Étienne Payet

Binary Non-Termination in Term Rewriting and Logic Programming

Keywords: 2012 ACM Subject Classification Theory of computation → Constraint and logic programming, Theory of computation → Rewrite systems, Theory of computation → Program analysis Non-Termination, Term Rewriting, Logic Programming 1

We present a new syntactic criterion for the automatic detection of non-termination in an abstract setting that encompasses a simplified form of term rewriting and logic programming.

Introduction

This paper is concerned with non-termination in structures where one rewrites elements using indexed binary relations. Such structures can be formalised by abstract reduction systems (ARSs) [START_REF] Baader | Term Rewriting and All That[END_REF], i.e., couples (A, ⇒ I) where A is a set and ⇒ I (the rewrite relation) is the union of binary relations on A, indexed by a set I, i.e., ⇒ I = {⇒ ι | ι ∈ I}. Non-termination in these structures can be formalised as the existence of an infinite rewrite sequence a 0 ⇒ ι0 a 1 ⇒ ι1 • • • . Term rewrite systems (TRSs) and logic programs (LPs) are concrete instances of ARSs: A is the set of finite terms and I indicates what rule (= a couple of finite terms) is applied at what position. A crucial difference is that the rewrite relation of TRSs relies on instantiation while that of LPs relies on narrowing, i.e., on unification. In this paper, we present a new syntactic criterion for the automatic detection of non-termination in an abstract setting that encompasses a simplified form of term rewriting and logic programming. Namely, we suppose that the rewriting always takes place at the root position of terms (see Def. 4 below). There exist program transformation techniques that make it possible to place oneself in such a context, e.g., the overlap closure [START_REF] Guttag | On proving uniform termination and restricted termination of rewriting systems[END_REF] in term rewriting or the binary unfoldings [START_REF] Codish | A semantic basis for the termination analysis of logic programs[END_REF][START_REF] Gabbrielli | Goal independency and call patterns in the analysis of logic programs[END_REF] in logic programming preserve the non-termination property of the original program.

Preliminaries

We let N denote the set of non-negative integers.

Binary Relations

If ⇒ and → are binary relations on a set A, then ⇒ • → denotes their composition.

We let ⇒ 0 be the identity relation and, for all n ∈ N,

⇒ n+1 = (⇒ n • ⇒). Moreover, ⇒ * = {⇒ n | n ≥ 0}
is the reflexive and transitive closure of ⇒. We formalise nontermination as the existence of an infinite sequence of connected elements:

▶ Definition 1. Let ⇒ be a binary relation on a set A. A ⇒-chain is a (possibly infinite) sequence a 0 , a 1 , . . . of elements of A such that a n ⇒ a n+1 for all n ∈ N. We simply write it as a 0 ⇒ a 1 ⇒ • • • .

Terms

We use the same definitions and notations as [START_REF] Baader | Term Rewriting and All That[END_REF] for terms. From now on, we fix a signature Σ (the function symbols) together with an infinite countable set X of variables, with Σ ∩ X = ∅.

We let f, g, s be function symbols of positive arity and 0 be a constant symbol. The set of all terms built from Σ and X is denoted by T (Σ, X). A context is a term with at least one "hole", represented by □, in it. For all terms or contexts t, we let Var(t) denote the set of variables occurring in t and, for all contexts c, we let c[t] denote the term or context obtained from c by replacing all the occurrences of □ by t. For all contexts c, we let c 0 = □ and, for all n ∈ N, c n+1 = c[c n]. Terms are generally denoted by a, s, t, u, v, variables by x, y and contexts by c, possibly with subscripts and quotes. The set S(Σ, X) of all substitutions consists of the functions θ from X to T (Σ, X) such that Dom(θ) = {x ∈ X | θ(x) ̸ = x} is finite. A substitution θ is usually written as {x → θ(x) | x ∈ Dom(θ)} and its application to a term s as sθ. A renaming is a substitution that is a bijection on X. The composition of substitutions σ and θ is denoted as σθ. We say that σ is more general than θ if θ = ση for some substitution η. We let θ 0 = ∅ (the identity substitution) and, for all n ∈ N, θ n+1 = θ n θ.

