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Guided Unfoldings for Finding Loops in
Standard Term Rewriting

Étienne Payet

LIM, Université de La Réunion, France
etienne.payet@univ-reunion.fr

Abstract. In this paper, we reconsider the unfolding-based technique
that we have introduced previously for detecting loops in standard term
rewriting. We modify it by guiding the unfolding process, using disagree-
ment pairs in rewrite rules. This results in a partial computation of the
unfoldings, whereas the original technique consists of a thorough com-
putation followed by a mechanism for eliminating some rules. We have
implemented this new approach in our tool NTI and conducted successful
experiments on a large set of term rewrite systems.

Keywords: term rewrite systems, dependency pairs, non-termination, loop, un-
folding

1 Introduction

In [13], we have introduced a technique for finding loops (a periodic, special form
of non-termination) in standard term rewriting. It consists of unfolding the term
rewrite system (TRS) R under analysis and of performing a semi-unification [10]
test on the unfolded rules for detecting loops. The unfolding operator UR which
is applied processes both forwards and backwards and considers every subterm
of the rules to unfold, including variable subterms.

Example 1. Let R be the TRS consisting of the following rules (x is a variable):

R1 = f(s(0), s(1), x)︸ ︷︷ ︸
l

→ f(x, x, x)︸ ︷︷ ︸
r

R2 = h→ 0 R3 = h→ 1 .

Note that R is a variation of a well-known example by Toyama [18]. Unfolding
the subterm 0 of l backwards with the rule R2, we get the unfolded rule U1 =
f(s(h), s(1), x)→ f(x, x, x). Unfolding the subterm x (a variable) of l backwards
with R2, we get U2 = f(s(0), s(1), h)→ f(0, 0, 0). Unfolding the first (from the left)
occurrence of x in r forwards with R2, we get U3 = f(s(0), s(1), h)→ f(0, h, h). We
have {U1, U2, U3} ⊆ UR(R). Now, if we unfold the subterm 1 of U1 backwards
with R3, we get f(s(h), s(h), x)→ f(x, x, x), which is an element of UR(UR(R)).
The left-hand side l1 of this rule semi-unifies with its right-hand side r1 i.e.,
l1θ1θ2 = r1θ1 for the substitutions θ1 = {x/s(h)} and θ2 = {}. Therefore,



lθ1 = f(s(h), s(h), s(h)) loops with respect to R because it can be rewritten to
itself using the rules of R (the redex is underlined at each step):

f(s(h), s(h), s(h))→
R2

f(s(0), s(h), s(h))→
R3

f(s(0), s(1), s(h))→
R1

f(s(h), s(h), s(h)) .

Iterative applications of the operator UR result in a combinatorial explosion
which significantly limits the approach. In order to reduce it, a mechanism is in-
troduced in [13] for eliminating unfolded rules which are estimated as useless for
detecting loops. Moreover, in practice, three analyses are run in parallel (in dif-
ferent threads): one with forward unfoldings only, one with backward unfoldings
only and one with forward and backward unfoldings together.

So, the technique of [13] roughly consists in computing all the rules of UR(R),
UR(UR(R)), . . . and removing some useless ones, until the semi-unification test
succeeds on an unfolded rule or a time limit is reached. Therefore, this approach
corresponds to a breadth-first search for a loop, as the successive iterations of
UR are computed thoroughly, one after the other. However, it is not always
necessary to compute all the elements of each iteration of UR. For instance, in
Ex. 1 above, U2 and U3 do not lead to an unfolded rule satisfying the semi-
unification criterion. This is detected by the eliminating mechanism of [13], but
only after these two rules are generated. In order to avoid the generation of
these useless rules, one can notice that l and r differ at the first argument of
f: in l, the first argument is s(0) while in r it is x. We say that 〈s(0), x〉 is a
disagreement pair of l and r. Hence, one can first concentrate on resolving this
disagreement, unfolding this pair only, and then, once this is resolved, apply the
same process to another disagreement pair.

Example 2 (Ex. 1 continued). There are two ways to resolve the disagreement
pair 〈s(0), x〉 of l and r (i.e., make it disappear).

The first way consists in unifying s(0) and x, i.e., in computing R1θ where θ is
the substitution {x/s(0)}, which gives V0 = f(s(0), s(1), s(0))→ f(s(0), s(0), s(0)).
The left-hand side of V0 does not semi-unify with its right-hand side.

The other way is to unfold s(0) or x. We decide not to unfold variable sub-
terms, hence we select s(0). As it occurs in the left-hand side of R1, we unfold
it backwards. The only possibility is to use R2, which results in

V1 = f(s(h), s(1), x)→ f(x, x, x) .

Note that this approach only generates two rules (V0 and V1) at the first iteration
of the unfolding operator. In comparison, the approach of [13] produces 14 rules
(before elimination), as all the subterms of R1 are considered for unfolding.

