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Adaptive neural control of PEMFC system based on data-driven and reinforcement
learning approaches

Christophe Lin-Kwong-Chon∗, Cédric Damour, Michel Benne, Jean-Jacques Amangoua Kadjo, Brigitte Grondin-Pérez

LE2P-EnergyLab, EA 4079, University of Réunion Island, 15 Av. René Cassin, BP 7151, Saint-Denis 97715, Réunion, France

Abstract

Proton exchange membrane fuel cell systems are being increasingly put forward as hydrogen energy carrier converters.
Recent advancements in reliability strategies have been stimulated through maintaining a healthy operating condition
of the system and covering plant faults. However, it is observed that occurence or even the mitigation of these faults
cause multilateral effects that can potentially destabilize the normal operation of the system. In the active fault tolerant
control strategy, two modules are designed to fault management. The diagnostic module identifies the apparent fault
and identifies the corrective commands, then the re-design module adapts the controller to dynamic system changes. In
order to improve the generic characteristics of the re-design module, this paper presents a data-driven neural controller
capable to automatically adapt to system health states. The developed approach comes from the machine learning class
and combines adaptive dynamic programming, deep echo-state neural network models and fuzzy logic learning. The
proposed controller is evaluated under occurence of channels flooding and membrane drying faults, but also actuators
and water purging disturbances. Simulation and experimental results show the effectiveness of the proposed data-driven
approach without prior neural model training, while guaranteeing the stability and learning convergence of the adaptive
controller.

Keywords: Proton exchange membrane fuel cell, Active fault tolerance, Adaptive dynamic programming,
Reinforcement learning, Deep echo state network
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1. Introduction

To fulfil climate commitments and limit the rise of20

global temperatures by 2050, carbon-free hydrogen could
help to reduce fossil-fuel reliance. Proton Exchange Mem-
brane Fuel Cell (PEMFC) system is one electrochemical
converter of the hydrogen energy carrier. This system has
high potential due to its multiple advantages, such as low25

greenhouse gases emission, high efficiency, low operating
temperature and rapid start. However, the PEMFC sys-
tem has several technological and societal barriers. Indeed,
there is a general apprehension about risks of hydrogen,
the source of decarbonized hydrogen can be challenging,30

the cost of production and operation remains high, and
the durability and reliability of these systems need to be
improved. In fact, for reliability, the system may be sub-
ject to the occurrence of operating faults, which are symp-
tomatic of performance degradations.35

A plant fault is characterised by an undesired devia-
tion of at least one physical quantity representative of the
system from normal or acceptable operating conditions [1].
If the fault cumulates factors, such as a severe degree, a
lack of identification or a failure to correct in time, it can40

cause irreversible damages to the PEMFC components in
which case a degradation will occur, or even premature
failure. The most common works around faults include
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reactant starvation, cathodic flooding and membrane dry-
ing. The main cause of the flooding fault is a low gas-flow45

rate in the channels [2] but could have impacts on the
gas supply, voltage decrease or instability and cathodic
differential pressure increase. Another level, partial flood-
ing does not significantly affect the PEMFC performance,
but will impact current density distribution, leading to50

degrade PEMFC durability [3]. A significant reduction of
gas supply leads among more than 15 causes to the reac-
tant starvation fault, such as low gas distribution, impurity
gases or flooding [4]. This fault has the characteristic of
provoking severe degradations, such as corrossion of car-55

bon supports, reverse cell phenomenon and irregular distri-
bution of current density. Membrane dehydration occurs
when the production or presence of water at the cathode
becomes insufficient in proportion to electro-osmosis drag
from the anode. High operating temperature [5] or dry gas60

feeding also plays an essential role in the performance loss,
as well as the gas flow velocity convecting vapor water [6].
The consequences of such a fault are voltage loss, cathodic
pressure drop or even physical rupture of the membrane.
Properly implemented, a fault management can keep op-65

timum operating level, provide a fault tolerance and min-
imize downtime or temporary performance loss.

A Fault Tolerant strategy (FTC) is one of these closed-
loop strategies that can tolerate a certain number of faulty
operations while guaranteeing the system’s expected per-70

formance and stability [7]. There are actually two main
approaches [8]. The Passive FTC employs robust, pre-
defined controllers to compensate a known a priori list of
potential malfunctions without modifying the controller
parameters. And, the Active FTC approach uses the re-75

configuration of the controller according to the system
state. In AFTC strategy, two main parts are designed
: the diagnosis module identifies the occurring fault, lo-
calisation and magnitude, and these informations are used
by the second one. This second module objective is to80

satisfy the closed-loop system’s requirements despite the
plant’s faulty behaviour [1]. Commonly used, the diag-
nosis or a stand-alone module named decision, can pro-
vide fault recovery or mitigation command. Several plant
fault tolerant strategies have already been developed, but85

have some limitations. An AFTC strategy is experimen-
tally validated in [9] to flooding fault mitigation via oxy-
gen stoichiometry. It is designed with a neural-based di-
agnosis, a self-tuning model-based Proportional-Integral-
Derivative (PID) controller and a pre-defined decision mech-90

anism. In [10], PTFC stoichiometry tracking is achieved
based on the previous design. This approach’s main lim-
itation is the requirement to offline training of the neu-
ral models used for diagnosis and controller re-design. A
simulated PFTC is proposed in [11] with electrodes flood-95

ing and membrane drying faults. Depending on the di-
agnosis output, a pre-definied control law from a bank of
controllers is implemented in the closed-loop to maintain
the voltage setpoint and zero pressure difference at the
membrane. This process is fast and robust in a real-time100

application. However, the bank of controllers takes into
account only the faults situations that were initialy con-
sidered. Others FTC are developed in [12, 13, 14, 15] for
actuators or sensors faults. The developed controllers are
mainly static approaches, such as linearization feedback,105

feedforward law or sliding mode. Regarding both mod-
ules, diagnostic methods are strongly studied in literature
[16, 17, 18, 19, 20, 21, 22, 23], however, studies on decision
[24] and controller re-design modules [25, 26] are lacking
on the PEMFC system, which is not the case with other110

systems. In [27] an adaptive radial neural event-trigger
control is developed for electromagnetic active suspension
system. An other adaptive neural event-trigger is investi-
gated in [28] for nonstrict feedback nonlinear systems with
presence of nonaffine nonlinear faults.115

