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In this paper, we consider non-termination in logic programming and in term rewriting and we recall some well-known results for observing it. Then, we instantiate these results to loopingness, a simple form of non-termination. We provide a bunch of examples that seem to indicate that the instantiations are correct as well as partial proofs.

Introduction

Proving non-termination is an important topic in logic programming and term rewriting. It is also important to determine classes of non-termination and compare them, e.g., in terms of complexity and decidability, for a better understanding of the underlying mechanisms. Loopingness is the simplest form of non-termination and the vast majority of automated techniques for proving non-termination are designed for finding loops. In [START_REF] Wang | On non-looping term rewriting[END_REF], the more general concept of inner-loopingness in term rewriting is introduced and proved undecidable.

Our aim in this paper is to contribute to the understanding of loopingness. We consider some well-known results for observing non-termination in the unfoldings and the chains and we instantiate them to loopingness. We provide several examples that seem to indicate that the instantiations are correct as well as partial proofs. Observing loopingness (instead of just non-termination) provides clarifications on the non-termination hardness of the program. On the other hand, an observed non-looping non-termination cannot be detected by an automated technique designed for finding loops, hence it is useless to run such a technique for proving this non-termination.

Preliminaries

We assume the reader is familiar with the standard definitions of logic programming [START_REF] Apt | From logic programming to Prolog[END_REF] and term rewriting [START_REF] Baader | Term Rewriting and All That[END_REF]. We let N denote the set of non-negative integers. For any set E, we let ℘(E) denote its power set. We let + → (resp. * →) denote the transitive (resp. reflexive and transitive) closure of a binary relation →. We fix a finite signature F (the function symbols) together with an infinite countable set V of variables with F ∩ V = ∅. Constant symbols are denoted by 0, 1, . . . , function symbols of positive arity by f, g, s, . . . , variables by x, y, z, . . . and terms by l, r, s, t, . . . For any term t, we let Var(t) denote the set of variables occurring in t and root(t) denote the root symbol of t. The set of positions of t is denoted by Pos(t). For any p ∈ Pos(t), we write t| p to denote the subterm of t at position p and t[p ← s] to denote the term obtained from t by replacing t| p with a term s. A substitution is a finite mapping from variables to terms written as {x 1 /t 1 , . . . , x n /t n }. A (variable) renaming is a substitution that is a bijection on V. The application of a substitution θ to a syntactic object o (i.e., a construct consisting of terms) is denoted by oθ, and oθ is called an instance of o. When θ is a renaming, oθ is also called a variant of o. 

Logic programming

We also fix a finite set of predicate symbols disjoint from F and V that is used for constructing atoms. Predicate symbols are denoted by p, q, . . . , atoms by H, A, B, . . . and queries (i.e., sequences of atoms) by bold uppercase letters. Consider a non-empty query ⟨A, A⟩ and a clause c. Let H ← B be a variant of c variable disjoint with ⟨A, A⟩ and assume that

θ = mgu(A, H). Then ⟨A, A⟩ θ ⇒ c
⟨B, A⟩θ is a derivation step with H ← B as its input clause. If the substitution θ or the clause c is irrelevant, we drop a reference to it. For any logic program (LP) P and queries Q, Q ′ , we write

Q ⇒ P Q ′ if Q θ ⇒ c Q ′ holds for some clause c ∈ P and some substitution θ. A maximal sequence Q 0 ⇒ P Q 1 ⇒ P • • • of derivation steps is called a
derivation of P ∪ {Q 0 } if the standardization apart condition holds, i.e., each input clause used is variable disjoint from the initial query Q 0 and from the mgu's and input clauses used at earlier steps. We say that a query Q is non-terminating w.r.t. P if there exists an infinite derivation of P ∪ {Q}. We say that P is non-terminating if there exists a query which is non-terminating w.r.t. it.

Term rewriting

For any terms s and t and any rewrite rule R = l → r, we write s ⇒ R t if there is a substitution θ and a position p ∈ Pos(s) such that s| p = lθ and t

= s[p ← rθ]. Then s ⇒ R t is called a rewrite step. For any term rewriting system (TRS) R, we write s ⇒ R t if s ⇒ R t holds for some R ∈ R (then, we also call s ⇒ R t a rewrite step). A maximal sequence s 0 ⇒ R s 1 ⇒ R • • • of rewrite
steps is called a rewrite of R ∪ {s 0 }. We say that a term s is non-terminating w.r.t. R if there exists an infinite rewrite of R ∪ {s} and we say that R is non-terminating if there exists a term which is non-terminating w.r.t. it.

