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Introduction: Simultaneous beat-to-beat R-R intervals, blood pressure and
respiration signals are routinely analyzed for the evaluation of autonomic
cardiovascular and cardiorespiratory regulations for research or clinical
purposes. The more recognized analyses are i) heart rate variability and cardiac
coherence, which provides an evaluation of autonomic nervous system activity
andmore particularly parasympathetic and sympathetic autonomic arms; ii) blood
pressure variability which is mainly linked to sympathetic modulation and
myogenic vascular function; iii) baroreflex sensitivity; iv) time-frequency
analyses to identify fast modifications of autonomic activity; and more recently,
v) time and frequency domain Granger causality analyses were introduced for
assessing bidirectional causal links between each considered signal, thus allowing
the scrutiny of many physiological regulatory mechanisms.

Methods: These analyses are commonly applied in various populations and
conditions, including mortality and morbidity predictions, cardiac and
respiratory rehabilitation, training and overtraining, diabetes, autonomic status
of newborns, anesthesia, or neurophysiological studies.

Results: We developed CVRanalysis, a free software to analyze cardiac, vascular
and respiratory interactions, with a friendly graphical interface designed to meet
laboratory requirements. The main strength of CVRanalysis resides in its wide
scope of applications: recordings can arise from beat-to-beat preprocessed data
(R-R, systolic, diastolic and mean blood pressure, respiration) or raw data (ECG,
continuous blood pressure and respiratorywaveforms). It has several tools for beat
detection and correction, as well as setting of specific areas or events. In addition
to the wide possibility of analyses cited above, the interface is also designed for
easy study of large cohorts, including batch mode signal processing to avoid
running repetitive operations. Results are displayed as figures or saved in text files
that are easily employable in statistical softwares.

Conclusion: CVRanalysis is freely available at this website: anslabtools.univ-st-
etienne.fr. It has been developed using MATLAB

®
and works on Windows 64-bit

operating systems. The software is a standalone application avoiding to have
programming skills and to install MATLAB. The aims of this paper area are to
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describe the physiological, research and clinical contexts of CVRanalysis, to
introduce the methodological approach of the different techniques used, and to
show an overview of the software with the aid of screenshots.

KEYWORDS

cardiovascular, cardiorespiratory, autonomic nervous system, baroreflex, heart rate
variability, Granger causality

1 Introduction

In the field of autonomic nervous system, ECG, blood pressure
(BP) waveform and respiratory movements are simultaneously
recorded routinely in humans for research or clinical purposes.
From these recordings, beat-to-beat values of R-R intervals (RR) or
heart rate (HR), systolic, mean and diastolic bood pressure (SBP,MBP
and DBP, respectively), and respiration (RE) are extracted and used
for the analyses of cardiovascular and cardiorespiratory regulations.

Usually these recordings are carried out over some minutes to
several hours. After a basal measurement often made in the supine
position (Radaelli et al., 1999) during which parasympathetic
nervous system activity is predominant, a second test is generally
realized to modify the sympathetic/parasympathetic autonomic
nervous system equilibrium according to the studied
physiological process. This task can be simply done by setting
the subject in an upright position (Lucini et al., 2000; Monaghan
et al., 2022), or performing handgrip exercise (Cui et al., 2021),
cognitive stress test (Niizeki and Saitoh, 2012), pharmacological
administration (mostly autonomic blockades) (Januel et al., 1995;
Porta et al., 2013b), cold pressure test (Prakash et al., 2021), or lower
body negative pressure (Butler et al., 1994), during which,
respiration can be spontaneous or paced (Radaelli et al., 2004).

From these RR, BP and RE series, the most common calculated
indices arise from heart rate variability (HRV) analysis which provides
an estimation of autonomic nervous system activity, reactivity and
equilibrium (Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology, 1996;
Rajendra Acharya et al., 2006). Time and frequency domain indices
give estimations of parasympathetic and sympathetic activities and
sympatho-vagal equilibrium (Akselrod et al., 1981; Pagani et al.,
1984); and nonlinear methods such as fractal or entropy indices
bring information on the complexity of autonomic regulations
(Pincus and Goldberger, 1994; Peng et al., 1995; Voss et al., 1995;
Porta et al., 1998; Richman andMoorman, 2000). In the samemanner
but less used than HRV, frequency domain analysis of beat-to-beat BP
is mainly linked to sympathetic modulation and myogenic vascular
function (Parati et al., 1990; Stauss, 2007).

Another popular and well used index is the cardiac baroreflex
sensitivity (BRS) which represents the compensatory increase and
decrease in RR due to spontaneous variation of BP (Kaufmann et al.,
2020). The sequence and the frequency domain methods (Parlow
et al., 1995; Pinna andMaestri, 2001; Pinna andMaestri, 2002; Reyes
Del Paso et al., 2017) are historically the two reference methods; but
some alternatives such as phase rectified signal averaging (Bauer
et al., 2010) have proven their accuracy for baroreflex evaluation.
These approaches are complemented by more recently developed
methods. For non-steady state recordings, it is possible to analyze
the transient evolution of autonomic activity and baroreflex using

time-frequency methods such as wavelet transform (Pichot et al.,
1999; Wiklund et al., 2002).

RR and BP variability as well as BRS indices are commonly
applied to various fields such as morbidity and mortality risk
stratification (La Rovere et al., 1998; Lucreziotti et al., 2000),
aging (Milan-Mattos et al., 2018), sports fields to manage
training (Pichot et al., 2005; Buchheit, 2014), overtraining
(Mourot et al., 2004; Baumert et al., 2006) or cardiac
rehabilitation (Malfatto et al., 1996; Badrov et al., 2019),
metabolic syndrome (Assoumou et al., 2010; Endukuru et al.,
2020), hypertension (Pikkujämsä et al., 1998; Del Colle et al.,
2007), pain (Chouchou et al., 2011), diabetes dysautonomia
evaluation (Petry et al., 2020) and autonomic maturation (Patural
et al., 2019). Although, these indices provided new physiological
insights and were strongly correlated to the incidence of fatal and
nonfatal cardiovascular and all-cause events, a limitation of these
methods resides in that they do not consider all closed loop
interactions between RR, BP and RE involved during
cardiovascular and cardiorespiratory regulations. Also, the
spectral methods were subject to criticism, particularly
concerning the estimation of sympathetic activity and sympatho-
vagal balance (Billman, 2013). To override this limitation, causal
mathematical analyses were introduced during the last decade to
better understand the physiological relationships between RR, BP
and RE signals (Schulz et al., 2013; Müller et al., 2016). The more
documented and promising method is the Granger causality
analysis, which provides indices of the causality links between
each signal, thus allowing identification of supported specific
physiological regulation mechanisms (Granger, 1969; Schulz
et al., 2013; Müller et al., 2016). At the moment, these methods
were validated in the laboratory (Porta et al., 2013b) and applied to
several clinical fields such as anesthesia (Bassani et al., 2012; Porta
et al., 2013a) or syncope (Faes et al., 2015; Schiatti et al., 2015), but
major clinical studies using these new tools are still lacking.

Some softwares to analyze RR, BP and RE have been developed and
improved during the last two decades. Usually, the applications are
dedicated to the calculation of HRV or baroreflex indices. Some ready to
use softwares are attached to a specific material distributed by a
biomedical company and utilize their own file format and have to be
paid, whereas others are free of charge (Kaufmann et al., 2011; Tarvainen
et al., 2014; Pichot et al., 2016; Silva et al., 2020). Also, open source
toolboxes for MATLAB, C or Python (Champeix, 2018; Mietus and
Goldberger, 2018; Vollmer, 2020; Gomes, 2022) have given a large
number of people access tomethods for analyzing RR, BP andRE signals
and thus improved knowledge in the field, but require programming
skills. A recent article presented a detailed summary of the common
softwares available for cardiovascular signal analyses (Silva et al., 2020).