The adaptive controller automatically compensates for
all dynamic variations in the system. It considers any
degradation of regulation over time, whether it is related
to a change in operating point, a fault or even an exter-
nal disturbance [29]. However, it requires system expertise120

and a large amount of data [30]. For that purpose, data-
driven modelling through machine learning and, specially,
its sub-discipline Reinforcement Learning (RL), offer pow-
erful tools for on-line identification and control of com-
plex time-varying systems [31, 32] without prior knowl-125

edge. Reinforcement learning denotes an optimal solving
class-method in an unknown and uncertain environment
based on the action-reward principle. In [33], Bellman
extended Hamilton and Jacobi’s works, establishing an
optimal sequential decision-making algorithm, commonly130

referred to as dynamic programming [34]. Recently, Ar-
tificial Neural Networks (NN) have been highlighted into
Adaptive Dynamic Programming (ADP) for their estima-
tion capacities [35, 36]. In [37] ADP is combined with a
Deep NN for self-learning the policy to drive the surge135

speed and yaw dynamics of a unmanned surface vehicle,
simulation and real-world experimental results validate the
proposed approach. An other ADP with four Deep Differ-
ential NN is developed in [38] for micro-grid control. A
rejection process is designed to mitigate the inaccurate ac-140

tions with the low probability distribution of the neural
models. Simulation results show higher economically con-
trol performance with the proposed approach compared
to 25 conventional control algorithms. A full-scale engine
validation have been conducted in [39] with a model-free145

RL approach and implementation of an auxiliary track-
ing trajectory. In [40] an event-triggered ADP method
allows to reduce computationnal effort for unknow non-
affine continuous-time systems with input constraints.

The main objective of this paper is to implement a150

neural controller-based exclusively on data-driven, which
provides generic and adaptive properties regarding system
health states to integrate within an AFTC strategy. This
study focuses on the reconfigurable controller module of
the fault strategy. The proposed adaptive neural con-155

troller includes three main features : an ADP structure,
an deep Echo State Network (deepESN) neural model and
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a Fuzzy-Logic (FL) approach. All these elements are care-
fully designed to satisfy the temporal context of fault dy-
namics and real-time application. The dynamic program-160

ming structure provides the ability to system anticipation
control based on future states’ prediction [41]. Compared
to other recurrent neural networks, deepESN model is fast
learning, resulting in low training cost [42]. Its training is
performed only on the output layer and the model does not165

suffer from local minima if a least squares learning method
is implemented [36]. Fuzzy logic is applied to update on-
line the learning rate in order to improve the learning ef-
fectiveness and speed.

The main contributions of this paper are summarized170

as follows:

1. Channels flooding and membrane drying faults are
considered throughout the design of the controller.

2. Compared to traditional PID and HDP controllers,
results demonstrate the higher precision of the pro-175

posed method in a multiple-input multiple-output
application, especially in faulty situations.

3. Experimental results effectively illustrate the perfor-
mance of the proposed adaptive control strategy on
real-time implementation.180

4. The fuzzy logic method, coupled with the deepESN
models allow quick and efficient weight adjustment
in the online application.

5. The stability of deepADP is guaranteed by the Lya-
punov method by proving the bounded domain of185

validity.

The rest of the paper is organized as follows. Section
2 describes the adaptive deepADP controller features: the
ADP control structure, the deepESN model, optimization,
and finally, control stability and learning convergence. In190

section 3, the simulation model and scenarios are pre-
sented, then the results are analyzed. Section 4 gives the
experimental set-up, tests scenarios and on-line results.
Finally, a conclusion draws the various advances obtained.
As well, perspectives are given in order to open up new195

control proposals.

2. Adaptive neural controller

2.1. Dynamic programming approach

Consider a non-linear constant delay system with the
following dynamics [43] as follows:

xk+1 = f
(
x(k), x(k − θx), u(k), u(k − θu)

)
, 0 ≥ k ≥ θx,u

(1)

where x(k) =
[
x1(k), x2(k), ..., xn(k)

]N ∈ ℜn is a state
vector, θx,u denotes unknown pure delays on system state200

and application of the command. The function represent-
ing the dynamics of the system f (xk, xθx , uk, uθu) is de-
fined on a group set Ωx ⊆ ℜn with f(0, 0, 0, 0) = 0 from
an initial state x(0) = 0. Let x̄i denotes the sequence

of state x(k), x(k − θx) and ūi denotes the sequence of205

state u(k), u(k − θu). Delays are not considered as a time-
variable, therefore as justified in [44] the system can be
considered as delay-free. In any case, a time recurrent
model defined online and in real time such as the deep-
ESN model helps to estimate these unknown parameters.210

A cumulative cost function is defined as follows:

J(k) =

N−1∑
j=0

U j(x̄j(k), ūj(k)) (2)

The objective is to minimize this cost function and deter-
mine an optimal command u∗(k) as follows:

J∗(k) = min
u(k)

{
J(x̄(k), ū(k))

}
u∗(k) = argmin

u(k)

{
J(x̄(k), ū(k))

} (3)

Considering Bellman’s principle of optimality and an ini-
tial state condition x(k), if a controller is optimal on a
given space between k and N , then it is optimal on each
step k + 1 > k. However, the principle of optimality can-
not be solved without the knowledge of all temporal states
at step k. Therefore a solution consists of an optimal lo-
cal resolution between each timestep with predicted val-
ues. In addition, in the case of systems with respect of
these conditions: constant delay, ∂f/∂u ̸= 0, 0 ≤ k ≤
Nθ and assuming that the matrix of partial derivatives
∂fα/∂u

n, α = 1, ..., N has a maximum rank, then the de-
layed system could be reduced to a nondelayed problem
[44]. Hence, the cost function takes this form:

J(k) =

N−1∑
j=0

U j(xj(k), uj(k)) + γj−1
N∑

j=N

Û j(x̂j(k), ûj(k))

J∗(k) = min
u(k)

{
U(x(k), u(k)) + γÛ(x̂(k + 1), û(k + 1))

}
(4)

where 0 < γ ≤ 1 is the discount factor that modulates
the amplitude of the predicted values in the cost function.
The optimal command can then be formulated as follows:

u∗(k) = argmin
u(k)

{
U(x(k), u(k)) + γÛ(x̂(k + 1), û(k + 1))

}
(5)

To determinate this solution the prediction of future val-
ues is carried out by deepESN-type neural models. Specif-
ically, an actor deepESN provides the optimal command,
a predict deepESN provides the system response to this
new command, and finally, a critic deepESN evaluates the215

evolution of the new state.

