded by n in L2(H,R) and converges towards Φ with the
norm ‖.‖ẼMP

by the dominated convergence theorem.
We now assume that Φ ∈ Λ2(H,R) is bounded by M ∈ R+ for all (ω, t) ∈

Ω × [0, T ]. Then the sequence (Φn)n∈N
defined for each n ∈ N by

Φn(ω, t) := 2
∫ t

0
ρn(t− s)Φ(ω, s)ds, ∀t ∈ [0, T ], ω ∈ Ω

where (ρn)n∈N
is a sequence of mollifiers verifying for all n ∈ N:

• ρn ∈ C∞
c (R;R+)

• The support of ρn is included in [− 1
n ; 1

n ]

•
∫
R

ρn(s)ds = 1

• ρn is even, thus
∫ +∞

0
ρn(s)ds = 0.5,

is right-continuous for each fixed ω ∈ Ω, uniformely bounded by M ∈ R+, Ft-
measurable for each fixed t ∈ [0, T ], and converges towards Φ with the norm
‖.‖ẼMP

. Let us prove each point of this assertion.
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1. Let (tm)m∈N ⊂ [t̄;T ] converging towards t̄ ∈ [0, T [, then for each n ∈ N,∥∥Φn(tm) − Φn(t̄)
∥∥
L2(H,R)

= 2

∥∥∥∥∥
∫ T

0

(
1[0,tm](s)ρn(tm − s) − 1[0,t̄](s)ρn(t̄− s)

)
Φ(s)ds

∥∥∥∥∥
L2(H,R)

≤ 2
∫ T

0
1[0,t̄](s)

∣∣ρn(tm − s) − ρn(t̄− s)
∣∣ ‖Φ(s)‖L2(H,R) ds

+ 2
∫ T

0
1[t̄,tm](s)ρn(tm − s) ‖Φ(s)‖L2(H,R) ds.

The two last terms converge towards 0 when m → +∞ because of the
uniform continuity of ρ, the fact that Φ is uniformly bounded, and the use
of the dominated convergence theorem. Thus Φn is right-continuous.

2. For all (ω, t) ∈ Ω × [0, T ], we have∥∥∥∥
∫ t

0
ρn(t− s)Φ(ω, s)ds

∥∥∥∥
L2(H,R)

≤
∫ T

0
ρn(t− s) ‖Φ(ω, s)‖L2(H,R) ds ≤ M.

3. For any fixed t ∈ [0, T ], to show the Ft-measurability, we use the fact that

(ω, s) ∈ Ω × [0, t] �→ 1[0,t](s)ρn(t− s)Φ(ω, s)

is progressively measurable, thus Ft⊗B([0, t])-measurable. It is integrable
against the measure dP⊗ds, thus using Fubini’s theorem (see [8], theorem
1.5.2), we can conclude that Φn is Ft-measurable.

4. Let us fix n ∈ N, t ∈ [0, T ], n ∈ N, then

‖Φn − Φ‖2
ẼMP

= E

∫ T

0
‖Φn(t) − Φ(t)‖2

L2(H,R) dt

= E

∫ T

0

∥∥∥∥2
∫ t

0
ρn(t− s)Φ(s)ds− 2

∫ +∞

0
ρn(s)Φ(t)ds

∥∥∥∥
2

L2(H,R)
dt

= 4E
∫ T

0

∥∥∥∥
∫ t

0
ρn(s)Φ(t− s)ds−

∫ +∞

0
ρn(s)Φ(t)ds

∥∥∥∥
2

L2(H,R)
dt

≤ 4E
∫ T

0

(∫ +∞

0

∥∥(1[0,t](s)Φ(t− s) − Φ(t)
)
ρn(s)

∥∥
L2(H,R) ds

)2

dt

≤ E

∫ T

0

∫ 1/n

0

∥∥1[0,t](s)Φ(t− s) − Φ(t)
∥∥2
L2(H,R) 2ρn(s)dsdt

by Jensen inequality (because each 2ρn(s)ds is a probability measure on
(R+,B(R+))). Now we use corollary 1.3.1 of [8] to get sequences
(gm(ω, .))m∈N

⊂ C∞
c (]0;T [;L2(H,R)) which converges towards Φ(ω, .) in

L2(]0, T [;L2(H,R)) for each ω ∈ Ω. Then
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∫ T