Hence, the disagreement pair 〈s(0), x〉 has been replaced with the disagree-
ment pair 〈s(h), x〉 in V1. Unifying s(h) and x i.e., computing V1θ

′ where θ′ is
the substitution {x/s(h)}, we get V ′1 = f(s(h), s(1), s(h))→ f(s(h), s(h), s(h)). So,
the disagreement 〈s(0), x〉 is solved: it has been replaced with 〈s(h), s(h)〉. Now,
〈1, h〉 is a disagreement pair in V ′1 (here we mean the second occurrence of h
in the right-hand side of V ′1). Unfolding 1 backwards with R3, we get W =
f(s(h), s(h), s(h))→ f(s(h), s(h), s(h)) and unfolding h forwards with R3, we get



W ′ = f(s(h), s(1), s(h))→ f(s(h), s(1), s(h)). The semi-unification test succeeds
on both rules: we get the looping terms f(s(h), s(h), s(h)) and f(s(h), s(1), s(h))
from W and W ′, respectively.

In the approach sketched in Ex. 2, the iterations of UR are not thoroughly
computed because only some selected disagreement pairs are considered for un-
folding, unlike in our previous approach [13] which tries to unfold all the sub-
terms in rules. Hence, now the unfoldings are guided by disagreement pairs. In
this paper, we formally describe the intuitions presented above (Sect. 3–5). We
also report experiments on a large set of rewrite systems from the TPBD [17]
(Sect 6). The results we get in practice with the new approach are better than
those obtained with the approach of [13] and we do not need to perform several
analyses in parallel, nor to unfold variable subterms, unlike [13].

2 Preliminaries

If Y is an operator from a set E to itself, then for any e ∈ E we let

(Y ↑ 0)(e) = e and ∀n ∈ N : (Y ↑ n+ 1)(e) = Y
(
(Y ↑ n)(e)

)
.

We refer to [4] for the basics of rewriting. From now on, we fix a finite
signature F together with an infinite countable set V of variables with F∩V = ∅.
Elements of F (symbols) are denoted by f, g, h, 0, 1, . . . and elements of V by
x, y, z, . . . The set of terms over F ∪ V is denoted by T (F ,V). For any t ∈
T (F ,V), we let root(t) denote the root symbol of t: root(t) = f if t = f(t1, . . . , tm)
and root(t) = ⊥ if t ∈ V, where ⊥ is a new symbol not occurring in F and V.
We let Var(t) denote the set of variables occurring in t and Pos(t) the set of
positions of t. For any p ∈ Pos(t), we write t|p to denote the subterm of t at
position p and t[p← s] to denote the term obtained from t by replacing t|p with
a term s. For any p, q ∈ Pos(t), we write p ≤ q iff p is a prefix of q and we write
p < q iff p ≤ q and p 6= q. We also define the set of non-variable positions of t
which either are a prefix of p or include p as a prefix:

NPos(t, p) = {q ∈ Pos(t) | q ≤ p ∨ p ≤ q, t|q 6∈ V} .

A disagreement position of terms s and t is a position p ∈ Pos(s) ∩ Pos(t)
such that root(s|p) 6= root(t|p) and, for every q < p, root(s|q) = root(t|q). The
set of disagreement positions of s and t is denoted as DPos(s, t). A disagreement
pair of s and t is an ordered pair 〈s|p, t|p〉 where p ∈ DPos(s, t).

Example 3. Let s = f(s(0), s(1), y), t = f(x, x, x), p1 = 1, p2 = 2 and p3 = 3.
Then, {p1, p2} ⊆ DPos(s, t) and 〈s|p1

, t|p1
〉 = 〈s(0), x〉 and 〈s|p2

, t|p2
〉 = 〈s(1), x〉

are disagreement pairs of s and t. However, p3 6∈ DPos(s, t) because 〈s|p3
, t|p3
〉 =

〈y, x〉 and root(y) = root(x) = ⊥.

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each 1 ≤ i ≤ n, variable xi is mapped to term ti (note that xi may occur



in ti). The empty substitution (identity) is denoted by id . The application of a
substitution θ to a syntactic object o is denoted by oθ. We let mgu(s, t) denote
the (up to variable renaming) most general unifier of terms s and t. We say that
s semi-unifies with t when sθ1θ2 = tθ1 for some substitutions θ1 and θ2.

A rewrite rule (or rule) over F ∪ V has the form l→ r with l, r ∈ T (F ,V),
l 6∈ V and Var(r) ⊆ Var(l). A term rewriting system (TRS) over F ∪ V is a
finite set of rewrite rules over F ∪ V. Given a TRS R and some terms s and
t, we write s→

R
t if there is a rewrite rule l→ r in R, a substitution θ and

p ∈ Pos(s) such that s|p = lθ and t = s[p← rθ]. We let
+→
R

(resp.
∗→
R

) denote

the transitive (resp. reflexive and transitive) closure of →
R

. We say that a term

t is non-terminating with respect to (w.r.t.) R when there exist infinitely many
terms t1, t2, . . . such that t→

R
t1→
R
t2→
R
· · · . We say that R is non-terminating

if there exists a non-terminating term w.r.t. it. A term t loops w.r.t. R when

t
+→
R
C[tθ] for some context C and substitution θ. Then t

+→
R
C[tθ] is called a loop

for R. We say that R is looping when it admits a loop. If a term loops w.r.t. R
then it is non-terminating w.r.t. R.