In this article, we introduce CVRanalysis, a new free software
available for research purposes that gathers the main recognized
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methods to analyze RR, BP and RE signals recorded simultaneously.
The available analysis methods are HR and BP variability, BRS, wavelets
analysis, classical and extended Granger causalities in time and
frequency domains, and analyses on surrounding events.
CVRanalysis software has been developed in the same manner as
HRVanalysis (Pichot et al., 2016) and users will find similar menus
and tools adapted for laboratory requirements such as various data
importation formats, beat detection and correction, setting of specific
areas or events, and batch analyses possibility. To our knowledge, there
is no other free software gathering all thesemethods and proposing such
laboratory tools, especially for RR, BP and RE signals analysis.

2 Methods to explore cardiac, vascular,
and respiratory interactions

In this section, the reader will find a description of the methods
used by the software. Of course, not all methods are present, as there is
a wide choice in the literature but we believe we have included a
selection of the most useful and widely used in the field. We have
confined ourselves to describing the principles of the methods without
detailing the algorithms and have only introduced the most commonly
used physiological interpretations. All these methods have been
validated and widely used in many fields, and the reader may wish
to refer to the many articles that have been included in the text.

Please, refer to Tables 1–4 for a list of all indices calculated from
each method and their abbreviations.

2.1 Heart rate and blood pressure variability

2.1.1 Heart rate variability
HRV is a well recognized method to explore autonomic nervous

system activity for laboratory and clinical uses (Task Force of the
European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996; Rajendra Acharya et al., 2006;
Billman, 2011; Billman et al., 2015). Indeed, except for nonsinus
rhythms induced by atrial fibrillation or extrasystoles, the main
variations in HR are due to the permanent beat-to-beat adaptations
of parasympathetic and sympathetic activities on the heart (Hon and
Lee, 1963; Sayers, 1973; Billman, 2011). The quantification of these
variations then allows to evaluate autonomic activity (Akselrod et al.,
1981). This is achieved by various methods: time and frequency
domain, nonlinear, and time-frequency (Rajendra Acharya et al.,
2006; Pichot et al., 2016). Each calculated index provides different
information, but some are redundant (Kautzner and Hnatkova, 1995).
Globally, the rapid variations concerning several beats are linked to
parasympathetic activity (Akselrod et al., 1981; Pomeranz et al., 1985);
slower variations with a period 7–25 s are due to both sympathetic and
parasympathetic activities (Saul et al., 1990; Pagani et al., 1997); and
very slow variations with a period 25–300 s are usually assimilated to
parasympathetic activity, renin angiotensine system and
thermoregulation (Taylor et al., 1998). Ultraslow variations have
been shown but required 24-h recordings to be calculated (Bigger
et al., 1992). Then, for example, from the time and frequency domain
methods, both SDNN and Ptot give information on the total beat-to-
beat variations, i.e., an approximation of the global regulatory
capacities of the autonomic nervous system; rMSSD, pNN50 and

HF are linked to short-term beat-to-beat variations and are related to
parasympathetic activity; the LF/HF ratio can be considered as an
approximation of the sympatho-vagal balance (Pagani et al., 1984),
although this index should be considered with caution (Billman, 2013).

Precautions must also be taken with regard to respiratory rate.
Indeed, the physiological interpretations of the frequency domain indices
described above are only valid if the subject’s respiratory frequency is in
the high-frequency bandwidth, i.e., between 9 and 24 cycles per minute
for HF bandwidth set between 0.15 and 0.40 Hz. For slower breathing
rates, the peak of the LF will be contaminated by the effects of breathing
and the HF will be artificially reduced. For respiration that is too fast, its
effects will not be taken into account in the HF. It is also important to
take into account the state in which the subject is: in the upright position
or during hand-grip exercise, for example, the LFwill bemore influenced
by sympathetic activity than in the supine position at rest, where
parasympathetic activity will predominate.

A method that is often used to complement time domain analysis,
the Poincaré plot is a graphical representation of the RR(n) as a function
of RR(n + 1), modelled in the form of an elipse (Kamen et al., 1996).
Then, the standard deviation of the RRs along the x = y-axis (index
SD1) represents short-term variations in RR variability, while the
standard deviation on the perpendicular axis (index SD2) represents
longer term variability. To measure the relationship between these two
indices, the value of SD1/SD2 is often used.

Also, unlike time and frequency domain methods, which identify
known regulationmechanisms that respond to specific signal variations
(the effect of breathing at high HF frequencies of RR and BP, or Meyer
waves located at 0.1 Hz in the BP spectrum, for example,), nonlinear
analyses permit to scrutinize the capacity of more complex regulatory
mechanisms by the autonomic nervous system (Voss et al., 1995).

Among these, the analysis of fractality consists of quantifying the
repetition of identical shapes but at different scales in the RR series (Peng
et al., 1995; Bigger et al., 1996; Rajendra Acharya et al., 2006). Several
approaches have been introduced to estimate the degree of fractality of
HRV: the detrended fluctuation analysis (DFA) (Peng et al., 1995), the
Hurst exponent, or the Higuchi (Higuchi, 1998) and Katz algorithms
(Katz, 1988).

Entropy measures the complexity and regularity of patterns of
different durations in the signal. Thus entropy will increase when a
wide variety of patterns are identically distributed and decreases when
these shapes are always the same. A number of algorithms have been
developed to calculate these entropy indices: sample entropy,
approximate entropy, Shannon entropy and the indices derived from
it, conditional entropy, corrected conditional entropy, normalized
corrected conditional entropy (Porta et al., 1998; Ferrario et al., 2004).

The symbolic dynamics allow to study short RR or BP variability
pattern behavior (Porta et al., 2001). The principle of this method is to
divide the signal into parts containing a fixed number of points (typically
L = 3) and to digitize it (typically E = 6 levels). For each epoch obtained,
the presence of predefined patterns is quantified (0V: no variations in the
signal; 1V: two successive equal points; 2LV: two variations in the same
direction; 2UV: two variations in opposite directions) from which their
rates of occurrence in the complete signal are deduced.

Finally, we should also mention the largest Lyapunov exponent,
which is used to measure how chaotic is the analyzed signal (Wolf
et al., 1985). Its values will tend towards zero for physiological
signals showing very small and slow variations, whereas they will
increase when the variations are quickely larger and larger.
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TABLE 1 Definition of abbreviations for calculated indices in CVRanalysis program.

