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Abstract

With the fast increase of solar energy plants, high quality short-term forecast
is required to smoothly integrate their production in the electricity grids.
Usually, forecasting systems predict the future solar energy as a continuous
variable. But for particular applications, such as concentrated solar plants
with tracking devices, the operator needs to anticipate the achievement of
a solar irradiance threshold to start or to stop their system. In this case,
binary forecasts are more relevant. Moreover, while most forecasting systems
are deterministic, the probabilistic approach provides additional information
about their inherent uncertainty that is essential for decision making. The
objective of this work is to propose a methodology to generate probabilistic
solar forecasts, and more specifically the presence of clouds, as a binary event
for very short-term horizons between 1 and 30 minutes.

Among the various techniques developed to predict the solar potential for
the next few minutes, sky imagery is one of the most promising. Therefore,
we propose in this work to combine a state-of-the-art model based on a
sky camera and a discrete choice model to predict the probability of cloud
presence. Two well-known parametric discrete choice models, logit and probit
models, and a machine learning technique, random forest, were tested to
post-process the deterministic forecast derived from sky images. All three
models significantly improve the quality of the original deterministic forecast.
However, random forest gives the best results and especially provides reliable

∗corresponding author
Email address: mathieu.david@univ-reunion.fr (Mathieu David)

Preprint submitted to Energy June 2023



probability predictions.

Keywords: Solar energy, Concentrated Solar Plant (CSP), binary
probabilistic forecasts, all sky imager (ASI), Photovoltaic (PV), Brier Score

1. Introduction1

Solving the challenges posed by the massive integration of solar energy2

into electricity grids is a key issue for reducing the carbon footprint of power3

generation. Indeed, due to the inherent variability and lack of predictability4

of solar energy, a high share of solar energy in the electricity mix makes it5

more complicated to manage the supply-demand balance and increases the6

vulnerability of the grid. One of the strategies to reduce the effect of solar7

variability is to predict future solar irradiance and corresponding solar power8

for short-term horizons ranging from 1 minute to several days in advance.9

Many techniques have been developed to predict solar irradiance [1, 2, 3].10

Numerical weather prediction (NWP) is suitable for horizons longer than 611

hours. Forecasts derived from geostationary meteorological satellite images12

are effective for a horizon ranging from about 1 hour to 6 hours. Finally, for13

a very short-term horizon of less than 1 hour, the approach based on All Sky14

Imagers (ASI) is the most promising technique.15

Regarding very short-term horizon, Ajith and Martínez-Ramón [4] com-16

pared three categories of solar irradiance forecasting methods: time series,17

sky camera images and hybrid models combining infrared images with ra-18

diation time series. The authors shown that the normalized Root Mean19

Square Error (nRMSE) varied from 30 to 53% in terms of forecasting error.20

In the literature on ASI, most of the works dealing with the prediction of21

solar irradiance or cloudiness propose deterministic forecasts [5, 6, 7]. To22

improve forecasts derived from ASI, different approaches have been carried23

out. For instance, Paletta et al. [8] evaluated deterministic and probabilistic24

predictions based on ASI for different weather conditions (clear, cloudy and25

overcast skies). In their work, probabilistic approach demonstrates a richer26

operational forecasting framework by facilitating uncertainty quantification27

in cloudy conditions and for long-term horizons. However, very few methods28

were developed to generate probabilistic forecasts from sky camera images.29

It is well-known that weather forecasts are uncertain because the evolu-30

tion of the weather and consequently solar irradiance are chaotic processes.31

Thus, in decision-making operations that use solar forecasts, such as the man-32
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agement of power plants, probabilistic forecasts are crucial. Indeed, prob-33

abilistic forecasts assign probability levels to future events and allow their34

users to assess the associated risks. Research works dealing with probabilistic35

