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ABSTRACT Low-pathogenic avian influenza viruses (LPAIVs) are genetically highly
variable and have diversified into multiple evolutionary lineages that are primarily
associated with wild-bird reservoirs. Antigenic variation has been described for
mammalian influenza viruses and for highly pathogenic avian influenza viruses that
circulate in poultry, but much less is known about antigenic variation of LPAIVs. In
this study, we focused on H13 and H16 LPAIVs that circulate globally in gulls. We in-
vestigated the evolutionary history and intercontinental gene flow based on the
hemagglutinin (HA) gene and used representative viruses from genetically distinct
lineages to determine their antigenic properties by hemagglutination inhibition as-
says. For H13, at least three distinct genetic clades were evident, while for H16, at
least two distinct genetic clades were evident. Twenty and ten events of interconti-
nental gene flow were identified for H13 and H16 viruses, respectively. At least
two antigenic variants of H13 and at least one antigenic variant of H16 were iden-
tified. Amino acid positions in the HA protein that may be involved in the antigenic
variation were inferred, and some of the positions were located near the receptor
binding site of the HA protein, as they are in the HA protein of mammalian influ-
enza A viruses. These findings suggest independent circulation of H13 and H16 sub-
types in gull populations, as antigenic patterns do not overlap, and they contribute
to the understanding of the genetic and antigenic variation of LPAIVs naturally cir-
culating in wild birds.

IMPORTANCE Wild birds play a major role in the epidemiology of low-pathogenic
avian influenza viruses (LPAIVs), which are occasionally transmitted— directly or indi-
rectly—from them to other species, including domestic animals, wild mammals, and
humans, where they can cause subclinical to fatal disease. Despite a multitude of
genetic studies, the antigenic variation of LPAIVs in wild birds is poorly under-
stood. Here, we investigated the evolutionary history, intercontinental gene flow,
and antigenic variation among H13 and H16 LPAIVs. The circulation of subtypes
H13 and H16 seems to be maintained by a narrower host range, in particular
gulls, than the majority of LPAIV subtypes and may therefore serve as a model
for evolution and epidemiology of H1 to H12 LPAIVs in wild birds. The findings
suggest that H13 and H16 LPAIVs circulate independently of each other and em-
phasize the need to investigate within-clade antigenic variation of LPAIVs in wild
birds.

KEYWORDS avian viruses, influenza, evolution, epidemiology, ecology, antigenic
variation, seabird, gulls, wild birds
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ild birds of the orders Anseriformes (mainly ducks, geese, and swans) and

Charadriiformes (mainly gulls, terns, and waders) play a major role in the epide-
miology of low-pathogenic avian influenza viruses (LPAIVs). LPAIVs are characterized
into subtypes based on the surface proteins hemagglutinin (HA; H1 to H16) and
neuraminidase (NA; N1 to N9), e.g., H13N6. Ducks play an important role in the
epidemiology of most LPAIV subtypes. However, birds of the order Charadriiformes—in
particular gulls— are the major reservoir for subtypes H13 and H16 (see Table S1 in the
supplemental material) (1-4). High prevalence of H13 and/or H16 LPAIVs has been
observed in juvenile gulls at breeding colony sites (5-7) and in adults during spring
and/or fall migration (8, 9). H13 and H16 viruses have a global distribution. Since their
first detection in 1977, H13 viruses have been detected in North America, South
America, Europe, Asia, Africa, and Oceania. Since their first detection in 1975, H16
viruses have been detected in North America, South America, Europe, and Asia. The
spatial isolation of host populations has shaped LPAIV evolution and led to the
independent circulation of different virus gene pools between the Western and Eastern
hemispheres (10). However, some pelagic gull populations connect multiple continents
through seasonal migration and overlapping distributions and could facilitate rapid and
long-distance dispersal of LPAIV genomes (2, 9, 11-14). For instance, great black-backed
gulls (Larus marinus) migrate between Europe and the east coast of North America, and
LPAIVs consisting of both North American and Eurasian genes have been isolated from
this species (12). Upon intercontinental gene flow, i.e., the movement of genes between
the different continents, some LPAIV genes seem to have become established in the
population, e.g., H6 (15).