Observing non-termination in logic programming

The binary unfoldings [START_REF] Codish | A semantic basis for the termination analysis of logic programs[END_REF][START_REF] Gabbrielli | Goal independency and call patterns in the analysis of logic programs[END_REF] transform a LP P into a possibly infinite set of binary clauses. Intuitively, each generated binary clause H ← B (where B is an atom or the empty query true) specifies that, w.r.t. P , a call to H (or any of its instances) necessarily leads to a call to B (or its corresponding instance). A generated clause of the form H ← true indicates a success pattern. In the definition below, ℑ denotes the domain of binary clauses (viewed modulo renaming) and id denotes the set of all binary clauses of the form true ← true or p(x 1 , . . . , x n ) ← p(x 1 , . . . , x n ), where p is a predicate symbol of arity n and x 1 , . . . , x n are distinct variables. Given any set X of binary clauses, T β P (X) is constructed by unfolding prefixes of clause bodies of P , using elements of X ∪ id, to obtain new binary clauses.

▶ Definition 1 (Binary unfoldings).

T β P : ℘(ℑ) → ℘(ℑ) X →        (H ← B)θ c = H ← B 1 , . . . , B m ∈ P, i ∈ {1, . . . , m} ⟨H j ← true⟩ i-1 j=1 ≪ X H i ← B ≪ X ∪ id, i < m ⇒ B ̸ = true θ = mgu(⟨B 1 , . . . , B i ⟩, ⟨H 1 , . . . , H i ⟩)        and unf (P ) = n∈N (T β P ) n (∅), where (T β P ) 0 (∅) = ∅.
▶ Example 2. Consider the logic program P that consists of the clauses

c 1 = p(x, y) ← q(x), p(y, x) c 2 = q(0) ← true
Unfolding c 2 using true ← true ∈ id, one gets c ′ 2 = q(0) ← true ∈ T β P (∅). Then, unfolding c 1 using c ′ 2 , p(x ′ , y ′ ) ← p(x ′ , y ′ ) ∈ id and i = 2, one gets c 3 = p(0, y) ← p(y, 0) ∈ (T β P ) 2 (∅). Finally, unfolding c 1 using c ′ 2 , c 3 and i = 2, one gets c 4 = p(0, 0) ← p(0, 0) ∈ (T β P ) 3 (∅). It is proved in [START_REF] Codish | A semantic basis for the termination analysis of logic programs[END_REF] that the binary unfoldings of a LP exhibit its termination properties:

▶ Theorem 3 (Observing non-termination in the unfoldings). Let P be a LP and Q be a query. Then, Q is non-terminating w.r.t. P iff Q is non-terminating w.r.t. unf (P ).

For instance, in Ex. 2, we have c 4 = p(0, 0) ← p(0, 0) ∈ unf (P ), so the query p(0, 0) is non-terminating w.r.t. unf (P ). Hence, by Thm. 

⇝ P A 1 ⇝ P A 2 ⇝ P • • •
▶ Theorem 5 (Observing non-termination in the chains). A LP P is non-terminating iff there exists an infinite P -chain.

For instance, in Ex. 2, we have the infinite P -chain p(0, 0)

⇝ P p(0, 0) ⇝ P • • •

Observing non-termination in term rewriting

We consider the unfolding technique used in [START_REF] Payet | Loop detection in term rewriting using the eliminating unfoldings[END_REF]. It is defined as a function over the domain ℜ of rewrite rules (viewed modulo renaming). It is based on forward and backward narrowing and also performs unfolding on variable positions (contrary to what is usually done in the literature). Note that in general, the unfoldings of a TRS are not finitely computable.

▶ Definition 6 (Unfoldings).