The unfolding operators that we define in Sect. 3 of this paper use narrowing.
We say that a term s narrows forwards (resp. backwards) to a term t w.r.t. a
TRS R when there exists a non-variable position p of s and a rule l→ r of R
renamed with new variables not previously met such that t = s[p ← r]θ (resp.
t = s[p← l]θ) where θ = mgu(s|p, l) (resp. θ = mgu(s|p, r)).

We refer to [3] for details on dependency pairs. The defined symbols of a TRS
R over F ∪ V are DR = {root(l) | l→ r ∈ R}. For every f ∈ F we let f# be a
fresh tuple symbol with the same arity as f. The set of tuple symbols is denoted
as F#. The notations and definitions above with terms over F ∪V are naturally
extended to terms over (F∪F#)∪V. Elements of F∪F# are denoted as f, g, . . .
If t = f(t1, . . . , tm) ∈ T (F ,V), we let t# denote the term f#(t1, . . . , tm), and we
call t# an F#-term. An F#-rule is a rule whose left-hand and right-hand sides
are F#-terms. The set of dependency pairs of R is

{l#→ t# | l→ r ∈ R, t is a subterm of r, root(t) ∈ DR} .

A sequence s1→ t1, . . . , sn→ tn of dependency pairs of R is an R-chain if there
exists a substitution σ such that tiσ

∗→
R
si+1σ holds for every two consecutive

pairs si→ ti and si+1→ ti+1 in the sequence.

Theorem 1 ([3]). R is non-terminating iff there exists an infinite R-chain.

The dependency graph of R is the graph whose nodes are the dependency
pairs of R and there is an arc from s→ t to u→ v iff s→ t, u→ v is an R-chain.
This graph is not computable in general since it is undecidable whether two de-
pendency pairs of R form an R-chain. Hence, for automation, one constructs an
estimated graph containing all the arcs of the real graph. This is done by comput-
ing connectable terms, which form a superset of those terms s, t where sσ

∗→
R
tσ

holds for some substitution σ. The approximation uses the transformations cap



and ren where, for any t ∈ T (F ∪F#,V), cap(t) (resp. ren(t)) results from re-
placing all subterms of t with defined root symbol (resp. all variable occurrences
in t) by different new variables not previously met. More formally:

cap(x) = x if x ∈ V

cap(f(t1, . . . , tm)) =

{
a new variable not previously met if f ∈ DR
f(cap(t1), . . . ,cap(tm)) if f 6∈ DR

ren(x) = a new variable not previously met

if x is an occurrence of a variable

ren(f(t1, . . . , tm)) = f(ren(t1), . . . ,ren(tm))

A term s is connectable to a term t if ren(cap(s)) unifies with t. An F#-rule
l→ r is connectable to an F#-rule s→ t if r is connectable to s. The estimated
dependency graph of R is denoted as DG(R). Its nodes are the dependency pairs
of R and there is an arc from N to N ′ iff N is connectable to N ′. We let SCC (R)
denote the set of strongly connected components of DG(R) that contain at least
one arc. Hence, a strongly connected component consisting of a unique node is
in SCC (R) only if there is an arc from the node to itself.

Example 4. Let R be the TRS of Ex. 1. We have SCC (R) = {C} where C
consists of the node N = f#(s(0), s(1), x)→ f#(x, x, x) and of the arc (N,N).

Example 5. Let R′ = {f(0)→ f(1), f(2)→ f(0), 1→ 0}. We have SCC (R′) =
{C′} where C′ consists of the nodes N1 = f#(0)→ f#(1) and N2 = f#(2)→ f#(0)
and of the arcs {N1, N2}× {N1, N2} \ {(N2, N2)}. The strongly connected com-
ponent of DG(R′) which consists of the unique node f#(0)→ 1# does not belong
to SCC (R′) because it has no arc.

Finite sequences are written as [e1, . . . , en]. We let :: denote the concate-
nation operator over finite sequences. A path in DG(R) is a finite sequence
[N1, N2, . . . , Nn] of nodes where, for each 1 ≤ i < n, there is an arc from Ni

to Ni+1. When there is also an arc from Nn to N1, the path is called a cycle.
It is called a simple cycle if, moreover, there is no repetition of nodes (modulo
variable renaming).

3 Guided unfoldings

In the sequel of this paper, we let R denote a TRS over F ∪ V.
While the method sketched in Ex. 2 can be applied directly to the TRS R

under analysis, we use a refinement based on the estimated dependency graph
of R. The cycles in DG(R) are over-approximations of the infinite R-chains i.e.,
any infinite R-chain corresponds to a cycle in the graph but some cycles in the
graph may not correspond to any R-chain. Moreover, by Theorem 1, if we find
an infinite R-chain then we have proved that R is non-terminating. Hence, we
concentrate on the cycles in DG(R). We try to solve them, i.e., to find out if



they correspond to any infinite R-chain. This is done by iteratively unfolding
the F#-rules of the cycles. If the semi-unification test succeeds on one of the
generated unfolded rules, then we have found a loop.

Definition 1 (Syntactic loop). A syntactic loop in R is a finite sequence
[N1, . . . , Nn] of distinct (modulo variable renaming) F#-rules where, for each
1 ≤ i < n, Ni is connectable to Ni+1 and Nn is connectable to N1. We identify
syntactic loops consisting of the same (modulo variable renaming) elements, not
necessarily in the same order.