Influenza A viruses (IAVs) belong to the family Orthomyxoviridae and are negative-
sense single-stranded RNA viruses with a segmented genome. The genome consists of
eight segments encoding 12 proteins or more, including the surface proteins HA and
NA. The HA protein of IAV is a major determinant for virus binding to cells and
subsequent cell entry and for generation of |AV-specific antibodies, and it is thus
subjected to strong selective pressure (16). Indeed, in wild birds—in particular mallards
(Anas platyrhynchos)—LPAIV infection dynamics between LPAIV subtypes seem to be
shaped partially by preexisting homo- or heterologous antibodies (17). Furthermore,
within other host systems, evasion of IAV-specific antibodies by IAVs— called antigenic
variation—has been described for seasonal human IAVs (18, 19), swine IAVs (20-22),
and equine IAVs (23) and for highly pathogenic avian influenza viruses (HPAIVs) that
circulate in poultry (24, 25). Despite numerous studies on the genetic variation of
LPAIVs in wild birds, the antigenic variation within LPAIV subtypes that circulate in wild
birds has barely been investigated (26, 27).

To better understand LPAIV epidemiology in gulls, we investigated the global
distribution of H13 and H16 LPAIVs and the antigenic variation of a representative
subset of H13 and H16 LPAIVs. Based on the sequencing of HA genes of 84 viruses and
hemagglutination inhibition assays, we showed that intercontinental H13 and H16
gene flow occurred frequently and that H16 genetic lineages did not form antigenic
clusters, suggesting that clade-defining mutations were not in critical epitopes (i.e., part
of the antigen that binds to specific antibodies). In contrast, the H13 genetic clades
partially corresponded with the antigenic variation of H13 LPAIVs, suggesting that
some of the clade-defining mutations were in critical epitopes.

RESULTS

Phylogeographic structure and intercontinental gene flow. Phylogenetic analy-
ses supported the idea that the H13 HA was structured in three major genetic lineages
(lineages A to C) (Fig. 1; also, see Fig. ST and S2). The time to the most recent common
ancestor (tMRCA) of the H13 HA gene was dated to 1927 (=95% highest posterior
density [HPD], 1920-1934). The tMRCA of viruses of clade A (1963 [1958-1966]) was
longer than those of clade B (1975 [1974-1976]) and C (1977 [1976-1978]). Our
analyses support the idea that the geographic origins of H13 viruses of clades B and C
could be North America and Europe, respectively (posterior probabilities for the
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FIG 1 Maximum-clade-credibility (MCC) tree for influenza A virus H13 hemagglutinin subtype (n = 338). Branches were
colored according to most probable geographic origin (red, North America; orange, South America; dark blue, Europe; light
blue, Asia; green, Oceania; gray, not identified). Black node bars represent the 95% highest posterior densities for times to

the common ancestors. Numbers highlight intercontinental gene flow events as detailed in Table 1 and Fig. S3. Virus strain
names and posterior probabilities are detailed in Fig. S2.

geographic origin of the MRCA, 1 for clade B and 1 for clade C). For clade A, limited
historical data on viruses from different locations as well as low posterior probability
(0.62) precludes a conclusion on the geographic origin of the MRCA.

Since the first isolation of an H13 IAV from a gull in 1977, 20 potential events of
intercontinental gene flow were identified (indicated by the numerals 1 to 20 in Fig. 1
and Table 1 and also in Fig. S3). Clade A supports the maintenance of H13 in European
gulls, with evidence of multiple introductions to North America and Asia (events 3, 5,
6, 9, and 10), and a reverse introduction from North America to Asia (event 8). Clade C
was also composed mainly of viruses circulating in Europe, with evidence of multiple
introductions to North America (events 12, 15, and 19) and Asia (events 13, 16, and 17).
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TABLE 1 Intercontinental gene flow events for influenza A virus H13 hemagglutinin@

Journal of Virology

H13 clade Event Time of MRCA =+ 95% HPD Geographic origin of the MRCA (posterior density) Location of introduction
A 1 1963 (1958-1966) North America (0.62) Oceania
2 1974 (1972-1975) North America (0.73) Europe
3 1988 (1987-1989) Europe (1) North America
4 1990 (1988-1991) Europe (0.82) South America
5 1996 (1995-1997) Europe (0.75) Asia
6 2003 (2003-2004) Europe (1) Asia
7 2005 (2004-2005) Asia (0.48) North America
8 2009 (2009-2010) North America (0.9) Asia
9 2006 (2006-2007) Europe (0.96) Asia
10 2011 (2010-2011) Europe (1) Asia
B 11 2013 (2012-2014) North America (0.96) South America
C 12 1987 (1985-1988) Europe (0.99) North America
13 2002 (2002-2003) Europe (1) Asia
14 2005 (2004-2005) Asia (0.55) North America
15 2010 (2009-2010) Europe (1) North America
16 2004 (2003-2005) Europe (0.97) Asia
17 2013 (2013-2014) Europe (0.99) Asia
18 2014 (2013-2014) North America (0.39) Asia
19 2011 (2010-2011) Europe (0.99) North America
20 2012 (2011-2012) North America (0.94) South America