solar forecast are relatively recent but numerous have been released on the36

topic in the last 10 years [9, 10, 3]. However, as mentioned previously, very37

few works concerning ASI proposed a method to generate probabilistic solar38

forecast. This work will contribute to fill this gap in the literature.39

Usually, solar forecasting systems provide the future level of solar irra-40

diance or PV generation as a continuous variable [3]. But for particular41

applications, such as the management of Concentrated Solar Plants (CSP)42

with tracking devices, the operator needs to anticipate the achievement of43

a solar irradiance threshold to start or to stop their system [11]. In this44

case, an accurate binary forecast is more relevant. In the wide domains of45

meteorology or economy, numerous works propose discrete choice models to46

generate binary forecasts [12, 13]. However, in the field of solar energy very47

few works propose binary forecasts. One of the rare work on the topic is48

proposed by Alonso and Batlles [14] that developed a method to forecast the49

cloudiness from a sequence of images given by the MeteoSat Second Gener-50

ation (MSG) satellite MSG or an ASI. Their model generates deterministic51

binary forecasts of cloud presence (i.e. 0 = cloudy and 1 = clear sky). The52

forecasts were tested over 2 years for the city of Almería in the South-East53

of Spain. The success rate of the forecasts derived from the ASI is 83% for54

the first 15 minutes and drops to 60% for a 3 hours horizon. However, no55

works proposes a probabilistic approach to generate discrete solar forecast.56

In the light of the two main lacks of the literature underlined above, the57

main objective of this work is to propose a novel methodology to generate58

probabilistic solar forecast as a binary event for horizons ranging from 1 to 3059

minutes using an all sky imager (ASI). The developed approach will combine60

a state of the art ASI method and discrete choice models proposed in other61

domains, such as economy or meteorology. In a first step, a model based on62

the detection of cloud motions will use sequences of images from an ASI to63

generate binary deterministic forecasts of the cloudiness. Then, in a second64

step, binary choice models will be used to convert the deterministic discrete65

forecasts into probability levels of cloud presence. Finally, we will assess the66

quality of the generated forecast of cloud presence on a case study to evaluate67

the added value of the proposed method.68

The remainder of the paper is organized as follow. Section 2 presents the69

methodology used to develop and to evaluate the proposed model. Section70
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3 gives a brief overview of the state of the art model used to generate the71

deterministic forecasts. Then, section 4 details the discrete choice models72

used to forecast the probability of cloud presence. Section 5 depicts the case73

study and the corresponding data. Results are presented and discussed in74

section 6. Finally, section 7 gives our concluding remarks.75

2. Overall methodology and forecasts evaluation76

The probabilistic forecasts of cloud presence are generated in two steps77

as presented in figure 3. First, we generated deterministic forecasts of cloud78

presence using the method proposed by [14] and briefly presented in section79

3. The results are discrete forecasts (1 = no cloud and 0 = presence of80

clouds) with a time resolution of 1 minute and horizons of forecast up to 3081

minutes. The second step is a post-processing of the deterministic forecasts82

with a probabilistic model. In this work, we compared three different mod-83

els, described in section 4, to post-process the deterministic forecasts. The84

final probabilistic forecasts have the same temporal resolution and the same85

horizons as the deterministic forecasts. After these two steps, the generated86

forecast are probabilities, in the interval [0; 1], that give a level of confidence87

or risk associated to the future presence of clouds. Compared to deterministic88

forecast, this additional information may help he user for decision-making.89

Cloud detection was carried out following the methodology presented in90

[15] obtaining a cloud identification (clouds which attenuate the DNI below91

400 Wm−2) based on the optimal operating value for CSP plants, as the case92

of Gemasolar plant, which used this irradiance level, like the appropriate for93

producing electricity [14].94

In this work, both deterministic and probabilistic forecasts will be evalu-95

ated. If comprehensive frameworks have been proposed to evaluate forecast96

quality of the solar irradiance as a continuous variable [16, 17, 18], no previ-97