Note that the simple cycles in DG(R) are syntactic loops. For any C ∈
SCC (R), we let s-cycles(C) denote the set of simple cycles in C. We also let

s-cycles(R) = ∪C∈SCC (R) s-cycles(C)

be the set of simple cycles in R. The rules of any simple cycle in R are assumed
to be pairwise variable disjoint.

Example 6 (Ex. 4 and 5 continued). We have

s-cycles(R) = {[N ]} and s-cycles(R′) = {[N1], [N1, N2]}

with, in s-cycles(R′), [N1, N2] = [N2, N1].

The operators we use for unfolding an F#-rule R at a disagreement position
p are defined as follows. They are guided by a given term u and they only work
on the non-variable subterms of R. They unify a subterm of R with a subterm
of u, see (1) in Def. 2-3. This corresponds to what we did in Ex. 2 for generating
V ′1 from V1, but in the definitions below we do not only consider p, we consider
all its prefixes. The operators also unfold R using narrowing, see (2) in Def. 2-3:
there, l′→ r′ � R means that l′→ r′ is a new occurrence of a rule of R that
contains new variables not previously met. This corresponds to what we did in
Ex. 2 for generating V1 from R1. In contrast to (1), the positions that are greater
than p are also considered in (2); for instance in Ex. 2, we unfolded the inner
subterm 0 of the disagreement pair component s(0).

Definition 2 (Forward guided unfoldings). Let l→ r be an F#-rule, s be
an F#-term and p ∈ DPos(r, s). The forward unfoldings of l→ r at position p,
guided by s and w.r.t. R are

FR(l→ r, s, p) =

{
U

∣∣∣∣ q ∈ NPos(r, p), q ≤ p
θ = mgu(r|q, s|q), U = (l→ r)θ

}(1)

∪{
U

∣∣∣∣ q ∈ NPos(r, p), l′→ r′ � R
θ = mgu(r|q, l′), U = (l→ r[q← r′])θ

}(2)

.

Definition 3 (Backward guided unfoldings). Let s→ t be an F#-rule, r be
an F#-term and p ∈ DPos(r, s). The backward unfoldings of s→ t at position p,



guided by r and w.r.t. R are

BR(s→ t, r, p) =

{
U

∣∣∣∣ q ∈ NPos(s, p), q ≤ p
θ = mgu(r|q, s|q), U = (s→ t)θ

}(1)

∪{
U

∣∣∣∣ q ∈ NPos(s, p), l′→ r′ � R
θ = mgu(s|q, r′), U = (s[q← l′]→ t)θ

}(2)

.

Example 7 (Ex. 4 and 6 continued). [N ] is a simple cycle in R with

N = f#(s(0), s(1), x)︸ ︷︷ ︸
s

→ f#(x, x, x)︸ ︷︷ ︸
t

.

Let r = t. Then p = 1 ∈ DPos(r, s). Moreover, q = 1.1 ∈ NPos(s, p) because
p ≤ q and s|q = 0 is not a variable. Let l′→ r′ = h→ 0 ∈ R. We have id =
mgu(s|q, r′). Hence, by (2) in Def. 3, we have

U1 = f#(s(h), s(1), x)︸ ︷︷ ︸
s1

→ f#(x, x, x)︸ ︷︷ ︸
t1

∈ BR(N, r, p) .

Let r1 = t1. Then, p = 1 ∈ DPos(r1, s1). Moreover, p ∈ NPos(s1, p) with
s1|p = s(h), p ≤ p and r1|p = x. As {x/s(h)} = mgu(r1|p, s1|p), by (1) in Def. 3
we have

U ′1 = f#(s(h), s(1), s(h))︸ ︷︷ ︸
s′1

→ f#(s(h), s(h), s(h))︸ ︷︷ ︸
t′1

∈ BR(U1, r1, p) .

Let r′1 = t′1. Then, p′ = 2.1 ∈ DPos(r′1, s
′
1) with p′ ∈ NPos(s′1, p

′). Let l′′→ r′′ =
h→ 1 ∈ R. We have id = mgu(s′1|p′ , r′′). Hence, by (2) in Def. 3, we have

U
′′

1 = f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h)) ∈ BR(U ′1, r
′
1, p
′) .

Our approach consists of iteratively unfolding syntactic loops using the fol-
lowing operator.

Definition 4 (Guided unfoldings). Let X be a set of syntactic loops of R.
The guided unfoldings of X w.r.t. R are defined as

GUR(X) =

{
L ::[U ] ::L′

∣∣∣∣ L ::[l→ r, s→ t] ::L′ ∈ X, θ = mgu(r, s)
U = (l→ t)θ, L ::[U ] ::L′ is a syntactic loop

}(1)

∪L ::[U, s→ t] ::L′

∣∣∣∣∣∣
L ::[l→ r, s→ t] ::L′ ∈ X
p ∈ DPos(r, s), U ∈ FR(l→ r, s, p)
L ::[U, s→ t] ::L′ is a syntactic loop


(2)

∪

L ::[l→ r, U ] ::L′

∣∣∣∣∣∣
L ::[l→ r, s→ t] ::L′ ∈ X
p ∈ DPos(r, s), U ∈ BR(s→ t, r, p)
L ::[l→ r, U ] ::L′ is a syntactic loop


(3)

∪

[U ]

∣∣∣∣∣∣
[l→ r] ∈ X, p ∈ DPos(r, l)
U ∈ FR(l→ r, l, p) ∪BR(l→ r, r, p)
[U ] is a syntactic loop


(4)

.



