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Highlights

A new concept of water management diagnosis for a PEM fuel cell system

M. Ait Ziane, C. Join, M. Benne, C. Damour, N. Yousfi Steiner, M.C Pera

� Model-free fault detection approach is applied to PEMFC water management
fault diagnosis.

� A theoretical proof is presented for model-free fault detection.

� Sensor fault is the main cause of water condensation and membrane dehydra-
tion.

� Real-time fault detection in the back pressure, temperature sensor and water
management.
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Abstract

This paper presents a new diagnosis view of fuel cell water management. The faults
related to water management in the fuel cell are addressed from the control point
of view and their occurrence is considered as a consequence of a temperature sensor
fault. To ensure proper operation of the polymer electrolyte membrane fuel cell
(PEMFC), the stack temperature and inlet pressure are controlled by a model-free
control. A fault in the temperature sensor that causes an imbalance in water content
in the stack is detected by a new fault detection approach in model-free context. The
validation of the proposed strategy is performed on a 1.2 KW fuel cell with real time
detection of temperature sensor faults, leading to water condensation in the cells
or membrane dehydration. Fuel cell control and diagnosis are achieved without any
requirement of an accurate system analytical model and additional sensors. However,
faults can be detected in quasi static operation only and not un transient state.

Keywords: PEMFC water management diagnosis, Membrane dehydration, Water
condensation, Sensor fault detection

1. Introduction

Greenhouse gas emissions reduction has become a worldwide major concern. Reduc-
ing dependence on fossil fuels and converting to green energy is one of the strategies
adopted in recent years [1][2]. Among the technologies that have taken place in re-
cent years in the green energy production chain is the Polymer Electrolyte Membrane
Fuel Cell (PEMFC). The PEMFC system is an electrochemical converter [3] [4], that
transforms air and hydrogen gases into electrical energy, heat and water with zero
emission. These advantages have encouraged the utilization of this technology for a
variety of stationary and mobile applications [5].



The combination of a variety of phenomena (electrical, fluidic, thermal) is making
the PEM fuel cell a rather complex system [6]. This complexity has a direct effect on
system durability, which hinders large-scale commercialization. In operation, water
management is considered a crucial key to solve this problem, as the PEMFC con-
stantly produces water and is extremely sensitive to the water balance. Excess liquid
water inside the cells can slow down the electrochemical reaction and reduce PEMFC
performance[7]. Massive water droplet formation in the flow channel or inside the
electrodes leads to a flooding fault [8]. In the opposite case when the membrane is
poorly hydrated, the drying fault can appear. Flooding may be induced by vari-
ous factors which can occur simultaneously, such as a reduced fuel cell temperature,
elevated inlet gas humidity [9], and reduced gas flow [10]. The opposite operating
conditions lead to the membrane to dry out [10]. For this purpose, controlling the
temperature and relative humidity is mandatory to maintain membrane water bal-
ance and to minimize the potential of these faults occurrence [11]. Poor gas control
can lead to starvation fault when there is insufficient flow to sustain the required
current. In case of overflow, the water can be drained out of the membrane and lead
to drying out [12]. Membrane degradation can be caused by a large difference in inlet
pressure between the electrodes. Consequently, a rigorous control of the inlet pres-
sure is necessary [13]. Unless these faults are remedied immediately, the fuel cell may
be damaged beyond recovering. To this end, proper control of these operating condi-
tions and early detection of these faults are crucial to improve PEM fuel cell lifespan.

More generally, the fault can be considered as a change in the state of the system
that prevents it from completing the assigned task [14]. Commonly, the faults can
be classified into actuator, sensor and system faults [15]. In recent years, significant
work has focused on fault detection and diagnosis (FDD) in order to prevent system
damage [16]. The most common approach used for fault diagnosis is model-based.
The concept consists in designing a model that faithfully represents the system real
behavior in order to verify its consistency with the actual one [17]. Generally, the
system’s measured output is checked against the one obtained from the model by
evaluating a residual signal. This latter is seen as a fault indicator in case of residual
discrepancy [18]. Observers are widely used for system diagnosis, estimating outputs
or the internal state of the system that cannot be measured [19] [20]. The model
based approach has proven a good efficiency in systems fault diagnosis. However, the
most critical step is obtaining an accurate model representing the real behavior of
the system. Increasingly, the systems architecture is growing more complex, making
this task challenging. To face this difficulty, the non-model based approach is suit-
able for diagnosing complex systems where the precise physical model is unknown.
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Several methods are regarded as a non-model based: fault detection based signal
[21] [22], statistical [23] and Artificial Intelligence [24]. Signal-based methods use the
measured signal from the system to detect faults symptoms. Statistical methods are
supported by data analysis to deal with uncertainties and system noise as well as
to assess the probability that the system state is faulty. These methods are widely
used for manufacturing systems. Artificial intelligence methods are also widely used
owing to their ability to analyze and classify data to detect failures even with very
low level of knowledge of the system. [25].

Basically, proper control of the PEM fuel cell operating parameters ensures smooth
operation and can avoid these malfunctions. However, the controller effectiveness is
disturbed by faults, as faults impact the main components of the control loop. As
mentioned before, faults are classified into three types:

� Fault on the actuator that affects its performance by degrading its ability to
operate.

� Fault on the sensor that leads to sending erroneous measurements.

