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Chapter

Variability Analysis of
Observational Time Series: An
Overview of the Decomposition
Methods for Non-stationary and
Noisy Signals
Olivier Delage, Hassan Bencherif,Thierry Portafaix,

Alain Bourdier, René Tato Loua and Damaris Kirsch Pinheiro

Abstract

The analysis of observational data sequences in Geophysics consists of characterizing
the underlying dynamics. An important preliminary step aims to analyze the variability
related to the observed dynamic. The specific objectives related to this step are to
remove noise, to determine the overall trend of the observational time series and to
identify the relevant components contributing significantly to the original time series
variability knowing that their number determines the dimensionality of the observed
dynamics. Most of the observational time series have characteristics of non-stationarity
and present fluctuations at all-time scales. In this context, variability analysis consists in
representing time series in the time-frequency space and requires the development of
specific numerical signal decomposition methods. The most commonly used techniques
are adaptive and data-driven and among the most cited in the literature are the empir-
ical mode decomposition, the empirical wavelet transform, and singular spectrum anal-
ysis. In this work, we describe all of these techniques and evaluate their ability to
remove noise and to identify components corresponding to the physical processes
involved in the evolution of the observed system and deduce the dimensionality of the
associated dynamics. Results obtained with all of these methods on experimental total
ozone columns and rainfall time series will be discussed and compared.

Keywords: time series analysis, non-stationary signals, complex systems, noise
removal, empirical mode decomposition, wavelet decomposition, singular Spectrum
analysis, underlying dynamics

1. Introduction

The notion of complexity is a characteristic present in most of systems of the real
world. Intuitively, complexity constitutes a measure of the organization, the structure
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and the dynamics of a system i.e. its behavior over time. In the physical sciences, a
complex system can be defined as composed of several entities interacting with each
other on several scales of time and space. The complexity is created by the superim-
position of the individual behavior of each entity with their interactions and makes
the overall behavior of the system difficult to characterize and predict. Therefore, the
characterization of the system dynamic is carried out from the global properties of the
system which cannot be reduced to the sum of the characteristics of the entities of
which it is composed. Many studies that aim to gain a better understanding of the
complex system dynamics are based on the analysis of observational measurements
data sequence. Most of the observational data sequences in geophysics derive from
complex dynamics resulting from the superimposition of the individual behaviors of
the physical processes involved in the evolution of the overall system with the inter-
actions they have between them. As a consequence, time series are non-stationary and
have fluctuations at all scales of time. Then, the analysis methodology consists of
analyzing the variability of the time series. The method used is to decompose the
observed time into the sum of noise, physically meaning full components and trends.

TS ¼ noiseþ
X

i
ci þ Trend,TS ¼ xk ¼ x kδtð Þ, k ¼ 1,Nf g (1)

Where TS is the original times series composed of N measurement values xk of the
signal x with a sample time δt and ci are the components that contribute significantly
to the variability of the original signal. Each of ci can be identified with a physical
process involved in the overall evolution of the system. To implement such decompo-
sition, two approaches have been considered: The first approach consists in getting a
representation of TS in the time-frequency space which amounts to classify the fluc-
tuations according to the temporal resolution at which they occur. Among the most
commonly used techniques enabling to obtain a representation of time series in time
frequency space, the empirical mode decomposition (EMD) is very popular. EMD is a
relatively new method proposed by Huang et al. in 1998 well suited to non-stationary
signals that decompose a time series into a finite number of components called
“Intrinsic Mode Function” (IMFs) [1]. IMF captures the repeating behavior of the
signal at some particular time scales. Unlike the Fourier or wavelet transforms, EMD
enables to decompose a time signal into a set of basis signals derived from the data
itself. The biggest advantage of the EMD method is to be totally adaptive and data-
driven without the need for a-priori basis function selection for signal decomposition.
As EMD acts in the time domain, another advantage of this method is to be close to the
observed dynamics. Moreover, the EMD acts as a bank of bandpass filter [2] in the
frequency domain and as a result, the main limiting factor of EMD is the frequency
resolution which when it becomes too small can induce the mode-mixing phenome-
non where the spectral content of some IMFs overlaps each other [3]. Although
several techniques exist to overcome this problem [4–6], Gilles proposed an alterna-
tive entitled empirical wavelet transform (EWT) [7], which operates in the frequency
domain and consists of elaborating a segmentation of the original signal’s Fourier
spectrum and building an appropriate wavelet filter bank on the segmented Fourier
spectrum. The EWT allows a better frequency resolution and thus overcomes the
mode-mixing problem by partitioning the spectrum of the original signal into separate
spectral bands. However, although the EWT technique enables to detect the relevant
frequencies involved in the original signal, it does not allow to associate to a specific
mode of variability as EMD does. Because the variability modes provided by the EMD
technique are closer to the observed dynamics than EWT, O. Delage [8] proposed an
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optimization of the EMD technique entitled Empirical Adaptive Wavelet Decomposi-
tion (EAWD) which combines the advantages of both EMD and EWT techniques. The
heart of the EWT method lies in the segmentation of the original signal’s Fourier
spectrum. The main idea is to use the local maxima of the IMFs’ spectral support
returned by EMD to design the Fourier spectrum segmentation required to initiate the
EWT method. IMFs involved in the Fourier spectrum segmentation are those selected
to be relevant i.e. whose contribute more than 1% of the variability of the original
signal. The final step consists in applying the EWT method on the segmented Fourier
spectrum.

