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Abstract: O’nyong-nyong virus (ONNV) is a member of the reemerging arthritogenic alphaviruses
that cause chronic debilitating polyarthralgia and/or polyarthritis via their tropism for the mus-
culoskeletal system. Thus, the discovery of dual antiviral and anti-inflammatory drugs is a great
challenge in this field. We investigated the effects of the common plant-derived alkaloids berberine
(isoquinoline), matrine (quinolizidine), and tabersonine (indole) at a non-toxic concentration (10 µM)
on a human fibroblast cell line (HS633T) infected by ONNV (MOI 1). Using qRT-PCR analyses, we
measured the RNA levels of the gene coding for the viral proteins and for the host cell immune
factors. These alkaloids demonstrated multifocal effects by the inhibition of viral replication, as well
as the regulation of the type-I interferon antiviral signaling pathway and the inflammatory mediators
and pathways. Berberine and tabersonine proved to be the more valuable compounds. The results
supported the proposal that these common alkaloids may be useful scaffolds for drug discovery
against arthritogenic alphavirus infection.

Keywords: O’nyong-nyong virus; natural products; alkaloids; antiviral; anti-inflammatory

1. Introduction

Alphaviruses belong to the enveloped single-stranded positive RNA viruses of the
Togaviridae family; they are globally reemerging arthropod-borne viruses (arboviruses)
transmitted to mammalians by mosquitoes. They typically cause fever, rash, and/or
myalgia [1–3]. Alphavirus genomes mainly consist of genes that code for a capsid protein
(C), two envelope glycoproteins (E1/E2), and four non-structural proteins (nsP1-nsp4) [4].
O’nyong-nyong virus (ONNV) was first isolated during a major epidemic in East Africa
in 1959–1962, and it spread in West Africa with two other outbreaks in 1996 and 2002 [5].
ONNV is a member of the Old World alphaviruses (vs. the New World alphaviruses), with
Barmah Forest virus (BFV), Chikungunya virus (CHIKV), Ross River virus (RRV), Mayaro
virus (MAYV), Sindbis virus (SINV), and Semliki Forest virus (SFV) [6,7]. The latter are
referred to as arthritogenic alphaviruses since they are characterized by the debilitating
polyarthralgia and/or polyarthritis resulting from their tropism for muscle, bone, and joint
tissue and the resulting cell inflammatory infiltration [8–11]. Fibroblasts are the main target
cells during alphavirus infection [12–14]. Formerly described as structural cells, fibroblasts
are now well established as immunocompetent cells that detect pathogens and activate
defensive pathways [15].
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During infection, the host immune system operates via a complex array of mechanisms
for viral detection and clearance, as well as for the protective inflammatory response that
is normally regulated to prevent the aforementioned disorders [16]. After the granting of
viral entry by the receptors, especially matrix remodeling-associated 8 (MxRa8) [17], the
innate immune antiviral response and pattern recognition receptors (PRRs) are engaged.
Viral RNA (single-stranded) can be detected by the cytosolic retinoic acid-inducible gene
I (RIG-I)-like receptors (RLRs) to promote the expression of various host anti-alphaviral
defenses, including the essential type-I interferons (IFNs). Hence, the downstream signals
from the PRRs involve the activation of interferon regulatory factors (IRFs), leading to
the production of IFNs and, subsequently, the signal transducer and activator of tran-
scription (STAT)-dependent production of interferon-stimulated genes (ISGs) [18]. The
immune response is achieved by a range of inflammatory mediators for the recruitment of
other defensive cells and/or the infiltration of immune cells that may cause severe inflam-
mation. The critical pro-inflammatory mediators include the monocyte chemoattractant
protein-1 (MCP-1/CCL2) [19]; the T helper type 1 (Th1)-cytokines tumor necrosis factor
alpha (TNF-α) and interleukin-8 (IL8/CXCL8) [20]; the CCL5 chemokine, also known as
RANTES (Regulated upon Activation, Normal T cell Expressed, and Secreted) [21]; and
prostaglandin PGE2 [22]. The overall immune response against alphaviruses is consistent
with the activation of several canonical inflammatory pathways, including those related to
mitogen-activated protein kinase (MAPK); the nuclear factor kappa-B (NF-κB); the Janus
kinase/signal transducer and activator of transcription (JAK-STAT) [23]; the phosphatidyli-
nositol 3-kinase/protein kinase B (PI3K/AKT) [24]; or cyclooxygenase-2 (COX-2) [22].
Additionally, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflam-
masome may trigger caspase-1 activation and, consequently, the production of the highly
inflammatory IL-1β [25,26].

The management of arthritogenic alphavirus infection currently consists of symptom
relief by conventional analgesics (e.g., paracetamol) and non-steroidal anti-inflammatory
drugs (NSAIDs), such as aspirin, during the acute phase or alleviation of arthritic disorders
during the chronic stage using disease-modifying antirheumatic drugs (DMARDs) such as
methotrexate [27,28]. Despite continuous research efforts, there are currently no specific
treatment or vaccines against alphavirus infection [29,30].

