
HAL Id: hal-04315644
https://hal.univ-reunion.fr/hal-04315644

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Binary Non-Termination in Term Rewriting and Logic
Programming

Etienne Payet

To cite this version:
Etienne Payet. Binary Non-Termination in Term Rewriting and Logic Programming. Workshop on
Termination (WST), Akihisa Yamada, Aug 2023, Obergurgl, Austria. �10.48550/arXiv.2307.11549�.
�hal-04315644�

https://hal.univ-reunion.fr/hal-04315644
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Binary Non-Termination in Term Rewriting and
Logic Programming
Étienne Payet #Ñ

LIM - Université de la Réunion, France

Abstract
We present a new syntactic criterion for the automatic detection of non-termination in an abstract
setting that encompasses a simplified form of term rewriting and logic programming.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Rewrite systems; Theory of computation → Program analysis

Keywords and phrases Non-Termination, Term Rewriting, Logic Programming

1 Introduction

This paper is concerned with non-termination in structures where one rewrites elements using
indexed binary relations. Such structures can be formalised by abstract reduction systems
(ARSs) [3], i.e., couples (A, ⇒I) where A is a set and ⇒I (the rewrite relation) is the union of
binary relations on A, indexed by a set I, i.e., ⇒I =

⋃
{⇒ι | ι ∈ I}. Non-termination in these

structures can be formalised as the existence of an infinite rewrite sequence a0 ⇒ι0 a1 ⇒ι1 · · · .
Term rewrite systems (TRSs) and logic programs (LPs) are concrete instances of ARSs: A is
the set of finite terms and I indicates what rule (= a couple of finite terms) is applied at
what position. A crucial difference is that the rewrite relation of TRSs relies on instantiation
while that of LPs relies on narrowing, i.e., on unification. In this paper, we present a new
syntactic criterion for the automatic detection of non-termination in an abstract setting that
encompasses a simplified form of term rewriting and logic programming. Namely, we suppose
that the rewriting always takes place at the root position of terms (see Def. 4 below). There
exist program transformation techniques that make it possible to place oneself in such a
context, e.g., the overlap closure [8] in term rewriting or the binary unfoldings [4, 6] in logic
programming preserve the non-termination property of the original program.

2 Preliminaries

We let N denote the set of non-negative integers.

2.1 Binary Relations
If ⇒ and ↪→ are binary relations on a set A, then ⇒ ◦ ↪→ denotes their composition.
We let ⇒0 be the identity relation and, for all n ∈ N, ⇒n+1 = (⇒n ◦ ⇒). Moreover,
⇒∗ =

⋃
{⇒n | n ≥ 0} is the reflexive and transitive closure of ⇒. We formalise non-

termination as the existence of an infinite sequence of connected elements:

▶ Definition 1. Let ⇒ be a binary relation on a set A. A ⇒-chain is a (possibly infinite)
sequence a0, a1, . . . of elements of A such that an ⇒ an+1 for all n ∈ N. We simply write it
as a0 ⇒ a1 ⇒ · · · .

2.2 Terms
We use the same definitions and notations as [3] for terms. From now on, we fix a signature Σ
(the function symbols) together with an infinite countable set X of variables, with Σ ∩ X = ∅.

mailto:etienne.payet@univ-reunion.fr
http://lim.univ-reunion.fr/staff/epayet/
https://orcid.org/0000-0002-3519-025X

We let f, g, s be function symbols of positive arity and 0 be a constant symbol. The set of
all terms built from Σ and X is denoted by T (Σ, X). A context is a term with at least one
“hole”, represented by □, in it. For all terms or contexts t, we let Var(t) denote the set of
variables occurring in t and, for all contexts c, we let c[t] denote the term or context obtained
from c by replacing all the occurrences of □ by t. For all contexts c, we let c0 = □ and, for
all n ∈ N, cn+1 = c[cn]. Terms are generally denoted by a, s, t, u, v, variables by x, y and
contexts by c, possibly with subscripts and quotes.

The set S(Σ, X) of all substitutions consists of the functions θ from X to T (Σ, X) such
that Dom(θ) = {x ∈ X | θ(x) ̸= x} is finite. A substitution θ is usually written as
{x 7→ θ(x) | x ∈ Dom(θ)} and its application to a term s as sθ. A renaming is a substitution
that is a bijection on X. The composition of substitutions σ and θ is denoted as σθ. We say
that σ is more general than θ if θ = ση for some substitution η. We let θ0 = ∅ (the identity
substitution) and, for all n ∈ N, θn+1 = θnθ.