A term s is an instance of a term t if s = tθ for some θ ∈ S(Σ, X). On the other hand, s unifies with t if sθ = tθ for some θ ∈ S(Σ, X); then, θ is called a unifier of s and t and mgu(s, t) denotes the most general unifier (mgu) of s and t.

Term Rewriting and Logic Programming

We refer to [START_REF] Baader | Term Rewriting and All That[END_REF] (resp. [START_REF] Apt | From Logic Programming to Prolog[END_REF]) for the basics of term rewriting (resp. logic programming). 2 , every element (u, v) of which is called a rule, where u (resp. v) is the left-hand side (resp. right-hand side). For each program P , we let P denote the set of all finite, non-empty, sequences of elements of P .

▶ Definition 2. A program is a subset of T (Σ, X)
In this paper, we only consider ARSs (A, ⇒ I) such that A = T (Σ, X) and I is a program. Hence the following simplified definition. ▶ Definition 3. An abstract reduction system (ARS) is a union of binary relations on T (Σ, X) indexed by a program, i.e., it has the form ⇒ P = {⇒ r ⊆ T (Σ, X) 2 | r ∈ P } for some program P . For each ARS ⇒ P and each ω = (r 1 , . . . , r n) in P , we let

⇒ ω = (⇒ r1 • • • ••⇒ rn).
The next definition introduces term rewrite systems and logic programs as concrete instances of ARSs. For all terms s and rules (u, v) and (u ′ , v ′), we write (u, v) ≪ s (u ′ , v ′) to denote that (u, v) is a variant of (u ′ , v ′) variable disjoint with s, i.e., for some renaming γ,

we have u = u ′ γ, v = v ′ γ and Var(u) ∩ Var(s) = Var(v) ∩ Var(s) = ∅.
▶ Definition 4. For each program P , we let → P = {→ r | r ∈ P } and ⇝ P = {⇝ r | r ∈ P } where, for all r ∈ P ,

→ r = uθ, vθ ∈ T (Σ, X) 2 (u, v) = r, θ ∈ S(Σ, X) (Term Rewriting) ⇝ r = s, vθ ∈ T (Σ, X) 2 (u, v) ≪ s r, θ = mgu(s, u) (Logic Programming)
We say that → P (resp. ⇝ P) is a term rewrite system (resp. a logic program).

▶ Example 5. Let r = f(x), s(x) = (u, v). Then, f 2 (x) → r s(f(x)) because f 2 (x) = uθ and s(f(x)) = vθ for θ = {x → f(x)}. Let r ′ = f(g(x, 0)), f(x) and s = f(g(x, x)). The rule (u ′ , v ′) = (f(g(x ′ , 0)), f(x ′)) is a variant of r ′ variable disjoint with s. Let θ ′ = {x → 0, x ′ → 0}. Then, θ ′ = mgu (s, u ′) and we have s ⇝ r ′ v ′ θ ′ , i.e., f(g(x, x)) ⇝ r ′ f(0).
In term rewriting and in logic programming (modulo a condition), the left-hand side of a rule can be rewritten to the corresponding instance of the right-hand side.

▶ Lemma 6. Let r = (u, v) be a rule and θ be a substitution. We have uθ → r vθ and, if Var(v) ⊆ Var(u), uθ ⇝ r vθ.