Alkaloids are nitrogen-containing secondary metabolites, mainly found in plants.
They display a wide range of biological activities, including, notably, those against the most
prominent human health disorders (e.g., cancer, infection, or inflammation) [31]. Through
computational studies, plant-derived alkaloids have been identified as potential nsP2 pro-
tease inhibitors of various alphaviruses [32]. With regard to the most frequently studied
CHIKV infection, in vitro studies established the inhibitory effects of the cephalotaxine
alkaloid harringtonine on viral replication [33], the isoquinoline berberine on the nucleocap-
sid assembly [34], the phenanthridine-derived lycorine on the viral translation [35], and the
steroidal alkaloid tomatidine on both the viral replication and viral protein translation [36].

In addition to this common antiviral strategy based on virus-targeting inhibitors
(‘direct-acting antivirals’) or host-targeting inhibitors to abrogate the essential host cell
functions for the virus life cycle (‘host-targeting antivirals’), immunomodulatory drugs
have gained growing interest as regulators of the immune response [37,38]. In primary
human synovial fibroblast cells (HSF) infected by ONNV, we demonstrated the antiviral
and immunomodulatory activity of the anticancer drug Irinotecan (CPT-11), derived from
the natural quinoline alkaloid camptothecin [39]. As we recently discussed in a literature
survey of in vitro and/or in vivo robust experimental data, some common plant-derived
alkaloids have dual antiviral and immunomodulatory effects on both RNA and DNA
viruses, as well as on inflammatory-related diseases, including cancer and rheumatic
disorders [40]. This prompted us to investigate the potential multifocal effects of three
structurally representative alkaloids; these are depicted in Figure 1. Their effects were
compared to that of the 4-aminoquinoline chloroquine as a reference for antiviral and
immunomodulatory effects [41].
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Figure 1. Chemical structures.

Berberine (BER) is an isoquinoline alkaloid derived from various plants, mostly from
the genus Berberis (Berberidaceae family), with a wide range of biological activities [42,43].
The antiviral potential of BER has been extended to CHIKV, SFV, and SINV [44,45]. Matrine
(MAT) is a quinolizidine alkaloid isolated from various plants of the genus Sophora L.
(Fabaceae family) with biological activities, including anti-inflammatory and antiviral
effects, but no specific anti-alphaviral activity has yet been described [46]. Tabersonine
(TAB) is an indole alkaloid isolated from the medicinal plant Catharanthus roseus (L.) G.Don
(Apocynaceae family), which is endowed with potent anti-inflammatory activities [47].

2. Results
2.1. Cytotoxicity

The viability of HS633T cells was assessed under infection by ONNV (MOI 1) or
treatment by each of the three studied alkaloids (10 µM) in comparison with CHL (15 µM).
The microscopy images (Figure 2A) showed morphological changes in the cells only when
they were infected by ONNV. In the LDH and MTT assays, as shown in Figure 2B, no
significant LDH release from the supernatants during infection or chemical treatment was
detected, and the mitochondrial activity was not significantly affected. Thus, our further
experiments were performed using the validated non-toxic concentrations.
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Figure 2. HS633T cell viability: (A) microscopy (×200). (B) Cells were infected with ONNV or treated
with chloroquine (CHL), berberine (BER), matrine (MAT), or tabersonine (TAB) for 24 h. Release
of LDH and mitochondrial reductase activity were measured using colorimetric methods. Values
are expressed as mean ± SEM of three independent experiments. p-value was calculated using the
Bonferroni multiple comparison test (****: p < 0.0001) when compared with untreated cells (CTRL).
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2.2. Effects of Three Alkaloids on the Viral Replication