The general idea is to compress the syntactic loops into singletons by iterated
applications of this operator. The semi-unification criterion can then be applied
to these singletons, see Theorem 2 below. Compression takes place in case (1)
of Def. 4: when the right-hand side of a rule unifies with the left-hand side of
its successor, then both rules are merged. When merging two successive rules
is not possible yet, the operators FR and BR are applied to try to transform
the rules into mergeable ones, see cases (2) and (3). Once a syntactic loop has
been compressed to a singleton, we keep on unfolding (case (4)) to try reaching
a compressed form satisfying the semi-unification criterion. Note that after an
unfolding step, we might get a sequence which is not a syntactic loop: the newly
generated rule U might be identical to another rule in the sequence or it might
not be connectable to its predecessor or successor. So, (1)–(4) require that the
generated sequence is a syntactic loop.

The guided unfolding semantics is defined as follows, in the style of [1, 13].

Definition 5 (Guided unfolding semantics). The guided unfolding seman-
tics of R is the limit of the unfolding process described in Def. 4, starting from
the simple cycles in R: gunf (R) = ∪n∈N gunf (R, n) where, for all n ∈ N,

gunf (R, n) = (GUR ↑ n)(s-cycles(R)) .

This semantics is very similar to the overlap closure [7] of R (denoted by
OC(R)). A difference is that for computing gunf (R) one starts from dependency
pairs of R (s-cycles(R)), whereas for computing OC(R) one starts directly from
the rules of R. In case (1) of Def. 4, we merge two unfolded rules. Similarly, for
computing OC(R) one overlaps closures with closures. However, in cases (2)–(4)
the operators FR and BR narrow an unfolded rule with a rule of R, not with
another unfolded rule, unlike in the computation of OC(R).

Example 8. By Ex. 7 and (4) in Def. 4, we have [U
′′

1 ] ∈ gunf (R, 3).

Example 9. Let R = {f(0)→ g(1), g(1)→ f(0)}. Then, SCC (R) = {C} where
C consists of the nodes N1 = f#(0)→ g#(1) and N2 = g#(1)→ f#(0) and of
the arcs (N1, N2) and (N2, N1). Moreover, s-cycles(R) = {[N1, N2]}. As id =
mgu(g#(1), g#(1)) and (f#(0)→ f#(0))id = f#(0)→ f#(0), by (1) in Def. 4 we
have [f#(0)→ f#(0)] ∈ gunf (R, 1).

Proposition 1. For any n ∈ N and [s#→ t#] ∈ gunf (R, n) there exists some

context C such that s
+→
R
C[t].

Proof. For some context C, we have s→C[t] ∈ unf (R) where unf (R) is the

unfolding semantics defined in [13]. So, by Prop. 3.12 of [13], s
+→
R
C[t].

4 Inferring terms that loop

As in [13], we use semi-unification [10] for detecting loops. Semi-unification en-
compasses both matching and unification, and a polynomial-time algorithm for
it can be found in [8].



Theorem 2. For any n ∈ N, if there exist [s#→ t#] ∈ gunf (R, n) and some
substitutions θ1 and θ2 such that sθ1θ2 = tθ1, then the term sθ1 loops w.r.t. R.

Proof. By Prop. 1, s
+→
R
C[t] for some context C. Since →

R
is stable, we have

sθ1
+→
R
C[t]θ1 i.e., sθ1

+→
R
Cθ1[tθ1] i.e., sθ1

+→
R
Cθ1[sθ1θ2] .

Hence, sθ1 loops w.r.t. R.

Example 10 (Ex. 8 continued). We have

[f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h))︸ ︷︷ ︸
U

′′
1

] ∈ gunf (R, 3)

with f(s(h), s(h), s(h))θ1θ2 = f(s(h), s(h), s(h))θ1 for θ1 = θ2 = id . Consequently,
f(s(h), s(h), s(h))θ1 = f(s(h), s(h), s(h)) loops w.r.t. R.

Example 11 (Ex. 9 continued). [f#(0)→ f#(0)] ∈ gunf (R, 1) with f(0)θ1θ2 =
f(0)θ1 for θ1 = θ2 = id . Hence, f(0)θ1 = f(0) loops w.r.t. R.

The substitutions θ1 and θ2 that we use in the next example are more so-
phisticated than in Ex. 10 and Ex. 11.

Example 12. Let R = {f(g(x, 0), y)→ f(g(0, x), h(y))}. Then, SCC (R) = {C}
where C consists of the node N = f#(g(x, 0), y)→ f#(g(0, x), h(y)) and of the
arc (N,N). Moreover, s-cycles(R) = {[N ]} hence [N ] ∈ gunf (R, 0). Therefore,
as f(g(x, 0), y)θ1θ2 = f(g(0, x), h(y))θ1 for θ1 = {x/0} and θ2 = {y/h(y)}, by
Theorem 2 we have that f(g(x, 0), y)θ1 = f(g(0, 0), y) loops w.r.t. R.