0

∫ 1/n

0

∥∥1[0,t](s)Φ(ω, t− s) − Φ(ω, t)
∥∥2
L2(H,R) 2ρn(s)dsdt

≤ 6
∫ 1/n

0

∫ T

0

∥∥1[0,t](s)Φ(ω, t− s)−1[0,t](s)gm(ω, t− s)
∥∥2
L2(H,R) ρn(s)dtds

+ 6
∫ 1/n

0

∫ T

0

∥∥1[0,t](s)gm(ω, t− s) − gm(ω, t)
∥∥2
L2(H,R) ρn(s)dtds

+ 6
∫ T

0
‖gm(ω, t) − Φ(ω, t)‖2

L2(H,R) dt

≤ 6
∫ 1/n

0

∫ T

0
‖Φ(ω, t) − gm(ω, t)‖2

L2(H,R) dtρn(s)ds

+ 6
∫ 1/n

0

∫ T

0

∥∥1[0,t](s)gm(ω, t− s) − gm(ω, t)
∥∥2
L2(H,R) ρn(s)dtds

+ 6
∫ T

0
‖gm(ω, t) − Φ(ω, t)‖2

L2(H,R) dt.

The first and last terms of the last three terms will be less than any ε > 0
for m large enough. Then, once the m ∈ N is fixed, we use the fact that
each gm(ω, .) is uniformly continuous on ]0, T [ to see that the second term
will be less than ε > 0 for n large enough.

Definition 5.3. By Proposition 5.4, the Itô isometry defined in Lemma 5.2 and
extended in Definition 5.2 has a unique extension to the linear space Λ2(H,R)
(see Proposition 5.4 for the definition of Λ2(H,R)) for which the Itô integral is
an isometry. Thus we can define the Itô integral of Φ ∈ Λ2(H,R) with respect
to the cylindrical process W̃ defined in Definition 4.2 by∫ T

0
Φ(t)dW̃t := lim

n→+∞

∫ T

0
Φn(t)dW̃t (5.8)

where (Φn)n∈N
⊂ ẼGM is a sequence converging towards Φ ∈ Λ2(H,R) with the

norm ‖.‖ẼMP
defined by (5.5).

To conclude this section, we can assert the following

Theorem 5.5. The Itô integral against cylindrical Wiener processes, constructed
starting from the elementary processes ẼMP and extended to integrands belonging
to Λ2(H,R) by Itô isometries, is the same as the Itô integral against cylindri-
cal Wiener processes constructed starting from the elementary processes ẼPR or
constructed starting from the elementary processes ẼGM or constructed starting
from the elementary processes ẼHai.

Proof of Theorem 5.5. We have

span(ẼMP ) = ẼPR ⊂ ẼGM ⊂ ẼHai ⊂ span
(
ẼMP

)
= Λ2(H,R),

thus
span

(
ẼMP

)
= ẼPR = ẼGM = ẼHai
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Remark 5.1. We can take in (5.8), (Φn)n∈N
in any of the spaces span(ẼMP ) =

ẼPR, ẼGM , ẼHai.

6. White noise theory and Itô Integral against cylindrical Wiener
process

6.1. Hida’s white noise in dimension one

6.1.1. The fundamental questions related to white noise theory

If the question of the definition of cylindrical Wiener processes arise in infinite
dimension, the question of definition of white noise arise already in dimension 1.
Indeed, if B(t) is a standard real Brownian motion, it is well known that it is
almost surely nowhere differentiable with respect to the time variable (see The-
orem 2.2.1 in [13]). The Gaussian white noise related to B(t) is Ḃ(t), that is the
time derivative of B(t). Thus to see how the theory of white noise overcome the
difficulty of the existence of cylindrical Wiener processes in infinite dimension,
we should first see how they overcome the difficulty of the formal derivative
Ḃ(t). To understand the philosophy, we can take the stochastic balance law
with A ∈ C2(R,R) and Φ : R → R a sublinear function:

du(x, t) + ∂xA(u(x, t))dt = Φ(u(x, t))dB(t), x ∈ R, t ∈ [0, T ] ⊂ R+,

whose solutions u(x, t) are written with Itô integrals against B(t) (see [6]). The
white noise theory prefers to write the equation

∂tu(x, t) + ∂xA(u(x, t)) = Φ(u(x, t))Ḃ(t), x ∈ R, t ∈ [0, T ] ⊂ R+,

which is also the deterministic way to write balance laws (see [6]).
For the first equation, we use test functions with respect to the space variable

x, while, as in the deterministic way, test functions of time and space variables
should be used in the second equation.