Another technique called Singular Spectrum Analysis (SSA) using a different
approach is described in the scope of this chapter. Such a technique can decompose a
non-stationary signal into a sum of independent components and also be able to
reconstruct the underlying dynamics.

This document is structured around three sections: the first section is devoted to
the description of all the signal decomposition techniques mentioned above. In the
second section, three observational time series are analyzed by using EMD, EAWD
and SSA techniques and the corresponding results are presented. In the last section,
the results obtained respectively with the EMD, EAWD and SSA techniques are
compared and discussed.

2. Review of the signal decomposition techniques

The methodology related to the signal variability analysis is composed of three
main steps: (1) express the original signal as a sum of a finite number of components,
(2) identify the components dominated by noise, (3) select the relevant components
that contribute significantly to the signal variability with the objectives of determining
the dimensionality of the underlying dynamics and identifying the relevant compo-
nents to physical processes involved in the underlying dynamics.

2.1 The empirical mode decomposition (EMD)

2.1.1 EMD basics

In 1998, Huang et al. proposed an original method called the Empirical Mode
Decomposition (EMD) whose purpose is to adaptively decompose any signals into
oscillatory contributions. The EMD technique can be summarized as an iterative
method where the signal can be decomposed into a local average m called trend and a
strongly oscillating part called details. The trend is related to low frequencies while the
details characterized by strong fluctuations are related to high frequencies. At each
iteration, the high-frequency fluctuations part is separated from the low-frequencies
trend and are reinjected as a new signal in the next iteration. During the iterations of
the algorithm [1], the “details” related to the high frequencies are successively sepa-
rated from the low-frequency part by using a procedure called “Sifting process”. The
main steps of the sifting process consist in: identify the signal local extrema; the local
maxima and minima are then interpolated by using cubic splines to form respectively
the upper and lower envelopes of the signal; the mean envelope is then determined by
calculating the half sum of the upper and lower envelopes; the mean envelope is
subtracted from the initial signal. The same procedure is reiterated on the remainder
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until the mean envelope is close to zero everywhere and the resultant signal is desig-
nated as the first IMF. The criterion for the sifting process to stop is generally set as:

0:2≤ SD ¼
X

T

i¼1

hk�1 tð Þ � hk tð Þj j2

hk�1
2

" #

≤0:3 (2)

Where hk is the result after k iterations of the sifting process. The higher order
IMFs are iteratively extracted by using the above sifting process procedure until the
remaining signal cannot be assimilated to an IMF knowing that a signal can be called
IMF if it satisfies the two following criteria: the numbers of local maxima and local
minima must differ by at most one; the half sum of its upper and lower envelopes is
locally close to zero. The original signal can be finally expressed as:

TS ¼
X

M

m¼1

IMFm þ R (3)

Where R is the residual trend. EMD decomposes the data into M fundamental
components with distinct time scales where the first component has the smallest time
scale. The interesting fact about this algorithm is that it is adaptive and data-driven
and is able to extract non-stationary parts of the original signal at different time scales
as multi-resolution analysis does. In this context, Flandrin et al. [9] described the
EMD as behaving as a dyadic filter bank as those involved in the multi-resolution
analysis. Consequently, the maximum number of IMFs that can be extracted from the
original time series is Log(N)/Log (2) if N is the time series size.

2.1.2 Noise removing-Noisy components identification

Generally, the original signal is corrupted by noise. As a consequence, a few IMFs
may be the oscillations of the noise-free signal and the others correspond to noise. To
determine which IMFs are noise-related components, a robust threshold is required.
In this chapter, a “Detrended Fluctuations analysis” (DFA) technique is used to obtain
such a threshold. The basic principle of the DFA [10, 11] is to compute how the time
series fluctuations around the local trend varies as a function of the time scale. When
applied to a time series TS(t), the first step of the DFA technique is to compute the
time series TSI(t) composed of the cumulative sums of TS after removing its mean:

TSI kð Þ ¼
X

k

i¼1

x iδtð Þ � �TS
� �

, 1≤ k≤N (4)

Where �TS states the average of TS time series over [1, N], TSI is then divided into
time windows of size n samples each. For each time window, the estimated local trend
TSIn(k) is determined by using least-square linear fitting. Finally, the average root mean
square (RMS) of the fluctuations at a specific time scale n, F(n) may be written as:

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

k¼1
TSI kð Þ � TSIn kð Þ½ �2

r

(5)

The method suggested to identify the noise-related IMFs is to use the slope α of the
curve log[F(n)]/log(n) as a threshold. The method consists in excluding IMFs with α
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value less than a threshold θ. For DFA, an α value of 0.5 characterizes an uncorrelated
white noise. The commonly threshold value θ taken in the literature is 0.5 with a 0.2
confidence interval that is θ = 0.7.