ous work details the evaluation of discrete solar forecasts. However, specific98

error metrics have been designed in the field of meteorology to assess the99

quality of binary forecasts. Let us recall that the quality of a forecasting100

system evaluates the agreement between the forecasts and the corresponding101

observations [19]. Interested readers may refers to the web page published102

by the Joint Working Group on Forecast Verification Research to have a103

extended overview of weather forecast verification [20].104

Regarding binary deterministic forecasts, the most common metrics are105

derived from the contingency table presented in figure 1. In our case a "yes"106
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event corresponds to a clear sky (no clouds) and N is the total number of107

observation/forecast pairs used for the verification. The contingency table108

is a useful tool to classify the types of errors. A perfect forecast system109

would generate only hits and correct negatives, and no misses or false alarms.110

Numerous metrics are derived from the four cells in the contingency table,111

such as fraction correct, probability of detection (POD), success rate (SR)112

or false alarm ratio (FAR) [21]. Each metric describes a different aspect of113

forecast performance. In this work we will focus on the accuracy, defined114

in equations 1. Accuracy ranges from 0 to 1, with 1 the perfect score. The115

accuracy also called fraction correct gives the fraction of correct forecasts. It116

is simple and intuitive but, in case of very rare events, this indicator may117

lead to confusion [20].118

Figure 1: Contingency table for a binary forecast

Accuracy =
hits+ correct negatives

N
(1)

Regarding the verification of probabilistic forecasts, two main attributes119

define the quality: the reliability and the resolution. Reliability refers to the120

statistical consistency between the forecasts and the observations. In other121

words, the forecast probability should be equal to the observed probability of122

the event (e.g. 20% of the events should happens for a forecast probability of123

20%). The reliability is a crucial prerequisite as non reliable forecasts would124

lead to a systematic bias in subsequent decision-making processes [22]. The125

most used visual tools to assess the reliability is the reliability diagram [23].126

It plots the correspondence between the forecast probability (x axis) and the127

observed frequency of the event (y axis). Perfectly reliable forecasts should128

be as close to the diagonal as possible. Figure 6 shows the reliability diagram129
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for the different models tested in this work. Resolution refers to the ability of130

a forecasting system to generate case-dependent forecasts. For example, the131

climatology model, which predicts the average probability of the event (i.e.132

always the same probability regardless the horizon or the weather conditions)133

has no resolution. Unfortunately, no graphical tool exists to evaluate the134

resolution.135

Only few metrics, also called scores, exist to quantitatively evaluate the136

quality of probabilistic forecasts of binary events. For this work, we propose137

to use the Brier Score (BS) [19], formulated as follow:138

BS =
1

N

N∑
1

(p̂i − oi)
2, (2)

where N is number of observation/forecast pairs, p̂i the forecast probability139

and oi the observation. If the event did occur oi = 1, and if it did not140

occur oi = 0. The BS measures the mean square probability error. This141

global proper score is appealing because it includes the two basic skills of a142

probabilistic forecast (i.e. reliability and resolution) and it corresponds to143

1 − Accuracy for a deterministic forecast. The BS ranges between 0 and 1144

with 0 the perfect score.145

Skill scores, derived from the above mentioned metrics are also commonly146

proposed to evaluate forecast quality [16, 17]. Skill scores quantify the im-147

provement of a proposed method compared to a reference model. They are148

relevant for comparing forecasts generated for different sites or time periods.149

We will not provide skill scores in this work because the evaluation will be150

for a unique site and time period. However, the interested reader can use the151

numerical results, given table 1 at the end of this paper, to compute them.152

3. Deterministic forecasts of cloud presence with a sky camera153

To issue a forecast, a sequence of three consecutive sky camera images,154

spanning about 3 minutes, is used. The correlation between these three im-155

ages makes it possible to establish the behavioural pattern of cloud movement156

at a given time. In order to study cloud movement, the following steps are157

taken [14]:158

• The picture taken with the sky camera is divided into different sectors,159

since the movement of the clouds will depend on the sector covered by160

the sky camera.161
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• The cloud motion vector (CMV) is calculated for each sector by apply-162