Index

Time domain

NN20 Number of pairs of successive normal RR intervals that differ by more than 20 ms

pNN20 Proportion of NN20 divided by the total number of normal RR intervals

NN30 Number of pairs of successive normal RR intervals that differ by more than 30 ms

pNN30 Proportion of NN30 divided by the total number of normal RR intervals

NN50 Number of pairs of successive normal RR intervals that differ by more than 50 ms

pNN50 Proportion of NN50 divided by the total number of normal RR intervals

SDNN Standard deviation of the normal RR (or BP) intervals

rMSSD Root mean square of the successive RR (or BP) interval differences

Geometrical

Triangular Index Integral of the density of the RR (or BP) interval histogram divided by its height (Y)

TINN Baseline width of the RR (or BP) interval histogram

X Duration of the RR (or BP) at the peak of the density distribution histogram

Y Height of the peak of the density distribution histogram

M Right limit of the density distribution histogram

N Left limit of the density distribution histogram

Frequency domain

Ptot Total power of the RR (or BP) spectrum

VLF Absolute power of the very-low-frequency band

LF Absolute power of the low-frequency band

HF Absolute power of the high-frequency band

LFnu Relative power of the low-frequency band

HFnu Relative power of the high-frequency band

Empirical mode decomposition

pLF1 Power associated with the mode closest to 0.1 Hz

pLF2 Power associated with the first mode with freq < LF1

pHF1 Power associated with the first mode with freq > LF1

pHF2 Power associated with the second mode with freq > LF1

IMAI1 Ratio between pLF1 and power of modes with freq > LF1

IMAI2 Ratio between pLF2 and power of modes with freq > LF1

Poincaré plot

Centroïd RR (or BP) value a the centre of the elipse

SD1 Poincaré plot standard deviation perpendicular to the line of identity

SD2 Poincaré plot standard deviation along the line of identity

SD1nu Ratio between SD1 and centroid in %

SD2nu Ratio between SD2 and centroid in %

(Continued on following page)
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2.1.2 Blood pressure variability
In clinical practice, BP variability usually represents from hour-to-

hour to days, weeks, months and years variations (Nardin et al., 2019).
In this context, an increase of variability is correlated with an increased
risk of cardiovascular and all-cause mortality due to the alteration in
cardiovascular regulatory mechanisms (Parati et al., 2013). However,
very short-term, beat-to-beat BP variations have been analyzed and can
be performed to assess cardiovascular regulation (Parati et al., 2020).

BP regulation is realized by different neurohormonal systems
including the baroreflex system, the renin-angiotensin system, the
shear stress-induced release nitric oxide from the endothelium, and
the myogenic vascular response (Stauss, 2007). In addition to these
regulatory mechanisms, independent and spontaneous variation of BP
sympathetically mediated so called Mayer waves, which arise around
0.1 Hz, has also been demonstrated (Julien, 2020). These physiological
systems induce variations in BP, which can be identified in a specific
bandwidth of spectral analysis (Parati et al., 1990). In humans, myogenic
vascular function affects both the very low frequencies (0.02–0.07 Hz)
and the low frequencies (0.075–0.15 Hz); and sympathetic modulation
can be seen only in the low frequencies and the LF/HF ratio (Stauss,
2007). The usual interpretation of high frequencies (0.15–0.40 Hz) is that

they are mainly due to the mechanical effects of breathing on blood
pressure (Pagani et al., 1986) but some authors have also shown a link
with the endothelial derived nitric oxide (Stauss, 2007). The renin-
angiotensin system and shear stress-induced release nitric oxide have
been shown to affect very low frequencies in rats but need further
investigation to be confirmed in humans (Stauss, 2007). The main
indices of very short-term BP variability arise from spectral analysis of
beat-to-beat systolic, diastolic or mean pressure; but there is a lack of
studies using nonlinear methods such as fractal or entropy.

2.1.3 Cardiac coherence
Cardiac coherence takes place in the general field of biofeedback

which considers that physiological, cognitive and emotional systems
are intimately interrelated through ongoing reciprocal communication
(McCraty et al., 2006). Manymethods have been developed, but globally
they all try to measure the synchrony between psychophysiological
interconnected systems. In this context, cardiac coherence evaluates the
stability of heart rhythm in the low frequencies. Thus the cardiac
coherence index will be represented by the presence of a peak in
these regions visible on the spectral analysis of RR variability (Shaffer
et al., 2014). From the power spectral density of the RR, the cardiac

TABLE 1 (Continued) Definition of abbreviations for calculated indices in CVRanalysis program.

Index

Fractal

α1DFA Detrended fluctuation analysis which describes short-term fluctuations

α2DFA Detrended fluctuation analysis which describes long-term fluctuations

HDFA Slope of the DFA curve plotted in log-log

HHiguchi Fractal dimension using Higuchi algorithm

HKatz Fractal dimension using Katz algorithm

Hurst Hurst exponent

Symbolic dynamic

0V Number of pattern showing 0 variations in the signal

0V% Percentage of pattern showing 0 variations in the signal

1V Number of pattern showing two successive equal points

1V% Percentage of pattern showing two successive equal points

2LV Number of pattern showing two variations in the same direction

2LV% Percentage of pattern showing two variations in the same direction

2UV Number of pattern showing two variations in opposite directions

2UV% Percentage of pattern showing two variations in opposite directions

MP Number of missing pattern

MP% Percentage of missing pattern

Cardiac coherence

HR coherence ratio Heart rhythm coherence ratio

F(peak) Hz Frequency of the maximum peak between 0.04 and 0.26 Hz expressed in Hz

F(peak) cycle/min Frequency of the maximum peak expressed in cycle/s

F(peak) s Frequency of the maximum peak expressed in s
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TABLE 2 HRV, BPV and cardiac coherence indices calculated in CVRanalysis program.

RR series SBP, MBP, DBP

Index Unit Index Unit

Time domain Eckberg (1983), Fouad et al. (1984), Cook et al. (1991), Kleiger et al. (1995), Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology (1996), Rajendra Acharya et al. (2006)

Mean RR ms Mean BP mmHg

Mean HR bpm

NN20 n

pNN20 %

NN30 n

pNN30 %

NN50 n

pNN50 %

SDNN ms SD mmHg

rMSSD ms rMSSD mmHg

Geometrical Malik et al. (1989), Malik (1995), Task Force of the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology, (1996)

Triangular Index — Triangular Index —

TINN ms TINN mmHg

X ms X mmHg

Y n Y mmHg

M ms M mmHg

N ms N mmHg

Frequency domain Akselrod et al. (1981), Pagani et al. (1984), Akselrod et al. (1985), Pomeranz et al. (1985), Pagani et al. (1986), Saul et al. (1990), Bigger
et al. (1992), Triedman and Saul, (1994), Malliani et al. (1995), Keselbrener et al. (1996), Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, (1996), Eckberg (1997), Cooley et al. (1998), Pichot et al. (1999), Wiklund et al. (2002), Belova et al.
(2007), Billman (2013), Billman et al. (2015)

Ptot* ms2 Ptot* mmHg2

VLF* ms2 VLF* mmHg2

LF* ms2 LF* mmHg2

HF* ms2 HF* mmHg2

LF/HF* — LF/HF* —

LFnu* % LFnu* %

HFnu* % HFnu* %

Empirical mode decomposition Balocchi et al. (2004)

pLF1 ms2 pLF1 mmHg2

pLF2 ms2 pLF2 mmHg2

pHF1 ms2 pHF1 mmHg2

pHF2 ms2 pHF2 mmHg2

IMAI1 — IMAI1 —

IMAI2 — IMAI2 —

(Continued on following page)
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TABLE 2 (Continued) HRV, BPV and cardiac coherence indices calculated in CVRanalysis program.