2.1.3 Relevant components selection

Although the EMD is a powerful tool for analyzing complicated datasets, many
irrelevant IMF may appear in the decomposition. A relevant IMF may be defined as an
IMF that retains most of the information content of the signal. As a consequence,
relevant IMFs would have a good correlation with the original signal while irrelevant
ones would have a poor correlation. For discriminating between relevant and irrele-
vant IMFs, we use the Pearson correlation coefficient between each IMF and the
original time series, i.e.:

CORR IMFm,TSð Þ ¼ cov IMFm,TSð Þ
sd IMFmð Þ ∗ sd TSð Þ m ¼ 1,M (6)

Where cov(IMFm,TS) is the covariance between the mth IMF and the original time
series, sd(IMFm) is the standard deviation of the mth IMF while sd(TS) is the standard
deviation of the original time series. A threshold s is required for selecting relevant
IMF: if CORR(IMFm,TS) > s, keep the mth IMF. Otherwise, eliminate the mth IMF and
add it to the residual. As the threshold is different for different signals, a suitable
threshold must be selected according to the relativity between IMfs and the original
signal. In general threshold s can be the ratio of the mean value between the maximum
and the minimum of CORR IMFm,TSð Þm ¼ 1,Mf g that is:

s ¼ Mþm

2η
(7)

Where η is a coefficient greater than 1, M = maxm(CORR(IMFm,TS),
m = minm(CORR(IMFm,TS).

So that the correlation coefficients between each of the IMFs and the original signal
would be in the interval [0,1], all IMF and original signals will be normalized at first.
In the literature, two different thresholds are proposed s1 ¼ Mþm

20 [12] and s2 ¼ M
10M�3

[13]. The threshold proposed in this work depends on the relative position de M/m
and 10. If we suppose that 0.7 ≤ M ≤ 1, and M/m > 10, m could be less than 0.07
which characterizes a very weak correlation. In this case s has to be greater than m and
from (Eq. (7)), η > 5.5 which is verified when, s = s1. If on the contrary when
M/m ≤ 10, m could be greater than 0.1 and s must be close to m which from (Eq. (7))
can be written:

1� ε≤
s

m
¼ 1þ M

m

2
:
1

η
≤ 1þ ε (8)

Given that 5 ≤ M/m ≤ 10, then 3 ≤ (1 + M/m)/2 ≤ 5.5 and (Eq. (8)) becomes

5:5

1þ ε
≤ η≤

3

1� ε
(9)

If we set ε = 0.052, (Eq. (9)) becomes 3 ≤ η ≤ 5.2 which is verified when s = s2.
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In summary, s is defined as follows:

s ¼
Mþm

20
if
M

m
> 10

M

10M� 3
if
M

m
≤ 10

8

>

<

>

:

(10)

2.1.4 EMD limiting factors-IMF oscillation cycle

As the EMD technique acts as a bank of bandpass filters [2], each IMF is associated
with a specific bandpass and the oscillation cycle corresponds to the prevailing fre-
quency in the bandpass. One way to get the IMFs oscillation cycle is to calculate the
spectral density for each IMF and identify the frequency for which the spectral
density is maximum. The local maxima occurring in the IMFs spectrum characterize
the frequencies involved in the corresponding EMD mode of variability. One of the
major limiting factors of the EMD is the frequency resolution which can, when it is not
sufficient, induce the mode-mixing phenomenon where the spectral content of some
IMFs overlaps each other. The source at the origin of mode-mixing can be categorized
in three main groups: (1) presence of noise, (2) presence of intermittency, (3) pres-
ence of closely spaced spectral components. To overcome the inherent mode-mixing
problem of the EMD, Wu and Huang [14] proposed the Ensemble Empirical Mode
Decomposition (EEMD). In EEMD, white noise signals ni(t) are added to the original
signal x(t); Because the white noise spectrum is evenly distributed, the white noise
signals will be automatically distributed to the appropriate reference scales. Moreover,
because of its zero-mean characteristic, the white noise will cancel itself out after
many rounds of averaging. The specific steps of the EEMD algorithm are as follows:

• Initialize the number of ensemble members M. - Compute M realizations of white
noise with the different variances that are added to the original signal: xi tð Þ ¼
ni t, σið Þ þ x tð Þi ¼ 1,M where ni is a white noise of variance σi. – Use the EMD

algorithm to decompose xi(t) into IMFs: xi tð Þ ¼
PJ

j¼1IMFi,j þ Ri i = 1,M -

Calculate the ensemble means of the decomposed IMFs: IMFj tð Þ ¼ 1
M

PM
i¼1IMFi,j

2.2 Wavelet approaches

Wavelets are commonly used to analyze the variability of a signal. In the temporal
domain, a wavelet basis is defined as the mother wavelet Ψ of zero mean, dilated with
a parameter s > 0 and translated by u∈ℜ:

ψu,s tð Þ ¼
1
ffiffi

s
p ψ

t� u

s

� �

(11)

For the wavelet decomposition of a time series x(t), the most widely used case is
the dyadic one, s = 2j. Then the wavelet decomposition of x is obtained by computing
the inner product Wx(kj) as:

Wx k, jð Þ ¼ ⟨x,ψk,j⟩withψk,j tð Þ ¼
1
ffiffiffiffi

2j
p ψ

t� k

2j

� �

, k∈Z (12)

where j represents the resolution level. The decomposition is then similar to a
multi-resolution analysis carrying out successive projections of x on a sequence of
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nested subspaces Vj∈L
2(ℜ) j = [0, n], which leads to increasingly coarse approxima-

tions of x as j increases. At each resolution level j, the information about the signal x, at
resolution j-1 in the subspace Vj-1, is split into two parts named approximation and
details corresponding, respectively to the low frequencies and the high frequencies
contained in the signal x. The approximation of x results from the orthogonal projection
of x onto the subspace Vj and the information of details results from the orthogonal
projection of x onto the subspace Wj orthogonal to Vj such that V j�1 ¼ V j⨁W j, where⊕

denotes the direct sum of vector subspaces. Wavelets ψk,j tð Þ, k ∈Z
n o

form the basis of

Wj. According to the definition of multi-resolution analysis, there exists a function φ(t),
called scaling function, such that φ t� kð Þ, k ∈Zf g form a basis of V0 corresponding to
the coarsest approximation of x. The reconstruction of x is obtained from:

x tð Þ ¼ ⟨x tð Þ,φ tð Þ⟩:φ tð Þ þ
X

n

j¼1

⟨x tð Þ,ψk,j tð Þ⟩:ψk,j tð Þ (13)

where ⟨⟩ represents the inner product. The approximation coefficients
corresponding to the coarsest resolution level are given by ⟨x,φ⟩ and the details

coefficients corresponding to the successively decreasing resolution level ∆sj ¼ ∆sj�1

2 are
given by ⟨x,ψk,j⟩ as follows:

⟨x tð Þ,ψ tð Þ⟩ ¼
ð

x τð Þ: �φ τ � tð Þdτ, ⟨x tð Þ,ψk,j tð Þ⟩ ¼
ð

x τð Þ: �ψk,j τ � tð Þdτ (14)

2.2.1 Empirical wavelets-EWT

The essence of EMD is that the time domain functions into which a signal is
decomposed have the same length as the original signal, allowing time-varying frequen-
cies to be preserved. EMD is described [2, 9] as behaving as a dyadic filter bank as those
involved in the multi-resolution analysis. In this context, the mode-mixing phenomenon
specific to EMD can be interpreted as the presence of several filters of overlapping
frequency content. As a result, the spectral content of some IMFs restituted by the EMD
overlap each other. To overcome this problem, Gilles [7] proposed an alternative named
the EWT. This method acts in the spectral domain and starts from the segmentation of
the original signal’s Fourier spectrum. The Fourier support [0,π] is subdivided into N
non-overlapping contiguous segments denoted Δn = [ωn-1,ωn]. An appropriate wavelet
filter bank is then used to extract spectra relative to each Fourier segment. In the time
domain, the components related to the original signal’s decomposition are obtained by
performing inverse Fourier transform on each Fourier spectrum segments.

The filter bank [15, 16] is defined by the empirical scaling function and the
empirical wavelets on each Δn through the following equations:

^φn ωð Þ ¼

1if ωd e≤ 1� γð Þωn

cos
π

2
β

1

2γωn
ωj j � 1� γð Þωnð Þ

� �	 


if 1� γð Þωn ≤ ωj j≤ 1þ γð Þωn

0otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(15)
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and

^ψn ωð Þ ¼

1if 1þ γð Þωn ≤ ωj j≤ 1� γð Þωnþ1

cos
π

2
β

1

2γωnþ1
ωj j � 1� γð Þωnþ1ð Þ

� �	 


if 1� γð Þωnþ1 ≤ ωj j≤ 1þ γð Þωnþ1

sin
π

2
β

1

2γωn
ωj j � 1� γð Þωnð Þ

� �	 


if 1� γð Þωn ≤ ωj j≤ 1þ γð Þωn

0otherwise

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(16)

The function β(x) is an arbitrary Ck([0,1]) function defined as:

β xð Þ ¼
0ifx≤0

β xð Þ þ β 1� xð Þ ¼ 1x∈ 0, 1½ �
1ifx≥ 1

8

>

<

>

:

(17)

Many functions satisfy this property and the one the most used in the literature
[17] is:

β xð Þ ¼ x4 35� 84xþ 70x2 � 20x3
� �

(18)

The parameter γ is chosen to satisfy the following criterion:

γ <Minn
ωnþ1 � ωn

ωnþ1 þ ωn

� �

(19)

