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Abstract: Zebrafish has become a popular model to study many physiological and pathophysiological
processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders,
namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and
lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used
in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high
maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence
has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation
and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic
conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative
diseases. In this review, we first aim to describe the main metabolic models established in zebrafish
to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the
second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis
with a particular focus on the blood–brain barrier, neuro-inflammation, oxidative stress, cognitive
functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory
mechanisms to be explored in order to better understand how metabolic disorders can negatively
impact neural stem cell activity.
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1. Introduction

Metabolic syndrome is a combination of at least three of the following metabolic disor-
ders: abdominal obesity, hypertriglyceridemia, low serum high-density lipoprotein (HDL)
levels, hyperglycemia (associated with insulin resistance) and hypertension [1]. These
biochemical and physiological dysfunctions significantly increase the risk of chronic kidney
disease, hepatic steatosis and cardiovascular diseases, including myocardial infarction and
stroke, among others [2–4]. Recently, metabolic syndrome has also been suggested to be
associated with cognitive and behavioral impairments [5].

Diabetes and obesity are two metabolic diseases related to metabolic syndrome. Both
diseases are closely associated: approximately 84% of people with type 2 diabetes are also
obese and/or overweight [6]. In addition, diabetes and obesity cause many deleterious
effects on the body. For example, they strongly affect the renal glomerular filtration rate
and increase the risk of developing chronic kidney disease [7]. They are also risk factors for
the development of cardiovascular diseases affecting blood pressure and endothelial cell
and cardiomyocyte functions [8,9]. In mice, obesity promotes adipose tissue inflammation,
leading to liver inflammation and promoting glucose intolerance and insulin resistance [10].
Similarly, insulin resistance was correlated with an increased risk of hepatic steatosis in a
Korean cohort, even before the onset of a diabetic state [11]. Overall, diabetes and obesity
impair the cardiovascular, renal, visual, intestinal and metabolic systems.

Obesity and diabetes have been more recently documented for their deleterious con-
sequences on the central nervous system, especially on cognitive processes [12,13]. Both
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diseases disrupt the blood-brain barrier (BBB) [14,15] and promote neuro-inflammation and
cerebral oxidative stress [16]. Obesity and diabetes have also been suggested to be involved
in neuronal degeneration, being risk factors for the development of neurodegenerative
diseases, including Alzheimer’s disease [17]. This is likely related to increased oxidative
stress through mitochondrial dysfunction and neuro-inflammation [18–20]. Strikingly,
recent data have demonstrated that diabetes and obesity have a deleterious impact on brain
plasticity and, among others, on neurogenesis.

Neurogenesis is an evolutionarily conserved process that involves the division of
neural stem cells, the genesis of other committed progenitors and, finally, the birth of
new neurons that can migrate and differentiate within the nervous tissue [21–24]. This
interesting and intriguing process occurs primarily during development but has also been
documented in the adult brain of all species studied to date, including humans [25,26]. In
mammals, adult neurogenesis occurs mainly in two regions: (1) the subventricular zone
(SVZ) of the lateral ventricle and (2) the subgranular zone (SGZ) of the dentate gyrus of the
hippocampus [27,28]. Neurogenesis is tightly regulated by many different factors, including
hormones and oxygen supply, as well as trophic, immune and epigenetic factors [29,30].
The microenvironment of the neurogenic niche can consequently disrupt neural stem cell
activity, namely, under chronic and/or acute inflammation, as well as under pro-oxidant
conditions [31–36].

To better understand the mechanisms underlying the deleterious effects of metabolic
disorders in the brain of obese and/or diabetic individuals, several animal models have
been used, such as non-human primate models (i.e., chimpanzee), large animal models
(i.e., dog and pig), rodent models (i.e., rat and mouse) and non-mammalian models,
such as nematode (C. elegans) and zebrafish (Danio rerio) [37]. Of course, working with
large mammalian models has many drawbacks, including ethical concerns and difficult
manipulations, as well as high costs. For these reasons, the main models used to study
neurogenesis remain rodents. However, in recent years, zebrafish have emerged as an
interesting model to study the impact of metabolic disorder on the brain [38–43].

Zebrafish is indeed an attractive organism to study metabolic disorders. This small
teleost fish has metabolic organs conserved with humans, including the liver, adipose tissue,
pancreas and kidney [44]. As in mammals, many methods are available to measure insulin,
blood glucose, lipid and cholesterol levels in this small and easily manipulated model.
Finally, over 70% of the human genome has orthologs in zebrafish, and many physiological
processes are conserved between fish and mammals, including humans [45]. Thus, several
groups have developed models of metabolic disorders to successfully mimic the human
pathologies of diabetes and obesity. These include diet-induced obesity (DIO), high-fat diets
(HFDs) and hyperglycemic/diabetic models, as well as genetic models of metabolic distur-
bances. Interestingly, the pathological disorders induced by hyperglycemia and/or obesity
are parallel to those in humans [46–48]. In addition, zebrafish have almost unique charac-
teristics when considering the central nervous system. The adult zebrafish brain retains a
broad distribution of active neurogenic niches throughout the encephalon [22,49–51]. This
is in striking contrast to mammals, in which neurogenic niches are restricted to two main
regions, the SVZ and SGZ [21,27,28]. Furthermore, unlike mammals, the brain of adult
zebrafish is able to regenerate efficiently after large lesions, without generating persistent
glial scarring and without striking residual disabilities [21,52–55].