RR series SBP, MBP, DBP

Index Unit Index Unit

Poincaré plot Kamen et al. (1996), Balocchi et al. (2006)

Centroïd ms Centroïd mmHg

SD1 ms SD1 mmHg

SD2 ms SD2 mmHg

SD1/SD2 — SD1/SD2 —

SD1nu % SD1nu %

SD2nu % SD2nu %

Fractal Katz (1988), Peng et al. (1995), Huikuri et al. (2000), Rajendra Acharya et al. (2006), Maestri et al. (2007b)

α1DFA — α1DFA —

α2DFA — α2DFA —

HDFA — HDFA —

HHiguchi — HHiguchi —

HKatz — HKatz —

Hurst — Hurst —

Moments Yilmaz and Yildiz, (2010), Wolf et al. (1985)

Skewness — Skewness —

Kurtosis — Kurtosis —

Largest Lyapunov exponent — Largest Lyapunov exponent —

Entropy Pincus (1991), Porta et al. (1998), Richman and Moorman, (2000), Porta et al. (2001), Ferrario et al. (2004), Maestri et al. (2007a), Porta et al.
(2007)

Approximate entropy (AppEn) — Approximate entropy —

Sample entropy (SampEn) — Sample entropy —

Shanon Entropy (SE) — Shanon Entropy (SE) —

Conditional Entropy (CE) — Conditional Entropy (CE) —

Corrected CE (CCE) — Corrected CE (CCE) —

Normalized CCE (NCCE) — Normalized CCE (NCCE) —

ρ — ρ —

Lempel-Ziv complexity — Lempel-Ziv complexity —

Symbolic dynamic Porta et al. (2001), Guzzetti et al. (2005), Porta et al. (2007), Dantas et al. (2015)

0V — 0V —

0V% % 0V% %

1V — 1V —

1V% % 1V% %

2LV — 2LV —

2LV% % 2LV% %

2UV — 2UV —

2UV% % 2UV% %

(Continued on following page)
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TABLE 2 (Continued) HRV, BPV and cardiac coherence indices calculated in CVRanalysis program.

RR series SBP, MBP, DBP

Index Unit Index Unit

MP — MP —

MP% % MP% %

Cardiac coherence McCraty 2009, Russo et al. (2017)

HR coherence ratio —

F(peak) Hz

F(peak) cycle/min

F(peak) s

*Indices also calculated in the time-frequency domain (wavelet analysis).

TABLE 3 Baroreflex indices calculated in CVRanalysis program.

Sequence method Parati et al. (1990), Parlow et al. (1995), Reyes Del Paso et al. (2017), Di Rienzo et al. (2001)

BRS sensitivity (all) ms/mmHg

Effectiveness (all) %

Detected sequences (all) n

Included sequences (all) n

Excluded sequences (all) n

BRS sensitivity (positive) ms/mmHg

Effectiveness (positive) %

Detected sequences (positive) n

Included sequences (positive) n

Excluded sequences (positive) n

BRS sensitivity (negative) ms/mmHg

Effectiveness (negative) %

Detected sequences (negative) n

Included sequences (negative) n

Excluded sequences (negative) n

Transfer function Javorka et al. (2021), Pinna and Maestri, (2001), Pinna 2002a, Pinna 2002b

αLF ms/mmHg

αHF ms/mmHg

Phase LF rad

Phase HF rad

Delay LF sec

Delay HF sec

Phase rectified signal averaging Bauer et al. (2010), Muller et al. (2012)

BRS PRSA original ms

BRS PRSA normalized ms/mmHg

Detected segments n

SBP change mmHg

*Indices also calculated in the time-frequency domain (wavelet analysis).
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coherence ratio is defined as Peak power/[Total power−Peak power];
where Peak power is the integral in a window 0.03 Hz wide,
centered on the maximum peak identified in the 0.04–0.26 Hz
range; and Total power is the integral between 0.0033 and 0.40 Hz
(McCraty et al., 2006).

Subjects can enhance their cardiac coherence capacity during
training sessions composed of paced respiration around 0.1 Hz. In
the autonomic nervous system, such training induces a resetting of
the baroreceptor sensitivity, an increase in vagal afferent traffic and a
reduction in sympathetic outflow (McCraty et al., 2006).

2.1.4 Main fields of interest
Due to its simplicity to deploy and interpret, HRV became a gold

standard to evaluate autonomic nervous system activity. Thus it is
commonly used for research, clinical as well as leisure purposes.
Indeed, virtually all research protocols concerning the autonomic
nervous system use HRV. As some studies have demonstrated its
ability to predict fatal and nonfatal events, the method is also used in
clinics, especially for cardiac and diabetic populations to follow at-risk
patients. Also, amateur to professional sportspersons are now
accustomed to employ HRV indices to manage their training loads

TABLE 4 Granger causality indices calculated in CVRanalysis program.

Model

Fit VAR (RR) %

Fit VAR (BP) %

Fit VAR (RE) %

Lag model n

Time domain causality (classic) Time domain causality (extended)

Wiener, (1956), Granger (1969), Porta et al. (2013b), Faes (2014), Schiatti et al. (2015)

BP→RR [0–1] BP→RR [0–1]

BP←RR [0–1] BP←RR [0–1]

BP↔RR [0–1] B0 (BP→RR) —

BP ≠ RR [0–1] B0 (BP←RR) —

BP→RE [0–1] BP→RE [0–1]

BP←RE [0–1] BP←RE [0–1]

BP↔RE [0–1] B0 (BP→RE) —

BP ≠ RE [0–1] B0 (BP←RE) —

RR→RE [0–1] RR→RE [0–1]

RR←RE [0–1] RR←RE [0–1]

RR↔RE [0–1] B0 (RR→RE) —

RR ≠ RE [0–1] B0 (RR←RE) —

Frequency domain causality (classic and extended) Kamiński and Blinowska, (1991), Baccala et al. (1998), Baccala and Sameshima, (2001), Faes and
Nollo, (2010); Faes and Nollo, (2011), Faes et al. (2013a)

BP→RR (HF) [0–1]

BP←RR (HF) [0–1]

BP→RR (LF) [0–1]

BP←RR (LF) [0–1]

BP→RE (HF) [0–1]

BP←RE (HF) [0–1]

BP→RE (LF) [0–1]

BP←RE (LF) [0–1]

RR→RE (HF) [0–1]

RR←RE (HF) [0–1]

RR→RE (LF) [0–1]

RR←RE (LF) [0–1]
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and to prevent overtraining, mainly through the use of HR
monitor watches.

Very short-term BP variability is less popular, mainly because
of the cost of the material needed to record continuous BP
waveform. However, these measures have been applied
successfully to cardiovascular disease, such as hypertension,
heart failure and stroke; particularly to estimate sympathetic
modulation of vascular tone and impaired cerebrovascular
myogenic function that are predictors of stroke (Smeda et al.,
1999; Kiviniemi et al., 2014; Grilletti et al., 2018; Javorka et al.,
2021). As a matter of fact in these populations, very short-term BP
variability also constitutes a morbidity and mortality predictor
(Lucreziotti et al., 2000).

Cardiac coherence is used as an alternative treatment for certain
chronic diseases, stress or pain management (Shaffer et al., 2014;
Fournié et al., 2021).

2.2 Cardiac baroreflex

The baroreflex is the main neuronal short-to long-term regulatory
systemof the circulatory system (Benarroch, 2008). It adapts permanently
BP, HR and blood volume (Kaufmann et al., 2020). The baroreceptors
situated in the carotid sinus and the aortic arch are stimulated when
arterial pressure increases, leading to bradycardia, and decrease in cardiac
contractility, vascular tone and venous return. Conversely, a decrease in
BP inhibits baroreceptors, generating tachycardia, and an increase in
cardiac contractility, vascular resistance and venous return (Reyes Del
Paso et al., 2017). Then the methods for estimating BRS are based on the
analysis of HR decreases resulting from a fall in BP and HR increases
resulting from a rise in BP (Pinna et al., 2017). A large response in HR
resulting from a modification in BP identifies a great sensitivity of the
baroreflex, since a low response indicates a blunted baroreflex. With the
CVRanalysis software, we propose three noninvasive well known
methods to calculate BRS: the sequence, the transfer function and the
phase-rectified averaging methods.