The details and approximation coefficients are calculated by using (Eqs. (15) and
(16)) and are respectively given by inner products with the empirical wavelets ψn and
the scaling function φ1:

Wx n, tð Þ ¼ ⟨x tð Þ,ψn⟩ ¼ IFFT (20)

Wx 1, tð Þ ¼ ⟨x tð Þ,φ1⟩ ¼ IFFT (21)

where X is the Fourier transform of the original signal x,�represents the complex
conjugate, IFFT represents the inverse Fourier transform, and ψn and φ1 are the results
of the inverse Fourier transforms of ψ̂n and φ̂1 respectively. The segmentation of the
original signal’s Fourier spectrum is obtained from the detection of local maxima. Each
segment is centered around one or a group of successive local maxima. The boundary
between two contiguous segments is set as the nearest local minimum to the midpoint
between two adjacent local maxima groups. Many of the detected local maxima are
irrelevant as their contributions to the original signal variability are negligible. Selecting
the relevant local maxima requires determining a threshold which is not always possible.

2.2.2 The empirical adaptive wavelet decomposition (EAWD)

The EMD technic enables an observational data sequence to be decomposed into
multiple empirical modes of variability, each of them reflecting the observed dynam-
ics at a specific timescale. As the spectral contents of the IMFs returned by the EMD
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are determined from the relative positions of the original signal’s maxima, one of the
major drawbacks of the EMD is the mode-mixing phenomenon resulting in a few
IMFs to have overlapping spectral supports. On the contrary, the EWT has a more
solid theoretical context using wavelets and therefore provides a better frequency
resolution. On the other hand, the EWT does not allow to associate the detected
frequencies to a specific mode of variability as the EMD technique does. The main idea
of the proposed EAWD method is to combine EMD and EWT techniques by setting
non-overlapping groups of local maxima from the spectral contents of the IMFs
returned by the EMD technique. Each IMF local maximum group will be associated
with a segment of the original signal Fourier spectrum segmentation. The boundaries
of each of these segments will be set as the local minima the closest to the midpoint
between local maximum groups of two consecutive IMFs. As the EMD method acts as
a bank of dyadic band-pass filters, the result of each of these filters in the frequency
domain is composed of a set of local maxima relative to a specific time scale in which
the resolution is divided by 2 in comparison with the timescale immediately above it.
Considering that a time scale is characterized by a set of values in the range [2n,2n + 1],
to carry out a segmentation of the Fourier spectrum, it is necessary to distribute the

local maxima groups relatively to a grid [2i,2i + 1], i∈[2,J] with J ¼
Ð log Nð Þ

log 2ð Þ

� �

� 1,

where N represents the size of the original time series and int. is the integer part of a
number. The proposed Fourier spectrum segmentation algorithm has three main
steps: (1) calculation of the spectral content of each IMF based on spectral density and
selection of significant local maxima whose energy contribution is >1%. (2) Compute
the cutoff frequency between the spectral supports of two consecutive IMFs. (3) EWT
technic is run from the Fourier transform obtained from step 2. To get more informa-
tion on the segmentation algorithm, it is described in detail in Ref. [8].

2.3 Signal decomposition based on singular spectrum analysis

In time series analysis, singular spectrum analysis (SSA) combines elements of
classical time series analysis, multivariate statistics and dynamical systems. SSA is
used both to decompose time series into components each having a meaningful inter-
pretation and to reconstruct the underlying dynamics from a single time series based
on the embedding theorem [18]. In this paragraph, as the reconstruction of the
underlying dynamics is beyond the scope of this work, we will describe the SSA
technique and its use in signal decomposition.

2.3.1 Singular spectrum decomposition

2.3.1.1 The basic singular spectrum analysis method

As EMD and EWT, SSA is a data-adaptive and non-parametric method for time
series decomposition which is suitable to non-stationary time series. The efficiency of
such a technic has been recognized for its ability to provide meaningful results in a
wide range of application fields, without making any assumption on the processed
data. Generally, the components extracted by SSA can be identified as trends, periodic
(possibly amplitude-modulated) components or noise components. Furthermore, the
characteristics of the components provided by SSA which are to be independent make
it particularly suitable for blind source separation. SSA consists of four stages: embed-
ding, decomposition, grouping, and reconstruction [19–21].
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Embedding: The starting point of SSA is to embed a time series TS = {xk, k = [1,N]}
of size N in a vector space of dimension L. L is a strictly positive integer named the
embedding dimension or window length, 1 < L < N. The embedding procedure forms
K=N-L + 1 lagged vectors Xi = (xi, … .xi + L-1)

T with i = 1… .N-L + 1. The trajectory
matrix of the time series TS is then given by:

MT ¼ X1, …XK½ � (22)

MT is a Hankel matrix (constant cross-diagonals) of size (LxK). Hence, the
embedding procedure builds a sequence of L-dimensional vectors from the original
time series TS, by using a sliding window of size L.