2.2. Global controller structure

The overall controller diagram is presented in Fig.1.
The input signal of the predicted model d(k) refers to all
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Figure 1. Adaptive control structure by dynamic programming
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Figure 2. Position of adaptive controllers in the AFTC strategy

measurable perturbations allowing the model to predict220

better. Safety constraints are considered according to the
operating ranges of the actuators.

In the AFTC design strategy, the diagnostic output is
used only by the decision module, determining the vari-
able to be modified, and the corrected setpoint to be ap-225

plied. Illustrated in Fig.2, the different adaptive control
loops modify their parameters according to the system’s
dynamic changes. The diagnosis and decision modules are
not the main focus of this study and are directly simu-
lated by voluntary setting fault conditions and predefined230

corrections.

2.3. Reservoir computing deepESN neural model

2.3.1. Deep ESN model

The classic ESN model is built on the basis of 3 basic
layers: a fixed sparse reservoir of recurrent neurons as a235

hidden layer, a fixed random input layer, and finally, an
output layer initialized to zero which is adjusted all along
the adaptive control process. When the neural model is
composed of several pairs of input layer-reservoirs, the
structure then becomes a deep-ESN [45, 46]. However,240

learning cannot be considered as deep, since it only in-
fluences the output layer. Each reservoir has the same
number of neurons and the output of each reservoir acts
as input for the next layer. A unit biais is added as an
input in order to shift the input-layer activation functions.245

y1(t)

Reservoir 1 
wres,1

Input layer 
win,1

Output layer 
wout

yo(t)

.

.

u1(t)

um(t)

.

.

Reservoir l 
wres,l

State 1 
x1

State l 
xl

Inter layer 
winter,l

Figure 3. DeepESN-type neural network with l reservoirs

Illustrated in Fig.3, the output of the first reservoir is
given as follows :

x̃1(k) =f
(
W inu(k) +W res,1x1(k − 1) +W backy(k − 1)

)
x1(k) =(1− α1)x1(k − 1) + α1x̃1(k)

(6)

The other reservoirs output are then given as follows :

x̃l(k) =f
(
W inter,lxl−1(k) +W res,lxl(k − 1)

)
xl(k) =(1− αl)xl(k − 1) + αlx̃l(k)

(7)

where x(n) ∈ ℜn denotes the state of the neurons in the
reservoir, x̃(n) ∈ ℜn denotes its update, W in ∈ ℜn×m

denotes the input weights matrix, W inter ∈ ℜn×n de-
notes the inter-layer connections, W res ∈ ℜn×n denotes
the reservoir weights matrix, l denotes the deep reservoir
layer and 0 < α ≤ 1 denotes the leaking rate which is a
memory term. Then, the overall output is calculated by:

y(k) = W out
(
x1(k), ..., xl(k)

)
(8)

where W out ∈ ℜl×nl denotes the output weight matrix.
One major limitation of deepESN model is their perfor-

mance dependence on their hyper-parameters (HP). More-
over, the number of HP can be quite large. Furthermore, in
the deepADP proposed method severals neural models are
used. Thus, an offline optimization is prioritized throught
assuming that estimated HPs will be valid online. Indeed,
incorrect on-line change in the HP can have severe conse-
quences on the control closed-loop, such as control devia-
tion. For this purpose, a pre-study was achieved to vali-
date optimal values. It is accomplished with a grid search
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Table 1
Estimated values for HP of all deepESN models

HP Name Estimated value

nDeep Number of reservoir 100
nRes Number of neurons per res. 900 or [30x30]
Co Connectivity 0.1
α Leaking rate 0.5
ρ(W res) Spectral radius Verified for each res.
η Learning rate Adjusted

method under prediction application ŷ(t + 1) of PEMFC
system variables, such as voltage, stoichiometry and pres-
sure difference at the membrane. The inputs and out-
puts of the deepESN model are normalized between 0 and
1. The least-square-based training algorithm is performed
for the output weights layer estimation, and a train-test
method is implemented to evaluate the model precision.
Hyperparameters do not all have the same influence on the
modeling error. The learning rate contributes to a 90% re-
duction in modeling error on a mean absolute percentage
error criterion. Then followed by the number of neurons,
the leaking rate and the spectral radius. The spectral ra-
dius is an index of the echöıc property of the reservoir, i.e.
its ability to reflect information until it vanishes. It is an
important HP for the deepESN design, therefore, it will be
verified in the following way [46] for multi-reservoirs ESN
models:

max ρ

((
1− αl

)
In + αlW res,l

)
= max ρl < 1 (9)

The learning rate is the main coefficient for modeling pro-
cess and a specific decisional tool is be implemented for
its estimation. In the result, the estimated HP values are
given in Table 1.250

2.3.2. Online learning phase

All deepESN models are initialized at the beginning of
the control process and are online trained from that time
on.

Reinforcement signal. The reinforcement signal used is a
quadratic error criterion defined as follows:

U(k) =
1

2

(
xref (k)− x(k)

)2
(10)

Predict deepESN model. The predict model has the func-255

tion of anticipating the evolution of the command calcu-
lated by the actor model on the PEMFC system. The
inputs and outputs of the predict model are given in Ta-
ble 2.

The modeling error used in training of predict model
is given as follows:

epredict(k) = x(k)− x̂(k − 1) (11)

Table 2
Inputs and outputs of Actor, Predict and Critic deepESN models

deepESN Input Output

Predict (k) 1 x̂(k + 1)
û(k)
x(k)
d(k + 1) (known)

Critic (k) 1 Ĵ(k)
x(k)
û(k) = û(k − 1) + ∆û(k)

Critic (k + 1) 1 Ĵ(k + 1)
x̂(k + 1) + epredict(k)
û(k + 1) = û(k) + ∆û(k + 1)

Actor (k) 1 ∆û(k)
xref (k)− x(k)

Actor (k + 1) 1 ∆û(k + 1)
xref (k)−

(
x̂(k + 1) + epredict(k)

)
where x denotes the real PEMFC state and x̂ denotes out-260

put deepESN model. The actual value is not available
at time k, therefore the previous time is considered. The
training of the predicted model will therefore be delayed.