� Fault on the system that impacts its operation, and may take it out of the
nominal operating range.

For some complex systems such as the PEM fuel cell, a fault on an actuator or a
sensor can lead to a system fault [26]. Therefore, an appropriate diagnosis tool able
to detect all these faults is required to achieve a more sustainable PEM fuel cell.

This paper proposes to study the significant link between the control and the diag-
nosis of the PEMFC operating conditions. To our knowledge, the topic of PEMFC
water management diagnosis has never been addressed as integrated in the controller
development. As mentioned before, an appropriate control ensures the proper func-
tioning of the PEMFC, of course, but in some cases it is not enough. For this reason,
diagnosis of the whole system is essential in order to assess its operating condition.
To ensure proper operation of the PEM fuel cell, the control of the stack tempera-
ture and inlet pressure is addressed. Regarding the diagnosis part, the association
between a fault on the temperature sensor and its effect on faults appearance related
to water management is highlighted. The water management faults investigated are
water condensation in the cells and membrane dehydration, which are considered
as system faults. The following section presents the different methods and aspects
handled in the framework of fuel cell water management fault diagnosis.
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To provide proper control of the operating conditions of the PEMFC, a model-free
controller (MFC) [27] is employed to regulate the stack pressure and temperature.
The controller is mainly driven by an ultra-local model instead of the entire analytical
model of the system. A model-free fault detection (MFFD) approach inspired by the
controller is presented and applied in real time for fault detection of actuators, sensors
and related water management faults. The method is mainly based on the estimation
of the ultra-local model output which is considered in the control part. The obtained
estimated output is corrected by a parameter in order to obtain a zero residual signal
in the absence of a fault. The authors of [50] [51] have briefly presented the method
without being exhaustive on details and without justifying the introduction of such
a parameter for the correction of the estimated output. Furthermore, the method is
applied to academic examples through simulations in order to detect only actuator
faults. In this paper, a real-time application is performed on a 1.2 kW fuel cell to
detect actuator, sensor and system faults. A theoretical proof is given regarding the
parameter used in the correction of the estimated output. This proof emphasizes the
conditions under which faults can be detected. This means that the limitations and
merits of the proposed method are well illustrated both theoretically and by real-time
experimental validation. Furthermore, the diagnosis of the PEMFC is presented by
establishing a link between the control of its operating conditions and the occurrence
of water management related faults.
The structure of the paper is as follows: a review of the current literature on water
management diagnosis methods is provided in the second section. In the third sec-
tion, a presentation of model-free controller (MFC) and model-free fault detection
(MFFD) is provided. The fourth section discusses the control of the operating condi-
tions of the stack. Experimental validation dealing with sensor, water management
faults detection is presented in fifth section. Conclusion and perspective are given in
the sixth section.

2. Diagnosis methods

Basically, most of the approaches and methods presented above are applied to
PEMFC water management diagnosis. A model-based method providing an estima-
tion of the liquid saturation in the cathode side and the current density is presented
in [28]. Current density estimation is considered as an index to detect flooding and
starvation faults. An unscented Kalman Filter is applied on the simplified model
of PEM fuel cell under simulation environment in [29]. Cell voltage, current, and
inlet pressure are set as inputs to a Kalman filter, which is used to diagnose a fault.
Flooding is detected by estimating the quantity of water in both anode and cathode
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channels. To estimate the membrane conductivity, the authors of [30] use a sliding
mode observer. The conductivity of the membrane is expressed as a relation to the
water concentration, allowing detection of the flooding and drying state. For the
same purpose of estimation, an extended Luenberger observer is applied in [31].

As a matter of fact, the production of water takes place at the cathode. Excessive
water will first accumulate in the electrode or in the cathode channels. Water droplet
accumulation across the flow channels and the gas diffusion layer leads to an increase
in cathode pressure drop [32] [33]. Therefore, cathode pressure drop can be taken
as an appropriate indication of flooding occurrence [34] [35]. So, there are several
works in the literature that rely on cathodic pressure drop for flooding and drying
detection [36] [37] [38]. Authors in [39] compare the theoretical pressure drop with
the measured value to determine the flooding. Once the measured pressure drop
exceeds the calculated one, a flooding is detected. A neural network model is em-
ployed in [40] to detect flooding and drying which are supposed to be the only faulty
cases possible. The validation of the model is performed offline with normal fuel cell
operation data. Two residuals are generated to assess the coherence of the collected
voltage and the cathode pressure drop with those obtained by the neural network
under normal operating conditions. Water condensation fault is detected when the
two residues diverge from zero. On the contrary, cathodic pressure drop is unaffected
by membrane drying. Only the stack voltage drops, which entails a divergence on
the voltage residual, thus isolating the fault.