Today, more and more efforts are being made to better understand how metabolic
disorders can alter brain regeneration in order to find new therapeutic approaches to
combat their impacts on the CNS under constitutive and regenerative conditions. In this
general context, zebrafish is a promising model that offers new hope to understand the
disrupted mechanisms occurring during metabolic disorders. It also offers the possibility
to discover new effective drugs to combat the deleterious effects induced by metabolic
disruptions. In this review, we discuss the main zebrafish models developed to study the
effects of obesity and diabetes on CNS functions. We then highlight, in a comparative
approach, the deleterious effects of these models on brain homeostasis, focusing on the BBB
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and constitutive and regenerative neurogenesis, as well as on cognitive functions. Finally,
we discuss potential mechanisms that could explain the deleterious effect of obesity and/or
diabetes on the CNS.

2. Different Models of Metabolic Disorders in Adult Zebrafish

A growing number of studies has used zebrafish to investigate its relevance to
hyperglycemia/diabetes as well as overweight/obesity. In this first section, we docu-
ment the main models of metabolic disorders developed in zebrafish, focusing mainly on
the adult stages.

2.1. Models of Acute and Chronic Hyperglycemia

Acute hyperglycemia: An interesting model aimed to develop acute hyperglycemia
in fish by intraperitoneal injection of D-glucose (2.5 g/kg body weight) [40,56]. Such an
injection resulted in a rapid and transient increase in blood glucose compared to zebrafish
injected with vehicle. Thus, 1.5 h after D-glucose injection, blood glucose levels reached high
values compared with control-injected fish (350–500 mg/dL glucose versus 100–150 mg/dL,
respectively) [40,56]. In mice, a similar injection can be performed to study the impact of
acute hyperglycemia in stroke models [57,58], or in cerebral blood flow and tissue oxygen
saturation [59].

Chronic hyperglycemia: Other hyperglycemic models aimed to induce chronic and
persistent hyperglycemia. In mammals, chronic hyperglycemia is mainly due to an al-
teration in insulin production, secretion and signaling. The zebrafish pancreas is quite
similar to that of mammals with the presence of endocrine islets and, in particular, insulin-
producing pancreatic β-cells [60]. Two main methods have been used to establish a larger
and stable diabetic state: (1) the induction of hyperglycemia by the destruction of pancre-
atic β-cells (relative to type 1 diabetes) and (2) the induction of chronic hyperglycemia by
dissolving D-glucose in fish water (relative to type 2 diabetes).

Type 1 diabetes can be induced in fish by pancreatectomy [61,62] or chemical-dependent
ablation [63,64]. The former method is difficult to perform and not really used in the
zebrafish community. In contrast, chemical ablation by intraperitoneal injection of drugs
such as streptozotocin (STZ) and alloxan are widely developed [63,64]. These drugs, which
have been widely used in mammals [65], lead to the death of pancreatic β-cells through the
generation of oxidative stress. This results in impaired insulin production and high fasting
blood glucose levels [66]. In zebrafish, several studies have demonstrated that injection of
STZ and/or alloxan leads to hyperglycemia in larvae and adults [61,64,67–69]. For example,
Olsen and colleagues showed that a serial injection of STZ in adult zebrafish leads to an
increase in fasting blood glucose compared to control fish (~300 mg/dL vs. 60 mg/dL)
from week 1 to 3 [67]. This treatment also induces higher levels of serum glycated protein
(over 300%) and a ~80% reduction in insulin levels [67]. Interestingly, after 3 weeks, these
hyperglycemic fish develop renal and retinal defects, as revealed by increased glomerular
basement membrane thickness and decreased retinal layer thickness [67]. This is similar
to the human situation, in which type 1 diabetic patients suffer from increased serum
protein glycation levels [70,71], increased glomerular basement membrane thickness [72]
and retinal complications [73]. Interestingly, hyperglycemic zebrafish also exhibit a reduced
ability to regenerate their caudal fin after transection [67]. This interesting feature parallels
the wound-healing defects observed in diabetic patients [74]. In other experiments using
STZ, hyperglycemia has a deleterious impact on the cardiovascular system, leading to
the misexpression of important cardiac proteins (P53, Ampk and Klf2a) and to the loss
of cardiac myofibrils and their apoptosis, as well as to cardiac dysfunction [75]. In these
hyperglycemic fish, stroke volume, cardiac output and ejection fraction (end-diastolic
volume minus end-systolic volume) are lower than in control fish [75]. In addition, the
expression of glucose transporters (GLUTs) is decreased in the heart of zebrafish, indicating
a decreased ability of the zebrafish myocardium to utilize glucose [75].
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Overall, these type 1 diabetes models exhibit many features of diabetic pathology in
mammals (including humans), such as increased fasting blood glucose, increased plasma
protein glycation, retinal and renal dysfunctions and cardiovascular complications, as well
as impaired regenerative processes [67,76,77]. However, these diabetic models using STZ
and alloxan have limitations, given the ability of fish to regenerate pancreatic β-cells over
time [77–79].

Models of type 2 diabetes have been developed by supplementing fish water with
D-glucose using different concentrations of D-glucose (55, 111 and 133 mM) [42,56,80].
However, young zebrafish (4–11 months) can acclimate better to glucose immersion than
old fish (1–3 years) [81]. Although the different glucose concentrations lead to signifi-
cant hyperglycemia between day 2 and day 3 of treatment, the 111 mM concentration
remains the frequently used one in the literature [42,56]. Immersion of zebrafish in
111 mM D-glucose solution significantly increases blood glucose levels from nearly 3 mM
(54 mg/dL) to 12 mM (216 mg/dL) in control and hyperglycemic fish, respectively [42].
Accordingly, our own experiments also demonstrated the significant increase in blood
glucose levels after 14 days of treatment, from 60 mg/dL to 280 mg/mL [56,82]. Interest-
ingly, this diabetic state is dependent on D-glucose dissolved in water, as a 7-day washout
after 2 weeks of D-glucose treatment is sufficient to return to normal blood glucose lev-
els [42]. This model also leads to the induction of hyperinsulinemia and impaired glucose
metabolism, as well as higher glycation of ocular proteins, altered expression levels of
insulin receptors in skeletal muscle and decreased blood glucose levels after treatment with
antidiabetic drugs [42].