ing the maximum cross-correlation method.163

• Different quality tests are applied to ensure the correct determination164

of the cloud motion.165

The CMV is applied to the last image received and re-applied to the166

result obtained. This process is repeated up to 30 times (prediction for 30167

minutes ahead), obtaining the movement of the pixels from the minute in168

which the image was taken to the 30th minute in the future. Therefore, each169

application of the CMV is 1 minute of forecasting. Finally, the prediction of170

clouds presence consists in checking if the new position of the clouds masks171

the future Sun path.172

4. Post-processing with binary probabilistic models173

In the literature, three main categories of statistical models are proposed174

to generate probabilistic forecasts of binary events [24]. The first family of175

models, called parametric, assumes that the probability of the event follows a176

known distribution law, such as Gaussian or logistic. Conversely, the second177

type of models, called non-parametric, is not based on underlying distribu-178

tions. Predictions are learned from a sample of data and obviously machine179

learning techniques dominate this second family of models. The last cate-180

gory, called semi-parametric, is a mix of the two previous ones. In this work,181

we proposed to test two parametric models and one non-parametric model182

to post-process the deterministic forecasts.183

4.1. Parametric approach184

The first approach proposed here is based on the very well-known sta-185

tistical models logit and probit used for decision-making problems involving186

binary or categorical choices in various domains such as economy [12] or187

meteorology [25]. These two parametric models belongs to the Generalized188

Linear Models (GLM) [26]. Their aim is to model the probabilities of a ran-189

dom response variable Y as a function of some explanatory variables. The190

model combines two functions. First, a function of independent explanatory191

variables. This function, called index function or systematic component, may192

be linear or not. Second, a link function that links the systematic component193

with the random response variable.194
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For the logit and probit models, the index function Z is a linear combi-195

nation of independent explanatory variables (x1, ..., xk) and corresponding196

regression coefficients (β0, ..., βk), written as follow:197

Z = β0 + β1x1 + ...+ βkxk. (3)

Used alone, this linear function is not able to provide suitable probability198

levels. Indeed, linear functions are not bounded in the range [0; 1]. To199

overcome this issue, link functions have been proposed to transform the result200

of the index function Z into probabilities ranging between 0 (i.e. cloud) and201

1 (i.e. no cloud). In our case, only the link function differentiates the logit202

and probit models. For the logit model, the link function is the following203

logistic function (also called sigmoid function):204

Pr(Y = 1|X) =
1

1 + e−Z
. (4)

For the probit model, the link function is the cumulative standard normal205

distribution function given below:206

Pr(Y = 1|X) =
1√
2π

∫ Z

−∞
e−

u2

2 du. (5)

The input variables of these models can be either continuous, binary207

or categorical. This feature is very important in our case because the ex-208

planatory variables available to generate probabilistic forecasts of the cloud209

presence are binary (i.e. the deterministic forecasts) and continuous (i.e.210

measured irradiance, solar zenith angle, hour of the day, etc.). The main211

difference between these two parametric models is the shape of the link func-212

tion. The logistic function produces heavier tails than the standard normal213

distribution function. To implement the logit and probit models, we used the214

"glm" function of the package "stats" that is part of R [27], which is based215

on the maximum likelihood approach to estimate the coefficients.216

4.2. Non-parametric approach217

As most of real-life phenomena do not follow a known distribution law,218

non-parametric models have been developed. Non-parametric binary choice219

models have been initially developed for economic applications [28]. A set of220

non-parametric regressions, designed for continuous variables and also suit-221

able for binary events probability, are available in the literature [29, 30].222
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The main challenge for these regression models is to combine continuous,223

categorical and binary data as input [31] like in our work.224

Decision Trees (DT) and by extension Random Forests (RF), which be-225

long to the supervised machine learning methods are appealing non-parametric226

models to predict discrete choice. Indeed, they can predict either a nu-227

merical value (regression tree), a class or a discrete choice (classification228

tree). They can use either continuous, categorical or binary variable as in-229

put. They require less computational effort than classical non-parametric230

regression methods. Indeed, the computation time of regression methods in-231

creases exponentially with the number of variables which is not the case for232

DT and RF.233

Figure 2: Simplified illustration of a Random Forest classifier used to predict class prob-
ability