Most of the model-based approaches mentioned above are validated by a simula-
tion. Experimental test and real-time validation is a challenging task due to the
difficulty of obtaining a model that perfectly describes the PEMFC system. Signal-
based methods are commonly adopted for water management fuel cell diagnosis. A
combination of Wavelet Transform and an entropy feature extraction is applied ex-
perimentally in [41]. Only the voltage signal is used for the detection and isolation
of four types of faults. Experimental results revealed that high and low oxygen stoi-
chiometry, cooling rate, flooding, drying and fuel cell poisoning faults have a direct
impact on entropy and can be easily detected and isolated. A Wavelet Transform is
applied on the 40-cell stack to detect the high stoichiometry fault that can lead to
membrane drying in [42]. The signals considered for the diagnosis are: stack voltage,
individual cell voltage and the air pressure drop. Fault detection is accomplished on
the basis of the energy present in each wavelet decomposition detail. A Fast Fourier
Transform is applied on 5-cell stack [43].
Statistical methods are also employed for PEMFC fault diagnosis. Based on the
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collected cell voltage data, cathode and anode pressure drop signals, a diagnostic
strategy is carried out in [44]. The considered method is related to the calculation of
statistical descriptor level of cell voltage which is susceptible to water management.
A statistical descriptor of pressure fluctuation is also calculated to identify flooding
and drying faults. In addition, artificial intelligence is being introduced on a large
scale for the diagnosis of water management. A binary encoding convolutional neu-
ral network is applied on 120 KW PEM fuel cell stack in [45]. The results revealed
that flooding, drying and starvation faults are detected and isolated by specifying
their severity. A fuzzy neural approach relying on electrochemical impedance spec-
troscopy is presented in [46]. An equivalent circuit model identification is performed
for anode and cathode impedance. Based on the obtained equivalent circuit model,
neural fuzzy inference is used to detect flooding and drying faults.

This non-exhaustive bibliography deals, in particular, with PEMFC water manage-
ment diagnosis resulting in flooding and drying faults. Implementing these methods
for real time diagnosis is an arduous task, hence the validation of most of these ap-
proaches is performed offline with experimental data.

Whatever the strengths and weaknesses of the application of these methods, the
problem that should be addressed is how these faults are generated during the mea-
surement campaign. In most cases, flooding and drying are induced by a volun-
tary change in PEMFC operating conditions. The main changes in the operating
condition variables are as follows: stack temperature [47] [45] [41][46] [48], relative
humidity [45] [44] [40] [43] and gas stoichiometry [42][46]. It is widely demonstrated
that these alterations lead to the occurrence of flooding and membrane drying faults
[49]. In our opinion, the relevance of applying a diagnostic tool when the fault is
generated by an intentional change in the operating conditions is disputable. Indeed,
when these parameters are controlled in a closed loop in the presence of a controller
that is robust to disturbances, the temperature, relative humidity, and gas flow are
maintained at their desired operating condition and never change. Therefore, with
a robust controller taking into account the fuel cell dynamics and ageing, there is
no reason to provoke a water management fault. This might be valid unless there
is a fault affecting the components of the control loop (actuator, sensor). In this
case, it is important to detect the origin of the fault, which can be an actuator fault
preventing the PEMFC cooling or a sensor fault that can send wrong information
and its consequences on the system, which can lead to the initiation of water conden-
sation in the stack and membrane dehydration faults. Therefore, the issue of water
management related faults is addressed in this paper as a consequence of one or more
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failures occurring upstream and resulting in a change in operating parameters that
lead to a system fault.

The major contribution of the present study is to highlight that even with an appro-
priate control of these parameters, a fault on the temperature sensor can be at the
origin of water management faults occurrence. In this context, the first considered
action is to properly control the stack temperature and input pressure difference
between the electrodes. Controlling inlet pressure drop prevents membrane degra-
dation. Secondly, the temperature sensor fault is considered to emphasize its effect
on the occurrence of imbalance in the water content of the PEMFC.
A model-free controller or (iPID) [27] is employed to control the operating conditions
of the stack. An ultra-local model, updated at each time point, is used instead of the
global fuel cell model for the controller design. The uncertain part of the system is
estimated online only with the latest input and output measurements. Additionally,
major advantages of the proposed approach for real-time applications are the low
computation cost and the simplicity of implementation.
Regarding the diagnosis part, a new model-free fault detection approach, which is
regarded as an expansion of the controller, is introduced in this paper. The authors
of [50] have applied the proposed method on academic examples in simulation to
detect an actuator fault. In this paper, a theoretical proof is presented to explain
in detail the limitations and the performance of the model-free fault detection ap-
proach. A real-time experimental validation for the detection of faults that affect the
back pressure valve, temperature sensor, flooding and drying faults are discussed in
the present paper. The method is mainly driven by the estimation of the ultra-local
model output which is considered in the control part. A residual signal, qualified
as a fault presence indicator, is obtained from the comparison of the estimated and
the measured output. The intention is to emphasize that in a real application the
flooding and drying faults that are considered as system faults can be studied as a
consequence of a fault on the sensor that measures the stack temperature.

3. Control and diagnosis in a model-free context

The presented approach is mainly driven by the model-free controller (iPID) [52]
[27] which has proven to be very efficient for controlling nonlinear systems [53] [54].
Moreover, it can both reject disturbances and tolerate faults affecting the system.
The principal of model-free control, i.e. without an analytical model, is briefly sum-
marized below.
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The basis of iPID is to substitute the overall system physical model by an ultra-local
model. The latter is described in this way:

y(ν) = F + α.u (1)

Where:

� y represents system measured output and u is system input.

� (ν) refers to the derivation order of y.

� α is a constant chosen by the user.

� The unknown part of the system is included in the function F .