A term s is an instance of a term t if s = tθ for some θ ∈ S(Σ, X). On the other hand,
s unifies with t if sθ = tθ for some θ ∈ S(Σ, X); then, θ is called a unifier of s and t and
mgu(s, t) denotes the most general unifier (mgu) of s and t.

2.3 Term Rewriting and Logic Programming
We refer to [3] (resp. [1]) for the basics of term rewriting (resp. logic programming).

▶ Definition 2. A program is a subset of T (Σ, X)2, every element (u, v) of which is called a
rule, where u (resp. v) is the left-hand side (resp. right-hand side). For each program P , we
let P denote the set of all finite, non-empty, sequences of elements of P .

In this paper, we only consider ARSs (A, ⇒I) such that A = T (Σ, X) and I is a program.
Hence the following simplified definition.

▶ Definition 3. An abstract reduction system (ARS) is a union of binary relations on T (Σ, X)
indexed by a program, i.e., it has the form ⇒P =

⋃
{⇒r ⊆ T (Σ, X)2 | r ∈ P} for some

program P . For each ARS ⇒P and each ω = (r1, . . . , rn) in P , we let ⇒ω = (⇒r1 ◦ · · ·◦⇒rn
).

The next definition introduces term rewrite systems and logic programs as concrete
instances of ARSs. For all terms s and rules (u, v) and (u′, v′), we write (u, v) ≪s (u′, v′) to
denote that (u, v) is a variant of (u′, v′) variable disjoint with s, i.e., for some renaming γ,
we have u = u′γ, v = v′γ and Var(u) ∩ Var(s) = Var(v) ∩ Var(s) = ∅.

▶ Definition 4. For each program P , we let →P =
⋃

{→r | r ∈ P} and⇝P =
⋃

{⇝r | r ∈ P}
where, for all r ∈ P ,

→
r

=
{(

uθ, vθ
)

∈ T (Σ, X)2 ∣∣ (u, v) = r, θ ∈ S(Σ, X)
}

(Term Rewriting)

⇝
r

=
{(

s, vθ
)

∈ T (Σ, X)2 ∣∣ (u, v) ≪s r, θ = mgu(s, u)
}

(Logic Programming)

We say that →P (resp. ⇝P) is a term rewrite system (resp. a logic program).

▶ Example 5. Let r =
(

f(x), s(x)
)

= (u, v). Then, f2(x) →r s(f(x)) because f2(x) = uθ and
s(f(x)) = vθ for θ = {x 7→ f(x)}. Let r′ =

(
f(g(x, 0)), f(x)

)
and s = f(g(x, x)). The rule

(u′, v′) = (f(g(x′, 0)), f(x′)) is a variant of r′ variable disjoint with s. Let θ′ = {x 7→ 0, x′ 7→ 0}.
Then, θ′ = mgu (s, u′) and we have s⇝r′ v′θ′, i.e., f(g(x, x))⇝r′ f(0).

In term rewriting and in logic programming (modulo a condition), the left-hand side of a
rule can be rewritten to the corresponding instance of the right-hand side.

▶ Lemma 6. Let r = (u, v) be a rule and θ be a substitution. We have uθ →r vθ and, if
Var(v) ⊆ Var(u), uθ⇝r vθ.

3 Binary Non-Termination

We are interested in binary chains, i.e., infinite chains that consist of the repetition of two
sequences of rules. There are ARSs that admit such chains but no infinite chain consisting of
the repetition of a single sequence (see, e.g., →P in Ex. 8 and Ex. 9 below). More precisely:

▶ Definition 7. Let ⇒P be an ARS and ω1, ω2 ∈ P . A (ω1, ω2, ⇒P)-chain is an infinite
(⇒∗

ω1
◦ ⇒ω2)-chain.

▶ Example 8. Let ⇒P ∈ {→P ,⇝P } where P is the program that consists of the rules

r1 =
(

f(x, s(y)), f(s2(x), y)
)

r2 =
(

f(x, 0), f(s(0), x)
)

(see [13] and TRS_Standard/Zantema_15/ex12.xml in [11]). We have the (r1, r2, ⇒P)-chain:

f(s(0), 0) 0⇒
r1

f(s(0), 0) ⇒
r2

f(s(0), s(0)) 1⇒
r1

f(s3(0), 0) ⇒
r2

f(s(0), s3(0)) 3⇒
r1

· · ·

▶ Example 9. Let ⇒P ∈ {→P ,⇝P } where P is the program that consists of the rules

r1 =
(

f(x, s(y)), f(s(x), y)
)

r2 =
(

f(x, 0), f(x, s(x))
)