We performed qRT-PCR to analyze several RNA coding expressions of the viral proteins
during infection alone or together with the different chemical treatments. As shown in Figure 3A,
the expressions of all the studied viral RNA were significantly upregulated during ONNV infec-
tion (E1: 1.33 × 10−1 ± 7.69 × 10−2, ****: p < 0.0001; E2: 1.70 × 10−2 ± 9.83 × 10−3, ***: p < 0.001;
capsid: 6.13 × 10−5 ± 3.54 × 10−5, ***: p < 0.0001; and nsP2: 2.35 × 10−3 ± 2.39 × 10−4,
****: p < 0.0001) when compared to the control cells (CTRL). When compared to the infected
untreated cells (ONNV alone), chloroquine (CHL) significantly decreased the expression of all the
studied viral genes (E1: 3.76 × 10−4 ± 2.17 × 10−4, ***: p < 0.001; E2: 1.00 × 10−3 ± 5.78 × 10−4,
***: p < 0.001; capsid: 1.60 × 10−5 ± 9.23 × 10−6, **: p < 0.01; and nsP2: 7.57 × 10−6 ± 5.62 × 10−6,
*: p < 0.05). Downregulation of the viral E1 and E2 genes occurred with almost all
the chemical treatments, but counterintuitively, MAT significantly increased the expres-
sion of the capsid and nsP2 genes. The above results were consistent with the sig-
nificant reduction in the viral progeny production (expressed as plaque-forming units,
PFUs) (Figure 3B) observed upon treatment by CHL (8.21 × 104 ± 2.13 × 104 PFU.mL−1,
####: p < 0.0001); BER ((9.33 × 106 ± 3.53 × 106 PFU.mL−1, #: p < 0.05); and TAB
(1.68 × 107 ± 7.20 × 106 PFU.mL−1, #: p < 0.05) when compared to the non-treated
and infected cells (ONNV).
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Figure 3. Downregulation of expression of viral genes and reduction in progeny production on
HS633T cells. (A) HS633T cells were infected with ONNV (MOI 1) and/or co-treated with chloroquine
(CHL), berberine (BER), matrine (MAT), or tabersonine (TAB) for 24 h. RNA was collected and viral
E1, E2, capsid, and nsP2 gene expression was determined by qRT-PCR analysis. (B) Plaque assays
were performed on supernatants of the same treated cells. Values are expressed as mean ± SEM of
three independent experiments. p-value was calculated using the Bonferroni multiple comparison
test: ***: p < 0.001, ****: p < 0.0001 when compared to control cells (CTRL) and #: p < 0.05, ##: p < 0.01,
###: p < 0.001, ####: p < 0.0001 when compared to infected cells (ONNV).
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2.3. Effects of Infection and Three Alkaloids on the Antiviral Type-I Interferon Signaling Pathway

The host cell intrinsic antiviral response was first studied from its initiation with the
viral receptor MxRa8, the PRR RIG-I, the downstream signals of the IFNAR-dependent
pathways (IFN-β), including the IRF3-dependent JAK/STAT pathway, and the resulting
production of ISG-15.

As shown in Figure 4, the gene expression level of MXRA8 in non-infected cells (CTRL
relative to the housekeeping gene GAPDH) was 1.75 × 10−4 ± 3.34 × 10−5. This expression
was significantly upregulated by ONNV infection (4.13 × 10−4 ± 2.39 × 10−5, **: p < 0.01)
by a factor (fold change, FC) of 2.3. The RIG-I expression was 1.49 × 10−2 ± 1.29 × 10−3 in
the CTRL and was upregulated (FC: 9.5) in response to ONNV (1.42 × 10−1 ± 5.51 × 10−3,
****: p < 0.0001).
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Figure 4. Regulation of the immune antiviral response. HS633T cells were infected with ONNV
(MOI 1) and/or co-treated with chloroquine (CHL), berberine (BER), matrine (MAT), or tabersonine
(TAB) for 24 h. RNA was collected and the receptors (MxRa8 and RIG-I), interferon regulatory factors
(IRF3), signal transducer and activator of transcription 1 (STAT1), antiviral IFN-β and ISG15, and
PI3K and AMPK gene expression was determined by qRT-PCR analysis. Values are expressed as
mean ± SEM of three independent experiments. p-value was calculated using the Bonferroni multiple
comparison test: *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 when compared to non-infected
cells (CTRL) and #: p < 0.05, ##: p < 0.01, ###: p < 0.001, ####: p < 0.0001 when compared to infected
cells (ONNV).
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When compared to the infected cells (ONNV), the MXRA8 gene expression was down-
regulated upon treatment by CHL (2.08−4 ± 5.55 × 10−5, ##: p < 0.01), BER
(3.17 × 10−4 ± 1.63 × 10−5, #: p < 0.05), and TAB (2.81 × 10−4 ± 1.33 × 10−5, #: p < 0.05), but
it was drastically increased when using MAT (1.01 × 10−3 ± 1.00 × 10−4, ####: p < 0.0001),
with an FC that was 3-fold higher when compared to ONNV. The RIG-I gene expression
was downregulated by the all the tested compounds (CHL: 2.07 × 10−2 ± 1.14 × 10−2,
####: p < 0.001; BER: 5.09× 10−2 ± 9.29× 10−3, ####: p < 0.0001; MAT: 7.81× 10−2 ± 4.88× 10−3,
###: p < 0.001; TAB: 5.07 × 10−2 ± 2.86 × 10−3, ####: p < 0.0001).

When compared to the control cells (CTRL, 1.75 × 10−4 ± 3.34 × 10−5), ONNV
increased the gene expression of IRF3 (1.95 × 10−4 ± 4.64 × 10−5, *: p < 0.05; FC: 9.9);
IFN-β (CTRL: 2.67 × 10−5 ± 5.25 × 10−6; ONNV: 5.63 × 10−5 ± 2.83 × 10−6, ***: p < 0.001;
FC: 2.1); and ISG-15 (CTRL: 3.06 × 10−5 ± 4.75 × 10−6; ONNV: 2.61 × 10−4 ± 6.47 × 10−5,
*: p < 0.05; FC: 8.5), but it reduced the gene expression of STAT1 (CTRL: 8.11 × 10−2 ± 6.70× 10−3;
ONNV: 7.00 × 10−3 ± 2.39 × 10−3, ****: p < 0.0001; FC: 0.09).