9MRCA, most recent common ancestor; HPD, highest posterior density. Event numbers correspond to the numbers in Fig. 1 and Fig. S3.

The introduction of clade C H13 HA in North America (event 19) was followed by an
introduction to South America (event 20). Evidence for intercontinental gene flow
among North American H13 IAVs occurred among eastern and western North American
isolates (events 3, 12, 15, and 19). Clade B was composed almost exclusively of viruses
circulating in North America, although one gene flow event to South America occurred
recently (event 11).

The H16 HA was structured in at least two major genetic lineages (Fig. 2; also, see
Fig. S4 and S5). The maximum-clade-credibility (MCC) tree was structured in three main
clades (A to C) (see Fig. S5), while the maximum-likelihood (ML) tree provided support
for only two main genetic clades (A and B/C merged) (see Fig. S4). The tMRCA of the
H16 HA gene was dated to 1924 (1914-1932). Clade A included only viruses from
Europe and was dated to 1977 (1975-1980); clade B included only viruses from North
America, with a tMRCA estimated at 1969 (1967-1971). Our analyses supported the idea
that the geographic origins of clades A and B were Europe and North America,
respectively (posterior probabilities for the geographic origin of the MRCA, 0.99 for
clade A and 1 for clade B). The tMRCA of clade C was estimated to be 1965 (1962-1968).
Clade C may have arisen in Europe (posterior probability for the geographic origin of
the MRCA, 0.87) and consisted of viruses of mixed origin, i.e., Europe, Asia, and North
America.

Since the first isolation of an H16 IAV from a black-legged kittiwake (Rissa tridactyla)
in 1975, ten intercontinental gene flow events were identified for viruses of clade C
(indicated by the numerals 1 to 10 in Fig. 2 and Table 2 and in Fig. S6). As for the H13
subtype, strong support for gene flow between Europe and North America was found,
in particular from northwestern European countries (Denmark) to northeastern America
(Delaware, New Hampshire, and Quebec) and from Iceland to Newfoundland (events 6
and 10). Evidence for intercontinental gene flow among North American H16 IAVs
occurred among eastern and western North American isolates (events 3, 6, 8, and 10).
In particular, intercontinental gene flow 8 seems to have been maintained in North
America after its initial introduction in 2006 (2005-2006) for at least 10 years and may
have replaced clade B of H16 HA (Fig. 2).

High rates of nucleotide substitution obtained for the H13 HA genetic lineages were
consistent with those previously reported for H4, H6, and H7 subtypes circulating in
wild ducks (Table 3) (15, 38). However, the nucleotide substitution rate of clade
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FIG 2 Maximum-clade-credibility (MCC) tree for influenza A virus H16 hemagglutinin subtype (n = 192). Branches were
colored according to most probable geographic origin (red, North America; orange, South America; dark blue, Europe; light
blue, Asia; green, Oceania; gray, not identified). Black node bars represent the 95% highest posterior densities for times to

the common ancestors. Numbers highlight intercontinental gene flow events as detailed in Table 2 and Fig. S6. Virus strain
names and posterior probabilities are presented in Fig. S5.

B—which consists exclusively of North American IAV—was lower than mean rates and
HPD obtained for the other two H13 clades. The mean dN/dS (nonsynonymous sub-
stitutions/synonymous substitutions) ratios obtained for the three H13 genetic clades
were comparable to those previously reported for other subtypes, which suggests that
the HA was under strong purifying selection (Table 3). Nonetheless, a slightly higher
dN/dS ratio obtained for clade B and C compared to other lineages suggests that they
may be subjected to a more neutral selection. The mean nucleotide substitution and

TABLE 2 Intercontinental gene flow events for influenza A virus H16 hemagglutinin@

Journal of Virology

H16 clade Event Time of MRCA =+ 95% HPD Geographic origin of the MRCA (posterior density)