(see [13] and TRS_Standard/Zantema_15/ex14.xml in [11]). We have the (r1, r2, ⇒P)-chain:

f(0, s(0)) 1⇒
r1

f(s(0), 0) ⇒
r2

f(s(0), s2(0)) 2⇒
r1

f(s3(0), 0) ⇒
r2

f(s3(0), s4(0)) 4⇒
r1

· · ·

Now, we present a criterion for the detection of binary chains. It is tailored to deal with
specific sequences ω1 and ω2 that each consist of a single rule of a particular form. Intuitively,
the rule r1 of ω1 and the rule r2 of ω2 are mutually recursive; in r1, a context c is removed
from the left-hand side to the right-hand side while, in r2, c is added again. Ex. 8 and Ex. 9
are concrete instances, with c = s(□). This is formalised as follows.

▶ Definition 10. A recurrent pair for a program P is a pair (r1, r2) ∈ P 2 such that
r1 =

(
f(x, c[y]), f(cn1 [x], y)

)
and r2 =

(
f(x, s), f(cn2 [t], cn3 [x])

)
x ̸= y

Var(c) = Var(s) = ∅
t ∈ {x, s}

▶ Example 11. In Ex. 8, we have (n1, n2, n3) = (2, 1, 0), c = s(□) and s = t = 0. In Ex. 9,
we have (n1, n2, n3) = (1, 0, 1), c = s(□), s = 0 and t = x.

We show that the existence of a recurrent pair leads to that of a binary chain (see
Prop. 20), provided that property (1) below is satisfied. The rest of this section is parametric
in an ARS ⇒P and a recurrent pair (r1, r2) for P as in Def. 10, with r1 = (u1, v1) and
r2 = (u2, v2). We suppose that we have

∀θ ∈ S(Σ, X) (u1θ ⇒
r1

v1θ) ∧ (u2θ ⇒
r2

v2θ) (1)

As Var(v1) ⊆ Var(u1) and Var(v2) ⊆ Var(u2), by Lem. 6 both →p and ⇝P satisfy (1).
For the sake of readability, we introduce the following notation.

▶ Definition 12. For all m, n ∈ N, we let f(m, n) denote the term f(cm[s], cn[s]).

Then, we have the following two lemmas. Lem. 13 states that r1 allows one to iteratively
move a tower of c’s from the second to the first argument of f. Conversely, Lem. 14 states
that r2 allows one to copy a tower of c’s from the first to the second argument of f in just
one step.

▶ Lemma 13. For all m, n ∈ N, f(m, n) ⇒n
r1

f(n1 × n + m, 0).

Proof. We proceed by induction on n.
(Base: n = 0) Here, ⇒n

r1
is the identity. Hence, for all m ∈ N, we have f(m, n) ⇒n

r1
f(m, n),

where f(m, n) = f(n1 × n + m, 0).
(Induction) Suppose that for some n ∈ N we have f(m, n) ⇒n

r1
f(n1 × n + m, 0) for all

m ∈ N. Let m ∈ N. Then, f(m, n + 1) = f(cm[s], cn+1[s]) = u1{x 7→ cm[s], y 7→ cn[s]}.
Therefore, by (1), we have f(m, n + 1) ⇒r1 v1{x 7→ cm[s], y 7→ cn[s]} where v1{x 7→
cm[s], y 7→ cn[s]} = f(cn1+m[s], cn[s]) = f(n1 + m, n). But, by induction hypothesis, we
have f(n1 + m, n) ⇒n

r1
f(n1 × n + (n1 + m), 0), i.e., f(n1 + m, n) ⇒n

r1
f(n1 × (n + 1) + m, 0).

Finally, f(m, n + 1) ⇒n+1
r1

f(n1 × (n + 1) + m, 0).
◀

▶ Lemma 14. For all m ∈ N, f(m, 0) ⇒r2 f(m′ + n2, m + n3) where m′ = 0 if t = s and
m′ = m if t = x.

Proof. Let m ∈ N. We have f(m, 0) = f(cm[s], s) = u2{x 7→ cm[s]}. Hence, by (1), we have
f(m, 0) ⇒r2 v2{x 7→ cm[s]}.

If t = s then v2{x 7→ cm[s]} = f(cn2 [s], cm+n3 [s]) = f(n2, m + n3).
If t = x then v2{x 7→ cm[s]} = f(cm+n2 [s], cm+n3 [s]) = f(m + n2, m + n3).