For the first equation, ∫ T

0
g(x)Φ(u(x, t))dB(t)

has to be define for g ∈ C∞
c (R), while for the second equation
∫ T

0
g(x)ϕ(t)Φ(u(x, t))Ḃ(t)dt

could be, at first sight, defined for g ∈ C∞
c (R) and ϕ ∈ C∞

c [0, T ) (with T > 0).
An integration by parts would give

∫ T

0
g(x)ϕ(t)Φ(u(x, t))Ḃ(t)dt =
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−
∫ T

0
g(x)ϕ̇(t)Φ(u(x, t))B(t)dt−

∫ T

0
g(x)ϕ(t)∂Φ(u(x, t))

∂t
B(t)dt (6.1)

but the solution u(x, t) is in general not differentiable with respect to the time
variable in the classical sense. So the question of the construction of the stochas-
tic integral is replaced by the questions

• which space of test functions should we use?
• what is the topological dual of the space of test functions to which Ḃ(t)

and Φ(u(x, t))Ḃ(t) must belong?

to make the Lebesgue integral∫ T

0
g(x)ϕ(t)Φ(u(x, t))Ḃ(t)dt

rigorous. Let us take the constant function Φ = 1, then we have a possible
definition of Ḃ(t), that is the linear mapping

ϕ ∈ C∞
c ([0, T )) �→ 〈Ḃ, ϕ〉 := −

∫ T

0
ϕ̇(t)B(t)dt. (6.2)

If we consider a non-constant function Φ : R → R in (6.1), the deterministic
space of test functions C∞

c ([0, T )) is not working for the functional
Φ(u(x, t))Ḃ(t).

In his conference paper [20], Hida explains that he is taking a bigger space
of test functions, that is S(R) the Schwartz space of rapidly decreasing smooth
functions taking values on R which includes C∞

c ([0, T )), hence he considers Ḃ
as a random variable taking its values in the dual space S ′(R) of S(R).

He considers the linear mapping ϕ ∈ S(R) �→ 〈Ḃ, ϕ〉 as a stochastic process
indexed by the test functions ϕ ∈ S(R). He proves that it is a Gaussian stochas-
tic process for which each random variable 〈Ḃ, ϕ〉 has for characteristic function

x ∈ R �→ E exp(i〈Ḃ, ϕ〉x) = exp
(
−1

2‖ϕ‖
2
L2(R) × x2

)
, (6.3)

and defines the characteristic functional of this stochastic process which is a
generalization of the characteristic function as:

ϕ ∈ S(R) �→ E exp(i〈Ḃ, ϕ〉) :=
∫
S′(R)

exp(i〈X,ϕ〉)μ(dX) (6.4)

where μ is a probability measure on the Borel sets of S ′(R). Taking x = 1
in (6.3), the equation of unknown μ follows:∫

S′(R)
exp(i〈X,ϕ〉)μ(dX) = exp

(
−1

2‖ϕ‖
2
L2(R)

)
. (6.5)

By the Bochner-Milnos theorem (see theorem 2.1.1. in [22]), it has a unique so-
lution. This solution is a Gaussian measure which is the probability distribution
of the stochastic process Ḃ indexed by S(R).
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As each element x ∈ S ′(R) can be viewed as a realization of the stochastic
process Ḃ, and each Borel set A ⊂ S ′(R) can be measured by the Gaussian
measure μ solution of (6.5), the functionals of Ḃ can be written ϕ(x) with
ϕ : S ′(R) → R. That is why the Hilbert space L2(S ′(R), μ) is central in the
theory of white noise.
Remark 6.1. When we write L2(S ′(R), μ), we mean the square integrable ran-
dom variables defined on the probability space (S ′(R),B (S ′(R)) , μ) where
B (S ′(R)) denotes the Borel σ-algebra on S ′(R) equipped with the weak star
topology.
Remark 6.2. The one dimensional standard real Brownian motion at time t ∈
R+ is the element of L2 (S ′(R), μ) defined as the action of ω ∈ S ′(R) on the
indicator function 1[0,t] of the time interval [0, t]:

B(t)(ω) := ω
(
1[0,t]

)
, ∀ω ∈ S ′(R). (6.6)

See the very pedagogical article by Melnikova and Alshanskiy [24] for more
details.