Critic deepESN model. As the critic model can estimate
the present cost function and predict the future cost func-265

tion of the reinforcement signal, it is used twice. The ac-
tor and critic models that are used for prediction k + 1
include as input a state compensation epredict(k) from pre-
dict model. This modification is introduced to compensate
the training delay of the predict model in the controller al-270

gorithm. The inputs and outputs of the critic model are
given in Table 2.

Forward-in-time approach is adopted for the adjust-
ment of the critic model and is defined as follows:

Ĵ(x(k))− U(k)− γĴ(x(k + 1)) = 0

ecritic(k) = U(k) + γĴ(x(k + 1))− Ĵ(x(k + 1))
(12)

Actor deepESN model. The actor model has the role of
providing the evolution of the command for the control
process. This model is used twice, as the critical model.275

The inputs and outputs of the actor model are given in
Table 2.

The command at time k is determined as follows:

u(k) = u(k − 1)− ζ
∂J(k)

∂u(k)
(13)

where 0 ≤ ζ ≤ 1 is the control step length. During this
study, the HP ζ and γ are set to a value of 0.3. The
corresponding modeling error takes this form:

ea(k) = −ζ
∂J(k)

∂u(k)
−∆û(k + 1) (14)

The jacobian information is obtained by the following means:

∂J(k)

∂u(k)
=

∂U(k)

∂u(k)
+ γ

∂Ĵ(k + 1)

∂u(k)
(15)
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Figure 4. Membership functions related to the modeling error and
its variation for the fuzzification process

The future Jacobian information is obtained on the chain
derivation rule as follows:

∂Ĵ(k + 1)

∂u(k)
=

∂Ĵ(k + 1)

∂x̂(k + 1)

∂x̂(k + 1)

∂u(k)
(16)

And it is solved by the derivative of the activation function:

∂J(k + 1)

∂x(k + 1)
=
∂ŷcritic(k + 1)

∂x̂(k + 1)

∂J(k + 1)

∂x(k + 1)
=

∂

∂x(k + 1)

[
W out

critic

(
x1(k), ..., xl(k)

)] (17)

∂x(k + 1)

∂u(k)
=
∂ŷpredict(k + 1)

∂u(k)
(18)

2.4. Fuzzy logic for learning rate

The learning rate quantifies the gain in neuronal weight
adjustment. At each timestep k the weight adjustment280

is obtained according to the modeling error subject to a
learning rate. An important learning rate brings fast and
robust adjustment. Conversely, a low learning rate ensures
no overshooting but brings slow convergence. A fuzzy logic
method is a decision-making tool that aims to formalize285

gradual processes based on real rules combinations. Fuzzy
logic entries are modeling errors eA,P,M and errors deriva-
tive ∆eA,P,M . The only output of the fuzzy logic method
is the learning rate ηA,P,M . Modeling errors and error
derivative are constraints between [-100,100] and learning290

rate is constraint between [0,1]. Errors criteria are Mean
Percentage Error to preserve negative and positive values.
As seen in Fig.4, the input fuzzy set’s operating range is
partitioned according to a total of 7 sigmoidal member-
ship functions (- High, - Medium, - Low, Zero, + Low, +295

Medium, + High).
And as suggested by Fig.5, the operating range of the

fuzzy output set is partitioned according to a total of 5
sigmoidal membership functions (Low D1, Medium low
D2, Medium D3, Medium high D4, High D5).300

Fuzzy rules are built and proposed based on of the
expertise, they are given in Table 3. This table refers to a
discrete time space filled in by user expertise. In order to
obtain all background values, i.e. all values in the quasi-
continuous framework, a compromise is made between the305
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Figure 5. Membership functions related to the learning rate for
defuzzification process

Table 3
Action region of fuzzy rules and their overlaps

And ∆em
If em Then η

- H - M - L Zero + L + M + H

- H D1 D3 D5 D4
- M D2 D3
- L D2 D2
Zero D1 D2 D3 D3 D3 D2 D1
+ L D2 D2
+ M D3 D2
+ H D4 D5 D3 D1

continuous and discontinuous approaches. The fuzzy space
offers the possibility of formalizing the union between the
expertise and the background framework.

To compute the final learning rate value, the combined
output fuzzy set is defuzzified using the Mamdani method.310

Then, a fuzzy surface is obtained by running the entire op-
erating area of the inputs. The resulting matrix, as shown
in Fig.6, is directly used for on-line training of deepESN
models.

Figure 6. Fuzzy surface related to the learning rate

An example application is given in Fig.7 with a sin-315

gle learning target of 0.49V. The variable learning rate
obtained by the fuzzy logic method makes it possible to
reach this target quickly and stably over time.

2.5. Control stability and neural learning convergence

Two levels of functionality are implemented to ensure320

the correct operation of the controller:

- The higher level, ensures the deepADP validity do-
main through Lyapunov stability theorem. In case
the regulation would be divergent, the system is shut
down to avoid irreversible degradation of the PEMFC325

membranes.
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Figure 7. Application of the fuzzy logic method on learning rate

- The lower level, works internally and ensures a fast
learning of each neural networks using bounded vari-
able learning rate.

2.5.1. Control stability330

Stability is the central concern in control and specifi-
cally in adaptive neural control. Lyapunov stability anal-
yses are the most commonly adopted approach for this
study. Huang et al. [47] recently analyzed the ADP con-
troller’s domains of stability according to the reinforce-
ment function. For a control utility in a square-weighted
sum form U(k) =

∑N
j=1

1
2e

T
j (t)ej(t), lyapunov’s candidate

function is defined as follows:

V (t) =

N∑
k=t+1

γk−t−1
(
UT (k)U(k)R[X(k)]

)
(19)

where N is an optimal control horizon. The derivative of
the candidate function is built from the boundaries theo-
rem around minimum and maximum values. These bounds
are defined according to the minimum and maximum value
of the matrix R(k). If the resolution of the derivative in-
dicates a negative value, then that demonstrates the ex-
istence of an asymptotically stable deepADP control loop
in the sense of Lyapunov:

V̇max(k) = −
n∑

j=1

1

2

∥∥∥∥x(k + 1)− xref (k + 1)

xmax(k + 1)

∥∥∥∥2
V̇ (k) ≤ V̇max(k) < 0

(20)