An algebraic estimation approach is presented in [55] [56] [57] to estimate the function
F . For a first-order ultra-local model, i.e. ν = 1, this function can be estimated as:

F̂ (t) =
−3!
L3

∫ t

t−L

(y(σ)(L− 2σ) + (L− σ)ασu(σ)) dσ (2)

The integration range [t − L; t] is referred to the sliding window, L > 0 being con-
sidered small. The iP control law is defined by :

u(t) =
1

α

(
−F̂ (t) + ẏd(t) + kpe(t)

)
(3)

The estimate of F for ν = 2 is defined by :

F̂ (t) =
5!

L5

∫ t

t−L

(
L2 + 6σ2 − 6Lσ

)
y(σ)dσ −

(
ασ2

2
(L2 + σ2 − 2Lσ)u(σ)

)
dσ (4)

The iPD controller can be employed in the case of ν = 2, the input u is calculated
as follows:

u(t) =
1

α

(
−F̂ + ÿd + kpe+ kdė

)
(5)

Where :

� yd and ẏd the desired trajectory and its derivative respectively.

� e = yd − y the trajectory tracking error and ė its derivative.

� kp and kd controller gains.

More illustrations about the method are presented in [58] [59].
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3.1. Model-free fault detection:

In this approach, the focus is on generating a residual signal. The residual is achieved
through measuring and estimating the measured system output. From Eq.1, the
system output can be estimated.
Considering ν = 1, from Eq.1 the output y can be described as below:

y(t) =

∫ t

0

(F (σ) + αu(σ)) dσ + y(0) (6)

The estimate of F is imprecise due to various factors, is expressed by:

∆F (t) = F (t)− F̂ (t) (7)

Replacing Eq.7 in Eq.6 yields to:

y(t) =

∫ t

0

(
F̂ (σ) + αu(σ) + ∆F (σ)

)
dσ + y(0) (8)

Theoretically, the estimated output ŷ can be obtained by:

ŷ(t) =

∫ t

0

(
F̂ (σ) + αu(σ)

)
dσ + ŷ(0) (9)

Under a null estimation error assumption, ∆F (t) = 0, then ŷ(t) = y(t), although
there is a fault, it is not detectable. However, ∆F (t) ̸= 0, ŷ(t) ̸= y(t) in the conve-
nient case. For this purpose, a correction of ŷ(t) is performed with the parameter β.
More details on the evolution of β is presented in [50]. In what follows, an illustration
on the significance of β parameter in the correction of ŷ and the condition in which
the actuator and sensor faults can be detected with the proposed method.

Proposition 1. The residual employed for fault detection may be described in the
following way:

r(t) = y(t)− βŷ(t) (10)

The retained β is the value of β(t) in normal operation, this latter is expressed as:

β(t) =
y(t)

ŷ(t)
=

y(t)∫ t

0

(
F̂ (σ) + αu(σ)

)
dσ + ŷ(0)

(11)

The initial condition ŷ(0) is considered known and should be taken as ŷ(0) ≃ y(0).
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To simplify the study, the following demonstration on β is performed in discrete
form and the output is assumed to be noise free. The tools that can be used for the
discretization procedure are defined thereafter.
In the absence of noise, the derivative of a function can be obtained by finite difference
as follows:

dS(t)

dt
≃ ˆ̇S(k) =

S(k)− S(k − 1)

Te

(12)

Where Te is the sampling period. The method of rectangles which is denoted by I
can approximate a time integral, where :∫ t

0

S(τ)d(τ) ≃ I(S(k)) =
k∑

i=1

S(i).Te (13)

Proof. To demonstrate that β is converging to a constant value in the absence of a
fault for any change of setpoint for all linear and some nonlinear systems in the case
of ν = 1, this procedure is followed:
From Eq.1, F̂ can be written as such:

F̂ (k) = ˙̂y(k)− αu(k − 1) (14)

The estimated function F̂ cannot use u(k) due to causality. Applying the finite
difference expressed by Eq.12 for the output y, this gives:

˙̂y(k) =
y(k)− y(k − 1)

Te

(15)

From Eq.13. and Eq.9, ŷ(k) can be represented in discrete form by:

ŷ(k) = I
(
F̂ (k) + αu(k)

)
+ ŷ(0) (16)

By replacing Eq.14 into Eq.16, it yields:

ŷ(k) = I
(
˙̂y(k)− αu(k − 1) + αu(k)

)
+ ŷ(0) (17)

Using the finite difference integral defined by Eq.13 in Eq.17, this gives:

I( ˙̂y(k)) = I(y(k)− y(k − 1)

Te

) =
y(1)− y(0)

Te

× Te+

y(2)− y(1)

Te

× Te + ...+
y(k)− y(k − 1)

Te

× Te = y(k)− y(0)

(18)
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I(αu(k)− αu(k − 1)) = α.Te.(u(k)− u(0)) (19)

In the control law synthesis, the initial condition u(0) = 0, this gives :

ŷ(k) = y(k)− y(0) + ŷ(0) + αTe.u(k) (20)

The iP controller ensures the stability of the controlled systems, which means that
a steady state can be achieved. In fault free case, in steady state we get:

u(k) = c(k).y(k) (21)

c(k) denotes a parameter assigned to the controlled system. Substituting Eq.21 in
Eq.20, it gives:

ŷ(k) = y(k) (1 + Te.α.c(k))− y(0) + ŷ(0) (22)

Substituting Eq.22 into Eq.11, β(k) can be expressed as follows:

β(k) =
y(k)

ŷ(k)
=

y(k)

y(k) (1 + Te.α.c(k))− y(0) + ŷ(0)
(23)

ŷ(0) is considered known and must be taken equal to y(0), this leads to:

β(k) =
y(k)

ŷ(k)
=

y(k)

y(k) (1 + Te.α.c(k))
=

1

1 + α.c(k).Te

(24)

It is then straightforward that if c(k) is constant then β is always constant too. This
property applies to all systems, linear or nonlinear, having a linear static character-
istic, which gives:

β =
y(k)

ŷ(k)
=

1

1 + α.c.Te

(25)

Eq.25 proves that β always converges to a constant value for any established steady-
state, that means for any variation of the trajectory in the absence of a fault.
In fault-free case, β is constant and r(t) = 0. In the case of an actuator fault and
disturbance, the static characteristic of the controlled system represented by Eq.21,
changes and becomes:

uf (k) ̸= c(k).y(k) (26)

In the presence of sensor fault Eq.21 become:

u(k) ̸= c(k).yf (k) (27)
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Where uf refers to the calculated input to tolerate a fault, and yf to the measured
output which does not represent system state.

The residual r is never zero y ̸= βŷ once the system static characteristic is changed,
which enables fault detection.

For a real time application and for systems that do not have a linear static char-
acteristic, β needs to be readjusted for every change of set point, it is proposed to
adapt it as bellow:

Algorithm 1 β adaptation

1: β(0) = 1
2: if ẏd(t) = 0 and e(t) ≈ 0 then
3: β ← β(t− 1)
4: else
5: β(t)← y(t)

ŷ(t)

6: end if

It should be mentioned that faults cannot be detected in the transient state for sys-
tems that do not have a linear static characteristic. Where e = yd − y and e ≈ 0
means that the steady state is reached, so the last calculated value of β is retained
for that operating point. Note that the initial condition of the estimated output
should be taken as the measured condition.

3.2. Control and diagnosis objective

The two PEMFC operating conditions that are considered for the control are: stack
temperature and inlet pressure. Membrane degradation can be avoided by keeping
the inlet pressure at the same level. Fault detection is addressed at two levels. The
first level deals with faults that impact the control loop such as the actuator and
sensor. Regarding actuator fault, a power loss is introduced to the valve that controls
the stack pressure. This fault is addressed as an illustration of the presented model-
free fault detection approach. In the case of sensor fault, an offset is induced on the
temperature sensor. The consequences of this fault on the PEM fuel cell, leading
to water management fault are studied as a second level of fault detection. The
detection and isolation of water condensation in the cells and membrane dehydration
are also achieved.
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4. Pressure and temperature control

4.1. Fuel cell test bench

The experimental rig used for all tests is conceived for PEM fuel cells with a nomi-
nal power of 1.5 KW. Mass flow measurement and control is provided by two mass
flow controllers for each sides. The relative humidity of the inlet gases is monitored
through adjusting boiler temperature and inlet gas heat. The inlet and outlet pres-
sure is measured by sensors for both sides. The stack pressure is managed thanks to
back pressure valves. Stack temperature is controlled through three elements: the
pump that controls the cooling flow rate of primary circuit, an electro-valve that
controls the flow of water through the exchanger to cool the primary circuit and a
heater that heats-up the water at the start of the test. The control and acquisition
of data is performed using LabView under NI PXI-1031 with a sampling frequency
of 3Hz. The proposed control and diagnosis strategy are implemented in real-time.
All experiments are performed on a 1.2 KW nominal power stack composed with 12
cells having an active surface of 90 cm2.

4.2. Pressure control and back pressure fault detection

As previously mentioned, controlling the inlet pressure prevents membrane mechan-
ical degradation, which can lead to irreversible damage. For the studied stack, the
manufacturer recommends not to exceed 300 mbar. Fig.1 illustrates the control and
diagnosis approach adopted. For the hydrogen inlet pressure, a second-order ultra-
local model is employed, which results in iPD. For the air inlet pressure, a first-order
ultra-local model is selected, corresponding to a iP controller. Note, that there is
no specific rule for choosing the ultra-local model order when designing the system
input. Usually, a first-order, i.e (iP ) is used first. If the result is unsatisfactory, a
second-order model is required.
The actuator fault is triggered by the decrease in air pressure feeding the back pres-
sure valve. The recommended pressure for this device is 2 bar, which is regarded
as a normal condition for the proper operation for this component. A decrease in
the pressure of the air supplying the back pressure valve of about 1 bar induces the
fault. In fact, this fault entails a performance loss of the back pressure valve. In an
actual system, it can occur as a result of a leak in the air supply circuit.
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Figure 1: Control and fault detection strategy

The second-order ultra-local model employed for the anode side is represented by:

ÿinH2 = FinH2 + α1.uinH2 (28)

Where the input is taken as:

uinH2 =
1

10

(
−F̂inH2 − 3e− 30ė+ ÿd

)
(29)

where e = yd − yinH2 and ė its derivative. yd is the desired inlet pressure for both
sides.
Concerning the cathode inlet pressure, the first order ultra-local model employed is
given as follows:

ẏinO2 = FinO2 + α2.uinO2 (30)

The input is given as follows:

uinO2 =
1

0.3

(
−F̂inO2 + 0.1e+ ẏinH2

)
(31)

where e = yinH2 − yinO2. The parameters of the iP and iPID controllers are deter-
mined empirically, i.e. with a trial and error method. The estimation of the inlet
pressure cathode is calculated as follows:

ŷinO2(t) =

∫ t

0

(
F̂inO2(σ) + 0.3.uinO2(σ)

)
dσ + yinO2(0) (32)

The estimated inlet air pressure should be corrected by βp to achieve a zero resid-
ual when there is no fault. Since the PEMFC is a strongly nonlinear system, this
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parameter evolves with changes in set point. The residue is written in the following
form:

rp(t) = yinO2(t)− βpŷinO2(t) (33)

Where βp corresponds to βp(t) in permanent state, obtained by the Algorithm1.