6.1.2. The answers of the fundamental questions related to white noise theory

According to Kondratiev and Streit in [23], according to Holden, Øksendal,
Ubøe, Zhang in [22], the spaces of test functions to be used to solve stochastic
(partial) differential equations are the Kondratiev spaces of stochastic test func-
tions (S)ρ defined in 2.3.2 a) in [22], the corresponding topological dual spaces
of test functions to be used to solve stochastic (partial) differential equations
are the Kondratiev spaces of stochastic distributions (S)−ρ defined in 2.3.2 b)
in [22]. Let us write their definitions using Hermite polynomials.

Let {ξk}k∈N∗ ⊂ S(R) be the orthonormal basis of L2(R) consisting of the
Hermite functions defined by

ξk(x) := π−1/4((k − 1)!)−1/2 exp(−x2/2)hk−1(x),∀x ∈ R (6.7)

where {hn}n∈N are the Hermite polynomials defined by

hn(x) := (−1)n exp(x2/2) dn

dxn
exp(−x2/2),∀x ∈ R.

As in [22], let us regard multi-indices as elements of the subspace J ⊂ N
N

∗ of
sequences α = (α1, α2, . . .) with elements αi ∈ N such that only finitely many
αi �= 0. Let {Hα}α∈J be the orthogonal basis of L2 (S ′(R), μ), consisting of the
stochastic Hermite polynomials defined ∀α ∈ J by

Hα(ω) :=
∏
k∈N∗

hαk
(w(ξk)), ∀ω ∈ S ′(R) (6.8)

whose norms in L2 (S ′(R), μ) are verifying

‖Hα‖2 = α! = α1!α2! · · ·
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Definition 6.1. Let ρ ∈ [0, 1], the Kondratiev space (S)ρ of R-valued stochastic
test functions consists of those

f =
∑
α∈J

cαHα ∈ L2(S ′(R), μ)

with cα ∈ R such that ∀q ∈ N
∗:

∑
α∈J

(
(α!)1+ρ

c2α
∏
j∈N∗

(2j)qαj

)
< +∞.

Definition 6.2. Let ρ ∈ [0, 1], the corresponding Kondratiev space (S)−ρ of
stochastic distributions consists of the formal expansions

f =
∑
α∈J

bαHα

with bα ∈ R such that there exists q ∈ N
∗ which verifies:

∑
α∈J

(
(α!)1−ρ

b2α
∏
j∈N∗

(2j)−qαj

)
< +∞.

Remark 6.3. At fixed ρ ∈ [0, 1], we obtain the inclusions

(S)ρ ⊂ L2(S ′(R), μ) ⊂ (S)−ρ

with (S)ρ1 ⊂ (S)ρ2 and (S)−ρ2 ⊂ (S)−ρ1 for any 0 ≤ ρ2 ≤ ρ1 ≤ 1. The spaces
(S)0 and (S)−0 are called the Hida spaces and are denoted by him (S) and (S)∗
respectively (see [21]).

6.2. Hida’s white noise in infinite dimension

Let us consider a separable Hilbert space (H, 〈., .〉H) endowed with an orthonor-
mal basis (ek)k∈N∗ .

6.2.1. The Kondratiev spaces for H-valued stochastic test functions and
stochastic distributions

In [10], Filinkov and Sorensen start to generalize the one dimensional case by
proving that the family {Hα ⊗ ek}α∈J ,k∈N∗ is an orthogonal basis of
L2(S ′(R), μ,H) which is the set of all square integrable random variables from
S ′(R) to H, where each Hα ⊗ ek is defined by

Hα ⊗ ek(ω) := Hα(ω)ek, ∀ω ∈ S ′(R).

The two definitions follows naturally:
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Definition 6.3. Let ρ ∈ [0, 1], the Kondratiev space (S)ρ(H) of H-valued
stochastic test functions consists of those

f =
∑
α∈J

+∞∑
k=1

cα,kHα ⊗ ek ∈ L2(S ′(R), μ,H)

with cα,k ∈ R such that ∀q ∈ N
∗:

∑
α∈J

+∞∑
k=1

(
(α!)1+ρ

c2α,k
∏
j∈N∗

(2j)qαj

)
< +∞.