2.5.2. deepESN learning convergence

For a learning algorithm using the recursive least-squares
method, with W out∗ the ideal weights of the output ma-
trix, the output of the deepESN model at step k is then
given by:

yref (k) = xT (k)W out∗(k) (21)

The error between the ideal weights and the weights is
given as follows:

W̃ out(k) = W out∗(k)−W out(k) (22)

From a boundary analysis performed by Bo & Zhang [36]
on ESN models, it has been shown that in this configura-
tion the weights W out(k) trend towards the ideal weights
W out∗(k) in infinite time.

lim
k→inf

W out(k) = W ∗out(k) (23)

Therefore, the adjustment of the output matrix is defined
as below under the condition that the learning rate is
bounded 0 < η ≤ 1:

W out(k) = W out(k − 1) + η
P (k)x(k)e(k)

1− xT (k)P (k)x(k)
(24)

where P (k) is the covariance matrix of the estimation error
and is defined as follows:

P (k) = [P−1(k − 1) + xT (k)x(k)]−1

P (k − 1)− P (k − 1)x(k)xT (k)P (k − 1)

1 + xT (k)P (k − 1)x(k)

(25)

where P (k) ∈ ℜnxn is initialized on a unit matrix.
The complete process of the deepADP controller is pre-

sented in Algorithm 1.

Algorithm 1: deepADP controller

Input: Control errors econtrol(k), Control references
eref (k)

Output: Commands û(k), deepESN models
Data: deepESN models configuration
// Initialization

1 Set HP of actor, predict and critic deepESN models;
2 Initialization of all neural weigths;
3 Verification of the echöıc properties of the models;
4 Loading of the fuzzy surface;
5 Define user satisfaction survey eref (k);
6 Collect PEMFC data and initial system state x(k);

// Control start

7 while econtrol(k) > eref (k) do
8 Estimation of the Predict learning rate ηpredict(k);
9 Adjustment of the Predict model

epredict(k) → W out
predict(k);

10 Calculation of the reinforcement signal U(k);

11 Estimation of the control cost Ĵ(k);
12 Estimation of the command û(k);
13 Prediction the system’s future state x̂(k + 1);
14 Verification of stability via the Lyapunov theorem;
15 Prediction the future command û(k + 1);

16 Prediction the future control cost Ĵ(k + 1);
17 Estimation of the Critic learning rate ηcritic(k);
18 Adjustment of the Critic model

ecritic(k) → W out
critic(k);

19 Estimation of the Actor learning rate ηactor(k);
20 Adjustment of the Actor model eactor(k) → W out

actor(k);
21 Saving deepESN models

3. Simulation results335

The PEMFC system requires several auxiliaries to con-
trol different operating conditions. The flow of reactive
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gases is the most critical variable to be regulated, it de-
notes the transport of reactants in the distribution chan-
nels, in the diffusion layer and finally towards the catalytic340

layer. The stoichiometry must be maintained for PEMFC
operation regardless of changes in the current load. How-
ever, the gas flow will also influence the evacuation of wa-
ter [48]. Membrane humidification is essential for proton
mobility and electric performance, in short, for the mem-345

brane durability. However, an excess can lead to water
plugging of channels reducing the circulation of reactive
gases. On the other hand, a humidity deficit is risky for
the membrane’s integrity, which then becomes more sensi-
tive to high temperature and pressure [49]. On top of that,350

temperature influences the dew temperature, which can
have consequences on the relative humidity. Thus, heating
or cooling subsystems are essential auxiliaries to guaran-
tee optimal electrical production continuity without any
structural degradation [50]. The pressure within the dis-355

tribution channels influences the cell’s performance, which
modifies the kinetics of the reactions [51]. However, the
pressure difference between the anode and cathode must
be relatively small (< 30kPa [52]) or even zero to main-
tain the physical integrity of the membrane. While, events360

such as water accumulation, water purge or changes in op-
erating conditions can lead to pressure disturbances [53].
For these reasons, the variables of stoichiometric control,
pressure difference at the membrane, and temperature are
implemented in simulation. Humidity will be influenced365

by the dew temperature
Simulation PEMFC model and experimental system

configurations do not involve the same types of compo-
nents, in regard to cell size and control variables. Nonethe-
less, these two different configurations allows the valida-370

tion of the adaptive controller generic property.

3.1. PEMFC simulation model

For simulation, the fuel cell core is modelled based on
the work of Pukrushpan [54]. This stack model of 381
cells is later implemented in the study of Wu & Zhou [11]
which emulates the phenomenology of the cathode flood-
ing and membrane drying faults. The configuration of the
stack model stays the same as the original design. The con-
trolled variables are the oxygen stoichiometry, the pressure
difference at the membrane and the fuel cell temperature.

[y1; y2; y3] = [λO2
; ∆Pmbr;Tfc] (26)

The commands variables are the air inlet pressure, the
hydrogen inlet pressure and the cooling massflow rate.

[u1;u2;u3] = [pair,in; pH2,in;wcooling,in] (27)

3.2. Simulation scenarios

Traditional PID and HDP controllers are used dur-
ing the simulation study in order to make a performance375

comparison with the proposed deepADP controller. PID

controllers are optimized with the Ziegler-Nichols heuris-
tic method. The action and critic modules in the tradi-
tionnal HDP controller are carried out by fully connected
feedforward neural network models. All controllers are380

evaluated according to the Root Mean Square Error cri-
terion, in this way, the error can be quantified according
to the controlled variable. The simulation of the PEMFC
model is performed with a sampling time of 2 ms. The 3
PID controllers require 0.04 ms for the calculation of a one385

control loop. In comparison, the proposed controller used
in multiple-input multiple-output (3-3) requires a calcula-
tion time of 0.5 ms, which corresponds to a ratio of x12 on
an i5 desktop computer. Sample time of the control loop
is defined at 5 ms for all controllers.390

3.2.1. Simulation scenarios

The operating parameters of the PEMFC system for
the simulation are detailed in Table 4. The simulation
proceeds according to 3 scenarios : normal operating con-
ditions (S1.1 & S1.2), flooding fault (S2) and membrane395

drying fault (S3).