The entire experiment lasts 60min, the initial 25min are spent varying the desired
trajectory to ensure that the controller guarantees a minimum inlet pressure differ-
ence between the electrodes. The objective is also to analyze the evolution of βp for
different set point changes. The actuator fault is triggered in the interval [32min-
51min]. Fig.2(a) shows the overall experimental test for inlet pressure difference
and fault detection on the back pressure valve. Both controllers iPD and iP pro-
vide an excellent trajectory tracking as shown in Fig.2(b). For all desired trajectory
changes, the maximum inlet pressure difference is about 25 mbar. This is well below
the maximum required level as seen in Fig.2(c). This confirms that the proposed
control strategy preserves the fuel cell stack from mechanical damage. Increasing
the inlet pressure enables to enhance the performance and the power delivered by
the stack, as shown in Fig.2(d). This confirms the fact that proper stack pressure
control contributes to achieve the best PEMFC performance.
Additionally, the estimated inlet cathode pressure follows perfectly the measured
one in fault free case, for all changes of desired trajectory 2(b). The evolution of the
parameter β is shown in Fig.2(e), for each change of desired trajectory this latter is
recalculated. The calculation of this parameter is performed with Algorithm 1. When
the set point changes, this parameter is varying and is expressed by βp(t) =

yinO2(t)
ŷinO2(t)

,

for which the noise is present in Fig. 2(e). Once the output stabilizes around the
setpoint, i.e. (e ≈ 0), the last calculated value of βp(t − 1) is retained until the
next setpoint change. The stack inlet pressure is established at 1750 mbar from 24th
minute. The estimated inlet cathode pressure corresponds to the measured up to the
time of fault occurrence at 32nd minute.
The fault is triggered with 1 bar pressure drop in the air pressure supplying the back
pressure valve. A divergence is immediately noticed on the estimated inlet pressure,
Fig.2(f). The cathode inlet pressure is impacted also by this fault and drops to 1740
mbar. Since the iP controller is tolerant of actuator fault, the cathode inlet pressure
is quickly restored to the set point. The occurrence of the fault has an impact on the
voltage signal which undergoes a fluctuation. The residual signal remains around
0 bar for all setpoint changes until the fault occurs and then diverges to -25 as
shown in Fig.2(g). This allows the fast detection of backpressure actuator fault. The
residual signal returns at the initial position once the fault disappears at 51st minute.
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It should be noted that the applied control strategy tolerates the fault by ensuring a
pressure difference around 0 even in case of a fault. On top of that, the model-free
fault detection method allows the fast and real-time detection of the fault without
any additional equipment. These facts are considered to be the main advantage of
the proposed strategy.
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Figure 2: Actuator fault detection
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4.3. Temperature control

The temperature control strategy is achieved by controlling the flow of cooling water
through the exchanger, water primary circuit flow and the heating resistor. The
primary circuit flow is controlled by an iP controller. The manipulated variable is
pump speed. The stack temperature control strategy is achieved by acting on the
flow rate of the secondary circuit of the exchanger and the heater at the beginning
of the test. The global scheme of the temperature control is presented in Fig.3.
The architecture of the overall control strategy is cascading ensured by two iP con-
trollers. The first one is employed to compare the desired temperature with the
measured one at stack output to generate an inlet temperature reference. This ref-
erence is regulated with respect to the inlet fuel cell cooling temperature, which is
provided by the second iP controller. The cooling water flow rate is also regulated
by an iP controller but separately, i.e. it is regulated according to the desired flow
rate and is independent from the stack temperature.
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Figure 3: Temperature management and sensor fault detection

Three first order ultra-local model are employed to perform the temperature control
strategy. The first one, is related to the global strategy that is given as:

ẏTout = FTout + α3.uTout (34)

The input is given as follows:

uTout =
1

30

(
−F̂Tout + 0.5e+ ẏdTout

)
(35)

Where: e = ydTout− yTout. ydTout is the desired temperature of stack and yTout is the
measured stack temperature.
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The estimated outlet stack temperature is calculated by:

ŷTout(t) =

∫ t

0

(
F̂Tout(σ) + 30.uTout(σ)

)
dσ + yTout(0) (36)

For the control of the inlet temperature, a first-order ultra-local model is employed,
and is expressed as follows:

ẏT in = FT in + α4.uT in (37)

The input can be expressed as follows:

uT in =
1

10

(
−F̂T in − 10e+ ẏdT in

)
(38)

Where: e = ydT in − yT in, yT in is the measured inlet temperature of the PEMFC and
ydT in = uTout .
The ultra-local model for primary water circuit flow is given as:

ẏCool = FCool + αc.uCool (39)

The input is given as:

uCool =
1

3

(
−F̂Cool + 1.5e+ ẏdCool

)
(40)

Where: e = ydCool− yCool, ydCool is the desired cooling rate and yCool is the measured
one.
The operating temperature recommended by the PEMFC manufacturer is between
70°C and 75°C. The outlet fuel cell cooling temperature is controlled at 72°C. The
control’s objective is to keep stack temperature at the desired value for each current
change. High load demands result in additional heat generation by the PEM fuel
cell. An effective control strategy maintains better performance, dissipates this heat
and ensures a better water balance inside the cells.
The validation of the control strategy is done under a steps of current in [18A - 105A],
Fig.4(a). These current variations are considered as disturbances for the control
strategy. The outlet stack cooling temperature is maintained around the desired
temperature with peaks of ±2 degrees for the large current demand as illustrated
in Fig.4(b). These fluctuations would also occur during actual operation of PEMFC
systems submitted to large current variations. The stack temperature is adjusted
at the required operating condition 72°C after one minute of current variation. In
such cases, the controller ensures that the temperature of the PEMFC is properly
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controlled, whatever the load changes. Stack voltage signal is presented in Fig.4(c).
It can be observed that after each current change, stack voltage stabilizes at a value
corresponding to the new level of current and remains constant. No additional voltage
drop is observed, which signifies that the stack is operating under normal conditions.

(a) Current profile (b) Stack temperature

(c) Stack voltage

Figure 4: Stack temperature control

The two experimental tests presented in this section have two objectives: firstly,
ensuring that the PEM fuel cell operates under favorable operating conditions with
the proposed control strategy. Secondly, it is necessary to point out that a smooth
temperature control is insufficient in the event of a fault on the stack temperature
sensor. The consequences of such a fault on the operation of the fuel cell are discussed
in the following section.

5. Water management diagnosis

The proposed strategy for detecting water management faults is focused on the esti-
mation of the cathode inlet pressure. As explained in the previous section, the inlet
gas pressure is controlled to maintain a low pressure at the stack inlet. Accordingly,
the cathode inlet pressure cannot increase since it is always controlled to remain
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at the desired value throughout the presence of excess water in the cells. However,
when water condensation occurs, the estimated inlet cathode pressure deviates. The
effect of water condensation fault is considered as a disturbance for the controller
and as a fault for the diagnosis approach. The residual signal used for the detection
of water condensation in the cells is given by Eq.33.
Nevertheless, an estimation of the outlet stack temperature is also performed. The
intention is to detect a fault in the stack temperature management. The fault is
simulated by introducing an offset on the value provided by the sensor. The normal
temperature operation condition is 72 °C. A change in the desired temperature is
made to determine the parameter βtemp for this operating point. Fig.5 shows the
estimated and measured outlet temperature in fault free case. It is necessary to
remember that the parameter βtemp used for the correction of the estimated outlet
temperature is recomputed at at each change of setpoint or current. In the transient
state, yTout(t) = βtempŷTout(t) since βtemp(t) evolves and is not constant, which does
not allow the detection of sensor fault in the transient states [4min - 11min] and
[23min - 34min].
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Figure 5: Estimated and outlet stack temperature

5.1. Water condensation in the cells

The stack operating conditions are: temperature 72°C, cooling rate 1l/min, air and
hydrogen stoichiometry 2. The temperature sensor fault is triggered as follows:

yTout(t) = Tout(t) + f (41)

Where Tout refers to the real temperature of the stack and yTout is the measured one.
f refers the offset related to the amplitude of the fault on the sensor. In case of
f = 0 no fault exists, i.e. yAll = TAll. Whereas for f ̸= 0 the fault on the sensor
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is generated, yTout ̸= Tout. For this experimental part, the fault is simulated with
f = 27°C.
The residual signal is calculated as follows:

rtemperature(t) = yTout(t)− βtempŷTout(t) (42)

One of the objectives of the proposed method is to maintain the inlet pressure dif-
ference at 0bar. This purpose is ensured for all the test as shown in Fig.6(a). At
the beginning of the test, the inlet pressure is established at 1400 mbar. An increase
of 400 mbar is applied to improve PEMFC performance and to determine the value
of βp for the studied operating point as seen in Fig.7(a). This increase is reflected
in the voltage signal which rises as illustrated in Fig.6(c). The overall time of the
experience is 70 min, from the beginning of the test until 22nd minute a normal
operating condition is considered. From [23 min to 45 min] the temperature sensor
fault is present. From 45th minute to the end of the test the fault is removed, i.e
f = 0.
Under normal operating condition the estimated outlet temperature fits clearly with
the measured, as shown in Fig.6(b). Once the sensor fault is present at 23rd minute,
the considered temperature for the controller is 89°C, which is referred to the faulty
outlet temperature in Fig.6(b). Therefore, the controller reacts by cooling the PEM
fuel cell until the faulty outlet temperature stabilizes at 72°C. The residual signal
diverges from 0 directly at the moment of a sensor fault occurrences, which facilitates
fault detection, see Fig.6(d).