The characteristics of the RF used in this work are introduced by [32].234

The readers may refer to [33] for a general presentation. A classification tree235

is a decision tool that estimates the most likely class of a categorical or a236

binary variable to predict, when the input variables are known. Decision237

trees are simple models that partition the features (or inputs) space into238

subsets [33]. An iterative algorithm is used to split the input space. At each239

step or node, the data are divided into two subsets, applying an “If, Then”240

rule to one of the input variables. At each step, the selected input is chosen241

to provide the best possible separation of the classes to predict. The aim is242
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to generate the optimal sequences of rules to predict the different possible243

classes. [32].244

A RF is a set trees that are built on bootstrapped training subsets. Sev-245

eral decision trees are therefore trained. When RF are used as classifier, the246

probabilities of the predicted classes are averaged from the answers of the247

individual trees, as illustrated in figure 2. In the RF, the strengths (and248

weaknesses) of each tree are aggregated. A cross-validation was done on the249

number of trees and a good trade off was obtained for 500 trees. In this250

work, we used the RF classifier algorithm implemented in the R package251

"randomForest" based on [34].252

4.3. Implementation253

As previously introduced and presented in figure 3, the forecasting process254

has two main steps: generation of deterministic forecast from the sky imager255

and post-processing with the probabilistic models. The first step is briefly256

detailed in section 3. Here, we will focus on the implementation of the257

probabilistic models. The simplest approach is to use only the discrete cloud258

forecast ŷt+h as input of the probabilistic model. However, numerous works259

show that the addition of inputs, such as past observations or solar path260

variables, can significantly improve the quality of solar forecasts generated by261

time series models [35, 36] or post-processing methods [37]. Thus, to improve262

the performance of the post-processing step, we tested the addition of easy263

to compute variables as input to the three tested probabilistic models. The264

tested additional variables are: solar zenith angle, current and past global265

horizontal irradiances, beam normal irradiances and clear sky indices, mean266

and variability over past observed clear sky indices. The best combination267

of inputs, based on the BS, is:268

• the deterministic forecast of cloud presence ŷt+h,269

• the current clear sky index CSKt,270

• the mean over the 5 past clear sky indices CSK.271

Finally, we created one post-processing model by forecast horizon. Consider-272

ing a time resolution of 1 minute and horizons up to 30 minutes, we trained 30273

different models for each of the three probabilistic methods presented above.274
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Figure 3: Diagram of the implementation of the forecasting models at time t and an
horizon of forecast h

5. Case study and data275

In this study, images from a sky camera with rotational shadow band276

(TSI−880 model) have been used to provide a hemispheric vision of sky (fish-277

eye vision). Additionally, the measurements of diffuse and global irradiance278

from two CMP11 Kipp & Zonen pyranometers and direct irradiance from a279

CH1 Kipp & Zonen pyrheliometer were used, and all the instruments were280

installed on a two-axis solar tracker. The testing facility is located at the281

Center of Research of Solar Energy (CIESOL) at the University of Almería282

in a region in southern Spain. The facility has a Mediterranean climate with283

a large presence of maritime aerosols and is located at 36.8o N latitude and284

2.4o W longitude at sea level. Data are collected every minute, as this was285

proposed to be an suitable frequency [3]. An appropriate maintenance was286

performed on the sensors and sky camera. The sensors are cleaned with ethyl287

alcohol every day. The sky camera mirror is cleaned using a soft rag with288

distilled water three times a week.289

Images were taken with 352 x 288 color pixel resolution, which corre-290

sponds to 24 bits in JPEG format. They have three different channels that291

represent the red, green and blue levels. Each pixel of the image is repre-292

sented by 8 bits, with values between 0 and 255.293

For the cloud nowcasting, data from 2010 and 2011 were used, for mo-294

ments where solar altitude degree was higher than 5o. For 2010, a total of295

137794 moments were analyzed for each interval of prediction (1 to 30 min-296

utes) independently, whereas for 2011, 134993 predictions where processed,297

also for each forecast interval. Year 2010 has been used to train the post-298
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processing models and year 2011 to test them.299