Decomposition: The singular value decomposition (SVD) of the trajectory matrix
MT is then computed, providing MT = U.D.VT with U = (LxL) and V = (KxK) being
orthogonal matrices containing respectively the left and right singular vectors.
D = (LxK) is a matrix containing the singular values σI on the main diagonal and zero
elsewhere (where σi ¼

ffiffiffiffiffiffiffi

Kλi
p

) with λI being the eigenvalues of C the covariance matrix

of MT which can be expressed C ¼ 1
KMT:MTT. The matrix MT is thus decomposed in

a sum of rank-one matrices MTi such that:

MT ¼
X

L

i¼1

MTi ¼
X

L

i¼1

σiuiv
T
i (23)

where ui is i
th column of matrix U, vi is the i

th column of matrix V. In other word,
the SVD of the trajectory matrix corresponds to an orthogonal matrix whose column
vectors form an eigenbasis of the multidimensional space created by the embedding
step. Relevant components of the signal can be obtained by projecting the data onto
that eigenbasis and omitting noise-related components and finally reconstruct an
improved (denoised) version of the original time series.

Grouping step: This step consists of splitting the set of elementary matrices MTi

into r disjoint groups and summing the matrices within each group. The result may be
written as:

MT ¼
X

r

k¼1

MTIkwithMTIk ¼
X

i∈ Ik
MTi (24)

Thus MTIk is the resulting matrix of the group Ik, k = 1, … ., r.
Diagonal averaging: The averaging along cross-diagonals of the matrixMTIk aims

at solving the problem of finding the time series TSk for which the trajectory matrix is
the closest toMTIk in a least-squares sense. In other words, the diagonal averaging of

MTIk={xi,j, i = 1..L,j = 1…K} provide the elements of a time series TSkn, n ¼ 1, …N
 �

as:

TSkn ¼

1

n

X

n

m¼1

xm,n�mþ1for1≤ n<L

1

L

X

L

m¼1

xm,n�mþ1forL≤ n≤K

1

N � nþ 1

X

L

m¼n�Kþ1

xm,n�mþ1forK þ 1≤ n≤N

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(25)
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This cross-averaging process can also be applied to each MTi matrix. The resulting
time series can be assimilated to elementary components. This process finally provides
an exact expansion of the original time series TS into r components that satisfies:

TS ¼ Pr
k¼1TS

k
n.

2.3.1.2 Separability and choice of parameters

The very important question is how to choose parameters to build the proper
decomposition of the observed time series. We need first to study the concept of
separability which characterizes how well different components can be separated
from each other. To do so, the so-called w-correlation matrix is computed. This is the
matrix consisting of a weighted correlation between the reconstructed time series
components. The weight reflects the number of entries of the time series terms into its
trajectory matrix. Well separated components have a weak correlation while badly
separated components have a large correlation. Therefore, looking at the w-
correlation matrix, one can find groups of correlated elementary reconstructed series
and use this information for the consequent grouping procedure. MATWCORR, the
w-correlation matrix is expressed as follows:

MATWCORRk1,k2 ¼
TSk1 ,TSk2ð Þ

TSk1k kw: TSk2k kw
(26)

where

TSki
�

�

�

�

w
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TSki ,TSkið Þw
q

, TSki ,TSkj

� �

w
¼

XN

l¼1
wlx

ki
l x

kj
l (27)

with wl = min (l, L, N-l) where L ≤ N/2.
An important issue is the selection of window length L which is a main parameter

to determine the rank of the trajectory matrix. The window length is in the range [2,
N/2]. The construction of trajectory matrix is similar to the phase space reconstruction
of a nonlinear time series. The most common phase space reconstruction method is
the method of delays (MOD). Many techniques have been suggested to estimate the
parameters of MOD [22–24], i.e. the time delay τ and the embedding dimension m.
The embedding dimension refers to the samples (separated by a fixed time delay τ)
from a time window length L = (m-1)τ. The difference between the MOD and the
trajectory matrix of SSA is that in MOD the m coordinates are samples separated by a
fixed τ which can be greater than 1, while in the standard SSA, all the available
samples in window length L are samples separated by a constant τ = 1. For the
selection of window length L in SSA, there are some typical methods available, e.g.
Kugiumtzis [25] suggested to take the window length L proportional to the mean
orbital period” (MP), which can be determined from the spectral density of the
original time series:

MP ¼
PM

i¼1DS fð Þ
PM

i¼1f :DS fð Þ
þ 1 (28)

where M is the number of frequencies f contained in the spectral support of the
original time series, DS(f) is the spectral density of the f frequency. Several
approaches to determine an optimal window length L are proposed in the literature
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[26, 27]. Unfortunately, those proposed methods are all case sensitive and based on
the assumption that the measured time series is stationary. So far there does not exist
any universal method to find an optimal window length L for an arbitrary time series.

3. Time series analysis and results

Numerical techniques mentioned above as EMD, EAWD, SSA have been applied to
three monthly experimental time series of observation. The first time series is 22 years
total ozone columns (in Dobson units) from January 1998 recorded in Natal (Brazil).
The second time series is 42 years total ozone columns from 1978 recorded in Argen-
tina. The third one is 60 years rainfall time series recorded in Conakry (Guinea).