Location of introduction

C 1 1971 (1968-1972) Europe (0.97)
2 1976 (1976-1976) Asia (0.71)
3 1976 (1972-1980) Europe (0.86)
4 1999 (1999-1999) Europe (1)
5 2003 (2002-2004) Europe (1)
6 1999 (1998-2000) Europe (0.99)
7 2008 (2007-2009) Europe (0.99)
8 2006 (2005-2006) Europe (0.97)
9 2006 (2006-2007) North America (0.55)
10 2008 (2007-2009) Europe (0.63)

Asia

Europe

North America
Asia

Asia

North America
Asia

North America
South America
North America

aMRCA, most recent common ancestor; HPD, highest posterior density. Event numbers correspond to the numbers in Fig. 2 and Fig. S6.
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TABLE 3 Molecular evolution of the HA gene of influenza A virus subtypes H13 and H16

Substitution rate®

Genetic lineage N@ Time period (yrs) Mean 95% HPD Mean dN/dS
H13 338 40 3.8 3.6-4.1 0.13
H13 A 54 39 3.8 2.3-49 0.09
H13 B 76 39 0.8 0.6-1.0 0.18
H13 C 208 37 5.5 5.0-6.0 0.16
H16 192 41 3.1 2.8-34 0.09
H16 A 56 33 4.5 3.9-5.2 0.10
H16 B 19 35 4.6 3.9-5.2 0.06
H16 C 117 40 1.5 1.2-1.8 0.11

aNumber of nucleotide sequences included in the analysis.
bValues are substitutions (10~3) per site per year. HPD, highest posterior density.

dN/dS ratios for the H16 gene were also consistent with H13 HA as well as with H4, H6,
and H7 subtypes from wild ducks. However, H16 clade C (European mixed), which
consisted of viruses of a geographically more mixed origin, had slightly lower nucleo-
tide substitution rates and higher dN/dS ratios than clade A (European) and clade B
(North American) (Table 3).

Antigenic diversity between H13 and H16 LPAIVs. As expected from two differ-
ent HA subtypes, the H13 and H16 viruses formed two separate antigenic variants. The
H13 and H16 viruses were generally well separated, forming groups on opposite sides
of the antigenic map (Fig. 3; Table 4). A total of nine amino acid positions within or near
the receptor binding site of the HA were identified that differed consistently between
H13 and H16 viruses (based on alignments of 338 H13 and 192 H16 HA indicated in
Table 5); of those, amino acid position 145 was located in the 130 loop, 200 and 208
were in the 190 helix, and 231 and 233 were in the 220 loop of the receptor binding
site of the HA (HA numbering based on references 28 and 29). Of those, amino acid
position 233 was listed previously as being involved in differences in receptor-binding
site between HAs originating from Laridae and Anatidae (30). Additionally, the amino
acid at position 196 differed between H13 (valine [V]) and H16 (aspartic acid [D]) viruses;
this position may contribute to receptor binding specificity as identified previously
based on crystal structures of H5 and H13 LPAIV (31). Due to nonspecific cross-
reactivity, two H13 viruses (i.e., HEGU/AK/458/85 and HEGU/AK/479/85) had unex-
pected high titers against H16 antisera (Table 4); they were therefore positioned in the
center of the map and served to pull H13 and H16 together.

Antigenic diversity among H13 LPAIVs. The representative H13 viruses formed at
least two different antigenic variants (Fig. 3; Table 4). The viruses of H13 clades A and
B were genetically distinct (Fig. 1) but were antigenically similar (Fig. 3), based on the
H13 clade A antisera cross-reacting with H13 clade B viruses and vice versa. In contrast,
H13 clade C viruses reacted poorly—if at all—with antisera that were raised against
clade A and B viruses, and, conversely, antisera against clade C viruses rarely reacted
with substantial titers with viruses of clade A and B. Thus, H13 clade A/B and H13 clade
C viruses formed two different antigenic variants. The antigenic diversity of H13 clades
A and B combined is about the same as the antigenic diversity of the H13 clade C. One
H13 clade B virus, i.e.,, LAGU/DB/1370/86, could not be placed well in the map due to
hemagglutination inhibition (HI) titers of 40 or lower (Table 4).