These general characteristics are commonly observed in diabetic mammalian models
and human patients [83–85]. Type 2 diabetic rodents correspond mainly to (1) NOD mice
(non-obese diabetic mice), (2) ob/ob and db/db mice with a mutation on leptin signaling
components (leptin and its receptor, respectively) and (3) HFD or DIO models. In all these
models, insulinemia, hyperglycemia and increased levels of serum protein glycation are
observed. Overall, this work reflects the reliability of using hyperglycemic zebrafish to
mimic human pathology.

Genetic and transgenic models of hyperglycemia: The use of genetic tools such as
morpholinos, CrispR-Cas9 targeted gene ablation and transgenic and/or mutant lines has
also allowed to generate hyperglycemic larvae and adult fish. For example, the overexpres-
sion of foxn3, a gene associated with fasting blood glucose regulation, leads to increased
hepatic gluconeogenesis and fasting blood glucose in adulthood [86,87]. In adult zebrafish,
knocking out the pdx1 gene (a gene implicated in the development of type 2 diabetes)
results in a reduced number of pancreatic β-cells, in decreased insulin levels and, conse-
quently, hyperglycemia. It also delays body growth in fish [88]. Another transgenic model
was achieved by overfeeding insulin-resistant skeletal muscle (zMIR) fish mutated on the
IGF1 receptor [89]. Adult zMIR fish have normal glucose levels similar to control fish, but
glucose levels increase significantly after the fish are overfed and describe the transitional
state between insulin resistance and the development of type 2 diabetes [89]. Many other
transgenic fish have been used, such as deiodinase 2 KO and aldh3a1 KO [90]. In addition to
all these models, many diabetic and hyperglycemic protocols have been developed in the
larva [90,91].

2.2. Models of Overweight and Obesity in Zebrafish Leading to Hyperglycemia

Obesity and overweight are characterized by hypertrophy and hyperplasia of adipocyte
cells, resulting in increased body weight and body mass index (BMI). Zebrafish share
with mammals the major metabolic organs regulating energy homeostasis (intestine, liver,
pancreas, adipose tissue and muscle). Their respective functions are also evolutionarily con-
served among taxa, including the regulation of feeding behavior, lipid storage and insulin
secretion, among others [91]. Interestingly, the conserved metabolic pathways in adipocyto-
genesis and cholesterol metabolism between zebrafish and humans have made zebrafish
an appropriate and alternative model in the field of metabolic disruptions [92]. Many
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zebrafish models of obesity have been developed in larvae and adults using overfeeding
(diet-induced obesity—DIO) and/or high-fat diets (HFDs) [38,39,41,90,93–95]. Similarly,
some genetic models have also been established [90,96–98].

Overfeeding models: Numerous obesity-inducing diet protocols have been con-
ducted, with the difference among these models being either the nature of the food provided
and/or the duration of the feeding. In 2010, Oka and colleagues overfed fish with artemia
(a small shrimp used as food source in aquaculture) [99]. In their overfeeding protocol,
they provided 60 mg of artemia/fish/day for 8 weeks versus 5 mg for the control [99]. At
the end of their experimental procedure, the DIO fish had increased body weight, BMI and
triglyceride levels and had developed hepatic steatosis.

Similar studies by Husmura and Hiramitsu showed increased visceral and sub-
cutaneous adipose tissue volume in overfed fish and hepatic mitochondrial dysfunc-
tion [100,101]. In addition, several models of overfeeding have noted increased lipid
deposition in the liver of overfed fish by Oil Red O staining, which allows the labeling
of neutral lipids and cholesterol esters [38,39]. Overfed fish have also increased phos-
phorylation of hepatic Akt protein, a pathway involved in the development of insulin
resistance [39]. The investigations of other groups have also documented that overfeeding
induces higher body weight and BMI linked to the expansion of visceral and subcutaneous
adipose tissue [41,95].

A different overfeeding protocol, applied for 8 months (DIO fish being fed twice as
much as controls), resulted in similar disturbances: increased weight gain and steatosis of
the liver (cell vacuolization), as well as an altered inflammatory response of the liver [102].
Indeed, DIO fish were unable to modulate the expression of genes involved in the inflam-
matory/immune system response after LPS stimulation (i.e., Toll-like receptor signaling
pathway, ubiquitin-mediated proteolysis, MAPK and Jak-STAT signaling pathway, cell
cycle and apoptotic genes) [102].

More recently, we established rapid and reliable models of overweight/obesity by
feeding them in an “ad-libitum”-like way with conventional dry food or with a mix of
artemia/conventional food for a period of 4 weeks. These models also induced higher body
weight, BMI, hyperglycemia and heterogeneous liver steatosis [21,38]. Similarly, zebrafish
overfed with 120 mg of commercial dry food versus 20 mg for controls for a period of
8 weeks exhibited higher body weight and BMI, hyperglycemia, glucose intolerance and
increased insulin production [47].

Other experimentations have been proposed using an HFD protocol. These diets
contain high amounts of fat and can be achieved using, for example, heavy whipping
cream, chicken egg yolk, corn oil and lard, and ancient vegetables added (or not) to the
conventional diet [39,93,103,104]. These HFD fish suffer from increased body weight
including increased fat mass and hypertrophy, cardiovascular disorders, hepatic steatosis
and hyperglycemia.