U R : ℘(ℜ) → ℘(ℜ) X →        (l → r[p ← r ′ ])θ l → r ∈ X p ∈ Pos(r) l ′ → r ′ ≪ R θ = mgu(r| p , l ′ )        forward unfoldings ∪        (l[p ← l ′ ] → r)θ l → r ∈ X p ∈ Pos(l) l ′ → r ′ ≪ R θ = mgu(l| p , r ′ )        backward unfoldings and unf (R) = n∈N (U R ) n (R), where (U R ) 0 (R) = R. ▶ Example 7.
Consider the TRS R introduced by Toyama [9] that consists of the rules

R 1 = f(0, 1, x) → f(x, x, x) R 2 = g(x, y) → x R 3 = g(x, y) → y We have R 1 ∈ (U R ) 0 (R). Unfolding R 1 backwards using R 2 and p = 1, one gets R 4 = f(g(0, y ′ ), 1, x) → f(x, x, x) ∈ U R (R).
Then, unfolding R 4 backwards using R 3 and p = 2, one gets R 5 = f(g(0, y ′ ), g(x ′′ , 1), x) → f(x, x, x) ∈ (U R ) 2 (R).

By [START_REF] Guttag | On proving uniform termination and restricted termination of rewriting systems[END_REF], for all s → t ∈ unf (R) we have s + ⇒ R t. So, as R ⊆ unf (R) also holds, the unfoldings of a TRS exhibit its termination properties:

▶ Theorem 8 (Observing non-termination in the unfoldings). Let R be a TRS and s be a term. Then, s is non-terminating w.r.t. R iff s is non-terminating w.r.t. unf (R).

In Ex. 7 above, we have R 5 = f(g(0, y ′ ), g(x ′′ , 1), x) → f(x, x, x) ∈ unf (R), hence the term s = f(g(0, 1), g(0, 1), g(0, 1)) is non-terminating w.r.t. unf (R) (we have s

⇒ R5 s ⇒ R5 • • • ). Con-
sequently, by Thm. 8, s is non-terminating w.r.t. R. We refer to [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF] for details on dependency pairs. The defined symbols of a TRS R are D R = {root(l) | l → r ∈ R}. For every f ∈ F we let f # be a fresh tuple symbol with the same arity as f. If t = f(t 1 , . . . , t m ) is a term, we let t # denote the construct f # (t 1 , . . . , t m ). The set of

dependency pairs of R is DP(R) = {l # → t # | l → r ∈ R, t is a subterm of r, root(t) ∈ D R } (viewed modulo renaming). A (possibly infinite) sequence C = ⟨s # 1 → t # 1 , s # 2 → t # 2 , . . . ⟩ of dependency pairs of R is an R-chain if there exist substitutions σ i such that t # i σ i * ⇒ R s # i+1 σ i+1 holds for every two consecutive pairs s # i → t # i and s # i+1 → t # i+1 in the sequence. We may also write C as ⟨(s # 1 → t # 1 , σ 1 ), (s # 2 → t # 2 , σ 2 ), . . . ⟩ to emphasize that σ 1 , σ 2 , .
. . are substitutions associated with every two consecutive pairs. It is proved in [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF] that the presence of an infinite R-chain is a sufficient and necessary criterion for non-termination:

▶ Theorem 9 (Observing non-termination in the chains). A TRS R is non-terminating iff there exists an infinite R-chain.

For instance, in Ex. 7, ⟨f # (0, 1, x) → f # (x, x, x), f # (0, 1, x) → f # (x, x, x), . . . ⟩ is an infinite R-chain because, for σ = {x/ g(0, 1)}, we have f # (x, x, x)σ * ⇒ R f # (0, 1, x)σ.

Observing loopingness

The definitions presented below hold both in logic programming and in term rewriting, so we introduce a generic terminology. By a program (denoted by Π, Π ′ . . . ) we mean a LP or a TRS, by a rule (denoted by π, π ′ . . . ) we mean a clause or a rewrite rule, by a goal (denoted by α, α ′ . . . ) we mean a query or a term, by a computation we mean a derivation or a rewrite. Let L = ⟨π 1 , . . . , π n ⟩ be a finite non-empty sequence of rules. For any goals α, α ′ we write

α → L α ′ when α ⇒ π1 • • • ⇒ πn α ′ .
▶ Definition 10 (Looping). Let Π be a program, L be a finite non-empty sequence of rules of Π and α be a goal. We say that a computation of

Π ∪ {α} is L-looping if it is infinite and has the form α → L α 1 → L α 2 → L • • • .
We may drop the reference to L if it is not relevant, and simply say that the computation is looping. We say that α is looping w.r.t. Π if there exists a looping computation of Π ∪ {α}. We say that Π is looping if there exists a goal which is looping w.r.t. it.