Binary Non-Termination

We are interested in binary chains, i.e., infinite chains that consist of the repetition of two sequences of rules. There are ARSs that admit such chains but no infinite chain consisting of the repetition of a single sequence (see, e.g., → P in Ex. 8 and Ex. 9 below). More precisely: ▶ Definition 7. Let ⇒ P be an ARS and ω 1 , ω 2 ∈ P . A (ω 1 , ω 2 , ⇒ P)-chain is an infinite

(⇒ * ω1 • ⇒ ω2)-chain.
▶ Example 8. Let ⇒ P ∈ {→ P , ⇝ P } where P is the program that consists of the rules

r 1 = f(x, s(y)), f(s 2 (x), y) r 2 = f(x, 0), f(s(0), x)
(see [START_REF] Zantema | Non-looping rewriting[END_REF] and TRS_Standard/Zantema_15/ex12.xml in [START_REF]Termination Problems Data Base[END_REF]). We have the (r 1 , r 2 , ⇒ P)-chain:

f(s(0), 0) 0 ⇒ r1 f(s(0), 0) ⇒ r2 f(s(0), s(0)) 1 ⇒ r1 f(s 3 (0), 0) ⇒ r2 f(s(0), s 3 (0)) 3 ⇒ r1 • • • ▶ Example 9.
Let ⇒ P ∈ {→ P , ⇝ P } where P is the program that consists of the rules

r 1 = f(x, s(y)), f(s(x), y) r 2 = f(x, 0), f(x, s(x))
(see [START_REF] Zantema | Non-looping rewriting[END_REF] and TRS_Standard/Zantema_15/ex14.xml in [START_REF]Termination Problems Data Base[END_REF]). We have the (r 1 , r 2 , ⇒ P)-chain:

f(0, s(0)) 1 ⇒ r1 f(s(0), 0) ⇒ r2 f(s(0), s 2 (0)) 2 ⇒ r1 f(s 3 (0), 0) ⇒ r2 f(s 3 (0), s 4 (0)) 4 ⇒ r1 • • •
Now, we present a criterion for the detection of binary chains. It is tailored to deal with specific sequences ω 1 and ω 2 that each consist of a single rule of a particular form. Intuitively, the rule r 1 of ω 1 and the rule r 2 of ω 2 are mutually recursive; in r 1 , a context c is removed from the left-hand side to the right-hand side while, in r 2 , c is added again. Ex. 8 and Ex. 9 are concrete instances, with c = s(□). This is formalised as follows.

▶ Definition 10. A recurrent pair for a program P is a pair (r 1 , r 2) ∈ P 2 such that

r 1 = f(x, c[y]), f(c n1 [x], y) and r 2 = f(x, s), f(c n2 [t], c n3 [x]) x ̸ = y Var(c) = Var(s) = ∅ t ∈ {x, s}
▶ Example 11. In Ex. 8, we have (n 1 , n 2 , n 3) = (2, 1, 0), c = s(□) and s = t = 0. In Ex. 9, we have (n 1 , n 2 , n 3) = (1, 0, 1), c = s(□), s = 0 and t = x.

We show that the existence of a recurrent pair leads to that of a binary chain (see Prop. 20), provided that property (1) below is satisfied. The rest of this section is parametric in an ARS ⇒ P and a recurrent pair (r 1 , r 2) for P as in Def. 10, with r 1 = (u 1 , v 1) and r 2 = (u 2 , v 2). We suppose that we have

∀θ ∈ S(Σ, X) (u 1 θ ⇒ r1 v 1 θ) ∧ (u 2 θ ⇒ r2 v 2 θ) (1)
As Var(v 1) ⊆ Var(u 1) and Var(v 2) ⊆ Var(u 2), by Lem. 6 both → p and ⇝ P satisfy (1).

For the sake of readability, we introduce the following notation.

▶ Definition 12. For all m, n ∈ N, we let f(m, n) denote the term f(c m [s], c n [s]).
Then, we have the following two lemmas. Lem. 13 states that r 1 allows one to iteratively move a tower of c's from the second to the first argument of f. Conversely, Lem. 14 states that r 2 allows one to copy a tower of c's from the first to the second argument of f in just one step.

▶ Lemma 13. For all m, n ∈ N, f(m, n) ⇒ n r1 f(n 1 × n + m, 0).
Proof. We proceed by induction on n.