In comparison with the infected cells (ONNV), we observed a distinct effect of MAT
that significantly upregulated the gene expression of IRF3 (2.11 × 10−3 ± 3.92 × 10−4,
####: p < 0.0001) and ISG15 (8.41 × 10−4 ± 1.80 × 10−5, ####: p < 0.0001). The gene
expression of IFN-β was upregulated when using CHL (1.76 × 10−4 ± 2.17 × 10−5,
###: p < 0.001) or BER (1.28 × 10−4 ± 1.57 × 10−5, ###: p < 0.001), but it was sig-
nificantly downregulated by MAT (1.36 × 10−5 ± 1.93 × 10−6, #: p < 0.05) and TAB
(4.03 × 10−6 ± 1.11 × 10−6, ##: p < 0.01). CHL and the other alkaloid treatments had no
effect on the downregulation of the STAT1 gene expression by ONNV infection.

Autophagy is assumed to be a part of the host cell antiviral defense and is mainly mediated
by PI3K/AKT [24]. In our experimental conditions, we observed the downregulation of the
gene expression of PI3K (CTRL: 2.29 × 10−3 ± 6.84 × 10−4; ONNV: 1.63 × 10−4 ± 3.90 × 10−5,
****: p < 0.0001) and AMPK (CTRL: 5.36 × 10−3 ± 6.32 × 10−4; ONNV: 6.44 × 10−4 ± 3.94 × 10−5,
****: p < 0.0001) by ONNV. From the chemical treatment, only CHL showed a significant upregu-
lation for PI3K and AMPK (7.89 × 10−3 ± 7.37× 10−4, ##: p < 0.01 and 2.18× 10−3 ± 2.46× 10−4,
##: p < 0.01, respectively).

2.4. Effects of Infection and Three Alkaloids on Inflammatory Mediators and Signaling Pathways

The anti-inflammatory potential of the studied alkaloids was first assessed on the key
inflammatory mediators. When compared to the CTRL, as shown in Figure 5, the ONNV
infection significantly increased the gene expression of CCL2 (CTRL: 4.30 × 10−2 ± 1.25 × 10−2;
ONNV: 1.10× 10−1 ± 3.61× 10−3, ****: p < 0.0001; FC: 2.5); CCL5 (CTRL: 2.76× 10−4 ± 1.07× 10−4;
ONNV: 1.24× 10−3 ± 2.56× 10−4, *: p < 0.05; FC: 4.5); and TNF-α (CTRL: 3.87× 10−4 ± 3.44× 10−5;
ONNV: 4.12 × 10−3 ± 2.47 × 10−4, ****: p < 0.0001; FC: 10.6).
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Figure 5. Effect on key inflammatory mediators. HS633T cells were infected with ONNV (MOI 1)
and/or co-treated with chloroquine (CHL), berberine (BER), matrine (MAT), or tabersonine (TAB) for
24 h. RNA was collected and CCL2, CCL5, CXCL8, and TNF-α gene expression was determined by
qRT-PCR analysis. Values are expressed as mean ± SEM of three independent experiments. p-value
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was calculated using the Bonferroni multiple comparison test: *: p < 0.05, ****: p < 0.0001 when
compared to non-infected cells (CTRL) and #: p < 0.05, ##: p < 0.01, ###: p < 0.001, ####: p < 0.0001
when compared to infected cells (ONNV).

When compared to the infected cells, CHL proved to be efficient in decreasing the expres-
sion of CCL2 (3.40 × 10−3 ± 1.06 × 10−3, ###: p < 0.001), CCL5 (9.30 × 10−5 ± 1.42 × 10−5,
#: p < 0.05), and TNF-α (3.52 × 10−5 ± 7.97 × 10−6, ####: p < 0.0001). The other alka-
loids had no significant effect on the regulation of CCL5 expression. Interestingly, BER and
TAB exerted substantial downregulation (####: p < 0.0001) on both the CCL2 and the TNF-α
gene expression. MAT upregulated the gene expression of CCL2 (2.90 × 10−1 ± 5.89 × 10−2,
#: p < 0.05), while decreasing the TNF-α level (5.83 × 10−4 ± 1.40 × 10−4, ####: p < 0.0001).
None of these treatments significantly affected the gene expression of CXCL8.

2.5. Effects of Infection and Three Alkaloids on Inflammatory Signaling Pathways

The above results prompted us to investigate the effects of our alkaloids on the
multiple alphaviral-related inflammatory signaling pathways, and the results are presented
in Figure 6.
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Figure 6. Effect on inflammatory pathways. HS633T cells were infected with ONNV (MOI 1) and/or
co-treated with chloroquine (CHL), berberine (BER), matrine (MAT), or tabersonine (TAB) for 24 h.
RNA was collected and MAPK, NF-κB, STAT3, NLRP3, caspase-1, and COX-2 gene expression
was determined by qRT-PCR analysis. Values are expressed as mean ± SEM of three independent
experiments. p-value was calculated using the Bonferroni multiple comparison test: *: p < 0.05,
***: p < 0.001, ****: p < 0.0001 when compared to non-infected cells (CTRL) and #: p < 0.05, ##: p < 0.01,
###: p < 0.001, when compared to infected cells (ONNV).