Table 4
Operating conditions for the healthy mode and faults occurence
simulation

Variables Normal S1 Flooding S2 Drying S3

Current [A] 100-200 200 150
Anode input pressure [kPa] 150 150 150
Cathode input pressure [kPa] 200 200 200
H2 stoichiometry 2.5 2.5 2.5
O2 stoichiometry 3-5 3 2.5-4
Temperature [°C] 60 60 60-70
Ambient temperature [°C] 25 25 25
Anode humidity [%] 80 80 80
Cathode humidity [%] 80 100 50
Cathode injected water [kg/s] 0.005 0.005-0.015 0

Simulations S1.1 & S1.2: Normal operating conditions.
S1.1 is a trajectory tracking of the oxygen stoichiometry
which is modified with common values between 3 and 5.
The load current is fixed to 150A. S1.2 is a regulation of400

the 3 control variables with current disturbance rejection
between 150A, 175A and 200A.

Simulation S2: Flooding fault. The system load current
is fixed at 200 A to enable the production of water. The
flooding fault is simulated at the cathode by increasing the405

injected water mass flow at 4 seconds, the injected liquid
water is located at the cathodic chamber and reduces the
quantity of reagents for a fixed physical volume. The fault
effect is a voltage loss and a pressure drop at the cathode.

Simulation S3: Membrane drying fault. The drying fault410

is simulated by a decrease in the cooling liquid mass flow
rate. The temperature then increases by 60 to 70 °C in
15 seconds. The increase in temperature leads to evapora-
tion of the water contained in the stack and the membrane.
The stoichiometry is set to a value of 4 to contribute to415
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Table 5
Control errors in simulation for oxygen stoichiometry, difference
pressure at membrane and fuel cell temperature

RMSE λO2 RMSE ∆Pm RMSE Tfc

S1.1 deepADP 0.0477 1 775.2 Pa 0.4054 K
HDP 0.0562 2 618.0 Pa 0.4079 K
PID 0.0436 6258.9 Pa 0.4053 K

S1.2 deepADP 0.0236 1 548.0 Pa 0.4056 K
HDP 0.0416 4 857.6 Pa 0.9214 K
PID 0.0206 5 220.2 Pa 0.4090 K

S2 deepADP 0.0734 3 093.5 Pa 0.0227 K
HDP 0.0948 3 089.3 Pa 0.0477 K
PID 0.0622 12 585 Pa 0.0664 K

S3 deepADP 0.1105 5 732.4 Pa 4.4821 K
HDP 0.2102 5 957.8 Pa 4.4659 K
PID 0.0925 12 176 Pa 4.4819 K

the evacuation of the water produced by the electrochem-
ical reaction. The AFTC strategy is simulated here by a
decreased of the stoichiometry from 4 to 2.5 to attempt to
mitigate the drying fault. The fault’s consequences are a
voltage loss and the fault mitigation causes a large change420

in pressure of 0.3 bar.

3.3. Simulation results

For all tests, the stability is verified in the sense of
Lyapunov, the derivative of the function (19) remained425

strictly negative. Moreover, it is correctly limited by its
maximum limit of stability V̇max(t)− V̇ (t) ≥ 1. Therefore,
the deepADP controller remained asymptotically stable.
Also, each of the deepESN reservoirs has an echöıc nature
and each target learning converges in a maximum of 10430

iterations.

3.3.1. Simulation S1.1 - Stoichiometric setpoint tracking
under normal operating conditions

PEMFC response under S1.1 is given in Fig.8. Control
errors of all scenarios are given in Table 5. All controllers435

are satisfactory on the conducted test. For stoichiometry
as for temperature, regulation is substantially equivalent
for PID, HDP and deepADP controllers. For the control
of the pressure difference, the deepADP controller has a
smaller deviation than the others controllers, its antici-440

pation capacity allows to strongly reduce the dynamic er-
ror. However, PID and HDP controllers reach the setpoint
faster. The deepADP controller presented a better accu-
racy, but has a smoother and slower convergence to the
setpoint in return.445

3.3.2. Simulation S1.2 - Regulation with disturbance rejec-
tion under normal operating conditions

PEMFC response under S1.2 is given in Fig.9. For dif-
ference pressure regulation, deepADP controller performs
better in the presence of this disturbance than PID and450

HDP controller. It offers half the deviation reduction than
the PID controller. However, a static error is detected on

the first steady state, then it is faded out after 5 seconds.
The deepADP controller directly converges to the setpoint
only after the second disturbance occurrence. Thus, it455

requires a certain amount of data before converging effec-
tively, this is due to the deepESN models learning capacity.

3.3.3. Simulation S2 - Regulation in presence of flooding
fault

PEMFC response under S2 is given in Fig.10. The PID460

controller allows a fast regulation but with high pressure
variations, whereas the HDP and deepADP controller al-
low a slower regulation but with low pressure variations.
Here the deepADP controller is more precise and effective
in maintaining the balance of pressures to the membrane.465

The temperature control is also more efficient with the pro-
posed controller. On the other hand, the PID controller is
slightly more efficient for stoichiometry control.

3.3.4. Simulation S3 - Regulation in presence of mem-
brane drying fault470

PEMFC response under S3 is given in Fig. 11. The cor-
rective action modifies the anodic input pressure, and con-
sequently, the pressure difference at the membrane. The
deepADP controller has higher accuracy than HDP and
PID controllers. In this scenario the proposed controller475

provides a deviation four times smaller than the PID con-
troller. The difference in performance between fixed and
adaptive controllers are more significant in a fault correc-
tion situation.

480

A Kiviat diagram is presented in Fig.12 to synthe-
size the simulation results. Five criteria are presented:
controller adaptation, prediction capacity, control perfor-
mance (accuracy, response time, stability), immediate con-
trol ability and finally calculation time. The simulations485

show the deepADP controller relevance for the control of
the PEMFC system, and the comparison with HDP and
PID controllers reveal significant improvements, such as
precision, prediction and adaptation.

1. First, deepADP and HDP approaches provide the490

best results in the presence of system faults com-
pared to the PID controller. And precisely, the pro-
posed controller gives the best regulation accuracies
in these scenarios.

2. Secondly, on control variables less influenced by faults495

(stoichiometry and temperature control variables) the
proposed controller has an equivalent accuracy with
the optimized PID controller. The HDP controller
presents larger position errors in these cases.