To gain insight into the molecular basis of the antigenic variation between H13
clades A/B and C, amino acids that differed consistently among the different clades of
H13 viruses were identified (based on the alignment of 338 H13 [Table 5]). A total of
four amino acid positions within or near the receptor binding site of the HA were
identified that differed consistently for clades A, B, and/or C. Of those, amino acids at
positions 149 and 254 differed consistently between clades A/B and C. Viruses belong-
ing to clade C—except a single virus from South America that had an arginine (R) at
position 149 — had a deletion at position 149 (previously identified using a smaller data
set as position 154 [12]), in contrast to viruses of clade A or B, which had an aspartic acid
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(D), glutamic acid (E), asparagine (N), or serine (S) at this position. The correlation
between the antigenic distance of H13 representative viruses from A/gull/MD/704/1977
(H13N6) (clade A)—the first detected H13 virus—and the number of HA1 amino acid
substitutions from A/gull/MD/704/1977 was 0.87 and was statistically significant
(P < 0.0001; Pearson correlation).

Antigenic diversity among H16 LPAIVs. The representative H16 viruses formed at
least one antigenic variant (Fig. 3 and Table 4). The genetically distinct H16 clades A, B,
and C did not form separate antigenic clusters in the map, which reflects the raw Hl
data, as there are no patterns for any of the four H16 antisera tested that correspond
to the genetic lineages. The antigenic diversity of the H16 viruses is within eight
antigenic units, with BHGU/NL/1/07 being on the edge of this antigenic space (i.e., low
titers to all sera). The antigenic diversity of H16 clade A/B/C is about the same as the
antigenic diversity of the H13 clades A and B combined and similar to the antigenic
diversity of the H13 clade C.

Though clades A, B, and C did not form separate antigenic clusters in our analysis,
amino acids that differed consistently among the different clades of H16 viruses were
identified (based on the alignment of 192 H16 HA [Table 5]). A total of three amino acid
positions within or near the receptor binding site of the HA were identified that differed
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TABLE 5 Amino acid differences within or near the receptor binding site of the HA protein among H13 and H16 subtypes and clades?

Amino acid(s) at position:

Clade 139 142 145 149 166 176 177 196 198 200 208 217 218 224 231 233
H13A D ATS A D,EN,S KAQ K T V,L V E S G K SSL K P Y
H13B D ATS A D, N,S K, R GR T vV, T,A E S, G SRNH SL KN P,L Y Q
H13C D vV, A A DEL, R KRS GR TAV VI TAE E D,N,S SRG ST NTK P Y

H16 A E T S DEL L G E D E T K K E E | D
H16B D \ S DEL DEL G D D E? TV K K, E E E | D, E N
H16C D V, A S DEL K, DEL G E D D E T K K E E LV DN

’

aBased on the HA gene of H13 (n = 338) and H16 (n = 192) LPAIVs, including the 130 loop (positions 136 to 147 according to reference 29), the 190 helix (200 to
208), and the 220 loop (230 to 240). DEL, deletion of the amino acid.

consistently among the three H16 clades and were not associated with antigenic
variation. The correlation between the antigenic distance of the representative viruses
from A/Black-headed gull/TM/13/76 (H16N3) (clade C)—one of the first detected H16
viruses—and the number of HAT amino acid substitutions from A/Black-headed gull/
TM/13/76 was 0.67 and was statistically significant (P = 0.003; Pearson correlation).

DISCUSSION

We investigated the evolutionary history and intercontinental gene flow based on
the hemagglutinin (HA) gene of H13 and H16 LPAIV and selected representative viruses
from genetically distinct lineages to determine their antigenic properties by HI assays.
H13 formed at least three distinct genetic clades as suggested previously based on
smaller data sets (9, 32-35), while H16 formed at least two distinct genetic clades.
Twenty and ten events of intercontinental gene flow were identified for H13 and for
H16 viruses, respectively. At least two antigenic variants of H13 and at least one
antigenic variant of H16 were identified. The presence of different antigenic variants
among viruses of a single LPAIV subtype is in contrast to previous findings based on
antigenic characterization of LPAIV H3 (26) and implies that antigenic variation within
LPAIV subtypes occurs.