3.1 Natal monthly total columns ozone time series analysis

The original time series is displayed in Figure 1, its size is N = 264:
An EEMD technique has been applied to the time series presented above. After

having selected relevant IMFs and add irrelevant ones to the residue, 5 IMFs and the
trend has been determined. Results are shown in the Figure 2.

The IMF cycle is determined by the dominant frequency of its spectrum. In
Figure 3, the residual trend R returned by the EEMD is compared with the trend of
the original signal obtained from a moving window with a size set at the maximum of
the relevant IMF cycles, i.e. 135 months named Tmb.

The accuracy of the Trend returned by the EEMD is estimated by using the
following expression:

ACEEMD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 R ið Þ � Tmb ið Þð Þ2=N

Tmb

s

(29)

where N is the size of the original time series and …� represents the mean operator.
No mode-mixing has been detected in the results returned by the EEMD. How-

ever, because the EEMD suffers from a lack of theory, the spectral supports of IMFs
are not totally disjoint. The EAWD method allows, while relying on the spectral
content of the IMFs provided by the EEMD to restitute components whose spectral

Figure 1.
Natal monthly total ozone columns.
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Figure 2.
EEMD decomposition of the Natal total ozone columns time series.

Figure 3.
Trend obtained by the EEMD technique (black curve). The trend of the original signal obtained from a moving
window (blue curve) with a 135 months size.

Figure 4.
EAWD decomposition of the Natal total ozone columns time series.

13

Variability Analysis of Observational Time Series: An Overview of the Decomposition…
DOI: http://dx.doi.org/10.5772/intechopen.1002825



contents are disjoint. In this context, the EAWD technique has been applied to the
Natal time series and the obtained results are displayed on Figure 4.

The accuracy of the trend returned by the EAWD has been estimated by using
(Eq. (29)). ACEAWD = 0.2%.

The trend restituted by respectively EEMD and EAWD techniques have been
superimposed with the trend obtained from the original signal by using a moving
window of size 135 months as shown in Figure 5.

The SSA technique has been applied to the Natal total ozone columns. The mean
orbit period MP has been estimated by using (Eq. (28)), MP = 11. The embedding
window size L has been fixed to L = 110. After having removing noisy components
and applying the SSA basic procedure, 37 principal components have been found
including trend and relevant periodic components. As the EEMD, EWT, EAWD acts
as a bank of dyadic filter, to compare the results provided by SSA with those returned
by EEMD, EAWD techniques, cycles of the 37 components extracted from the original

signal by SSA are distributed along a grid 2
log Cymaxð Þ

log 2ð Þ , 22
h i

. Thus, the SSA components

whose cycles are in the interval [2i,2i + 1] are summed to form a component that can be
compared to those returned by EEMD, EAWD methods. The components thus
obtained are displayed in the Figure 6.

Comparison between EAWD and SSA results are displayed on Figure 7.
Picture (a), (c) and (d) represents the comparison between SSA and EAWD

for respectively the cycles 135 months, 12 months and 6 months. In picture (c) it’s
the superimposition of summed EAWD components 2 and 3 (cycles 33.75 months
and 27 months) with SSA component 4 (cycle 27 months). Picture (c) is interesting
from a climate forcing point of view. SSA2 component can be identified to the
ENSO climate forcing (45 months) and on the graph of SSA2 (Figure 6), we
can see that SSA2 energy contribution is very weak. SSA3 component can be
identified to the QBO climate forcing (27 months). In Figure 6(c), the red curve
is the sum the EAWD components 2 and 3 of 33.75 months and 27 months
respectively (Figure 4). The difference the two curves in picture (c) is due to the
presence of a very weak contribution of ENSO climate forcing in red curve (EAWD
results).

3.2 Argentina monthly total columns ozone time series analysis

The original time series is displayed in Figure 8, its size is N = 507.
EEMD results are displayed in Figure 9.

Figure 5.
Superimposition of the EAWD trend (red curve), EEMD trend (black curve) and the trend of the original signal
obtained by using a moving window (blue curve).
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Mode-mixings are detected between IMFs 2 and 3 and between IMFs 5 and 6 as
their dominant frequency are the same. The accuracy of the Trend returned by the
EEMD is estimated to be 0.6%. An EAWD technique has been applied then to over-
come mode-mixings encountered when EEMD has been applied. Results are displayed
in Figure 10.

Mode-mixings occurring in EEMD results have been removed. In EAWD results
three new components have been appeared with cycles of respectively 28.5, 21.3 and
6 months. The IMF with cycle 2.4 months returned by EEMD disappeared. The trend
restituted by respectively EEMD and EAWD techniques have been superimposed
with the trend obtained from the original signal by using a moving window of size
170 months (Figure 11).