Definition 6.4. Let ρ ∈ [0, 1], the corresponding Kondratiev space (S)−ρ(H)
of stochastic distributions consists of the formal expansions

f =
∑
α∈J

+∞∑
k=1

bα,kHα ⊗ ek

with bα,k ∈ R such that there exists q ∈ N
∗ which verifies:

∑
α∈J

+∞∑
k=1

(
(α!)1−ρ

b2α,k
∏
j∈N∗

(2j)−qαj

)
< +∞. (6.9)

Remark 6.4. For all 0 ≤ ρ2 ≤ ρ1 ≤ 1, we obtain the inclusions

(S)ρ1(H) ⊂ (S)ρ2(H) ⊂ L2(S ′(R), μ,H) ⊂ (S)−ρ2(H) ⊂ (S)−ρ1(H),

Remark 6.5. The notations (S)ρ(H) and (S)−ρ(H) are taken from [24]. We also
take their construction of a sequence of independent Brownian motions in the
next section.

6.2.2. The cylindrical Wiener process as an element of the Kondratiev-Hida
space (S)−0(H) = (S)∗(H)

Let n : N∗ × N
∗ → N

∗ be the Hopcroft and Ullman pairing function defined by

n(i, k) := 1
2(i + k − 2)(i + k − 1) + k, ∀(i, k) ∈ N

∗ × N
∗.

It is a bijection between N
∗ and the Cartesian product N

∗ × N
∗.

Let L2(R)k be the closure of the linear span of the set
{
ξn(i,k), i ∈ N

∗} which
gives the orthogonal direct sum

L2(R) =
+∞⊕
k=1

L2(R)k.
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Let Tk be the isometric isomorphism from L2(R) to L2(R)k defined by

Tk(f) =
+∞∑
i=1

∫
R

f(y)ξi(y)dy ξn(i,k), ∀f ∈ L2(R),

then, the sequence
{
βk(t)

}
k∈N∗ defined for each k ∈ N

∗, t ∈ R+ by the action
of ω ∈ S ′(R) on the image of the indicator function 1[0,t] under Tk

βk(t)(ω) := ω
(
Tk

(
1[0,t]

))
, ∀ω ∈ S ′(R) (6.10)

is a sequence of independent standard real Brownian motions. (see [24] for the
proof).

The formal Wiener process (2.1) can be rewritten with this sequence:

W (ω, t) =
+∞∑
k=1

βk(ω, t)ek =
+∞∑
k=1

ω
(
Tk

(
1[0,t]

))
ek

=
+∞∑
k=1

ω

(+∞∑
i=1

∫ t

0
ξi(y)dy ξn(i,k)

)
ek =

+∞∑
k=1

+∞∑
i=1

∫ t

0
ξi(y)dy ω

(
ξn(i,k)

)
ek

=
+∞∑
k=1

+∞∑
i=1

∫ t

0
ξi(y)dy Hεn(i,k)(ω) ek (6.11)

with εn(i,k) = (0, 0, . . . , 0, 1, 0, . . . , 0, . . .), the 1 being at the n(i, k)th position.
Then, denoting

θk(j)(t) :=
{ ∫ t

0 ξi(y)dy if ∃i ∈ N
∗ such that n(i, k) = j

0 otherwise.

it can we rewritten

W (ω, t) =
+∞∑
k=1

+∞∑
j=1

θk(j)(t) Hεj (ω) ek =
∑
εj∈J

+∞∑
k=1

θk(j)(t) Hεj ⊗ ek(ω)

=
+∞∑
j=1

+∞∑
k=1

θk(j)(t) Hεj ⊗ ek(ω) =
+∞∑
j=1

∫ t

0
ξĩ(j)(y)dy Hεj ⊗ ek̃(j)(ω) (6.12)

where ∀j ∈ N
∗, we denote n−1(j) :=

(̃
i(j), k̃(j)

)
with n−1 the inverse of the

pairing function n. Using the fact that sup
y∈R

|ξi(y)| = O
(
i−1/12

)
, we can check

that ∀t ∈ R+, the condition (6.9) is verified. Indeed, for q = 2, we have
+∞∑
j=1