These different metabolic disturbances described in HFD/DIO zebrafish are also found
in DIO and HFD mouse models [105–108]. Overall, these overfeeding protocols performed
in zebrafish share features with human pathology: increased body weight and BMI, expan-
sion of adipose tissue, hypertriglyceridemia, hepatic steatosis and altered expression of
genes involved in lipid metabolism and inflammatory response. Hyperinsulinemia and
hyperglycemia could also be observed, as well as altered expression levels of adipokines
(i.e., adiponectin and leptin) and advanced glycation end products [109].

In conclusion, numerous models of diabetes and overweight/obesity have been estab-
lished in zebrafish and have demonstrated that many mammalian (and human) features
of these pathologies are shared with zebrafish (Figure 1). Interesting reviews document
the different protocols of transgenic models to establish these different states of diabetes
and/or obesity in zebrafish larvae and adults [90]. In this review, Salehpour and colleagues
established a scoring system for type 2 diabetes in zebrafish compared to humans. Among
the non-genetic models, glucose immersion as performed by [42,47] and the hyperglycemia
obesity model have the highest score [90].
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Figure 1. General overview of the peripheral and central disruptions induced by metabolic disorder.
The main peripheral and central disruptions are observed in the different models of metabolic
disorders (hyperglycemia (HG), DIO and HFD) in fish and rodents. These pathological processes are
also found in humans.

3. The Effects of Metabolic Disorders on Brain Plasticity and Function: Focus on
Zebrafish and Comparative Aspects

As previously mentioned, the brain of adult zebrafish exhibits numerous neurogenic
niches due to the persistence of many neural stem cells during adulthood. Zebrafish
has also a strong capacity for nervous tissue regeneration [50,52,110,111]. The brain of
zebrafish is also protected by a blood-brain barrier (BBB) that helps in maintaining brain
homeostasis as in mammals [112]. Taken together, these intrinsic characteristics highlight
the use of zebrafish to explore the deleterious effects of metabolic disorders on the central
nervous system.

3.1. Hyperglycemia and Brain Homeostasis in Adult Zebrafish

Only a few studies have examined the impact of hyperglycemia on brain homeostasis
and plasticity in adult zebrafish. While acute hyperglycemia induced by intraperitoneal
injection of D-glucose (2.5 g/kg) resolves after 24 h, it nonetheless results in the upregula-
tion of pro-inflammatory cytokines, including il1b, il6, il8 and tnfα [40]. In contrast, acute
hyperglycemia has no effects on the expression of genes involved in BBB establishment
(i.e., claudin5a, zonula occludens 1a and 1b). Furthermore, it does not impact brain cell prolif-
eration in the main neurogenic niches studied (OB/TEL, ventral and dorsal telencephalic
domains, pretectum and hypothalamus) [40]. Further studies are needed to understand the
impact of acute hyperglycemia on neuro-inflammation, with a focus on microglia reactivity
and BBB leakage by performing extravasation assays.

Chronic hyperglycemia (111 mM D-glucose for 14 days) results in more severe detri-
mental effects on the brain. Although it does not alter the cerebral expression of pro-
inflammatory genes, probably due to compensatory mechanisms, it leads to the significant
upregulation of those related to BBB integrity [40]. These results obtained in adults are to
be linked with studies performed in zebrafish larvae, for which chronic glucose exposure
leads to defects in tectal blood-vessel patterning and neurovascular coupling, altering both
vascular NO production and the number of cells in the vascular wall. It also induces a
change in the neuronal calcium concentration and leads to the upregulation of GFAP, a
marker of reactive gliosis expressed in NSCs in fish [113,114].

The cerebral redox balance is also altered in diabetic fish, as evidenced by increased
levels of lipid peroxidation (TBARS analysis) and carbonylated brain proteins [115]. Simi-
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larly, the activity of the antioxidant enzyme superoxide dismutase (SOD) is reduced, as well
as the expression of some redox-sensitive genes (sod1 and -2, gpx3a, nrf2) [115]. These data
were also partially corroborated in the retina of hyperglycemic fish [116] and in another
hyperglycemic zebrafish model displaying modification in brain catalase activity [117].

Interestingly, chronic hyperglycemia alters neurogenesis within the major neurogenic
areas of adult zebrafish (OB/TEL; ventral and dorsal telencephalic domains, pretectum
and hypothalamus) [40]. It furthermore impairs the injury-induced neurogenesis process
observed after a telencephalic injury [40]. This blunted regenerative capacity was also
reported after caudal fin amputation in hyperglycemic fish, as previously mentioned [67].

From a behavioral perspective, hyperglycemic fish exhibit anxiety-like behavior and
memory impairment, as shown by the inhibitory avoidance test [43,118]. These cogni-
tive defects could originate from an alteration in the purinergic system [43]. Indeed, a
significant decrease in brain ATP, ADP and AMP hydrolysis levels is observed in hy-
perglycemic fish, linked to the down-regulation of ectonucleoside triphosphate diphos-
phohydrolases (entpd2a.1, -2a.2, -3 and entpd8) and adenosine receptors (adora1, adora2aa,
adora2ab and adora2b). Interestingly, acetylcholinesterase gene expression and activity are
also altered [43].