The frequency of intercontinental gene flow of the HA gene of H13 and H16 viruses
was similar to that of the HA gene of H6 viruses but lower than that of internal genes
(2, 27, 36, 37). Previously, intercontinental gene flow was described extensively for the
H6 HA genes, while no intercontinental gene flow was detected for the H4 and H7
subtypes (15, 38). For the H6 subtype, gene flow has been described to have occurred
ten times with four established genes during a period of 31 years (1975 to 2006) (15).
Also, evidence for intercontinental gene flow among North American H13 and H16
genes occurred among eastern and western North American LPAIVs, in contrast to
eastern North American LPAIVs only, as reported previously (39). Given the relatively
high number of intercontinental flow events of IAV internal genes associated with
shorebirds and gulls (2, 27, 36, 37), one might have expected a higher gene flow of
gull-associated H13 and H16 HA genes, compared to, e.g., H6. However, a higher
intercontinental gene flow was apparent only with H13 (i.e., 20 events during a period
of 35 years). This may suggest one or more of the following: (i) H13 has a broader host
range, host population size, and/or host distribution than H16; (ii) local H13-specific
herd immunity is lower than H16-specific herd immunity and therefore less limiting of
establishment opportunities in host populations of H13; (iii) H13 has higher environ-
mental survival than H16; and (iv) introduced H13 HA genes may be less affected by
strong subtype-dependent competition with endemic HA genes (e.g., with respect to
linkage to NS1 and NP, as these contain most gull-specific features [33]) than intro-
duced H16 genes. Interestingly, no H13 or H16 gene flow from Asia to Europe was
described, which is in contrast to, e.g., H5 HPAIVs that have been introduced from Asia
to Europe several times (40, 41). The relatively low frequency of detection of intercon-
tinental gene flow of H13 or H16 genes out of North America and in particular Asia,
relative to Europe, may be due to a bias in IAV surveillance and sequencing (i.e., the
number of available IAV sequences from gulls isolated in Europe is higher than those
from North America and in particular Asia).
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Antigenic diversity of LPAIVs depends partially on the host population size and
structure. In this study, H13 and H16 LPAIVs formed at least three and two distinct
genetic clades, respectively, that did not correspond or only partially corresponded
with antigenic clusters. The H16 genetic clades did not form antigenic clusters, sug-
gesting that clade-defining mutations were not in critical epitopes. In contrast, the H13
genetic clades partially corresponded with the antigenic variation of H13 LPAIV,
suggesting that some of the clade-defining mutations were in critical epitopes. Also,
given that the H13 antigenic space is larger than the antigenic space covered by H16
viruses, the host population of H13 may be larger and more widely distributed than the
host population of H16 LPAIV, facilitating the circulation of more than one antigenic
variant of a single LPAIV subtype. Strong genetic and antigenic divergence between
two cocirculating lineages could be the product of a very large host meta-population
size and relatively low cross-species transmission rate (42). Globally, viruses of the H13
subtype seem to be more common than viruses of the H16 subtype (2, 4), which is
consistent with the finding that H13 LPAIV consists of multiple antigenic variants.
Besides increased host population size and host distribution, prolonged virus survival
may shape LPAIV epidemiology and evolution. Antigenic diversity within H13 LPAIV
may be shaped by amino acid substitutions near the receptor binding site of the HA
protein. In this study, we found evidence that amino acids or deletions at positions 149
and 254 of the HA protein may be involved in antigenic diversity among H13 strains.
In addition, position 149 could be involved in H16 LPAIV antigenic diversity, as all H16
viruses had a deletion at this position and H16 clades A, B, and C were antigenically
similar.

Cocirculating and newly introduced H13 or H16 LPAIV can be either antigenically
similar or antigenically different. In the Northern hemisphere, H13 and H16 IAV sub-
types circulate most extensively in breeding colonies in hatch-year birds at the end of
summer and early fall (5-7). In black-headed gulls (which in Europe are one of the main
hosts for H13 and H16 LPAIVs), infection with H13 or H16 results in strong protection
against reinfection with the same virus; however, susceptibility to infection with the
other subtype or with another strain of the same subtype is unknown (43, 44). Our
findings support the independent long-term maintenance and cocirculation of at least
two genetically distinct lineages of H13 and of H16 in Eurasia. This pattern is similar to
the one that has been described for the H3 1AV subtype in ducks in North America (42).
Our analysis showed that these genetically distinct cocirculating lineages may belong
to the same antigenic variant. Here, we found evidence that genetically distinct
cocirculating H13 or H16 LPAIV in a black-headed gull breeding colony site in the
Netherlands may be either antigenically different (e.g., H13 clade A virus A/BHGU/NL/
7/2009 [H13N2] and H13 clade C virus A/BHGU/NL/20/2009 [H13N2]) or antigenically
similar (e.g., H16 clade A viruses A/BHGU/NL/10/2009 [H16N3] and A/BHGU/NL/21/2009
[H16N3] and H16 clade C virus A/BHGU/NL/26/2009 [H16N3]). Similarly, intercontinental
gene flow occurred with HA genes that were antigenically similar to local circulating
viruses (i.e, H16 clade C viruses that were genetically closely related to SB/DB/172/06
and SB/DB/195/06 versus local circulating H16 clade B viruses) and HA genes that were
antigenically different from local circulating viruses (i.e., H13 clade C viruses genetically
closely related to LAGU/NJ/AI08-0714/08 versus local circulating H13 clade B viruses.