2.2.1 Sequence method
The sequence method aims to detect spontaneous sequences of

cardiovascular changes (Parati et al., 1988; Parlow et al., 1995)
i.e., consecutive increase of BP resulting in an increase in RR
(positive sequence) or a consecutive decrease in BP, followed by a
decrease in RR (negative sequence) (Reyes Del Paso et al., 2017). For
each detected sequence, a regression line between SBP and RR is
plotted and permits to calculate the slope of the curve. Then BRS is
calculated as the average of all individual slopes expressed in ms/
mmHg. The positive and negative BRSs can be expressed separately,
and the effectiveness of the baroreflex can be calculated as the
proportion in which the baroreflex is able to induce changes in
response to the oscillation in SBP (Di Rienzo et al., 2001).

Some parameters can be set for the detection of sequences and the
calculation of slopes: the minimum and maximum number of beat in a
sequence (generally 3–6 beats), the lag between SBP and RR response
(usually set to 0 to pick up the fast vagal arm of the cardiac baroreflex),
the correlation coefficient of the regression line to validate a sequence
(usually >0.85), and the threshold values for SBP and R-R interval
changes in a sequence (typically, 1 mmHg and 1 ms, respectively) and
the maximum successive R-R variations (commonly 20%).

2.2.2 Transfer function
BRS can be calculated by estimating the transfer function

between beat-to-beat RR and SBP series (Robbe et al., 1987;
Maestri et al., 1998; Pinna and Maestri, 2001; Pinna et al., 2002).
The modulus gives the gain between SBP and RR (thus
corresponding to BRS in ms/mmHg), and the argument provides
the phase shift between the two signals (in radian but more generally
expressed as a delay in seconds). In practice, these indices are
calculated in the LF and the HF frequencies as their average in
the two bandwidths (Clayton et al., 1995; Pinna and Maestri, 2002)
and validated when the coherence function between RR and SBP is
superior to 0.50 in the corresponding LF or HF bandwidths. Also,
the delays between SBP and RR are considered as valid only if they
suit with physiological timing of a working baroreflex, i.e., between
0.24 and 4 s (Keyl et al., 2001; Milan-Mattos et al., 2018).

2.2.3 Phase-rectified signal averaging
The phase-rectified signal averaging method (PRSA) was

introduced to overcome some weakness in the robustness of the
above methods against noise and nonstationnarities present in both
RR and SBP signals (Bauer et al., 2010).

The method consists of finding each SBP value that is higher than
the previous one and to mark them as anchors. Then all the RR
sequences centered at these anchors are aligned and averaged, thus
constituting the overall HR response to SBP rises. The averaged signal
allows to consider only the coupled RR–SBP signals and to eliminate
noncoupled oscillations such as noise and artefacts. Finally, BRS is
expressed as themagnitude of RR variation solely (inms) (Bauer et al.,
2010) or normalized by the average SBP increase that triggered the RR
changes (in ms/mmHg) (Muller et al., 2012).

2.2.4 Main fields of interest
Conversely to HRV which provides a global status of the

autonomic nervous system of a subject, BRS indices focus on the
short-term neuronal regulation system of BP. Due to this specificity,
such indices are preferably used on cardiac and hypertensive
populations (Maestri et al., 1998; Pinna et al., 2015), in which it
has been demonstrated to be a predictor of cardiovascular and all-
cause morbidity and mortality (La Rovere et al., 1998; La Rovere
et al., 2009; Bauer et al., 2010).

2.3 Time-frequency analysis of RR, blood
pressure and baroreflex sensitivity

All indices described above are defined for steady state
recordings and then provide physiological indices but cannot
demonstrate transient variations. To overstep this limitation, one
can use time-frequency analysis.

A popular tool to achieve such a possibility is the wavelet
transform. First, a set of wavelets of different width (namely,
different levels) is constructed from a referenced mother wavelet.
Then the temporal signal is decomposed at different levels with each
wavelet. Each level represents a particular frequency range fromwhich
the standard VLF, LF and HF variability indices are derived. Such
analysis permits to follow the time-frequency of HRV as well as BP
variability. Also, the sliding ratio between HRV and SBP variability in
the LF and HF bandwidths provides the evolution of BRS along time.
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For a complete description of the method utilized in the software,
readers are invited to refer to previous articles (Pichot et al., 1999;
Wiklund et al., 2002).

However, we must be careful not to think that there are no longer
any precautions to be taken when interpreting the results once there is
no longer any constraint on the stationarity of the signal. The user still
need to be vigilant about themean heart rate and respiratory rate values.
A significant increase in heart rate during the period to be analysed,
following exercise, for example, will mean that you are in an operating
zone for which the cardiac variability indices are no longer valid
(Rimoldi et al., 1992). Also, as with Fourier analysis, if the
respiratory rate falls outside the defined HF bandwidth, the
interpretation of HF and certainly LF and LF/HFwill no longer be valid.

The time-frequency analysis has been used to follow autonomic
nervous system activity or BRS during tilt test (Jasson et al., 1997),
pharmacologically induced changes in BP (Wiklund et al., 2002),
pharmacologic blockade (Pichot et al., 1999; Pichot et al., 2001),
exercise (Tiinanen et al., 2009), experimental pain (Chouchou et al.,
2011), generalized interictal EEG discharge (Sforza et al., 2014) or
sleep apnea (Chouchou et al., 2014), for example.

2.4 Granger causality

Causality is a generic term meaning cause-effect relationships
between systems, subsystems, processes, or phenomena. For
research in cardiovascular homeostasis, we study processes such
as physiological signals focusing on RR, BP and RE. Causality
analysis between RR, BP and RE can reveal the mechanisms
governing RR ↔ BP ↔ RE dynamical interactions. The causality
definition given by Granger in the field of multivariate stochastic
processes provided a framework for estimating causality in time
series (Granger, 1980). Given a set of M signals, Ω, describing the
behavior of a system, the time series Xj(t) causes Xi(t) in Ω if the
inclusion of past observations of Xj(t) reduces the prediction error
of Xi(t). In the literature, Granger causality can be described
according to time series and frequency domain approaches.

2.4.1 Time domain
Assessing causality from the Granger approach is the most

popular, including the ‘MVGC multivariate Granger causality’
toolbox (Barnett and Seth, 2014). Granger causality or classical
Granger causality (cGC) is a popular tool for the user for assessing
the presence of directional interactions between two time series of
a multivariate data set (Wiener, 1956; Granger, 1969). However,
cGC only includes the time-lagged effects between processes. In
respiratory and cardiovascular physiology, significant instantaneous

effects are present. Subsequently, cGC may lead to an incomplete
description of the real phenomenon between processes. As
a possible solution, the utilization of an extended model
accounting for both instantaneous and lagged effects has been
proposed. This modelling is named extended Granger causality
(eGC). In a formal point of view, the cGC( i → j) is the
logarithmic measure of the ratio between the variance of
the residuals ~Uj of the restricted regression and the variance
of the residuals Uj of the unrestricted regression.

Accordingly, the eGC is the logarithmic measure of the ratio
between the variance of the residuals ~Wj of the restricted regression
including the zero-lag effects matrix B(0) related to instantaneous
effects (Faes, 2014; Schiatti et al., 2015) and the variance of the
residuals Wj of the unrestricted regression also including B(0).