▶ Example 11. Consider the LP P which consists of the clauses c

1 = p 1 ← p 2 , c 2 = p 2 ← p 3 , c 3 = p 3 ← p 1 and c 4 = p 3 ← p 4 .
Then, p 1 is looping w.r.t. P as we have the infinite derivation

p 1 ⇒ c1 p 2 ⇒ c2 p 3 ⇒ c3 p 1 ⇒ c1 p 2 ⇒ c2 p 3 ⇒ c3 p 1 ⇒ c1 • • • i.e., for L = ⟨c 1 , c 2 , c 3 ⟩, p 1 → L p 1 → L p 1 → L • • •
We extend the concept of loopingness to chains.

▶ Definition 12 (Looping chain). Let P be a LP and R be a TRS.

We say that a P -chain is looping if it is infinite and has the form

A 0 ⇝ L A 1 ⇝ L • • • where
L is a finite, non-empty, sequence of clauses of P . We say that an R-chain is looping if it is infinite and has the form ⟨L, L, . . . ⟩, where L is a finite, non-empty, sequence of elements of DP(R) × Substitutions.

▶ Example 13 (Ex. 7 continued). Let p = f # (0, 1, x) → f # (x, x, x), {x/ g(0, 1)} . Then, ⟨p, p, . . . ⟩ is a looping R-chain.

Note that there exist infinite computations which are not looping, i.e., do not correspond to the infinite repetition of the same sequence of rules.

▶ Example 14. Let P be the LP which consists of the clauses c 1 = p(0, y) ← p(s(y), s(y)) and c 2 = p(s(x), y) ← p(x, y). We have the following infinite derivation of P ∪ {p(0, 0)}:

p(0, 0) ⇒ c1 p(s(0), s(0)) ⇒ c2 p(0, s(0)) ⇒ c1 p(s 2 (0), s 2 (0)) 2 ⇒ c2 p(0, s 2 (0)) ⇒ c1 • • •
It is not looping as it follows the path ⟨c 1 , c 2 , c 1 , c 2 , c 2 , c 1 , . . . ⟩. We also have the infinite, non-looping, P -chain:

p(0, 0) ⇝ c1 p(s(0), s(0)) ⇝ c2 p(0, s(0)) ⇝ c1 p(s 2 (0), s 2 (0)) ⇝ ⟨c2,c2⟩ p(0, s 2 (0)) ⇝ c1 • • • ▶ Example 15.
Let R be the TRS which consists of the rules R 1 = f(0, y) → f(s(y), s(y)) and R 2 = f(s(x), y) → f(x, y). We have the following infinite rewrite of R ∪ {f(0, 0)}:

f(0, 0) ⇒ R1 f(s(0), s(0)) ⇒ R2 f(0, s(0)) ⇒ R1 f(s 2 (0), s 2 (0)) 2 ⇒ R2 f(0, s 2 (0)) ⇒ R1 • • • It is not looping as it follows the path ⟨R 1 , R 2 , R 1 , R 2 , R 2 , R 1 , . . . ⟩. We also have the infinite, non-looping, R-chain ⟨(R # 1 , σ 1 ), (R # 2 , θ 1 ), (R # 1 , σ 2 ), (R # 2 , θ 2 ), . . . ⟩ where R # 1 = s # 1 → t # 1 = f # (0, y) → f # (s(y), s(y)), R # 2 = s # 2 → t # 2 = f # (s(x), y) → f # (x, y)
and, for all i > 0, σ i = {y/ s i-1 (0)} and θ i = {x/0, y/ s i (0)}. Indeed, we have t

# 1 σ 1 * ⇒ R s # 2 θ 1 , t # 2 θ 1 * ⇒ R s # 1 σ 2 , . . .
All the examples given above seem to indicate that the Observing non-termination results of Sect. 3 and Sect. 4 can be instantiated to loopingness.

▶ Lemma 16 (Observing loopingness in the chains). If, for a program Π, there exists a looping Π-chain then Π is looping.

Proof. For LPs, the result immediately follows from Def. 4 and Def. 12. For TRSs, it is proved in [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF] that any infinite Π-chain of P ∪{p(0, 0)}. Note that c 1 ̸ ∈ unf (P ) (c 1 is not binary) hence this derivation of P ∪{p(0, 0)} is not a derivation of unf (P ) ∪ {p(0, 0)}. In Ex. 7, for s = f(g(0, 1), g(0, 1), g(0, 1)), we have the ⟨R 5 ⟩-looping rewrite s ⇒ 

C = ⟨(s # 1 → t # 1 , σ 1 ), (s # 2 → t # 2 , σ 2 ), . . . ⟩ corresponds to an infinite rewrite C ′ = (s 1 σ 1 ⇒ R1 C 1 [t 1 ]σ 1 * ⇒ Π C 1 [s 2 ]σ 2 ⇒ R2 C 1 [C 2 [t 2 ]]σ 2 * ⇒ Π • • • ) where R 1 = s 1 → C 1 [t 1 ], R 2 = s 2 → C 2 [t 2 ], . . .