Overall, these data demonstrate that hyperglycemia in zebrafish promotes BBB alter-
ations, neuroinflammation and oxidative stress in the central nervous system. It also leads
to reactive gliosis and to impaired neurogenesis, as well as the development of cognitive
defects and depressive-like behavior. All these disrupted processes reported in zebrafish
are also observed in mammals during diabetes. For example, claudin-5 and occludin expres-
sions are downregulated, reflecting the increased BBB permeability observed in the brain of
hyperglycemic mice [119]. Similarly, the number of microglia and reactive astrocytes in the
hippocampus of hyperglycemic animals is increased, demonstrating a neuro-inflammatory
state [120]. Other studies have shown the upregulation of pro-inflammatory genes (i.e., tnfα)
associated with microglia activation in type 1 and type 2 diabetic mice [119]. The levels
of antioxidant defenses and enzymes (i.e., glutathione -GSH- and glutathione peroxidase
-GPX-) are decreased in the brain of diabetic rodents [121]. To date, numerous studies have
found reduced hippocampal neurogenesis in diabetic rodents associated with cognitive
defects and depressive behaviors [122–129].

Therefore, in both zebrafish and mammals, diabetes impacts the BBB, inflammatory
and redox status, brain plasticity and cognitive functions (Figure 2). However, data should
be reinforced in zebrafish to better understand the global impact of hyperglycemia on brain
homeostasis, looking at, for instance, microglia reactivity and BBB physiology, as well as
cell death under constitutive and brain injury conditions in hyperglycemic zebrafish.

3.2. Obesity and Brain Homeostasis in Zebrafish

Similar to diabetes, overweight and obesity are associated with a range of physiologi-
cal disorders affecting the central nervous system. Models of overfeeding developed in
zebrafish share many pathophysiological disturbances with their human counterparts, as
described previously.

In zebrafish, 4-week overfeeding with a mixture of artemia and dry food induces BBB
disruption, as shown by Evans blue leakage [38]. In comparison, overfeeding with only
dry food results in lower BBB leakage [130], suggesting that “diet quality” may impair
differentially BBB dysfunction. Similarly, an HFD protocol provided for 11 weeks with a
mixture of standard food and lard (80% + 20%, respectively) results in the downregulation
of genes involved in blood–brain barrier functions [103]. BBB disruption has also been
associated with an increase in the number of activated microglia (amoeboid) in the ventral
telencephalon and hypothalamus and a general increase in the brain expression of pro-
inflammatory cytokines (il1b, il6 and tnfa) and of the inflammatory transcription factor
nfkb [38]. These data were corroborated in another overfed zebrafish model showing
increased amoeboid and dystrophic microglia in the hypothalamus [131]. In a hybrid
obesity model (high glucose/high cholesterol experimental protocol), the treated fish
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upregulated the cerebral expression of pro-inflammatory cytokine and apoptotic genes [132].

Figure 2. Peripheral and central mechanisms impacting brain homeostasis in metabolic diseases.
Under hyperglycemic (HG), DIO and HFD conditions, BBB breakdown occurs and leads to central
oxidative stress and neuroinflammation through the activation of microglia (switch from ramified to
ameboid state). It can result in neurodegeneration. In addition, metabolic disorders could lead to im-
paired secretion of endothelial factors that could, in synergy with the disrupted peripheral and central
factors, impair neural stem cell (NSC) activity. The ultimate consequence of such disruptions is the de-
velopment of cognitive impairments (locomotion, anxiety, memory) and neurodegenerative diseases.

Interestingly, obese fish also have a disturbed brain redox balance. They exhibit higher
levels of 4-HNE (4-Hydroxynonenal), a lipid peroxidation product known as a marker of
oxidative stress [38]. The activities of antioxidant enzymes peroxidase and catalase in the
brain are increased, suggesting the activation of the antioxidant response [38]. Meguro and
colleagues also showed that HFD zebrafish exhibit disrupted expression of genes involved
in antioxidant stress [103].

In general, obese fish (HFD and/or DIO) exhibit a decreased brain plasticity, as
revealed by the mis-regulation of bdnf (brain derived neurotrophic factor) and psd95 (post-
synaptic density protein 95) genes [95,103]. The ptn growth factor is also significantly
reduced in obese fish, while caspase 9 gene expression is upregulated, suggesting increased
cell death. Interestingly, several genes involved in β-amyloid metabolism are also mod-
ulated, suggesting links between diet and neurodegeneration [103]. This decrease in the
expression of genes involved in brain plasticity parallels the consistent reduction in cell
proliferation along the neurogenic niches of obese fish; this was found through PCNA
immunohistochemistry and qPCR analysis (decreased expression of pcna and the progeni-
tor marker sox2) [38,130,133,134]. Very interestingly, Stankiewicz and colleagues showed
that obese fish display a decrease in the daily amplitude of central clock gene expression
associated with the misalignment or decreased amplitude of daily patterns of key cell-cycle
regulators (e.g., cyclins A and B, and p20) [134]. Clock genes are known to be involved
in the regulation of stem cell activity and are expressed in the neurogenic niches in ze-
brafish [135,136], raising the question of the links between circadian clock perturbations
and the decreased neurogenesis observed in obese fish. Considering neurological func-
tions, the active avoidance test and locomotion are impaired in obese fish compared with
controls [38,103,130].

Taken together, these central disruptions are also described in obese mammals. For
example, HFD rodents exhibit BBB leakage associated with decreased expression of tight
junctions (claudin-5 and occludins) [137,138]. Similarly, HFD induces hippocampal and/or
hypothalamic neuroinflammation with microglia activation and increased oxidative stress
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and leads to decreases in synaptic density and expression of genes involved in synaptogene-
sis [139–142]. Numerous studies have also highlighted the effect of a HFD on neurogenesis.
For example, obese mice show decreased cell proliferation in neurogenic niches, namely, in
the hypothalamus and hippocampus, associated with decreased memory and mood-related
disruptive behavior [143]. Such brain alterations are strongly associated with cognitive
impairments and increased anxiety [139–141,144,145].