2.4.2 Frequency domain
Notions of causality are commonly formalized in the context of a

multivariate autoregressive (MVAR) representation of time series in
order to allow time and frequency domain pictures (Faes et al.,
2013a). Several frequency domain measures of causality have been
introduced. Actually, measures to quantify causality in the frequency
domain have been proposed from strictly causal MVAR
representation: directed transfer function (DTF) (Kamiński and
Blinowska, 1991), directed coherence (DC) (Baccala et al., 1998)
and partial directed coherence (PDC) (Baccala and Sameshima,
2001). Faes and Nollo have extended DC and PDC measures to
extended causal MVAR representation to provide extended directed
coherence (eDC) and extended partial directed coherence (ePDC)
(Faes and Nollo, 2010). A synthesis of all measures of causality and
coupling has been proposed by Faes and Nollo (Faes and Nollo,
2011). Table 5 shows the frequency domain measures of causality
presented in this paper.

2.4.3 Physiological interpretation
Pharmacological and basic physiological manoeuver studies have

given some information on the underlying mechanisms supported by
each RR, SBP and RE causal relationships (Faes et al., 2011; Faes et al.,
2013b; Faes and Nollo, 2011; Porta et al., 2013b; Porta et al., 2014;
Porta et al., 2015). Then it has been demonstrated that the causal link
between SBP and RR is due to baroreflex involvement, as the opposite
link between RR and SBP has been hypothesized to be due to Starling
law and arterial Windkessel effect (Porta et al., 2011). The coupling
between respiratory centers and the cardiac vagal center in brainstem,
the activation of cardiopulmonary reflexes and direct mechanical
pulmonary stimulation of the sinus node tissue through inspiratory
inflations, constitute the physiological mechanisms of the relationship
between RR and RE (Saul et al., 1991; Eckberg, 2003). The causal

TABLE 5 Frequency domain measures of causality between two processes Xi(t) and Xj(t).

Direct Strictly causal MVAR representation Extended MVAR representation

1) Direct causality Xi(t) → Xj(t) PDC: πij(f) ePDC: χij(f)

2) Extended direct causality Xi(t) _→Xj(t)

Direct + indirect

1) Causality Xi(t)0Xj(t) DC: γij(f) eDC: ξij(f)

2) Extended causality Xi(t) _0Xj(t)
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relationship from RE to SBP is due to variations of stroke volume
resulting from mechanical effects on intrathoracic pressure and
venous return (Toska and Eriksen, 1993; Caiani et al., 2000).
Finally, no physiological mechanisms were show for the causality
link between SBP to RE (Porta et al., 2013b).

2.4.4 Application
The main studies using Granger causality analyses concern the

physiological validation of the methods and some mathematical
improvements, such as the extended version of the Granger
causality which is an adaptation of the method to physiological
constraints (Faes and Nollo, 2010; Schiatti et al., 2015). Some
authors tested successfully the causal method on anesthesia
(Bassani et al., 2012; Porta et al., 2013a), syncope (Faes et al.,
2013b; Faes et al., 2015; Schiatti et al., 2015), pre-eclampsia (Riedl
et al., 2010), or fibromyalgia patients (Zamunér et al., 2017) but
there remains a lack of major clinical studies using these indices as
prognostic values.

3 Software description

The software allows the analysis of RR, SBP, MBP, DBP and RE
series on short duration recordings, lasting typically several minutes
to hours. The software is not optimized for the analysis of data
arising from 24-h ambulatory recorders and users are invited to refer
to other software for such treatments (Pichot et al., 2016).

To carry out data analyses, users are invited to follow three steps:
1) data importation and beats detection, 2) beats corrections and

formatting, and 3) data analyses. For each step, an undo process is
possible, allowing the user to easily find again the initial
preprocessed data.

The software has been written to give nonprogrammer users
access to a wide range of analysis tools. The user is guided and
default settings are proposed. However, incorrect use of CVRanalysis
can lead to erroneous results. For this reason, users of the software
must master all the steps leading to the results of an analysis. Before
validating a result, users should check the following:

- the state of the subject in which the chosen analysis was carried
out (steady state or transition period, for example)

- the shape and values of the raw signals are correct, particularly
with regard to the presence of R peaks and BP values

- artefacts have been corrected correctly
- the number of artefact corrections is not too large; generally
less than 2% of the analyzed beats.

- the analysis method is appropriate for the purpose and can be
used on the data,

- the parameters of the analysis methods used have been
correctly chosen, particularly when the subjects analysed are
young, for example.

3.1 Main window

The main figure displays the signals and gives access to the
different functions of the software by using the menus or
pushbuttons or the toolbar shortcuts (Figure 1).

FIGURE 1
Main window of CVRanalysis software.
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TABLE 6 List of methods parameters for the analyses used in the software. Some parameters can be modified by the user as others are fixed.

Power spectral density

Type [Non-parametric FFT], parametric AR Editable

Detrend [yes], no Editable

Resampling frequency (Hz) None, 1, [2], 4, 8 [4]* [8]** Editable

Bandwidth HRV, baroreflex

VLF (Hz) [0–0.04] [0–0.02]** Editable

LF (Hz) [0.04–0.15] [0.02–0.20]** Editable

HF (Hz) [0.15–0.40] [0.15–1.40]* [0.15–2.00]** Editable

Bandwidth BPV

VLF (Hz) [0.02–0.07] Editable

LF (Hz) [0.07–0.15] Editable

HF (Hz) [0.15–0.40] [0.15–1.40]* [0.15–2.00]** Editable

Number points/Hz [256] Fixed

Welch periodogram

Window [Hanning], Hamming Editable

Window width [1024] Fixed

Window overlap (%) 0, 25, [50] Editable

Entropy

Approximate entropy

Embeded dimension m [2] Editable

Tolerance r (*SD) [0.2] Editable

Sample entropy

Embeded dimension m [2] Editable

Tolerance r (*SD) [0.2] Editable

Symbolic dynamics

ξ [6] Fixed

L [3] Fixed

Largest Lyapunov exponent

m 1, 2, [3], 4, . . . 20 Editable

t [20] Fixed

T [3] Fixed

Smax [0.3] Fixed

Smin [0.001] Fixed

thmax [30] Fixed

Fractal

DFA

n1 [4–11] [4–39]* [4–39]** Editable

n2 [12–100] [40–100]* [40–100]** Editable

Higuchi

Kmax [6] Fixed

(Continued on following page)
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Three axes permit to plot the raw or beat-to-beat data, one signal per
axis. The plotted data are selected from the popupmenus on the left part
of the axes. The user can choose the x-axis in seconds or in beats, using
the popupmenu below the third axis. Also, the scale of the y-axis can be
automatic or selected manually from a list of preset values. The raw
values of the RR, BP and RE signals are plotted in red as the corrected
ones; those will be used for the analyses are plotted in blue (RR), brown
(BP) and green (RE). Excluded parts of the signals are in black color. The
vertical purple lines represent the events and the black squares surround
the areas of interest, both entered by the user (see description below).
Raw uncorrected beat-to-beat data, selected areas, and event can be
individually displayed/undisplayed by checking/unchecking them in the
“Signals” menu. On each axis, it is possible to zoom in on the data by
pressing the left mouse button while selecting the zone to be magnified.
This procedure can be repeated to refine the view, and a left mouse
double-click returns the view to the full data plot.When zooming in on a
plot, the x-axis of the three plots are automatically set to the same values
in order to always have a synchronous view of the data.

A popup menu situated on the upper right part of the window
allows the user to have a quick access to all .cvr files of the current
directory. Also, a back (<) and a forward (>) pushbutton permit to
shift to the previous or next file, respectively.