◀

We consider the following polynomials in the indeterminate i ∈ N. We define them in a
mutually recursive way, which reflects the mutually recursive nature of r1 and r2 and hence
facilitates the proof of the existence of a (r1, r2, ⇒P)-chain (Prop. 20 below).

▶ Definition 15. We let
Π0(i) = n2 and Π′

0(i) = n3
Πn+1(i) = ∆n(i) + n2 and Π′

n+1(i) = ∆′
n(i) + n3 for all n ∈ N

where, for all n ∈ N,
∆n(i) = 0 if t = s and ∆n(i) = ∆′

n(i) if t = x

∆′
n(i) = iΠ′

n(i) + Πn(i).

▶ Example 16. In Ex. 9, we have t = x and (n1, n2, n3) = (1, 0, 1). Hence:
Π0(i) = n2 = 0 and Π′

0(i) = n3 = 1
Π1(i) = ∆0(i) + n2 = ∆′

0(i) = iΠ′
0(i) + Π0(i) = i

Π′
1(i) = ∆′

0(i) + n3 = i + 1
Π2(i) = ∆1(i) + n2 = ∆′

1(i) = iΠ′
1(i) + Π1(i) = i2 + i + i = i2 + 2i

Π′
2(i) = ∆′

1(i) + n3 = i2 + 2i + 1

The next lemma provides a simpler form of Π and Π′ for the case t = s (the case t = x is
more intricate).

▶ Lemma 17. If t = s then, for all n ∈ N, Πn(i) = n2 and Π′
n(i) = n3in +

∑n−1
k=0(n2 + n3)ik.

Proof. Suppose that t = s. Then, for all n ∈ N, ∆n(i) = 0, so Πn+1(i) = n2. As Π0(i) = n2
also, for all n ∈ N we have Πn(i) = n2. Now, we prove that Π′

n(i) = n3in +
∑n−1

k=0(n2 + n3)ik.
We proceed by induction on n.

(Base: n = 0) We have Π′
n(i) = n3 = n3in +

∑n−1
k=0(n2 + n3)ik.

(Induction) Suppose that the property holds for some n ∈ N. We have Π′
n+1(i) =

∆′
n(i) + n3 = iΠ′

n(i) + Πn(i) + n3. But, as t = s, Πn(i) = n2 and, by induction hypothesis,
Π′

n(i) = n3in +
∑n−1

k=0(n2 + n3)ik. So, Π′
n+1(i) = i(n3in +

∑n−1
k=0(n2 + n3)ik) + n2 + n3 =

n3in+1 +
∑n

k=0(n2 + n3)ik.
◀

▶ Example 18. In Ex. 8, we have t = s and (n1, n2, n3) = (2, 1, 0). Hence, by Lem. 17, we
have Πn(i) = 1 and Π′

n(i) =
∑n−1

k=0 ik for all n ∈ N.

Using Π and Π′, we define the set of terms A:

▶ Definition 19. We let A = {an = f(Πn(n1), Π′
n(n1)) | n ∈ N}.

Now we prove the existence of the (r1, r2, ⇒P)-chain

a0 (Π′
0(n1)⇒
r1

◦ ⇒
r2

) a1 (Π′
1(n1)⇒
r1

◦ ⇒
r2

) a2 (Π′
2(n1)⇒
r1

◦ ⇒
r2

) · · ·

▶ Proposition 20. For all n ∈ N, we have an (⇒Π′
n(n1)

r1 ◦ ⇒r2) an+1.

Proof. Let n ∈ N. We have an = f(Πn(n1), Π′
n(n1)). By Lem. 13 and Lem. 14,

an
Π′

n(n1)⇒
r1

f
(

n1 × Π′
n(n1) + Πn(n1)︸ ︷︷ ︸

∆′
n(n1)

, 0
)

⇒
r2

f
(
m, ∆′

n(n1) + n3︸ ︷︷ ︸
Π′

n+1(n1)

)
where m = n2 = Πn+1(n1) if t = s and m = ∆′

n(n1) + n2 = Πn+1(n1) if t = x. Hence,
an (⇒Π′

n(n1)
r1 ◦ ⇒r2) an+1. ◀

▶ Example 21. In Ex. 8, we have Πn(i) = 1 and Π′
n(i) =

∑n−1
k=0 ik for all n ∈ N (see Ex. 18).