When compared to the CTRL, the ONNV infection increased the gene expression of NF-
κB (CTRL: 2.11 × 10−3 ± 5.12 × 10−4; ONNV: 7.78 × 10−3 ± 1.04 × 10−4,
*: p < 0.05; FC: 3.7), which was substantially downregulated by CHL (2.22 × 10−3 ± 8.49 × 10−4,
#: p < 0.05). Surprisingly, ONNV downregulated the MAPK gene expression
(CTRL: 4.16 × 10−2 ± 1.68 × 10−3; ONNV: 1.25 × 10−2 ± 8.14 × 10−3, ****: p < 0.0001)
when compared to the CTRL, and this effect was significantly attenuated only by TAB
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(2.50 × 10−2 ± 1.37 × 10−3, ###: p < 0.001). ONNV infection did not affect the gene ex-
pression of STAT3 (CTRL: 1.57 × 10−2 ± 3.50 × 10−3; ONNV: 6.96 × 10−3 ± 5.00 × 10−4).
Interestingly, BER (p < 0.05) and TAB (p < 0.01) significantly downregulated the STAT3 gene
expression when compared to the infected cells (ONNV). ONNV infection upregulated the
gene expression of NRLP3 (CTRL: 3.19× 10−4 ± 3.62× 10−5; ONNV: 6.96× 10−3 ± 5.00× 10−4,
***: p < 0.001; FC: 21.8) and caspase-1 (CTRL: 2.06 × 10−4 ± 3.84 × 10−5;
ONNV: 4.35 × 10−4 ± 5.36 × 10−5, *: p < 0.05; FC: 2.1), and this upregulation was height-
ened in the infected cells by BER (NRLP3: 1.79 × 10−2 ± 4.58 × 10−3, #: p < 0.05; caspase-1:
7.35 × 10−4 ± 3.67 × 10−5, #: p < 0.05). MAT only downregulated the NLRP3 gene ex-
pression (3.00 × 10−3 ± 9.90 × 10−4, ##: p < 0.01), while TAB downregulated the NLRP3
(1.52 × 10−3 ± 3.34 × 10−4, ###: p < 0.001) and caspase-1 (2.13 × 10−4 ± 3.38 × 10−5,
#: p < 0.05) gene expression, as already observed with CHL (NLRP3: 6.70 × 10−4 ± 3.87 × 10−4,
###: p < 0.001; caspase-1: 1.34 × 10−4 ± 1.57 × 10−5, ##: p < 0.01).

The robust upregulation of the COX-2 gene expression (CTRL: 6.28 × 10−6 ± 5.66 × 10−6;
ONNV: 9.37 × 10−2 ± 1.63 × 10−2, ***: p < 0.001; FC > 10 000) by ONNV infection
was remarkably suppressed by CHL (3.76 × 10−4 ± 1.80 × 10−4, ###: p < 0.001), BER
(1.18 × 10−2 ± 4.66 × 10−3, ###: p < 0.001), and TAB (3.86 × 10−2 ± 8.76 × 10−3, #: p < 0.05).

3. Discussion

We surmised the anti-alphaviral potential of the alkaloids by their abilities to control
the viral infection and to modulate the complex array of the innate host cell immune
response [40]. In this work, we scrutinized and compared the multifocal effects of three
pharmacologically relevant plant-derived alkaloids (berberine, matrine, and tabersonine)
from three structural classes (isoquinoline, quinolizidine, and indole, respectively) (Figure 1)
against the potent reemergent arthritogenic alphavirus ONNV. Our study was performed
using HS633T cells to reflect the tropism of arthritogenic alphaviruses for fibroblasts, as
reported for CHIKV [14], with non-toxic concentrations of the alkaloid types (10 µM)
and the continuously reevaluated antimalarial CHL (15 µM) as potent antivirals against
reemerging viruses, at least in vitro (Figure 2).

Our results confirmed the infectivity of HS633T cells by ONNV (MOI 1), as established
by the expression of critical viral E1, E2, capsid, and nsP2 genes (Figure 3A). E1 and E2
glycoproteins are essential for virus entry [9,48]. All the non-structural proteins (nsP1-nsP4)
are normally required for RNA synthesis [49], but the nsP2 protein is established as a
virulence factor and inhibitor of the IFN-induced JAK/STAT pathway [48]. In addition, the
essential interactions between the capsid protein and the E1 or E2 protein has also been
underlined [50]. We showed that all the studied compounds efficiently downregulated
E1 and E2 gene expression during ONNV infection, in spite of a distinct upregulation of
capsid and nsP2 gene expression by MAT. Consistently, the viral progeny production was
reduced when using BER or TAB (Figure 3B). These results suggest the intracellular effect
of the tested compounds, most probably by interference with viral replication.