Overall, these studies have demonstrated similar effects of obesity on the mammalian
and fish brain, with impairment of the BBB leading to increased oxidative stress and
neuro-inflammation, decreased brain plasticity including neurogenesis and altered cog-
nitive behaviors (Figure 2). This also raises the question of the mechanisms sustaining
such deleterious effects. Indeed, most zebrafish and mammalian models of obesity are
hyperglycemic, suggesting that this condition could be already sufficient to impair BBB
function and brain homeostasis.

3.3. Effects of Hypercholesterolemia on the CNS

Hypercholesterolemia is defined by high levels of cholesterol in the blood circu-
lation [146]. Under hypercholersterolemic conditions, total cholesterol levels exceed
240 mg/dL, with LDL (low-density lipoproteins) higher than 160–190 mg/dL and HDL
(high-density lipoproteins) lower than 40 mg/dL [147]. Although some gene mutations are
responsible for familial hypercholesterolemia, dietary cholesterol consumption is associated
with higher blood cholesterol levels [148,149]. Atherosclerosis is a subsequent result of the
long-lasting elevated levels of cholesterol in the blood [150]. The blockage of a coronary
artery may result in a heart attack. Similarly, at the level of the brain, vessel obstruction
results in stroke.

In rodents, hypercholesterolemia has been shown to impact BBB functions [151,152].
It also results in increased neuroinflammation [153], increased cerebral oxidative stress
biomarkers and decreased antioxidant activities [152]. Dietary cholesterol and hypercholes-
terolemia impact brain plasticity and neurogenesis [154,155]. In addition, early exposure
to elevated cholesterol may be a risk factor for mild cognitive impairment, and hyperc-
holesterolemia is an early risk factor for the development of Alzheimer’s disease [156].
Indeed, hypercholesterolemia has been shown to accelerate Aβ accumulation and tau
pathology, which subsequently leads to cognitive impairment [157]. The link among hyper-
cholesterolemia, cognitive dysfunction and Alzheimer’s disease is potentially mediated by
increased neuroinflammation and oxidative stress [158].

Among the treatments that can be prescribed to decrease cholesterol are the statins.
This drug family competitively inhibits the enzyme HMG-CoA reductase in the hepatic
pathway that plays a central role in the production of cholesterol [159]. Several studies
have documented the beneficial role of such cholesterol-lowering drugs in decreasing the
risk of developing dementia and cognitive decline [158]. On the contrary, another body
of evidence of high-cholesterol diets and controlled randomized trials shows no effects of
statin treatment in terms of improving cognitive performance [160]. More strikingly, the
food and drug administration indicated a potential effect of statins of inducing reversible
cognitive impairments [158].

Therefore, despite the abundance of the available literature, the effects of statins on
cognitive functions remain controversial [161–163]. While epidemiological evidence sug-
gests a role for statins under neurodegenerative conditions, including vascular dementia,
Alzheimer’s disease (AD) and Parkinson’s disease (PD), several large studies, as well
as a number of case reports, contradict these findings [158]. One possible explanation
for the contribution of statins to cognitive impairment is the inhibition of the protein
geranylgeranyltransferase-1 (GGT) by statins. GGT is important for synapse formation
and remodeling. Impaired synaptic plasticity in the hippocampus and reduced dendritic
spine density in cortical neurons were observed in GGT-haplodeficient mice [164]. In
addition, cholesterol depletion induced by prolonged statin exposure enhances neuroser-
pin protein aggregation [165]. Neuroserpin protein aggregates have been shown to be
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more numerous in patients with Alzheimer’s disease, and there is an association between
neuroserpin and Aβ plaques in the brain of AD patients [166]. In addition, mitochondria
are key organelles involved in the development of neurodegenerative diseases. Some
data document the effects of statins on mitochondria acting on oxidative phosphorylation,
generation of oxidative stress, uncoupling protein 3 concentration and interference in
amyloid-β metabolism [167]. Interestingly, in vitro experiments have shown that rosuvas-
tatin restores neurite outgrowth in hypoxic neurons by preserving mitochondrial functions
and improving mitochondrial biogenesis. Interestingly, atorvastatin but not pravastatin
impairs mitochondrial function in human pancreatic islets and rat β-cells [168], suggesting
different effects of lipid-lowering drugs on mitochondria. Thus, it is becoming important
to further investigate the contribution of the different statins to brain health.

Zebrafish is also emerging as a model for studying cholesterol metabolism and the
effect of hypercholesterolemia and cholesterol-lowering drugs on the brain. Indeed, ze-
brafish have VLDL (very-low-density lipoprotein), LDL and HDL and their metabolism is
quite similar to that of humans [169,170]. It consequently allows the study of new mecha-
nisms and molecular pathways resulting from disorders associated with dyslipidemia [171].
There are also similarities between zebrafish and humans in intestinal cholesterol absorp-
tion [172]. Moreover, cholesterol-lowering drugs have been successfully used in zebrafish
model and have shown a decrease in cholesterol levels within the tested fish. For example,
the administration of ezetimibe and simvastatin reduces intestinal cholesterol levels in
zebrafish [173,174]. Therefore, zebrafish could be a powerful model to uncover the im-
plications of hypercholesterolemia and cholesterol-lowering drugs in brain homeostasis,
health and cognition. However, to date, there are virtually no studies on the impact of
hypercholesterolemia on brain functions in zebrafish.

4. Brain Dis-Plasticity and Metabolic Disorders: Molecular Mechanisms to Investigate

Neurogenesis is a tightly orchestrated process regulated by a combination of ex-
trinsic and intrinsic factors [175–177]. Among them, inflammation and oxidative stress
(induced during diabetes and obesity) are known to modulate the proliferation of neural
stem/progenitor cells and the differentiation, migration and survival of new born cells.
Zebrafish share many neurogenic signaling pathways and transcriptional regulations with
mammals under both healthy and regenerative conditions [21,22,49,53,178–180]. How-
ever, there are not so many data highlighting the mechanisms regulating key neurogenic
signaling pathways in these pathologies (diabetes and obesity) in neither fish nor mammals.