Antigenic variation within an LPAIV subtype at the clade level (i.e, H13 clades A and
B combined versus H13 clade C) was described here, yet less is known about antigenic
variation within genetic clades of H13, H16, or other LPAIV subtypes. For H13, genetic
diversity within clades seemed stable—i.e., viruses of clade A, B, or C collected over 3
decades were antigenically closely related—suggesting no major genetic differences;
this is in contrast to the few mutations needed for antigenic change in seasonal human
IAV. Similarly, a study on antigenic variation of H3 LPAIV isolated in North America
suggested that genetically diverse viruses were antigenically stable (26). Major anti-
genic changes in seasonal human IAV were due to amino acid substitutions immedi-
ately adjacent to the receptor binding site (18); this could potentially also explain
antigenic variation between antigenically different viruses of H13 clade A/B and clade
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TABLE 6 Representative viruses selected to generate ferret antisera used to map the
antigenic diversity of H13 and H16 influenza A viruses

Subtype Clade Virus strain name
H13 A A/gull/Maryland/704/1977 (H13N6)
A A/Black-headed gull/Netherlands/2/2007 (H13N6)
B A/Ring-billed gull/Georgia/Al00-2658/2000 (H13N6)
B A/gull/Minnesota/1352/1981 (H13N6)
C A/Laughing gull/New Jersey/Al08-0714/2008 (H13N9)
C A/Great black-headed gull/Astrakhan/1420/1979 (H13N2)

H16 A/Black-headed gull/Sweden/2/1999 (H16N3)
A/Herring gull/New York/AI00-532/2000 (H16N3)
A/Black-headed gull/Turkmenistan/13/1976 (H16N3)

A/Black-headed gull/Sweden/5/1999 (H16N3)

NN ®m®>

C (i.e., amino acid position 149 of the HA). Future work on antigenic variation of LPAIV
should include within-clade genetic and antigenic variation.

MATERIALS AND METHODS

Viruses. The HA sequences of H13 (n = 64) and H16 (n = 20) viruses isolated from wild birds in North
America (n = 39 and n = 5, respectively) and Europe (n = 25 and n = 15, respectively) between 1976 and
2010 were determined at the University of Minnesota (Saint Paul, MN) and at the Department of
Viroscience of the Erasmus Medical Center (Rotterdam, the Netherlands). Details on virus isolates,
including GenBank accession numbers, are summarized in Tables S2 and S3; details related to the Sanger
sequencing method are available upon request. The HA sequences were supplemented with full-length
nucleotide sequences of the HA gene of H13 and H16 viruses isolated from wild birds between 1975 and
2017 and downloaded from GenBank (https://www.ncbi.nlm.nih.gov). The full data set included se-
quences of H13 (n = 519) and H16 (n = 276) HA genes and was biased toward virus strains collected
since 2000 due to increased surveillance and sequencing since 2000.

Of this full data set, viruses representing the genetically distinct clades were selected (n = 44; H13
clades A, B, and C and H16 clades A, B, and C; see Results for clade definition) to investigate the antigenic
diversity of H13 and H16 viruses. Of those viruses, viruses that were genetically most divergent were
selected (n = 10) to generate ferret antisera (Table 6). The antigenic properties of all representative
viruses (n = 44) were analyzed in hemagglutination inhibition (HI) assays using a panel of ten ferret
antisera.