Figure 4: Number of observation/forecast pairs (blue bars) and ratio of observed cloudless
skies (red line) in the test set (2011) for forecast horizons ranging from 1 to 30 minutes.

It should be noted that the number of observation/forecast pairs and the300

ratio of observed cloudless skies in the test set (2011) are not identical for the301

different forecast horizons. Indeed, the ASI fails to predict the presence of302

clouds for long horizons when the cloud speed is high and/or of the cloud base303

height is low. Specifically, under these conditions, predicted cloud locations304

have a high probability of leaving the ASI’s field of view before an horizon of305

30 minutes. As a consequence, the total number of observation/forecast pairs306

decreases while the ratio of observed cloudless skies in the test set slightly307

increases with forecast horizon as presented in figure 4. As the clear skies308

are easier to forecast, this pattern will impact the assessment of the models309

accuracy.310

6. Results and discussions311

The post-processing of the deterministic forecasts gives a probability level312

of the possible future cloud presence. But, it can also be seen as a calibration313

of the deterministic forecasts based on the training set statistics. Further-314

more, it is common to transform the probability level resulting from the315

discrete choice models in a new binary and deterministic forecasts. To do316

so, we assume that a probability above 0.5 (> 50%) corresponds to a "yes"317
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event, i.e. in our case a clear sky. While a probability below 0.5 (< 50%) is318

a "no" event corresponding to the presence of clouds. To asses the ability of319

the selected discrete choice models to improve the deterministic forecast, this320

transformation was applied to the probabilistic forecasts. Thus, the evalua-321

tion of the generated forecasts will be performed in two steps. First we will322

evaluate the improvement of the quality of the deterministic forecasts before323

and after the post-processing step. Second, we will assess the quality of the324

probabilistic forecasts and the improvement compared to the corresponding325

deterministic forecasts. Table 1, at the end of this paper, gives the detailed326

numeric results used to plot the graphs evaluating the quality of the forecasts.327

6.1. Deterministic forecasts quality328

Figure 5 shows the evaluation of the quality of the deterministic forecasts329

before and after the post-processing with the three discrete choice models330

tested in this work. Surprisingly, with longer horizons, the accuracy of the331

initial forecasts done with the sky imager increases (solid black line). This332

observation results from the share of clear and cloudy skies available in the333

test sets presented previously in section 5 and figure 4. Indeed, for longer334

horizons, the share of clear skies, which are easier to forecast when there is335

no cloud in the field of view of the ASI, is more important. We could have336

homogenized the test sets of the different horizons to cancel this effect. How-337

ever, removing conditions with fast moving clouds from the shorter horizons,338

would have biased the analysis of the improvement brought by the prob-339

abilistic approach that is more interesting when forecasting becomes more340

uncertain. Even if this effect does not influence significantly the results of341

this work, the reader must keep in mind that for the longest horizons, the342

test sets leads to a higher share of situations that are easier to forecast.343

As expected, the post-processing with the discrete choice models im-344

proves significantly the accuracy of the forecasting system. For horizons345

from 1 to 15 minutes, the accuracy resulting from the 3 models decreases.346

Above a 15 minute horizon, as for the original ASI forecasts, the accuracy347

increases slightly. Among the 3 tested models, the RF model, which is a non-348

parametric method, shows the best improvement with an accuracy of 93.4%349

and 90.3% for horizons of 1 minute and 30 minutes respectively. Compared350

to the initial ASI forecasts, this improvement correspond to a gain of 11.6351

percentage points for the shortest horizon (i.e. 1 minute) and 7.5 percentage352

point for the longest one (i.e. 30 minutes). Regarding the two parametric353

techniques, the logit model, which has an accuracy close to the RF, clearly354
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Figure 5: Accuracy (or fraction correct) of the deterministic ASI forecasts before and after
the post-processing