3. However, one limitation is highlighted with the pro-500

posed controller. The learning process requires sev-
eral disturbances to eliminate static error completely,
so that the deepADP controller allows direct conver-
gence towards the setpoint. The HDP controller does
not suffer from this limitation.505
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Figure 8. Simulation results S1.1 - PEMFC response under stoichiometric setpoint tracking (left) stoichiometric setpoint tracking, (middle)
difference pressure setpoint tracking and (right) temperature setpoint tracking
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Figure 9. Simulation results S1.2 - PEMFC response in presence of current disturbances (left) stoichiometry setpoint tracking, (middle)
difference pressure setpoint tracking and (right) temperature setpoint tracking
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Figure 10. Simulation results S2 - PEMFC response under flooding fault (left) stoichiometry setpoint tracking, (middle) difference pressure
setpoint tracking and (right) temperature setpoint tracking
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Figure 11. Simulation results S3 - PEMFC response under membrane drying fault (left) stoichiometry setpoint tracking, (middle) difference
pressure setpoint tracking and (right) temperature setpoint tracking

10



Table 6
Main components of the test bench and the PEMFC system

Type Reference Details

MEA 1x N117 50 cm²

Mass flow
controller

2x MKS 1179A Responsive time : 2 sec
Accuracy : +/- 1 %

Temperature
controller

Love controls
16A & 32DZ

Back-pressure
controller

2x 20812BP Fairchild pmax = 17 bar
Accuracy : 1 % at 7 bar

Pressure sensor 2x MSP-300100P4N1
2x TT7800-705

Accuracy : 1%
Repetability : 0,1 % of pmax

Electronic charge 1x N3300A

Adaptation

Prediction

PerformancesInstant control

Computation

PID

HDP

deepADP

Figure 12. Comparison between deepADP, HDP and PID con-
trollers in simulation with a normalized Kiviat diagram

4. Experimental results

4.1. PEMFC experimental setup

The test bench presented in Fig.13 includes all the aux-
iliary devices and actuators required for the fuel cell’s op-
eration, where a single cell is involved. Table 6 summarizes510

details of each main components. Due to the constraints of
the experimental test bench, the minimum sampling time
is 4 seconds. This sample time is very long compared to
the simulation and considering the fluidic dynamics and
implemented actuators. Nevertheless, the dynamic of the515

adaptive controller could be analyzed over a long sample
time.

Figure 13. Laboratory test bench with its single cell

The test station automatically regulates the flow rate
and temperature, and the response time of the massflow

rate controller is shorter than the sampling time. There-520

fore, only the regulation of the pressure difference at the
membrane is investigated in the experimental study. How-
ever, it is difficult to measure the PEMFC internal pres-
sure. Thus, the experimental study considers the pressure
difference at the inlet of the membrane, especially since525

this is where the risk of tearing is the highest. The con-
troled variable is y = ∆Pmbr,in and the command variable
is anode back-pressure set point u = pan,out. The cath-
ode back-pressure set point is given to the AFTC strategy.
Back-pressure set points are then ensured by back-pressure530

actuators. This regulation indirectly affects the inlet valve
regulated by the mass flow controller, which consequently
modifies the inlet pressure and finally the pressure differ-
ence at the membrane inlet.

535

Non-linearities are observed in cathodic fluidic actua-
tors. An illustration is given in Fig.14, at the beginning
the pressure difference at the PEMFC inlet is zero. Then,
equivalent reference modifications at the anodic and ca-
thodic output back-pressure actuators are done. A non-540

linear static error is observed on the back-pressure regula-
tor when pressure rises. Fluctuations are also present at
low pressures and the zero pressure difference is not main-
tained at the end of the test despite a return to the initial
operating conditions.
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Figure 14. Experimentation - PEMFC response under identical
back pressure reference changes at the anode and cathode

545

4.2. Experimental scenarios

4.2.1. Experimentation scenarios

The operating parameters of the PEMFC system for
the experimentation are detailed in Table 7. The experi-
mentation proceeds according to 3 scenarios: normal op-550

erating conditions (S1.1 & S1.2), flooding fault (S2) and
membrane drying fault (S3).

Experimentation S1.1 & S1.2: Normal operating condi-
tions. S1.1 is a difference pressure regulation with a rejec-
tion of a periodic disturbance, which is a repetitive step555

of +5 kPa/−5 kPa on the cathodic back-pressure refer-
ence. The objective is to observe the learning process and
the controller’s potential for improvement when facing the
repetition of a same event. S1.2 is a difference pressure reg-
ulation with stoichiometry disturbance rejection between560
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Table 7
Operating conditions in the healthy mode and faults occurence
experimentation

Variables Normal S1 Flooding S2 Drying S3

Current [A] 20 30 20
Hydrogen stoichiometry 2 2.5 2
Oxygen stoichiometry 2.5-10 3 10
Fuel cell temperature [°C] 70 55 80
Preheater temperature [°C] 70 55 80
Boiler temperature [°C] 62 70 63
Cathode humidity [%] 70 100+ 50
Cathode out pressure ref. [kPa] 50 30 50

2 and 10, which are common values for a single cell under
an AFTC strategy. The cathodic back-pressure is fixed.

Experimentation S2: Flooding fault. The flooding fault is
caused by water condensation at the fuel cell inlet and
its accumulation into the PEMFC. The fault is identified565

after 15 minutes by a voltage loss and a cathodic pressure
drop. These effects reflects the accumulation of water and
its evacuation at the cathode.

Experimentation S3: Membrane drying fault. The mem-
brane drying fault is achieved by high oxygen stoichiome-570

try and temperature rise from 60°C to 70°C. The fault is
identified after 10 minutes by an increase then a voltage
loss.

4.3. Experimentation results

4.3.1. Experimentation results S1.1 - Learning and adapt-575

ability of the deepADP controller

The system response is given in Fig.15. With the
proposed approach, the regulation is much more efficient
from the second occurrence of the disturbance. More-
over, the controller is more reactive after the first occur-580

rence, the controller’s response time is reduced by half
upon the second occurrence. Compared to simulation, the
deepADP controller does not suffer from static error at the
first occurrence of a perturbation. This can be explained
by the initial balanced state of the control. Two events585

are enough to improve the controller, and additional oc-
currences do not improve the control performances. In
contrast, the optimized PID controller is equally efficient
throughout this scenario.

4.3.2. Experimentation S1.2 - Regulation with stoichio-590

metric disturbance rejection

PEMFC system response under oxygen stoichiomety
disturbance is shown in Fig.16. DeepADP and PID con-
trollers operate on the anodic output pressure according
to the disturbance. The response times are equivalent for595

the two controllers. However, in terms of precision the
PID controller presents some tremors that appear when
the stoichiometry decreases, which is not the case with
the proposed controller.