Genetic analyses. The nucleotide sequences of the coding region of H13 and H16 HA were aligned
with the program CLC 8.0 (CLC bio, Aarhus, Denmark). Neighbor-joining trees were then generated, with
1,000 bootstraps, in order to assess the overall genetic structure of the H13 (n = 519) and H16 (n = 276)
HA sequences. To lower the bias in species and geography (e.g., black-headed gulls [Chroicocephalus
ridibundus] from the Netherlands and glaucous-winged gulls [Larus glaucescens] from Alaska), duplicate
sequences (i.e., identical sequences of the same host species, location, and date) were identified with
mothur 1.39.5 (45) and removed, resulting in final alignments of H13 (n = 338) and H16 (n = 192) HA. To
identify the genetic structure of H13 and H16 virus subtypes, maximum-likelihood trees with 1,000
bootstraps were generated with the software PhyML 3.1 (46). The general time-reversible (GTR) evolu-
tionary model, an estimation of the proportion of invariable sites (I) and of the nucleotide heterogeneity
of substitution rate (a), was used as selected by Model Generator 0.85 (47). To investigate the evolu-
tionary history of H13 and H16 virus subtypes, Bayesian Markov chain Monte Carlo coalescent analyses
were performed. The temporal structure of the data set was assessed with the program TempEst 1.5.3
(48). Both data sets showed a positive correlation between genetic divergence and sampling time and
appear to be suitable for phylogenetic molecular clock analyses. Time to the most recent common
ancestors (MRCA) as well as geographic ancestral states (i.e., continent) and their associated posterior
probabilities were obtained based on the method described by Lemey et al. with the program BEAST
1.10.1 (49, 50). A strict molecular clock model was selected, as relaxed clock models (uncorrelated
exponential and uncorrelated log-normal) resulted in low effective sample sizes (< 200) in spite of high
chain length (>200 million states). In all simulations, a Bayesian skyline coalescent tree prior (51) was
selected. The Shapiro-Rambaut-Drummond-2006 nucleotide substitution model was selected (52), and it
has been used in population dynamic studies of other IAV subtypes (15, 38, 42, 53). Overall, a method
similar to that in previous studies on IAV evolutionary dynamics of subtypes H4, H6, and H7 (15, 38, 54)
was used. Analyses were performed with two independent chain lengths of 100 million generations
sampled every 1,000 iterations; the first 10% of trees were discarded as burn-in. Substitutions rates based
on independent analyses of the major H13 and H16 clades were obtained using the program BEAST
1.10.1. Rates of nonsynonymous substitutions (dN) and synonymous substitutions (dS) were obtained
using the single likelihood ancestor counting method implemented in HyPhy (55). Computations were
performed with the Datamonkey Web server (56, 57).

Antisera. Postinfection antisera were prepared upon nasal inoculation of ferrets (>1 year of age;
male; two ferrets per virus) with virus (cultured on embryonated chicken eggs; each ferret received 106
to 107 median egg infectious doses [EID,]/100 ul) and blood collection by exsanguination 14 days later.
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An overview of antisera used in this study is provided in Table 6. Antisera were pretreated overnight at
37°C with receptor-destroying enzyme (Vibrio cholerae neuraminidase), followed by inactivation for 1 h
at 56°C before use in HI assays.

Antigenic analyses. HI assays were performed according to standard procedures (58). The HlI titer is
expressed as the reciprocal value of the highest serum dilution that completely inhibited hemaggluti-
nation. To investigate antigenic variation among and within H13 and H16 viruses, antigenic cartography
methods were used as described previously (19). Briefly, antigenic cartography is a method to analyze
and visualize HI assay data. The titers in an HI table can be thought of as specifying target distances
between antigens and antisera. In an antigenic map, the distance between antigen point A and
antiserum point S corresponds to the difference between the log, value of the maximum observed
titer to antiserum S from any antigen and the titer of antigen A to antiserum S. Modified
multidimensional scaling methods are used to arrange the antiserum and antigen points in an
antigenic map to best satisfy the target distances specified by the HI data (18). Because antigens are
tested against multiple antisera and antisera are tested against multiple antigens, many measure-
ments can be used to determine the position of the antigens and antisera in an antigenic map, thus
improving the resolution of the HI data.

Ethics statement. This study was approved by the independent animal experimentation ethical
review committee Stichting DEC consult (Erasmus MC permits 122-98-01, 122-08-04, and 15-340-03) and
was performed under animal biosafety level 2 (ABSL2) conditions. Animal welfare was monitored daily,
and all animal handling was performed under light anesthesia (ketamine) to minimize animal discomfort.

Data availability. Sequences are available in GenBank under accession numbers KF612922 to
KF612965, KR087564, KR087572, KR0O87577 to KR087595, KR087597 to KR0O87601, KR0O87604 to KR087615,
MK027211, and MK027212.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 6.1 MB.
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