(Base: n = 0) Here, ⇒ n r1 is the identity. Hence, for all m ∈ N, we have

f(m, n) ⇒ n r1 f(m, n), where f(m, n) = f(n 1 × n + m, 0). (Induction) Suppose that for some n ∈ N we have f(m, n) ⇒ n r1 f(n 1 × n + m, 0) for all m ∈ N. Let m ∈ N. Then, f(m, n + 1) = f(c m [s], c n+1 [s]) = u 1 {x → c m [s], y → c n [s]}. Therefore, by (1), we have f(m, n + 1) ⇒ r1 v 1 {x → c m [s], y → c n [s]} where v 1 {x → c m [s], y → c n [s]} = f(c n1+m [s], c n [s]) = f(n 1 + m, n). But, by induction hypothesis, we have f(n 1 + m, n) ⇒ n r1 f(n 1 × n + (n 1 + m), 0), i.e., f(n 1 + m, n) ⇒ n r1 f(n 1 × (n + 1) + m, 0). Finally, f(m, n + 1) ⇒ n+1 r1 f(n 1 × (n + 1) + m, 0). ◀ ▶ Lemma 14. For all m ∈ N, f(m, 0) ⇒ r2 f(m ′ + n 2 , m + n 3) where m ′ = 0 if t = s and m ′ = m if t = x. Proof. Let m ∈ N. We have f(m, 0) = f(c m [s], s) = u 2 {x → c m [s]}. Hence, by (1), we have f(m
, 0) ⇒ r2 v 2 {x → c m [s]}. If t = s then v 2 {x → c m [s]} = f(c n2 [s], c m+n3 [s]) = f(n 2 , m + n 3). If t = x then v 2 {x → c m [s]} = f(c m+n2 [s], c m+n3 [s]) = f(m + n 2 , m + n 3). ◀
We consider the following polynomials in the indeterminate i ∈ N. We define them in a mutually recursive way, which reflects the mutually recursive nature of r 1 and r 2 and hence facilitates the proof of the existence of a (r 1 , r 2 , ⇒ P)-chain (Prop. 20 below).

▶ Definition 15. We let

Π 0 (i) = n 2 and Π ′ 0 (i) = n 3 Π n+1 (i) = ∆ n (i) + n 2 and Π ′ n+1 (i) = ∆ ′ n (i) + n 3 for all n ∈ N where, for all n ∈ N, ∆ n (i) = 0 if t = s and ∆ n (i) = ∆ ′ n (i) if t = x ∆ ′ n (i) = iΠ ′ n (i) + Π n (i).
▶ Example 16. In Ex. 9, we have t = x and (n 1 , n 2 , n 3) = (1, 0, 1). Hence:

Π 0 (i) = n 2 = 0 and Π ′ 0 (i) = n 3 = 1 Π 1 (i) = ∆ 0 (i) + n 2 = ∆ ′ 0 (i) = iΠ ′ 0 (i) + Π 0 (i) = i Π ′ 1 (i) = ∆ ′ 0 (i) + n 3 = i + 1 Π 2 (i) = ∆ 1 (i) + n 2 = ∆ ′ 1 (i) = iΠ ′ 1 (i) + Π 1 (i) = i 2 + i + i = i 2 + 2i Π ′ 2 (i) = ∆ ′ 1 (i) + n 3 = i 2 + 2i + 1
The next lemma provides a simpler form of Π and Π ′ for the case t = s (the case t = x is more intricate).

▶ Lemma 17. If t = s then, for all n ∈ N, Π n (i) = n 2 and Π ′ n (i) = n 3 i n + n-1 k=0 (n 2 + n 3)i k .
Proof. Suppose that t = s. Then, for all n ∈ N, ∆ n (i) = 0, so Π n+1 (i) = n 2 . As Π 0 (i) = n 2 also, for all n ∈ N we have Π n (i) = n 2 . Now, we prove that Π ′ n (i) = n 3 i n + n-1 k=0 (n 2 + n 3)i k . We proceed by induction on n.