As revealed by this study, ONNV infection triggers a robust host immune response
from HS633T cells. The upregulation of MXRA8 grants effective viral entry [17]. The
elevated expression of RIG-I (Figure 4) indicated that the infected cell was able to produce
a robust antiviral response [51]. The gene expression of these host cell sensors for viruses
was downregulated by BER and TAB, as it was for CHL, but a contrasting upregulation of
MXRA8 was observed with MAT and at a level higher than that after ONNV infection. The
activation of the type-I IFN antiviral response by HS633T cells was supported by the upreg-
ulation of the IFN-β and ISG15 gene expression during ONNV infection, and the studied
compounds exerted distinct effects. The counterintuitive effects of MAT were reflected by
the upregulation of the IRF3 and ISG15 gene expression, while drastically downregulating
the IFN-β gene expression. Using CHL, BER, or TAB, there was no observable effect on the
IRF3 gene expression, but there were significant effects on IFN-β and ISG15. BER increased
the IFN-β gene expression but decreased the ISG15 gene expression, while TAB suppressed
the expression of these two genes. The above observations suggest that the activation
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of the type-I IFN response occurred independently of IRF3. As also evidenced by our
experiments, ONNV may be able to impair the STAT1-related antiviral signaling, as previ-
ously described for SINV in vitro [52] or CHIKV [14,53]. The STAT1 silencing during the
alphavirus infection resulted from the host cell shutoff caused by the nsP2 protein, which
affected the JAK-STAT signaling pathway [54]. None of the tested compounds was able to
reinstate the STAT1 gene expression. The PI3K/AKT and AMPK-mediated autophagy has
been established as a part of the defensive innate immune response for several Old World
alphaviruses, including SFV, RRV, and CHIKV [24], but the pro- or antiviral functions of
this intracellular process remain questionable [55,56]. We observed that this process was
altered in HS633T cells by ONNV and reinstated only by CHL.

Acute to chronic inflammation is a result of alphavirus infection with mild to severe dis-
orders, as supported for CHIKV [57–60]. We further observed a robust chemokine/cytokine
response during ONNV infection resulting from the upregulation of the critical CCL2
(MCP-1), CCL5 (RANTES), and TNF-α inflammatory mediators (Figure 5). CHL efficiently
suppressed the gene expression of CCL2, CCL5, and TNF-α. The common effect of the other
compounds was revealed by their remarkable downregulation of TNF-α. Their contrasting
effects were observed on CCL2 gene expression, which was efficiently downregulated by
BER and TAB but upregulated by MAT.

The analyses of the various inflammatory signaling pathways (Figure 6) revealed
the upregulation of NF-κB, NRLP3, caspase-1, and COX-2 gene expression during ONNV
infection and a significant mRNA level for MAPK, but our data were inconclusive for STAT3.
The involvement of the NF-κB pathway has been demonstrated in mature neurons during
SINV infection in vitro [61]. NF-κB is involved in both the type-I IFN response [62] and
the inflammatory response [63]. Interestingly, our three alkaloid types had no significant
effect on NF-κB gene expression, while CHL induced its downregulation. The MAPK
pathway is involved in lifecycle of the cell and the inflammatory responses [64], and it was
reported that CHIKV induced MAPK expression in human osteosarcoma (HOS) cells [45].
Its downregulation during ONNV infection was consistent with a previous report for SINV
in vitro in human neural progenitor (hNPC) cells [65], and its upregulation occurred only
with TAB. The downregulation of STAT3 gene expression was also established in vitro for
SINV in hNPC [65], but our data were inconclusive. The NLRP3/caspase-1 pathway favors
the strong pro-inflammatory mediator release (IL-18 and IL-1β) and pyroptosis [66] and is
related to the severity of the alphavirus infection. The upregulation of NRLP3 and caspase-
1 by ONNV was consistent with previous reports on in vivo CHIKV infection [25] and
in vitro and in vivo MAYV infection with high levels of IL-1β [26], and we established the
remarkable regulatory effect of TAB. Finally, the upregulation of the COX-2 gene expression
by ONNV in HS633T cells was consistent with the COX-2-mediated prostaglandin response
induced by CHIKV infection in human synovial fibroblasts [22], and was significantly
resolved by BER and TAB as well as by CHL.