outperforms the probit model. However, both of them show a significant355

improvement over the ASI original forecasts. Given the simplicity and the356

low computational efforts of the logit model, the former offers a very good357

trade off for the study case selected in this work.358

6.2. Probabilistic forecasts quality359

As previously discussed in section 2, the reliability of the probabilistic360

forecast is the the first attribute to verify. Figure 6 gives the reliability361

diagrams of the 3 discrete choice models and of the climatology model for all362

the horizons of forecast (i.e. overall reliability). The climatology is a very363

simple model used as a reference, which forecasts the average probability of364

the event whatever the weather conditions and the horizon. Here, the average365

probability to have a clear sky computed from the test set is 74.8%. The366

reliability diagram is a visual tool that gives a qualitative assessment of the367

reliability. A perfectly reliable model should result in a reliability curve that368

sticks to the diagonal. Here, none of the 3 tested models presents a perfect369

reliability. Conversely to the RF models, the probit and logit models never370

generate forecast probabilities of 0 and 1. As a consequence, their reliability371

curves do not reach the lower and upper limit of the diagram. The important372

deviations from the diagonal of the probit and logit models indicate a peak373
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of under-confidence for a forecast probability of 0.5 and an over-confidence374

for forecast probabilities ranging between 0.75 and 0.9. In other word, when375

these two models issue a forecast probability of 0.5 (i.e. 50% probability of a376

clear sky), the actual observed frequency is higher than 0.75. The RF model377

shows a better overall reliability than the 2 parametric models with a high378

reliability when it forecasts a clear sky with forecast probabilities above 0.5.379
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Figure 6: Reliability diagrams of the 3 discrete choice models and of the climatology

In addition to the reliability assessment, the BS provides quantitative380

information on the quality of the forecast. The BS is negatively oriented and381

a lower value indicates better quality. Figures 7 shows the BS of the original382

ASI forecasts, of the climatology model, based on the training set, and of383

the 3 discrete choice models. For the original ASI forecasts (solid black line),384

which are deterministic, the BS is derived from the accuracy as detailed in385

section 2. First, we can observe that the quality of the climatology increases386

slightly with the horizon. Again, this trend results from the increased share387

of clear skies for the longer horizons in the test set. Second, the BS of the388

probit and logit models is almost the same regardless of the horizon. This389

result, which differs from that obtained with their deterministic counterparts,390

highlights that the information included in a probabilistic forecast cannot391

be translated into a deterministic forecast. Finally, the RF model clearly392

outperforms the 2 parametric models. The good performance of this non-393

parametric model comes from several advantages. Indeed, RF is able to map394
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non-linear relationships between inputs and output. It is designed to handle395

different types of variables, which can be binary, categorical or continuous.396

Finally, and unlike probit and logit models, RF issues probability forecasts397

of 0 and 1 with high reliability.398
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Figure 7: Brier scores of the original ASI forecasts, of the climatology model used as
a reference and of the probabilistic forecasts resulting from post-processing with the 3
discrete-choice models

7. Conclusions399

This work is a first attempt, in the field of solar energy, to propose a400

methodology to generate very short-term probabilistic forecasts of the pres-401

ence of clouds as a binary event. The objective is to anticipate the moment402

when the direct normal irradiance is higher than a defined threshold, suitable403

to the operation of concentrated solar power plants. The proposed approach404

combines binary forecast based on a sky imager with discrete choice models405

commonly used in various decision-making problems to generate probability406

forecast of cloud presence. Two parametric (probit and logit) and one non-407

parametric (RF) discrete choice models have been tested in this work. The408

RF clearly outperforms the widely used probit and logit models. Beyond409

a better quality assessed with the reliability diagram and the BS, the RF410

provides better features, like the ability to forecast probability levels of 0 or411