We do not have an example where semi-unification is necessary for detecting
a loop. In every example that we have considered, matching or unification were
enough. However, semi-unification sometimes allows us to detect loops earlier in
the unfolding process than with matching and unification. This is important in
practice, because the number of unfolded rules can grow rapidly from iteration
to iteration.

Example 13 (Ex. 12 continued). Semi-unification allows us to detect a loop at
iteration 0 of GUR. But a loop can also be detected at iteration 1 using matching.
Indeed, we have

N = f#(g(x, 0), y)︸ ︷︷ ︸
l

→ f#(g(0, x), h(y))︸ ︷︷ ︸
r

with p = 1.1 ∈ DPos(r, l). Hence,

U = f#(g(0, 0), y)︸ ︷︷ ︸
s#

→ f#(g(0, 0), h(y))︸ ︷︷ ︸
t#

∈ FR(l→ r, l, p) .

So, by (4) in Def. 4, we have [U ] ∈ gunf (R, 1). Notice that sθ = t for θ =
{y/h(y)}, so s matches t. Moreover, by Theorem 2, s = f(g(0, 0), y) loops w.r.t.
R (take θ1 = id and θ2 = θ).



5 Further comparisons with the approach of [13]

The approach that we have presented in [13] relies on an unfolding operator
UR (where R is the TRS under analysis) which is also based on forward and
backward narrowing (as FR and BR herein). But, unlike the technique that we
have presented above, it directly unfolds the rules (not the dependency pairs)
of R and it does not compute any SCC. Moreover, it consists of a thorough
computation of the iterations of UR followed by a mechanism for eliminating
rules that cannot be further unfolded to a rule l→ r where l semi-unifies with
r. Such rules are said to be root-useless. The set of root-useless rules is an
overapproximation of the set of useless rules (rules that cannot contribute to
detecting a loop), hence the elimination technique of [13] may remove some rules
which are actually useful for detecting a loop. Our non-termination analyser
which is based on [13] uses a time limit. It stops whenever it has detected a
loop within the limit (then it answers NO, standing for No, this TRS does not
terminate as in the Termination Competition [15]) or when the limit has been
reached (then it answers TIME OUT) or when no more unfolded rule could be
generated at some point within the limit ((UR ↑ n)(R) = ∅ for some n). In the
last situation, either the TRS under analysis is not looping (it is terminating or
non-looping non-terminating) or it is looping but a loop for it cannot be captured
by the approach (for instance, the elimination mechanism has removed all the
useful rules). In such a situation, our analyser answers DON’T KNOW.

Example 14. Consider the terminating TRS R = {0→ 1}. As the left-hand
(resp. right-hand) side of the rule of R cannot be narrowed backwards (resp.
forwards) with R then we have (UR ↑ 1)(R) = ∅.

In contrast, the approach that we have presented in Sect. 3–4 above avoids
the generation of some rules by only unfolding disagreement pairs. Currently,
in terms of loop detection power, we do not have any theoretical comparison
between this new technique and that of [13]. Our new non-termination analyser
also uses a time limit and answers NO, TIME OUT or DON’T KNOW when no
more unfolded rules are generated at some point (gunf (R, n) = ∅ for some n, as
in Ex. 14). Moreover, it allows the user to fix a selection strategy of disagreement
pairs: in Def. 4, the conditions p ∈ DPos(r, s) (cases (2)–(3)) and p ∈ DPos(r, l)
(case (4)) are replaced with p ∈ selectR(l→ r, s→ t) and p ∈ selectR(l→ r, l→ r)
respectively, where selectR can be one of the following functions.

Selection of all the pairs: select allR(l→ r, s→ t) = DPos(r, s).
Leftmost selection: if DPos(r, s) = ∅ then select lmR(l→ r, s→ t) = ∅, oth-

erwise select lmR(l→ r, s→ t) = {p} where p is the leftmost disagreement
position of r and s.

Leftmost selection with non-empty unfoldings:

select lmneR(l→ r, s→ t) = {p}

where p is the leftmost disagreement position of r and s such that

FR(l→ r, s, p) ∪BR(s→ t, r, p) 6= ∅ .



If such a position p does not exist then select lmneR(l→ r, s→ t) = ∅.

Example 15. Let R = {f(s(0), s(1), z)→ f(x, y, z)} and l = f#(s(0), s(1), z) and
r = f#(x, y, z). Then, we have select allR(l→ r, l→ r) = DPos(r, l) = {1, 2}.
Moreover, 1 is the leftmost disagreement position of r and l because r|1 = x
occurs to the left of r|2 = y in r and l|1 = s(0) occurs to the left of l|2 = s(1) in
l. Therefore, we have select lmR(l→ r, l→ r) = {1}.