3.2 Preferences setting and tutorial

A Preferences window allows the user to modify and set the
analyses parameters and a Tutorial is accessible from the
main window.

For each method, the software offers default parameter settings.
The values have been chosen either because they have been
standardized or because they are the most commonly used. Of
course, the user has the option of modifying certain settings. Three
configurations for which the parameters have been set are
“Standard” (usual settings for adults), “Children,” and “Newborn.”

The default and modifiable parameter values are summarized in
Table 6. We have chosen to leave some parameters unmodifiable,
generally because they are always used with the same values in
published studies; this can be seen as a limitation of the software.

3.3 Data importation formats

Data can be imported as raw signals (ECG, continuous BP and
respiratory wave forms) or as beat-to-beat signals (RR, SBP, MBP,
DBP, RE). At least ECG and continuous BP or beat-to-beat RR and

TABLE 6 (Continued) List of methods parameters for the analyses used in the software. Some parameters can be modified by the user as others are fixed.

Power spectral density

Baroreflex

Sequence method

nb minimum beats/ramp [3], 4, 5, . . . 10 Editable

nb maximum beats/ramp 3, 4, 5, [6], . . . 10 Editable

Lag [0], 1, 2 Editable

Minimum BP variation (mmHg) [yes], no [1], 2, 3 Editable

Minimum RR variation (ms) [yes], no [1], 2, 3, 4, 5 Editable

Maximum RR variation (%) [yes], no 10, 15, [20], 25, . . . 50 Editable

Valid ramp for r > [yes], no 0.50, 0.55, . . . [0.85], 0.90, 0.95 Editable

Outliers selection None, [Auto], Manual Editable

Transfert function

Valid for coherence > [yes], no [0.50], 0.60, 0.70, 0.80, 0.90 Editable

Phase-Rectified Signal Averaging

Segments length (2L) [30], 40, 50, . . . 100 Editable

Granger causality

Number lags max 1, 2, . . . [20], . . . 100 Editable

Causal direction (extended) “General entropy-based method (any var distribution)” Editable

[“First-order approximation of LR by tanh (sparse var)”]

“Basic skewness measure (skewed var)”

“New skewness-based measure (robust to outliers)”

“Dodge-Rousson measure (skewed var)”

Causal direction (classic) [Gaussian] Fixed

In bold between square brackets: default values for “standard” mode; *default values for “baby” mode; **default values for “newborn” mode.
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SBP are necessary to perform the analyses. Diastolic, mean BP and
respiratory signals are optional and can be omitted.

The available formats are EDF, binary and MATLAB for raw
data; and text, binary and MATLAB for beat-to-beat data. For each
format, a generic import window allows the user to set the data file
specifications and to previsualize the data (Figure 2). Preformatted
file configurations can be set and saved by the user.

The original file data is not modified and a .cvr file dedicated to the
software is automatically created when importing data. This file
contains the initial data and all corrections and formatting that have
been done by the user and can be opened directly from the “file/Open
CVR file (*.cvr)” menu or the corresponding toolbar for further work.

3.4 R-peaks, systolic, mean and diastolic
pressure, and respiration detection

When importing raw signals, the software automatically converts
them to beat-to-beat series. First, R peaks are detected from the ECG
signal using a laboratory developed algorithm (Pichot et al., 2016). Then
maximumandminimumBP values between RR are classified as systolic
and diastolic BP, respectively (Goreham et al., 2017). The MBP value is

also calculated as the mean of the blood pressure curve taken between
the successive diastoles. If a respiratory signal is present, the values
corresponding to the R-peak localization time are taken as the beat-to-
beat value for the respiration. An example of a typical raw recording and
its corresponding beat-to-beat points is presented in Figure 3.

3.5 Beat corrections and exclusion

The calculation realized on short duration recordings do not
tolerate artefacted data that will induce erroneous analysis values and
then miscellaneous physiological interpretation (Saul et al., 1988).

Indeed, ECG artefacts, missing beats, BP calibration, artefacts
due to movements can be present in the recordings. In the software,
we proposed three possibilities of correction:

- Automated corrections: RR and BP and respiration series are
corrected automatically after selecting the Signals/Correction
Auto or the corresponding toolbar. First, the erroneous beats are
detected using a high and low threshold (+32.5% and −24.5%,
respectively) for the relative variation of successive RR, SBP,
MBP and DBP beats (Cheung, 1981). For the RE signal, the

FIGURE 2
Importation of beat-to-beat data from a file in.txt format.
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outliers are detected and replaced using a Hampel filter with the
parameters set to 15 for the size of the sliding window and 10 for
the standard deviation (Liu et al., 2004).

- Manual corrections of beat-to-beat values: The user selects the
beat and changes its value either by entering a new value or by
using spline cubic interpolation to determine it.

- Manual correctionusing the ECG trace: If theECG trace is available,
the user can delete/insert R-peaks by editing the ECG; after which,
the new RR, SBP, MBP, DBP and RE values are updated.

These corrections make sense for recordings containing few
erroneous beats, but it is obvious that they will not save very
corrupted signals. The areas containing too many uncorrected beats
can be excluded from an analysis; this can be donemanually by selecting
the areas or automatically on the entire recording by selecting the
corresponding menu or toolbar. At any time, it is possible to undo the
corrections and exclusion in order to get back to the preprocessed data.

3.6 Setting labeled area of interest

It is possible to set some labeled areas of interest which can be
utilized as simple visual markers or for the automatic batch analysis
procedure (see description below).

First, the user zooms in on the data to display the area to select, as
described above. Then the selection of the “Signals/Memorise selected
area” menu or “Save selected area” pushbutton opens a window in
which the user will enter a label, refine the area limits if necessary, and
confirm or cancel the selection. If the option is checked in the
“Signals” menu, the new area will appear as a black square
surrounding the area. All entered events can be managed (rename
and delete) in a dedicated window called by selecting the “Signals/
Manage areas” menu or the corresponding shortcut pushbutton.

3.7 Setting labeled events

The user can also insert labeled events. After selecting the
“Signals/Insert an event” menu or its corresponding pushbutton,

the user positions the cursor on the correct location and validates
it with a left-click on the mouse. To improve precision in the cursor
location, it is recommended to zoom in on the data before selecting
the event position. After validation, a window automatically opens
where the user will set a label and refine the event location if necessary,
and finally confirms or cancels the selection. As well as for the labeled
area of interest, the user can edit and manage all the events using the
menu “Signal/Manage selected areas.” From this last window, it is also
possible to import a list of preset events and saved in a text file.

3.8 Data analyses

A wide range of analyses is proposed in the “Analysis” menu or
accessible directly from the toolbar shortcuts. The analyses are
performed on the part of the data selected in the main window
using the zoom in tool. For analysis of cardiac and BP variability,
barorefelex and Granger causality, the duration selected must be
between 2 min and 1 h. The lower bound corresponds to the
minimum duration required to estimate very low frequency (VLF)
variations. The upper limit was set empirically; it seems to us to be a
reasonable maximum value during which the subjects are in a stable
state. This stability is estimated by analyzing the stationarity about its
mean, variance and autocovariance with a gamma value equal to
0.90 of the RR, BP and RE signals. These stationarity indices and the
number of corrected beats are indicated in the analysis windows.

Each type of analysis is displayed in a dedicated window according
to the parameters set in the preferences window, although some of
them can be changed directly from the window. The user can export
the results as a.txt file, save and print the figure. The results can be
appended to an existing file to allow combining of analyses derived
from different parts of the signal and/or different files. Results are then
ready to use in a statistical analysis software.