The accuracy of the trend returned by the EAWD (red curve) has been estimated
to be equal to 0.2%. The SSA technique has been applied to the Argentina total ozone
columns. The mean orbit period MP has been estimated by using (Eq. (28)), MP = 10.
The embedding window size L has been fixed to L = 110. After having removing noisy
components and applying the SSA basic procedure 28 principal components have been
found including trend and relevant periodic components. SSA principal components

have been distributed along a grid 2
log Cymaxð Þ

log 2ð Þ , 22
h i

. The components obtained are

displayed in Figure 12.
Figure 13 displays the superimposition of the EAWD results (red curve) and SSA

results (black curve). In pictures (a), (b) (d), (e) and (f) SSA results in black and
EAWD results in red are shown for respectively the cycles 6, 12, 64, 170 months and
trends. In picture (c) it’s the superimposition of summed EAWD components 3 and 4
(cycles 28 months and 21 months) with SSA component 4 (cycle 28 months). Curves
in picture (c) can be identified to QBO climate forcing. Curves in pictures (d) and (e)
can be respectively identified to ENSO and solar cycle.

Figure 6.
SSA results on Natal ozone total columns time series.
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Figure 7.
Comparison between SSA results (black curve) and EAWD results (red curve).

Figure 8.
Argentina monthly total ozone columns.
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Figure 9.
EEMD results of Argentina total ozone columns.

Figure 10.
EAWD results of Argentina total ozone columns.
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3.3 Conakry monthly rainfall time series analysis

The original time series is displayed in Figure 14, its size is N = 720:
EEMD results are displayed in Figure 15.
Mode-mixings are detected between IMFs 2 and 3 and between IMFs 5 and 6 as

their cycles are the same (12 months). An EAWD technique has been applied then to

Figure 11.
Superimposition of the EAWD trend (red curve), EEMD trend (black curve) and the trend of the original signal
obtained by using a moving window (blue curve).

Figure 12.
SSA results on Argentina ozone total columns time series.
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Figure 13.
Superimposition of SSA results (black curve) and EAWD results (red curve).

Figure 14.
Conakry monthly rainfall in millimeters.
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overcome mode-mixings encountered when EEMD has been applied. Results are
displayed in Figure 16.

Mode-mixing occurring between IMFs 2 and 3 in EEMD results has been removed.
The trend restituted by respectively EEMD and EAWD techniques have been
superimposed with the trend obtained from the original signal by using a moving
window of size 144 months (Figure 17).

The accuracy of the trend returned by the EAWD (red curve) has been estimated
to be equal to 0.97%. The SSA technique has been applied to the Conakry rainfall time
series. The mean orbit period MP has been estimated by using (Eq. (28)), MP = 9. The
embedding window size L has been fixed to L = 108. After having removing noisy
components and applying the SSA basic procedure 42 principal components have
been found including trend and relevant periodic components. SSA principal compo-

nents have been distributed along a grid 2
log Cymaxð Þ

log 2ð Þ , 22
h i

. The components obtained are

displayed in Figure 18.
Figure 19 displays the superimposition of the EAWD results (red curve) and

SSA results (black curve). In pictures (a), (b), (c), (d) (e), and (f) SSA results in
black and EAWD results in red are shown for respectively the cycles 6, 12, 32.7,
65.5, 144 months, and trend. As the segmentation of the original signal spectrum
is not identical in EAWD and SSA, a 21 months cycle component appears in the
EAWD decomposition and a 9 months cycle component appears in the SSA
decomposition.

Figure 15.
EEMD results of Conakry rainfall.
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4. Conclusion

A comparative analysis of signal decomposition methods has been performed. The
methods include empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD) which can be seen as an optimization of EMD against noise,
empirical wavelet transform and empirical adaptive wavelet decomposition which are

Figure 16.
EAWD results of Conakry rainfall time series.

Figure 17.
Superimposition of the EAWD trend (red curve), EEMD trend (black curve) and the trend of the original signal
obtained by using a moving window (blue curve).
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methods that allows the mode-mixing problem to be avoid, and finally the singular
spectrum decomposition which acts as a bank of narrow band filters and requires
grouping techniques to be compared with results obtained with EAWD. Assuming
that the variability components returned by the EMD are close to the physics implic-
itly contained in the observation time series. The EAWD technique seems to be an
advantageous technique as it combines the rigor of wavelets while taking into account
the spectral content of the components returned by the EMD. Thus the mode-mixing
is avoid and in addition if an EEMD technique is used instead EMD, this technique
becomes more robust against noise. Moreover, such a technique does not require a
priori specification of the number of decomposed components. However, the SSA
technique requires setting parameters like the width of the embedding window L and
selecting an appropriate grouping technique to obtain components similar to those
returned by the EAWD. SSA technique was found to be sensitive to parameter
changes and L determines how well the components are separated. Despite the fact
that SSA requires an appropriate embedding window size L, SSA is close to the
underlying dynamics to the time series. Moreover, as the components extracted by
SSA are independent, such a technique can be very useful for blind source separation
purpose.

Figure 18.
SSA results on Conakry rainfall time series.
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