4.1. Notch Signaling in Mammal and Zebrafish Neurogenesis

One of the important signaling pathways that directly affects neural stem/progenitor
proliferation and differentiation is the Notch 1 pathway [22,181–189]. This conserved
signaling from drosophila to human plays a critical role in neural stem cell maintenance
and neurogenesis during embryonic development and adult stages. The deregulation of
Notch signaling has been implicated in many neurodegenerative diseases [185]. In mice,
the conditional knock-out of this gene increases the proliferation of neural stem cells, while
the constitutive expression of Notch-1 increases the number of progenitor cells [181,190].
Similarly, the pharmacological inhibition of Notch signaling in zebrafish increases the
proliferation of neural stem cells [180,183,186,191].

Studies support the role of Notch signaling as a possible candidate for decreasing
neurogenesis in case of metabolic disorders [192,193]. The offspring from HFD mice suffer
from decreased neuronal progenitor proliferation, differentiation and synaptic plasticity,
correlated with increased expression levels of Notch-1 signaling and its effector genes,
namely, Hes5 [192,193]. Furthermore, in another study, HFD mice displayed increased
Notch signaling and exhibited defects in hypothalamic neurogenesis (differentiation) [194].
In these mice, the inhibition of Notch signaling or of the inflammatory transcription factor
NF-kB improved hypothalamic NSC differentiation. Therefore, in HFD mice, the resulting
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inflammation could activate Notch signaling in neural stem cells and lead to neurogenic
defects [194]

To our knowledge, in diabetic and/or obese fish, there are no clear data showing the
disruption of Notch signaling. The DIO and hyperglycemic zebrafish models have increased
brain inflammation associated with defective neurogenesis [38,40,130,134]. Similar to mam-
mals, Notch signaling is an important regulator of adult zebrafish neurogenesis [182,183].
The different notch receptors are expressed in several neurogenic niches [183,187]. However,
the links between Notch signaling and impaired neurogenesis in obese and/or hyper-
glycemic zebrafish has not yet been investigated. The preliminary results of our study
on the expression of the target gene of Notch signaling in zebrafish, her4.1, did not show
striking gene expression differences in the main neurogenic niches of control and obese
fish (Figure 3). Such investigations can widely contribute to the understanding of Notch
involvement in neurogenic disruption in the case of metabolic diseases.

Figure 3. her4.1 in situ hybridization on brain section of CTRL and DIO fish. Preliminary data
on DIO fish (4 weeks) did not show striking differences in the expression of the Notch target
gene, her4.1 (red), in CTRL and DIO fish. Cell nuclei were counterstained with DAPI (blue). Dm:
dorsomedian telencephalon. PPa: anterior part of the preoptic area.

In addition, it has been shown that NSCs from the embryo of pregnant diabetic mice ex-
hibit altered expression of genes implied in the proliferation and cell fate specification, such
as delta-like 1 (a Notch ligand), Hes1 and Hes5 (key factors for Notch/Delta signaling) [195].
Furthermore, methylglyoxal, a highly reactive glycolytic intermediate metabolite, has been
shown to regulate Notch signaling and, subsequently, neural progenitor fate [196].

Therefore, the disruption of Notch signaling in NSCs during obesity and/or diabetes
may occur in zebrafish and modulate NSC proliferation and cell fate. However, these
hypotheses definitively require further investigations.

4.2. BMP/Id1 Signaling and Cross-Talk with Notch Signaling in NSCs

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor
b (TGF-β) family [197], binding to transmembrane type I and type II receptors and leading
to the activation of Smad proteins (Smad1/5/8). Smad1/5/8 bind to Smad4 [22,198]. This
complex translocates to the nucleus and activates many target genes, including id1, the
inhibitor of differentiation/DNA binding 1 [199]. In zebrafish, there are five helix–loop–
helix transcriptional regulators in the Id family and four members in mice [200,201]. In
both mammals and zebrafish, Id1 has overlapping and distinct functions during devel-
opment and body homeostasis, controlling many cellular events, such as cell quiescence,
differentiation and migration of different cell types [200].

In mammals, Id1 is an important factor regulating NSC quiescence in the mouse SVZ
(a neurogenic niche), with quiescent adult NSCs strongly expressing Id1 [202]. In zebrafish,
Id1 is only expressed in radial glial cells (neural stem cells) and mainly in the quiescent
ones [201,203–205]. Interestingly, Id1 gain- and loss-of-function studies have shown that
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Id1 promotes the quiescence of neural stem cells, while its down-regulation allows the
entry of the neural stem cell into the cell cycle [205]. The Id1 promoter regulation appears
evolutionarily conserved, and BMP signaling is important for the correct expression of
Id1 in zebrafish NSCs and in the regulation of their quiescent/proliferative state [204].
Id1 could promote NSC quiescence in both mouse and fish through Id1 interaction with
members of the Hes/Her protein family (Notch target genes) [22,205].

Together, these data show that BMPs and Id1 are important regulators of neurogenic
processes promoting neural stem cell quiescence in both mammals and fish [206]. With
Notch, BMP/Id1 are also important actors of brain plasticity that should be studied in
zebrafish during metabolic disorders. Indeed, in rodents, recent data suggest a role of
BMPs in the development of metabolic disorders. Indeed, reduced BMP4 signaling may
promote the development of obesity, insulin resistance and associated disruptions [207].
Other data show a role of BMP signaling in the regulation of feeding behavior in different
mice models [208,209]. So far, BMPs play key roles in the regulation of energy balance in
the brain and in adult neural plasticity [206]. It would be interesting to better understand
the modulation and role of BMP/id signaling in the neurogenic niche of diabetic and/or
obese models of mice and zebrafish, namely, in the hypothalamus, a key neurogenic region
controlling the genesis of anorexigenic and orexigenic neurons.