4. Material and Methods
4.1. Cell Culture and Virus

The HS633T cells were obtained from the European Collection of Authenticated
Cell Cultures (ECACC, Porton, UK, 89050201) and were grown in Minimum Essential
Medium Eagle (MEM Eagle, PAN Biotech, Aidenbach, Germany, P0408500), supple-
mented with 5% decomplemented fetal bovine serum (FBS) (PAN Biotech, Aidenbach,
Germany, 3302 P290907), L-glutamine 2 mM (Biochrom AG, Berlin, Germany, K0282),
100 U/mL–0.1 mg/mL penicillin-streptomycin (PAN Biotech, Aidenbach, Germany,
P0607100), 1 mM sodium pyruvate (PAN Biotech, Aidenbach, Germany, P0443100), and
0.5 µg/mL fungizone (PAN Biotech, Aidenbach, Germany, P0601001). The cells were
maintained in a humid atmosphere at 37 ◦C with 5% CO2 and were allowed to grow until
80–90% confluence. An isolate of O’nyong-nyong virus (ONNV) was obtained from the
National Reference Center (CNR arbovirus, Marseille, France) and titrated at 107 PFU.mL−1

on Vero cells.
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4.2. Cell Infection and/or Treatment

The HS633T cells were cultivated in 6- or 96-well plates (100,000 cells/well and
10,000 cells/well, respectively) and maintained at 37 ◦C in a humid atmosphere with
5% CO2. The cells were allowed to grow until 80–90% confluence. The cells were then
infected with ONNV to a multiplicity of infection 1 (MOI 1) and/or co-treated with CHL,
BBR (Sigma-Aldrich, Darmstadt, Germany, 00900585), MAT (Sigma-Aldrich, Darmstadt,
Germany, PHL89730), or TAB (Sigma-Aldrich, Darmstadt, Germany, SMB00452) for 24 h.

4.3. Cytotoxicity Assays

Lactate dehydrogenase (LDH) and 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assays were performed. For the LDH assay, the cells were grown in a
96-well plate (10,000 cells/well); then, they were exposed to CHL (15 µM), BER (10 µM),
MAT (10 µM), or TAB (10 µM) for 24 h. The plate was centrifugated (4 mn, 2000 rpm);
50 µL of supernatant was put in a new plate, and 50 µL of reagent from the commercial kit
(CytoTox 96®Non-Radiaoactive Cytotoxicity Assay, G1782, Promega, Madison, WI, USA,
G1782) was added. The reaction was stopped 30 mn later, and the optical density was
measured at 490 nm (BIOTEK Cytation 5 imaging reader, Winooski, VT, USA). For the
MTT assay, the cells were grown in a 96-well culture plate (10,000 cells/well) and were
exposed to CHL (15 µM), BER (10 µM), MAT (10 µM), or TAB (10 µM) for 20 h. Twenty
microliters of sterile filtered MTT solution (5 mg/mL) was added to each well. After 4 h,
the plate was centrifugated (4 mn, 2000 rpm), the medium was removed, and 200 µL of
dimethyl sulfoxide was added to resuspend the formazan crystals. The optical density
was measured at 560 nm with a reference at 670 nm (BIOTEK Cytation 5 imaging reader,
Winooski, VT, USA).

4.4. Quantitative Real-Time RT-PCR (qRT-PCR) Analysis

RNA extractions were realized on HS633T infected and/or treated cells with CHL
(15 µM), BER (10 µM), MAT (10 µM), or TAB (10 µM) using the Zymo kit (ZYMO, Ozyme
Irvine, CA, USA, R1035). The cells were stabilized with 200 µL of RNA Shield, then lysed
with 800 µL of lysis buffer. qRT-PCR analyses were performed using one-step RT-PCR
with the SYBR® SENSIFAST Kit (Bioline, London, UK, BIO-76005) and the QuantStudio 5
Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA) in a final reaction
volume of 5 µL (1 µL of extracted RNA, 2.7 µL of enzyme mix, and 1.3 µL of primer mix).
GAPDH was used as a housekeeping gene. Analyses were performed on the results of
three independent experiments. The primers used for qRT-PCR are listed in the following
table (Table 1).

Table 1. List of primers used for qRT-PCR.

Name Sequence Supplier

GAPDH
F: CCA TGC GGA AGG TGA AGG TC

Eurogentec
R: ACA TGT AAA CCA TGT AGT TGA GGT

E1
F: CAC CGT CCC CGT ACG TAA AA

Eurofins
R: GGC TCT GTA GGC TGA TGC AA

E2
F: CCC CTG ACT ACA CGC TGA TG

Eurogentec
R: CCT TCA TTG GAG CCG TCA CA

nsP2
F: GCG GAG CAG GTA AAA ACG TG

Eurogentec
R: TAG AAC ACG CCC GTC GTA TG
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Table 1. Cont.