We also have n1 = 2 and the (r1, r2, ⇒P)-chain:

f(s(0), 0)︸ ︷︷ ︸
a0

Π′
0(n1)⇒
r1

f(s(0), 0) ⇒
r2

f(s(0), s(0))︸ ︷︷ ︸
a1

Π′
1(n1)⇒
r1

f(s3(0), 0) ⇒
r2

f(s(0), s3(0))︸ ︷︷ ︸
a2

Π′
2(n1)⇒
r1

· · ·

▶ Example 22. In Ex. 9, we have Π0(n1) = 0, Π′
0(n1) = 1, Π1(n1) = 1, Π′

1(n1) = 2,
Π2(n1) = 3, Π′

2(i) = 4, . . . (see Ex. 16). We have the (r1, r2, ⇒P)-chain:

f(0, s(0))︸ ︷︷ ︸
a0

Π′
0(n1)⇒
r1

f(s(0), 0) ⇒
r2

f(s(0), s2(0))︸ ︷︷ ︸
a1

Π′
1(n1)⇒
r1

f(s3(0), 0) ⇒
r2

f(s3(0), s4(0))︸ ︷︷ ︸
a2

Π′
2(n1)⇒
r1

· · ·

4 Future Work and Implementation

We plan to investigate how our work relates to the forms of non-termination detected by the
approaches of [5, 7, 12]. We have no clear idea for the moment.

Our tool NTI (Non-Termination Inference) [9] is designed to automatically prove the
existence of infinite chains in TRSs and in LPs. It first transforms the original program
P into a program P ′: for TRSs, it uses the dependency pairs combined with a variant
of the overlap closure [10] and, for LPs, it uses the binary unfolding [4, 6]. By [2, 4, 8],
non-termination of P ′ implies that of P . Then, it detects recurrent pairs (Def. 10), hence
binary chains (Prop. 20), in P ′.

References
1 K. R. Apt. From Logic Programming to Prolog. Prentice Hall International series in computer

science. Prentice Hall, 1997.
2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4 M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.

Journal of Logic Programming, 41(1):103–123, 1999. doi:10.1016/S0743-1066(99)00006-0.
5 F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automatically. In

B. Gramlich, D. Miller, and U. Sattler, editors, Proc. of the 6th International Joint Conference
on Automated Reasoning (IJCAR’12), volume 7364 of LNCS, pages 225–240. Springer, 2012.
doi:10.1007/978-3-642-31365-3_19.

6 M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the analysis of
logic programs. In H. Berghel, T. Hlengl, and J. E. Urban, editors, Proc. of the 1994
ACM Symposium on Applied Computing (SAC’94), pages 394–399. ACM Press, 1994. doi:
10.1145/326619.326789.

7 A. Geser and H. Zantema. Non-looping string rewriting. RAIRO Theoretical Informatics and
Applications, 33(3):279–302, 1999. doi:10.1051/ita:1999118.

8 J. V. Guttag, D. Kapur, and D. R. Musser. On proving uniform termination and restricted
termination of rewriting systems. SIAM Journal of Computing, 12(1):189–214, 1983.

9 NTI (Non-Termination Inference). http://lim.univ-reunion.fr/staff/epayet/Research/
NTI/NTI.html and https://github.com/etiennepayet/nti.

10 É. Payet. Guided unfoldings for finding loops in standard term rewriting. In F. Mesnard and
P. J. Stuckey, editors, Proc. of the 28th International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR’18), Revised Selected Papers, volume 11408 of LNCS,
pages 22–37. Springer, 2018. doi:10.1007/978-3-030-13838-7_2.

11 Termination Problems Data Base. http://termination-portal.org/wiki/TPDB.
12 Y. Wang and M. Sakai. On non-looping term rewriting. In A. Geser and H. Søndergaard,

editors, Proc. of the 8th International Workshop on Termination (WST’06), pages 17–21,
2006.

13 H. Zantema and A. Geser. Non-looping rewriting. Universiteit Utrecht. UU-CS, Department
of Computer Science. Utrecht University, Netherlands, 1996.

https://doi.org/10.1016/S0743-1066(99)00006-0
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1145/326619.326789
https://doi.org/10.1145/326619.326789
https://doi.org/10.1051/ita:1999118
http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
https://github.com/etiennepayet/nti
https://doi.org/10.1007/978-3-030-13838-7_2
http://termination-portal.org/wiki/TPDB

	1 Introduction
	2 Preliminaries
	2.1 Binary Relations
	2.2 Terms
	2.3 Term Rewriting and Logic Programming

	3 Binary Non-Termination
	4 Future Work and Implementation