4.3. The Role of Stress Hormone Signaling in Neurogenesis

Glucocorticoids are steroid hormones secreted mainly by the adrenal cortex. They are
involved in several processes, such as metabolism [210], immune response [211], cardiovas-
cular functions [212] and development [213]. De novo glucocorticoid synthesis also occurs
in the brain, suggesting key roles of local synthesis in neurological functions [214,215].
Under normal physiological conditions, glucocorticoids are involved in adaptive responses.
However, chronic exposure to glucocorticoids has been shown to be associated with a
chronic stress state and several metabolic disorders, such as obesity, insulin resistance, glu-
cose intolerance dyslipidemia and hypertension [216]. For instance, glucocorticoid levels
have been shown to be upregulated in the adrenal glands in the case of obesity [217–219].
Indeed, the 11β-HSD1 enzyme that transforms cortisone into cortisol, the main active form
of glucocorticoid, is increased in the adipose tissue of obese humans [220,221]. Similarly,
diabetic individuals are also subjected to higher levels of glucocorticoids associated with
chronic stress and depression [222,223]. The glucocorticoid responsive gene, fkbp5, has
also been shown to be upregulated in the subcutaneous adipose tissue of type 2 diabetic
patients, linked to the increase in glucose levels [224]. In addition, glucocorticoid levels
are associated with non-alcoholic fatty liver, a hepatic disorder found in both obesity and
diabetes [225].

In the central nervous system, chronic exposure to glucocorticoids increases neuro-
inflammation and hippocampal neuronal damage [226]. Several studies have shown that
high glucocorticoid levels are associated with decreased brain plasticity. Indeed, in vitro
studies performed on embryonic neural stem/progenitor cells have confirmed that chronic
exposure to glucocorticoids suppresses the differentiation and survival of NSCs affect-
ing several signaling pathways and decreases the expression of neuronal and synaptic
markers [227]. In parallel, long-term exposure leads, in vivo, to blunted hippocampal
neurogenesis [228,229], which is restored through the use of glucocorticoid receptor antag-
onists [230]. Together, glucocorticoids increase the loss of hippocampal neurons, reduce
adult neurogenesis and compromise cognitive functions, leading to an increased risk for
developing Alzheimer’s disease [229,231]. This has been further corroborated by the study
of diabetic mice that display higher levels of corticosteroids and have increased tau protein
phosphorylation correlated with memory impairments [232]. Overall, these data support
the fact that chronic exposure to glucocorticoids negatively affects brain homeostasis and
plasticity, promoting behavioral change and increasing the risk factors for cognitive defects
and neurodegenerative disease.
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In zebrafish, the inter-renal gland ensures the function of the adrenal gland found
in mammals and secretes glucocorticoids [233]. In addition, the brain is able to perform
de novo steroidogenesis and glucocorticoid synthesis [234–237]. In a zebrafish model of
obesity associated with hyperglycemia, the expression of the glucocorticoid responsive gene
fkbp5 was up-regulated but did not reach a significant level [130]. Unpublished data from
our laboratory using a stronger model of overfeeding also demonstrated an increase in the
cerebral expression of fkbp5. Together, these data suggest that the peripheral and/or locally
produced glucocorticoids may be increased under overfeeding conditions. Our preliminary
data for measuring glucocorticoid levels in the brain of obese/hyperglycemic fish tend to
show an increase in glucocorticoid levels. Further investigations are consequently required
to understand whether glucocorticoids are indeed significantly increased during zebrafish
obesity and diabetes or not and what are their roles in brain plasticity in these pathologies
in zebrafish.

Many other factors well known to modulate and regulate neurogenesis should also be
investigated, such as Wnt signaling, SHH, endothelial factors, inflammation, oxidative stress
and steroids other than glucocorticoids. Figure 4 provides a schematic overview of some
pathways to be investigated in the brain and NSCs under metabolic disease conditions.

Figure 4. Mechanisms to be investigated regarding the misregulated neurogenic signaling pathways
under conditions of metabolic diseases.

5. Conclusions

Under diabetic and obese conditions, the central nervous system is greatly affected
through the disruption of the BBB and subsequent neuro-inflammation and oxidative stress.
In both mammalian and zebrafish models, metabolic disorders induce decreased brain
plasticity, impaired cognitive functions and abnormal behaviors. However, the precise
cellular and molecular mechanisms sustaining such impairments are not well understood.
In this review, we aim to demonstrate that zebrafish is an alternative model to study the
impact of metabolic disorders on brain homeostasis and NSC activity. Several groups have
developed successful metabolic models of zebrafish, mimicking overweight, obese and hy-
perglycemic/diabetic states. Indeed, zebrafish under appropriate experimental procedures
can show many features of human metabolic disruption: higher body weight and BMI,
expansion of visceral and subcutaneous adipose tissues, liver steatosis, disturbed lipidic pro-
files (LDL, HDL, body cholesterol and triglycerides), insulin resistance and hyperglycemia.
Furthermore, zebrafish is well-recognized as an interesting model for studying brain plastic-
ity, including homeostatic and regenerative neurogenesis [21,22,49,55,180,187,205,238,239].
Consequently, this model is appropriate to further investigate the role of metabolic disorders
in adult neurogenesis. Now, further explorations of the molecular mechanisms and signal-
ing pathways disrupted in NSCs should be performed under metabolic disorder conditions.
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