Example 16. Let R = {f(x, x)→ f(g(x), h(x)), h(x)→ g(x)}. Then, SCC (R) =
{C} where C consists of the node N = l→ r = f#(x, x)→ f#(g(x), h(x)) and
of the arc (N,N). Then, DPos(r, l) = {1, 2} and select lmR(N,N) = {1}. As
FR(N, l, 1) ∪ BR(N, r, 1) = ∅ and FR(N, l, 2) ∪ BR(N, r, 2) 6= ∅ (for instance,
f#(x, x)→ f#(g(x), g(x)) ∈ FR(N, l, 2) is obtained from narrowing r|2 = h(x)
forwards with h(x)→ g(x)), then select lmneR(N,N) = {2}.

As the approach of [13], and depending on the strategy used for selecting
disagreement pairs, our new technique is not complete in the sense that it may
miss some loop witnesses.

Example 17 (Ex. 16 continued). We have gunf (R, 0) = s-cycles(R) = {[N ]}.
As l does not semi-unify with r, no loop is detected from gunf (R, 0), so we
go on and compute gunf (R, 1). Only case (4) of Def. 4 is applicable to [N ].
First, suppose that selectR = select lmR. Then, selectR(N,N) = {1} and, as
FR(N, l, 1)∪BR(N, r, 1) = ∅, case (4) does not produce any rule. Consequently,
we have gunf (R, 1) = ∅, hence no loop is detected for R. Now, suppose that
selectR = select lmneR. Then, selectR(N,N) = {2}. Narrowing r|2 = h(x)
forwards with h(x)→ g(x), we get the rule N ′ = f#(x, x)→ f#(g(x), g(x)) which
is an element of FR(N, l, 2). Hence, [N ′] ∈ gunf (R, 1). As in N ′ we have that
f(x, x) semi-unifies with f(g(x), g(x)) (take θ1 = id and θ2 = {x/g(x)}), then
f(x, x) loops w.r.t. R. This loop is also detected by the approach of [13].

6 Experiments

We have implemented the technique of this paper in our analyser NTI1 (Non-
Termination Inference). For our experiments, we have extracted from the direc-
tory TRS_Standard of the TPBD [17] all the valid rewrite systems2 that were
either proved looping or unproved3 during the Termination Competition 2017
(TC’17) [15]. Otherwise stated, we removed from TRS_Standard all the non-
valid TRSs and all the TRSs that were proved terminating or non-looping non-
terminating by a tool participating in the competition. We ended up with a set
S of 333 rewrite systems. We let L (resp. U) be the subset of S consisting of all

1 http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
2 Surprisingly, the subdirectory Transformed CSR 04 contains 60 files where a pair
l→ r with Var(r) 6⊆ Var(l) occurs. These pairs are not valid rewrite rules.

3 By unproved we mean that no tool succeeded in proving that these TRSs were
terminating or non-terminating (all the tools failed on these TRSs).



the systems that were proved looping (resp. that were unproved) during TC’17.
Some characteristics of L and U are reported in Table 1. Note that the complete
set of simple cycles of a TRS may be really huge, hence NTI only computes a
subset of it. The simple cycle characteristics given in Table 1 relate to the subsets
computed by NTI.

S = L ] U (333 TRSs)
L (173 TRSs) U (160 TRSs)

Min Max Average Min Max Average

TRS size 1 [17] 104 [1] 11.08 1 [9] 837 [1] 64.78

Number of SCCs 1 [101] 12 [1] 1.95 1 [70] 130 [1] 6.14

SCC size 1 [96] 192 [1] 4.44 1 [54] 473 [1] 10.79

Number of simple cycles 1 [47] 185 [1] 8.55 2 [15] 1,176 [1] 69.02

Simple cycle size 1 [157] 9 [2] 2.23 1 [157] 9 [4] 2.21

Number of symbols 1 [4] 66 [1] 9.09 2 [7] 259 [1] 24.14

Symbol arity 0 [153] 5 [2] 1.07 0 [150] 12 [2] 1.94

Number of defined symbols 1 [28] 58 [1] 5.21 1 [15] 132 [2] 17.19

Defined symbol arity 0 [74] 5 [2] 1.38 0 [28] 12 [2] 2.27

Table 1. Some characteristics of the analysed TRSs. Sizes are in number of rules. In
square brackets, we report the number of TRSs with the corresponding min or max.

We have run our new approach (NTI’18) and that of [13] (NTI’08) on the
TRSs of S. The results are reported in Table 2 and Table 3. We used an Intel
2-core i5 at 2 GHz with 8 GB of RAM and the time limit fixed for a proof was
120s. For every selection strategy, NTI’18 issues more successful proofs (NO) and
generates less unfolded rules than NTI’08. Moreover, as it avoids the generation
of some rules instead of computing all the unfolding and then eliminating some
rules (as NTI’08 does), its times are better. At the bottom of the tables, we give
the numbers of TRSs proved looping by both approaches and by one approach
only. NTI’18 succeeds on all the TRSs of L on which NTI’08 succeeds, but it
fails on one TRS of U on which NTI’08 succeeds. This is due to our simplified
computation of the set of simple cycles: our algorithm does not generate the
cycle that would allow NTI’18 to succeed and NTI’18 times out, trying to unfold
syntactic loops from which it cannot detect anything. Another point to note
is that the implementation of the new approach does not need to run several
analyses in parallel to achieve the results presented in Table 2 and Table 3.
One single thread of computation is enough. On the contrary, for the approach
of [13], 3 parallel threads are necessary: one with forward unfoldings only, one
with backward unfoldings only and one with forward and backward unfoldings
together. The results get worse if NTI’08 only runs one thread performing for-
ward and backward unfoldings together. In Table 2 and Table 3, we report in
square brackets the number of successes of NTI’08 when it only runs one thread
performing both forward and backward unfoldings.