(Base: n = 0) We have Π ′ n (i) = n 3 = n 3 i n + n-1 k=0 (n 2 + n 3)i k .
(Induction) Suppose that the property holds for some n ∈ N. We have Π

′ n+1 (i) = ∆ ′ n (i) + n 3 = iΠ ′ n (i) + Π n (i) + n 3 . But, as t = s, Π n (i) = n 2 and, by induction hypothesis, Π ′ n (i) = n 3 i n + n-1 k=0 (n 2 + n 3)i k . So, Π ′ n+1 (i) = i(n 3 i n + n-1 k=0 (n 2 + n 3)i k) + n 2 + n 3 = n 3 i n+1 + n k=0 (n 2 + n 3)i k . ◀ ▶ Example
(i) = 1 and Π ′ n (i) = n-1 k=0 i k for all n ∈ N.
Using Π and Π ′ , we define the set of terms A:

▶ Definition 19. We let A = {a n = f(Π n (n 1), Π ′ n (n 1)) | n ∈ N}.
Now we prove the existence of the (r 1 , r 2 , ⇒ P)-chain

a 0 (Π ′ 0 (n1) ⇒ r1 • ⇒ r2) a 1 (Π ′ 1 (n1) ⇒ r1 • ⇒ r2) a 2 (Π ′ 2 (n1) ⇒ r1 • ⇒ r2) • • • ▶ Proposition 20. For all n ∈ N, we have a n (⇒ Π ′ n (n1) r1 • ⇒ r2) a n+1 . Proof. Let n ∈ N. We have a n = f(Π n (n 1), Π ′ n (n 1
)). By Lem. 13 and Lem. 14,

a n Π ′ n (n1) ⇒ r1 f n 1 × Π ′ n (n 1) + Π n (n 1) ∆ ′ n (n1) , 0 ⇒ r2 f m, ∆ ′ n (n 1) + n 3 Π ′ n+1 (n1) where m = n 2 = Π n+1 (n 1) if t = s and m = ∆ ′ n (n 1) + n 2 = Π n+1 (n 1) if t = x. Hence, a n (⇒ Π ′ n (n1) r1 • ⇒ r2) a n+1 . ◀ ▶ Example

Future Work and Implementation

We plan to investigate how our work relates to the forms of non-termination detected by the approaches of [START_REF] Emmes | Proving non-looping non-termination automatically[END_REF][START_REF] Geser | Non-looping string rewriting[END_REF][START_REF] Wang | On non-looping term rewriting[END_REF]. We have no clear idea for the moment.

Our tool NTI (Non-Termination Inference) [START_REF]NTI (Non-Termination Inference[END_REF] is designed to automatically prove the existence of infinite chains in TRSs and in LPs. It first transforms the original program P into a program P ′ : for TRSs, it uses the dependency pairs combined with a variant of the overlap closure [START_REF] Payet | Guided unfoldings for finding loops in standard term rewriting[END_REF] and, for LPs, it uses the binary unfolding [START_REF] Codish | A semantic basis for the termination analysis of logic programs[END_REF][START_REF] Gabbrielli | Goal independency and call patterns in the analysis of logic programs[END_REF]. By [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF][START_REF] Codish | A semantic basis for the termination analysis of logic programs[END_REF][START_REF] Guttag | On proving uniform termination and restricted termination of rewriting systems[END_REF], non-termination of P ′ implies that of P . Then, it detects recurrent pairs (Def. 10), hence binary chains (Prop. 20), in P ′ .

▶

 21. In Ex. 8, we have Π n (i) = 1 and Π ′ n (i) = n-1 k=0 i k for all n ∈ N (see Ex. 18). We also have n 1 = 2 and the (r 1 , r 2 , ⇒ P)-chain: Example 22. In Ex. 9, we have Π 0 (n1) = 0, Π ′ 0 (n 1) = 1, Π 1 (n 1) = 1, Π ′ 1 (n 1) = 2, Π 2 (n 1) = 3, Π ′ 2 (i) = 4, . . . (see Ex. 16). We have the (r 1 , r 2 , ⇒ P)-chain:

 18. In Ex. 8, we have t = s and (n 1 , n 2 , n 3) = (2, 1, 0). Hence, by Lem. 17, we have Π n