1 with high reliability.412
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As this work is a the first one on the topic, no comparison with other413

models or approaches is possible and it is difficult to evaluate the actual414

performance of the proposed method. However, the generated forecasts show415

a good quality. Indeed, the accuracy of the deterministic forecasts derived416

from the probability level is above 90% with an improvement ranging from 7.5417

to 11.6 percentage points compared to the original ASI forecasts. Regarding418

the probability forecasts obtained with the three tested models, their BS are419

below 0.1, regardless the horizon of forecast.420

Acknowledgment421

The authors want to acknowledge the project MAPVSpain, with reference422

PID2020-118239RJ-I00, financed by the Ministerio de Ciencia e Innovación,423

and co-financed by the European Regional Development Fund. This research424

also received funding from the European Union’s Horizon Europe research425

and innovation programme under Grant No.101076447 (TwInSolar project).426

17



Table 1: Numerical results of the evaluation of deterministic and probabilistic forecasts
for the different horizons

Horizon
(minutes)

Accuracy Brier Score
ASI Probit Logit RF Climato Probit Logit RF

1 0.817 0.893 0.915 0.934 0.198 0.074 0.072 0.053
2 0.815 0.892 0.911 0.925 0.198 0.078 0.075 0.059
3 0.814 0.889 0.907 0.920 0.198 0.080 0.078 0.064
4 0.814 0.884 0.902 0.916 0.198 0.082 0.081 0.067
5 0.813 0.880 0.899 0.911 0.198 0.084 0.082 0.071
6 0.813 0.871 0.893 0.909 0.198 0.086 0.084 0.073
7 0.814 0.870 0.892 0.908 0.197 0.087 0.085 0.074
8 0.814 0.879 0.896 0.906 0.197 0.087 0.086 0.075
9 0.815 0.874 0.893 0.906 0.196 0.088 0.087 0.076
10 0.816 0.875 0.893 0.905 0.196 0.089 0.087 0.077
11 0.816 0.873 0.892 0.905 0.195 0.089 0.088 0.078
12 0.817 0.877 0.894 0.904 0.194 0.089 0.088 0.078
13 0.818 0.876 0.894 0.905 0.194 0.090 0.088 0.078
14 0.819 0.874 0.893 0.905 0.194 0.090 0.089 0.079
15 0.820 0.878 0.895 0.905 0.193 0.090 0.089 0.080
16 0.821 0.874 0.894 0.905 0.193 0.091 0.089 0.081
17 0.822 0.878 0.896 0.904 0.193 0.091 0.089 0.081
18 0.823 0.884 0.898 0.903 0.192 0.091 0.089 0.082
19 0.824 0.884 0.898 0.904 0.192 0.091 0.089 0.082
20 0.824 0.884 0.899 0.905 0.191 0.091 0.089 0.083
21 0.825 0.887 0.900 0.905 0.191 0.091 0.090 0.082
22 0.826 0.891 0.901 0.905 0.191 0.091 0.090 0.083
23 0.827 0.896 0.901 0.905 0.191 0.091 0.090 0.083
24 0.827 0.888 0.900 0.905 0.190 0.092 0.090 0.084
25 0.828 0.894 0.901 0.905 0.190 0.092 0.090 0.084
26 0.828 0.895 0.901 0.904 0.190 0.092 0.091 0.084
27 0.828 0.892 0.901 0.905 0.190 0.092 0.091 0.085
28 0.828 0.890 0.901 0.904 0.189 0.093 0.092 0.085
29 0.828 0.891 0.901 0.904 0.189 0.093 0.092 0.085
30 0.828 0.887 0.900 0.903 0.189 0.094 0.092 0.086

Overall 0.821 0.883 0.899 0.908 0.198 0.088 0.087 0.077
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