L (173 TRSs) NTI’08
NTI’18

select all select lm select lmne

NO 152 [149] 157 157 158

DON’T KNOW 0 0 1 0

TIME OUT 21 16 15 15

Time 2,966s 2,194s 1,890s 1,889s

Generated rules 11,167,976 9,030,962 8,857,421 8,860,560

NO(NTI’08) ∩NO(NTI’18) 152 151 152

NO(NTI’08) \NO(NTI’18) 0 1 0

NO(NTI’18) \NO(NTI’08) 5 6 6

Table 2. Analysis results on the TRSs of L.

U (160 TRSs) NTI’08
NTI’18

select all select lm select lmne

NO 4 [3] 6 6 6

DON’T KNOW 0 0 1 0

TIME OUT 156 154 153 154

Time 18,742s 18,563s 18,414s 18,534s

Generated rules 64,011,002 53,134,334 61,245,705 63,300,604

NO(NTI’08) ∩NO(NTI’18) 3 3 3

NO(NTI’08) \NO(NTI’18) 1 1 1

NO(NTI’18) \NO(NTI’08) 3 3 3

Table 3. Analysis results on the TRSs of U .

Four tools participated in the category TRS Standard of TC’17: AProVE [2,
5], MU-TERM [11], NaTT [12] and WANDA [9]. The numbers of TRSs proved
looping by each of them during the competition is reported in Table 4. An impor-
tant point to note here is that the time limit fixed in TC’17 was 300s, whereas in
our experiments with NTI’18 and NTI’08 it was 120s. Moreover, the machine we
used (an Intel 2-core i5 at 2 GHz with 8 GB of RAM) is much less powerful than
the machine used during TC’17 (the StarExec platform [14] running on an Intel
Xeon E5-2609 at 2.4 GHz with 129 GB of RAM). All the tools of TC’17 failed on
all the rewrite systems of U . In contrast, NTI’18 (resp. NTI’08) finds a loop for 6
(resp. 4) of them. Regarding L, AProVE was able to prove loopingness of 172 out
of 173 TRSs. The only TRS of L on which AProVE failed4 was proved looping
by NaTT. In comparison, our approach succeeds on 158 systems of L, less than
AProVE but more than the other tools of TC’17. Similarly to our approach,
AProVE handles the SCCs of the estimated dependency graph independently,
but it first performs a termination analysis. The non-termination analysis is
then only applied to those SCCs that could not be proved terminating. On the

4 Ex6 15 AEL02 FR.xml in the directory TRS Standard/Transformed CSR 04



contrary, NTI only performs non-termination proofs. If an SCC is terminating,
it cannot prove it and keeps on trying a non-termination proof, unnecessarily
generating unfolded rules at the expense of the analysis of the other SCCs. The
loop detection techniques implemented in AProVE and NTI’18 are based on the
idea of searching for loops by forward and backward narrowing of dependency
pairs and by using semi-unification to detect potential loops. This idea has been
presented in [6] where heuristics are used to select forward or backward narrow-
ing. Note that in constrast, the technique that we present herein does not use
any heuristics and proceeds both forwards and backwards.

S = L ] U (333 TRSs)
TC’17 (time limit = 300s) (time limit = 120s)

AProVE MU-TERM NaTT WANDA NTI’08 NTI’18 (select lmne)

L (173 TRSs) 172 81 109 0 152 158

U (160 TRSs) 0 0 0 0 4 6

Table 4. Number of successes (NO) on L and U obtained during TC’17 and those
obtained by NTI during our experiments.

7 Conclusion

We have reconsidered and modified the unfolding-based technique of [13] for
detecting loops in standard term rewriting. The new approach uses disagreement
pairs for guiding the unfoldings, which now are only partially computed, whereas
the technique of [13] consists of a thorough computation followed by a mechanism
for eliminating some rules. Two theoretical questions remain open: in terms of
loop detection, is an approach more powerful than the other and does semi-
unification subsume matching and unification?

We have implemented the new approach in our tool NTI and compared it
to [13] on a set of 333 rewrite systems. The new results are better (better times,
more successful proofs, less unfolded rules). Moreover, the approach compares
well to the tools that participated in TC’17. However, the number of generated
rules is still important. In an attempt to reduce it, during our experiments we
added the elimination mechanism of [13] to the new approach, but the results
we recorded were not satisfactory (an equivalent, slightly smaller, number of
generated rules but, due to the computational overhead, bigger times and less
successes); hence, we removed it. Termination analysis may help to reduce the
number of unfolded rules by detecting terminating SCCs in the estimated de-
pendency graph i.e., SCCs on which it is useless to try a non-termination proof.
In other words, we could use termination analysis as an elimination mechanism.
Several efficient and powerful termination analysers have been implemented so
far [16] and one of them could be called by NTI. A final idea to improve our
approach would be to consider more sophisticated strategies for selecting dis-
agreement pairs.
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