Name Sequence Supplier

Capsid
F: CGC AGC TTA CGG GTT TCA TA

Genecust
R: GCA ACG CCT TCA GAA ACG C

ISG15
F: TTT GCC AGT ACA GGA GCT TGT G

Sigma
R: GGG TGA TCT GCG CCT TCA

IFN-β
F: GTC ACT GTG CCT GGA CCA TA

Eurogentec
R: ACA GCA TCT GCT GGT TGA AGA

MXRA8
F: TTA CTG TGG CCT GCA CGA AC

Eurogentec
R: CTC TCG GGG ACG ATG ACA TT

RIG–I
F: CCA TAT CTC AGC TGG GTG ACA A

Sigma
R: GCT ATC GGG TCA ACA ACA GCT T

IRF3
F: CCT CAC GAC CCA CAT AAA ATC

Sigma
R: GTA GAA GGC TGT CAC CTC GAA

CCL2
F: CTG CTC ATA GCA GCC ACC TT

Eurogentec
R: CTT GAA GAT CAC AGC TTC TTT GGG

IL-1β
F: ACAGATGAAGTGCTCCTTCCA

Eurogentec
R: GTCGGAGATTCGTAGCTGGAT

STAT-1
F: TGG TGA AAT TGC AAG AGC TG

Sigma
R: AGA GGT CGT CTC GAG GTC AA

MAPK
F: AGCAAGGGAGAGATGGTGTAA

Genecust
R: CAGTGTCTAAGGGCTGCCAC

AMPK
F: GGGAAAGTGAAGGTGGGCAA

Genecust
R: GATGTGAGGGTGCCTGAACA

NF-κB
CCGGCCCGCCTGAATCATTCTC

Eurogentec
CAGGTGGCGACCGTGATACCT

Pi3K
F: ACCATGGAGGAGAACCCTTATG

Genecust
R: ACGGACAGTGCTCCTCCTTA

Caspase 1
F: GCTTTCTGCTCTTCCACACC

Genecust
R: AAATGAAAATCGAACCTTGC

STAT-3
F: CCGAGCCAATTGTGATGCTT

Genecust
R: GCATGTTGTACCACAGGATG

CCL5
F: TCC TCA TTG CTA CTG CCC TC

Eurogentec
R: TCG GGT GAC AAA GAC GAC TG

CXCL8
F: CAG AGA CAG CAG AGC ACA CA

Genecust
R: GGC AAA ACT GCA CCT TCA CA

TNF-α
F: GCT GCA CTT TGG AGT GAT CG

Sigma
R: GAG GGG TTT GCT ACA ACA TGG G

4.5. Statistical Analysis

The data were expressed as mean ± SEM of the three independent experiments.
Statistical analysis was achieved using GraphPad Prism version 6.0 software. The p-value
was calculated from variance analysis followed by a Bonferroni multiple comparison test.
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5. Conclusions

Our overall results support the paradigm that the ONNV infection of fibroblasts
drives a robust antiviral and inflammatory response via the essential type-I IFN pathway
and canonical inflammatory signaling pathways (Figure 7). Our findings established the
anti-alphaviral potential of the studied alkaloids by the control of viral expansion and
the regulation of the host immune response. In-depth biological evaluation of potential
antivirals is crucial for their profiling with regard to the immune response, as exemplified
by the unexpected behavior of MAT. Finally, these alkaloids may be useful scaffolds for the
discovery and development of novel anti-alphaviral drugs.
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pathways downstream from RIG-I coupled to MAVS activate transcription factors such as IRF3 and 
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(IFNAR) activates JAK/STAT pathway and the transcription factors (STAT1/2) to promote the 
expression of antiviral interferon-stimulated genes (e.g., ISG15 and RNAse L). Viral infection also 
activates the expression of proinflammatory cytokines (e.g., TNF-α) and chemokines (e.g., CCL2) 
(notably via NF-κB and MAPK) and prostaglandin expression (via COX-2). The inflammasome 
contributes to the activation of caspase-1 and increased secretion of the canonical inflammatory 
cytokine IL1-β. The autophagy response can modulate viral replication and is under the control of 
two kinases (PI3K and AMPK). The inflammatory response contributes equally, on one hand, to the 
antiviral response but, on the other hand, if uncontrolled, to chronic injury of the joints. 
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Figure 7. Effect of the studied alkaloids on immune responses (antiviral innate immunity: blue;
inflammatory responses: pink). Alphaviruses (e.g., ONNV) use the receptor MXRA8 to bind to and
infect fibroblast-like cells of connective tissues. Virus replicates inside the cells and single-stranded
viral RNA can be detected by pattern recognition receptors (PRRs) such as RIG-I. Signaling pathways
downstream from RIG-I coupled to MAVS activate transcription factors such as IRF3 and contribute to
the increased production of type-I IFN (e.g., IFN-β). IFN-β binding to its receptor (IFNAR) activates
JAK/STAT pathway and the transcription factors (STAT1/2) to promote the expression of antiviral
interferon-stimulated genes (e.g., ISG15 and RNAse L). Viral infection also activates the expression
of proinflammatory cytokines (e.g., TNF-α) and chemokines (e.g., CCL2) (notably via NF-κB and
MAPK) and prostaglandin expression (via COX-2). The inflammasome contributes to the activation
of caspase-1 and increased secretion of the canonical inflammatory cytokine IL1-β. The autophagy
response can modulate viral replication and is under the control of two kinases (PI3K and AMPK).
The inflammatory response contributes equally, on one hand, to the antiviral response but, on the
other hand, if uncontrolled, to chronic injury of the joints. Interestingly, alkaloids (in contrast to the
unexpected effect of matrine) control viral infection. Alkaloids can also differentially modulate several
steps of proinflammatory responses and open novel therapeutic avenues against alphavirus-induced
acute and chronic pathologies. (Figure designed with Biorender).
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