3.8.1 Heart rate and blood pressure variability and
cardiac coherence

Time and frequency domain, geometrical, empirical mode
decomposition, moments and Lyapunov exponent, entropy,
Poincaré plot, symbolic dynamics, and fractal indices of

FIGURE 3
ECG, blood pressure, and respiratory signals and the location of the corresponding beat-to-beat RR, SBP, DBP and RE extracted data.
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variability are displayed in Figure 4. The user can select the signal
to analyze (RR, SBP, MBP, and DBP) using a popup menu, after
which the results are automatically updated. Some graphs of the
most recognized analyses are plotted. Additionally, the user can
select the cardiac coherence analysis from the same popup
menu (Figure 5).

3.8.2 Baroreflex indices
The results provided by the three methods described above

(sequences, transfer function and phase-rectified signal averaging)
are displayed in Figure 6. For the sequence method, the user can
exclude the outlier slopes manually or automatically (exclusion of
the sequences out of mean ± 3*SD). Positive, negative and excluded
sequences are plotted in blue, black and red, respectively. Also, the
localization of each detected sequence can be displayed on an
additional window by selecting the “Show seq.” pushbutton.

3.8.3 Wavelets analysis
HRV, BPV, and baroreflex indices are calculated using wavelet

transform, as described in the Signal processing section. Three
graphs allow plotting changes in RR, HR, SBP, MBP, DBP and
the LF, HF, LFnu, HFnu, and the LF/HF ratio for RR and BP signals
along time (Figure 7). The displayed signals are selected from three
popup menus on the left side of each graph. If entered, the events
and selected areas are plotted and the user can zoom in on the data
using a synchronized scale for the three graphs. On the bottom of
this Figure, a popup allows the user to select the number of points of
the sliding average performed on the signals.

3.8.4 Granger causality
The upper left part of Figures 8, 9 displays the original beat-to-

beat signals and their modelizations (red color), while the upper
right part gives the lag and the fit model values for each of them,
allowing the user to evaluate the adequacy of the model for the
calculation of Granger causality indices.

On the lower left part, two popup menus permit to select the
type of Granger causality analysis to display (time or frequency
domain and classical or extended) and the number of signals to
consider (bivariate or trivariate analysis). Results are displayed in
three manners: 1) a symbolic representation of the causality
indices using arrows between each signal, with the thicker the
arrow, the greater the causality and vice versa; 2) the numerical
values of each causality; and 3) the causality indices represented as
bar graphs (time domain) or spectrums (frequency domain) for
easier comparisons.

3.8.5 Analysis of surrounding events
This analysis displays the beat-to-beat evolution before and after

an event of RR, HR, SBP, MBP and the variables Ptot, VLF, LF, HF,
LFnu, HFnu, LF/HF alphaLF and alphaHF calculated by the wavelet
method. If several events with the same name have been entered, the
program calculates the average of the changes in the chosen variable
synchronized around the event. In this window, the user selects the
variable to be analyzed, the event around which the analysis is to be
performed, and the durations to be considered before and after the
event using the appropriate popup menu (Figure 10). When the user
selects the “Plot data” pushbutton, the program searches all the

FIGURE 4
Heart rate and blood pressure variability analysis window.
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FIGURE 5
Cardiac coherence analysis window.

FIGURE 6
Baroreflex analysis window.
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FIGURE 7
Time-frequency analysis using wavelet transform.

FIGURE 8
Granger time domain analysis window.
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sequences that meet the entered criteria and plots the results. The
variables are resampled at 1 Hz to allow a regular 1-s step plotting.
Comparisons are possible by adding multiple analyses using different

HRV, BPV and baroreflex indices and/or different events on the same
graph. Results can be plotted with all sequences or as the mean ± SD,
and an outlier filtering can be applied.

FIGURE 9
Granger frequency domain analysis window.

FIGURE 10
Heart rate and blood pressure variability and baroreflex analyses around user-entered events.
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3.8.6 Batch analyses
All analyses described above can by computed in batch mode to

avoid repetitive operations and to enable the analysis of a wide number
of files. Before using this tool, users have to prepare all files as follows
(all steps are described above): 1) import all data to create the .cvr files;
2) make all corrections and exclusions of the beat-to-beat data; and 3)
set all the areas of interest and/or events with which the batch analyses
will be perform. Then after having selected the File list analysis in the
‘Analysis’ menu or by pressing the corresponding toolbar, the batch
analysis window opens. First, the user selects the folder containing the
.cvr files to analyze. For each analysis, the user selects the options in the
windows; for the analyses, the software will use the parameters set in
the preferences window. After pressing the pushbutton corresponding
to the desired analysis, the software will analyze all areas and save the
results in a.txt file directly importable and ready for use in statistical
software environments.

4 Hardware specifications and system
requirements

CVRanalysis was developed using MATLAB 2016a and
compiled using MATLAB compiler 6.2. Some functions
previously developed and unselfishly distributed by other
programmers were used and adapted for the software: many
thanks to Faes (2017) and Schiatti et al. (2015) (Granger
causality), Wenye G (detrended fluctuation analysis), Alvarez JM
(entropy, Katz and Higuchi indices), Rilling G and Flandrin P
(empirical mode decomposition), Wolf A (largest Lyapunov
exponent), and Zhivomirov H (stationarity test).

It is not necessary to have MATLAB installed on the computer
since MATLAB Runtime v9.0.1 is automatically installed during the
software setup process. HRVanalysis works with Windows 64-bit
operating systems.

As some calculations are time consuming, it is recommended to
have at least 4 GB of RAMon the computer. Also, aminimal screen size
of 1280 × 768 allows to display all windows without problem. The user
has to make sure that there is no magnifying factor for the characters
and applications set in the graphic parameters of the Windows system.

5 Tutorial and sample runs

A tutorial containing a detailed description of the software is
directly accessible from the main menu, and some sample runs to
help users learning and testing the software’s functioning are
included with the software package.

6 Availability, licensing and
installation procedure

CVRanalysis is available freely for noncommercial use only
(Freemium license, 8 February 2022, under the number
IDDN.FR.001.060017.000.S.P.2022.000.31230).

The software can be downloaded from the dedicated webpages of
anslabtools.univ-st-etienne.fr. Before downloading, a registration is
required so that users may be kept informed of free software updates.

CVRanalysis is installed by launching the installer program and
the user will be invited to validate the license when running the
software for the first time.

We will be pleased to receive suggestions, comments or bug
reports concerning the program at the following e-mail address:
ANSLabTools@univ-st-etienne.fr. Also, users are asked to cite the
present article and the software download pages when they used it
for the analysis of published data.

7 Conclusion

CVRanalysis has been used and improved for over 20 years
by the SNA-EPIS, and now SAINBIOSE laboratories, Saint-
Etienne; thus suitable for research laboratory requirements.
The software is perfectly adapted for numerous fields such as
death and health prediction, cardiac and respiratory
rehabilitation, training and overtraining, large cohort follow-
ups, diabetes, and children’s autonomic status, anesthesia, pain,
or neurophysiological studies.

The main strength of CVRanalysis is its wide scope of application
and intuitive human-machine graphical interface. The software does
not require MATLAB software and there is no need for the user to
have programming skills. In addition to standard baroreflex and
variability analyses, the software allows time-frequency analysis
using wavelet transform, time and frequency domain Granger
causality analyses, and analysis of autonomic nervous system and
baroreflex status surrounding scored events and on preselected labeled
areas. Each analysis can be exported as a figure or text file and directly
usable in a statistical software. Moreover, the batch signal processing
tool facilitates large cohort analysis.
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