4.3.3. Experimentation S2 - Regulation under flooding fault600

operating conditions

PEMFC system response in the presence of flooding
fault is shown in Fig.17. There are 2 types of disturbances
highlighted in this test case, the internal disturbance by
the noise of the pressure sensor and the external distur-605

bance by the injection of condensed water. Fluctuations
in the regulation are a direct consequence of the water ac-
cumulation and evacuation at the cathode. These exter-
nal disturbances are perfectly taken into account by the
deepADP controller, which ensures a zero balance at the610

inlet of the cell. The robustness of the developed controller
to cope with fluctuations and noises is thus demonstrated
here.

An unexpectedly back-pressure actuator valve partial-
opening occurs at 11 minutes. This phenomena is possible615

during PEMFC system faults where the presence of liquid
water is evacuated in a violent way by sudden openings
of the outlet. The control system started to show larger
errors between 11 and 20 minutes, then adapts itself after
this period. The partial opening of the output pipe does620

not significantly interfere the deepADP controller and the
regulation remains stable over time.

4.3.4. Experimentation S3 - Regulation under membrane
drying fault operating conditions

PEMFC system response in the presence of membrane625

drying fault is shown in Fig.18. The increase in temper-
ature causes a temporary increase in voltage. Water ac-
cumulates which causes the cathode input pressure to rise
and consequently the anode input pressure through the
deepADP controller. Once the dewatering fault is set up630

the water content of the system decreases and the inlet
pressures decrease. The disturbance rejection is performed
by the deepADP controller.

The curve fracture observed in Fig.18c corresponds to
an unexpectedly complete purge of the cathode channels.635

During this S3 test, four outlet openings (1 complete and
3 partials) are identified. These partial openings or purges
are important disturbances for the regulation of the pres-
sure difference. The results demonstrate a deepADP con-
troller capable of adapting to these openings, with notably640

an elimination of overshoots from the third opening.

The proposed deepADP controller has been validated
in experimentation. Some constraints due to the experi-
mentation led to the different choice of control variables645

and commands from those used in the simulation. The
proposed generic controller adapted to the experimental
configuration without any change and similarly to the large
sampling period of 4 seconds, but also to static internal
controllers (back-pressure actuators) with nonlinear char-650

acteristics. The results in regulation showed very satisfac-
tory performance in all the tests performed. However, it
should be noted that during first perturbation occurence
the reponse time of the proposed controller is larger com-
pared to PID controller. An optimisation tool for ADP655
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Figure 15. Experimentation results S1.1 - PEMFC response under repetitive disturbance and normal operating conditions (a, b) measured
anode and cathode output pressures, (c, d) difference pressure at the membrane inlet
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(d) PID controller - Difference pressure at the membrane inlet

Figure 16. Experimentation results S1.2 - PEMFC response under stoichiometric disturbance and normal operating conditions (a, b)
measured anode and cathode output pressures, (c, d) difference pressure at the membrane inlet
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Figure 17. Experimentation results S2 - PEMFC response in presence of flooding fault with deepADP controller
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Figure 18. Experimentation results S3 - PEMFC response in presence of membrane drying fault with deepADP controller
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parameters ζ and γ can be integrated to improve control
performance in future studies.

5. Conclusion and prospects

An adaptive and generic data-driven controller has been
designed for PEMFC control. The proposed approach uses660

deepESN-type neural networks to estimate and predict dy-
namic programming functions, allowing a reinforcement
approach for command generation. A fuzzy logic method
has been implemented in order to speed up the learning
process for an ideal application in real-time. Then, the reli-665

ability of the proposed method is guaranteed throught con-
trol stability verification. Simulation results have shown
the approach efficiency over short sample times and bet-
ter performance compared to traditional PID and HDP
controllers. Deviations regulation have been significantly670

reduced in faults operating conditions. Under healthy sys-
tem conditions, the control performance remains equiva-
lent to the PID controller. However, the first error devia-
tion requires more time to be corrected. Experimental re-
sults validated the proposed approach and demonstrated675

generic and adaptive capabilities to faulty PEMFCs but
also to auxiliary system disturbances and nonlinearities.
For the perspectives, more extensive tests should be con-
ducted on a larger scale, such as PEMFC stack system.
The next step will be to integrate the deepADP controller680

into a real AFTC strategy with the diagnostic and decision
modules.
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[17] T. Génevé, J. Régnier, C. Turpin, Fuel cell flooding diagnosis

15



based on time-constant spectrum analysis 41 (1) 516–523.775

doi:10.1016/j.ijhydene.2015.10.089.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0360319915025860

[18] Y.-H. Lee, J. Kim, S. Yoo, On-line and real-time diag-
nosis method for proton membrane fuel cell (PEMFC)780

stack by the superposition principle 326 264–269.
doi:10.1016/j.jpowsour.2016.06.113.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0378775316308254

[19] J. Kim, I. Lee, Y. Tak, B. Cho, State-of-health diagnosis785

based on hamming neural network using output voltage
pattern recognition for a PEM fuel cell 37 (5) 4280–4289.
doi:10.1016/j.ijhydene.2011.11.092.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0360319911025900790

[20] S. Zhou, J. S. Dhupia, Online adaptive water management fault
diagnosis of PEMFC based on orthogonal linear discriminant
analysis and relevance vector machine 45 (11) 7005–7014.
doi:10.1016/j.ijhydene.2019.12.193.
URL https://linkinghub.elsevier.com/retrieve/pii/795

S0360319919347664

[21] L. Ifrek, S. Rosini, G. Cauffet, O. Chadebec, L. Rouveyre,
Y. Bultel, Fault detection for polymer electrolyte mem-
brane fuel cell stack by external magnetic field 313 141–150.
doi:10.1016/j.electacta.2019.04.193.800

URL https://linkinghub.elsevier.com/retrieve/pii/

S0013468619309016

[22] Z. Liu, M. Pei, Q. He, Q. Wu, L. Jackson, L. Mao,
A novel method for polymer electrolyte membrane
fuel cell fault diagnosis using 2d data 482 228894.805

doi:10.1016/j.jpowsour.2020.228894.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0378775320311976

[23] N. Y. Steiner, D. Candusso, D. Hissel, P. Moçoteguy, Model-
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