(∫ t

0
ξĩ(j)(y)dy

)2

(2j)−q
< +∞,

which means that the cylindrical Wiener process W (t) belong to the Kondratiev
space (S)−0 (H). As we already know, it does not belong to L2(S ′(R), μ,H).
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Remark 6.6. If the formal cylindrical Wiener process (6.11) can be viewed as a
particular case of the formal cylindrical Wiener process (2.1) for the probability
space (S ′(R), μ), we can not extend the comparison, because the process (2.1)
lives in a bigger space by the use of a Hilbert-Schmidt embedding. But the
inclusion L2(S ′(R), μ,H) ⊂ (S)−0(H) is not Hilbert-Schmidt (see [10] for the
topology of (S)−0(H)).
Remark 6.7. We have an example of cylindrical Wiener process defined in Def-
inition 4.2 by Gawarecki and Mandrekar with the process

W̃ (ω, t, h) =
+∞∑
k=1

< h, ek >H βk(ω, t)

in the particular case where ω ∈ (S ′(R), μ). The series converges in L2(S ′(R), μ).
Remark 6.8. From the formal process (6.11), we can create a Q-Wiener pro-
cess defined on the probability space (S ′(R), μ) as defined in Definition 2.2, by
giving weights to each term of the series as we have already done in (2.2): by
Proposition 2.2

(ω, t) �→
+∞∑
k=1

βk(ω, t)
1
k
ek

is a Q-Wiener process for the bounded linear operator Q : H → H defined
∀k ∈ N

∗ by Q(ek) := 1
k2 ek.

6.3. The Wick product and its link with Itô integral

The wick product gives a bridge between Itô integral against cylindrical Wiener
process and cylindrical white noise. We follow the definitions and results of [10]
and [24].

Definition 6.5. Let G ∈ (S)−1 (H) and F ∈ (S)−1 (L2(H,R)). H being en-
dowed with the orthonormal basis (ek)k∈N∗ , the separable Hilbert space L2(H,R)
is endowed with the orthonormal basis (< ek, . >H)k∈N∗ . F and G can be written

F =
∑
α∈J

+∞∑
k=1

cα,kHα⊗ < ek, . >H , G =
∑
γ∈J

+∞∑
k=1

dγ,kHγ ⊗ ek,

with cα,k, dγ,k ∈ R. The stochastic Wick product of F and G is defined by the
formal expansion

F �G :=
∑
δ∈J

+∞∑
k=1

⎛
⎝ ∑

α+γ=δ

cα,kdγ,k

⎞
⎠Hδ. (6.13)

In [10], Filinkov and Sorensen prove that F �G ∈ (S)−1.
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Definition 6.6. The derivative with respect to the time variable of the formal
cylindrical Wiener process (6.11) is the H-valued process

Ẇ (ω, t) :=
+∞∑
k=1

+∞∑
i=1

ξi(t) Hεn(i,k)(ω) ek (6.14)

which can also be written with the notations of (6.12) as

Ẇ (ω, t) =
+∞∑
j=1

ξĩ(j)(t) Hεj ⊗ ek̃(j)(ω). (6.15)

This process is called the cylindrical white noise.

In [10], Filinkov and Sorensen prove that ∀t ∈ R+, Ẇ (t) ∈ (S)−0 (H). They
also prove that if F ∈ (S)−0 (L2(H,R)) then ∀t ∈ R+, F � Ẇ (t) ∈ (S)−0.

We end by this beautiful formula taken from [24] (see their theorem 5.2),
which is not given in its most general form, but in a sufficient form to understand
how the theories of Itô integral and white noise come together.

Theorem 6.1. Let W (t) the H-valued cylindrical Wiener process defined by
(6.12) on the probability space (S ′(R),B (S ′(R)) , μ) endowed with a complete,
right-continuous filtration (Ft)t∈[0,T ] (where [0, T ] ⊂ R+) for which the se-
quence of independent real Brownian motions (6.10) is adapted. Let Y (t) a
process belonging to Λ2(H,R) defined in Proposition 5.4 in the particular case
(Ω,F ,P) = (S ′(R),B (S ′(R)) , μ). Then, we have

∫ T

0
Y (t)dW (t) =

∫ T

0
Y (t) � Ẇ (t)dt

where the integral of the right-hand side of the equality is a Lebesgue integral
with respect to the time variable.

Remark 6.9. Y (t) ∈ Λ2(H,R) implies that for almost every (fixed) t ∈ [0, T ],
Y (t) ∈ L2(S ′(R), L2(H,R)) ⊂ (S)−0 (L2(H,R)). That is why the Wick product
of Y (t) and Ẇ (t) exists for almost every t ∈ [0, T ].
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