▶

  Example 20. In Ex. 2, we have the ⟨c 4 ⟩-looping derivation p(0, 0) ⇒ c4 p(0, 0) ⇒ c4 • • • of unf (P ) ∪ {p(0, 0)} and the ⟨c 1 , c 2 ⟩-looping derivation p(0, 0)

  of unf (R) ∪ {s} and the ⟨R 2 , R 3 , R 1 ⟩-looping rewrite s ⇒ R2 f(0, g(0, 1), g(0, 1)) ⇒ R3 f(0, 1, g(0, 1)) ⇒ R1 s ⇒ R2 • • • of R ∪ {s}. As R ⊆ unf (R), this rewrite of R ∪ {s} is also a rewrite of unf (R) ∪ {s}.

  The substitution θ is a unifier of the syntactic objects o and o ′ if oθ = o ′ θ. We let mgu(o, o ′ ) denote the (up to variable renaming) most general unifier of o and o ′ . If O is a set of syntactic objects, we write o ≪ O to denote that o is a new occurrence of an element of O whose variables are new (not previously met).

  3, p(0, 0) is non-terminating w.r.t. P . The proof of Thm. 3 relies on the following definition and theorem.

▶ Definition 4 (Calls-to relation ⇝). Let P be a LP. For any atoms A and B, we say that B is a call in a derivation of P ∪ {A}, denoted A ⇝ P B, if A + ⇒ P ⟨B, . . . ⟩; we also write A ⇝ L B to emphasize that L is the sequence of clauses of P used in a derivation from A to ⟨B, . . . ⟩. A P -chain is a (possibly infinite) sequence of the form A 0

  are rewrite rules of Π and the rewrites in * i+1 there is a query ⟨A, . . . ⟩ that has an infinite derivation. For all i ∈ N, let ⟨A i , . . . ⟩ be the leftmost such query in Q i → ′ be the sequence of clauses used in A 0 Lemma 18 (Observing loopingness in the unfoldings). A term is looping w.r.t. a TRS R iff it is looping w.r.t. unf (R).Proof. (⇒) As R ⊆ unf (R), any rewrite with R is also a rewrite with unf (R). (⇐) For all s → t ∈ unf (R) we have s[START_REF] Guttag | On proving uniform termination and restricted termination of rewriting systems[END_REF], so replacing, in a looping rewrite with unf (R), each step by the corresponding finite sequence of steps in R, one gets a looping rewrite with R. ◀ ▶ Conjecture 19 (Observing loopingness in the binary unfoldings). A query is looping w.r.t. a LP P iff it is looping w.r.t. unf (P ). Use Lem. 16 + Conj. 17 and the fact that ⇝

	Proof sketch.			
					⇒ Π	do not occur
	in the C i 's (i.e., they are those of t # i σ i	* ⇒ Π	s # i+1 σ i+1 ). Hence, if C is looping, so is C ′ .	◀
	▶ Conjecture 17 (Observing loopingness in the chains). If a program Π is looping then there
	exists a looping Π-chain.			
	Proof sketch for a LP P . Let Q 0 → L	Q 1 → L	• • • be a looping derivation of P ∪ {Q 0 }. Then,
	in each step Q i →			

L Q L Q i+1 .

Then, for all i ∈ N we have

A i ⇝ P A i+1 . Let L + ⇒ P ⟨A 1 , . . . ⟩. We prove by induction on i that, for all i ∈ N, L ′ is used in A i + ⇒ P ⟨A i+1 , . . . ⟩ and hence that A i ⇝ L ′ A i+1 . ◀ ▶ + ⇒ R t P = ⇝ unf (P )
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Besides finishing the proofs (Conj. 19 and Conj. 17), we plan to extend the results to dependency pairs in logic programming [7] and to inner-loopingness [10]. We also plan to unify more concepts from termination analysis of LPs and TRSs.