Once a sensor fault occurs, the controller corrects the error between the desired and
the measured temperature caused by a fault. However, in reality, this correction
action leads to the cooling of the stack, which results in the change of the operating
conditions that provokes the PEMF voltage drop as illustrated in Fig.6(c).
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Figure 6: Sensor fault detection

The estimated inlet cathode pressure corresponds to the measured one up to the 31st
minute a divergence starts to occur as seen in Fig.7(a,(b)). This might be related to
the fact that water starts to accumulate in the cells.
The residual signal is noisy as shown in Fig.7(d). In order to reduce false detection,
the residual analysis is performed with the Cumulative sum with an sliding window
CUSUM [60]. The following procedure is employed to calculate the residual CUSUM:

� Computation of the mean mrp(0) for the initial residual samples rp.

� Initialize the cusumrp(1) = rp(1)−mrp(0).

� Calculate mrp(t) of rp(t) over a moving interval [t−N, t], where N is the length
of the moving interval.

� cusumrp(t) = cusumrp(t− 1) + rp(t)−mrp(t).

The CUSUM residual signal confirms this discrepancy and exceeds the threshold
at the 32nd minute as shown in Fig.7(e). Once the residual cusum exceeds the
threshold, a fault in water management is detected, in particular the fault of water
condensation in the cells. The determination of the threshold is performed in an
empirical way and according to the normal operation conditions. To confirm that
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the proposed method allows the water condensation detection, a cathodic pressure
drop signal is illustrated in Fig.7(c). It is observed that the cathode pressure drop
increases with residue evolution, which confirms the presence of an excess of water
in the stack. Temperature sensor fault is cancelled at the 45th minute, which means
that the controller considers the actual stack temperature which is 45°C. Due to
the disappearance of the fault, the outlet estimated temperature of the stack starts
to follow the measured temperature until the 60th minute, the two signals overlap,
Fig.6(b). The cusum residual signal returns below the threshold at the 48th minute.
This indicates that the water content of cells is presently relatively stable. Once
the temperature is stabilized at its initial value, the residual used for sensor fault
detection returns to 0 at the 60th minute and stay around this value until the end
of the test as shown in Fig.6(d).
Water condensation inside the stack has been detected at an early stage. Then it
reduces the time when the stack is exposed to flooding and avoids a severe flooding
which could lead to starvation fault.

5.2. Drying fault detection

The operating conditions for this experiment are the same as for the previous one.
The whole experience lasts 43 minutes. In contrast with the previous case, the
sensor fault is introduced by a negative value f = −8°C. Similarly, the inlet pressure
is controlled to maintain the same magnitude for each setpoint change. The PEM
fuel cell operates at 1700mbar, a change of set point is made at the 7min to reach
this desired set point as seen in Fig.9(a). Stack inlet pressure drop is kept near 0
Bar throughout the test, as illustrated Fig.8(a). The estimated outlet temperature
follows the measured one until the sensor fault occurs at the 12nd minute, Fig.8(b).
The faulty outlet temperature is the temperature used by the controller to regulate
the PEM fuel cell temperature. For this reason, the real stack temperature evolves
up to 80°C as shown in Fig.8(b). The temperature residual differs from 0 as soon as
the sensor fault occurs as seen in Fig.8(c). The stack voltage starts to drop at the
15th minute.
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Figure 7: Detection of water condensation in the stack
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Figure 8: Sensor fault detection : membrane dehydration
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The estimated inlet pressure follows the measured pressure and there is no discrep-
ancies noted throughout the test, Fig.9(a,b), since the drying fault has no impact on
the cathode side pressure. The cathodic pressure drop remains constant also for the
entire length of the test as shown in Fig.9(c). The residual fault indicator used for
the estimation of the cathode inlet pressure remains around 0, even when the drying
fault occurs, as illustrated in Fig.9(d).
The sensor fault is removed at the 25th minute. This results in the convergence of
the estimated output temperature to the real one up to the 35th minute, as shown
Fig.8(b). Even the voltage signal returns to its initial value, which means that the
membrane has re-hydrated once the operating conditions have been restored.

5 10 15 20 25 30 35 40

Time [Minute]

1500

1550

1600

1650

1700

P
re

ss
u

re
 [

m
b
a
r]

Inlet Cathode Pressure
Estimated Inlet Cathode pressure

(a) Inlet and estimated cathode pressure

10 15 20 25 30 35 40

Time [Minute]

1700

1705

1710

1715

P
re

ss
u

re
 [

m
b
a
r]

Inlet Cathode Pressure
Estimated Inlet Cathode pressure

(b) zoom on (a)

5 10 15 20 25 30 35 40

Time [Minute]

100

110

120

130

140

150

160

[m
b
a
r]

Cathode Pressure drop

(c) Cathode pressure drop

5 10 15 20 25 30 35 40

Temps [Minute]

-10

-5

0

5

P
re

ss
io

n
 [

m
b
a
r]

Residual

(d) Inlet cathode residual

5 10 15 20 25 30 35 40

Temps [Minute]

0

100

200

300

400
Cusum  Residual
Threshold

(e) CUSUM residue

Figure 9: Membrane dehydration fault
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The stack voltage drop is a symptom of fault presence. To detect and isolate faults
related to water management, two residuals are generated. In the case of water
condensation in the cells, the fault is detected and isolated by the change of the two
residues. For membrane dehydration case, only the temperature residual and the
voltage drop occur.

6. Discussion

PEM fuel cell diagnosis is addressed in this paper by establishing a link between a
control of the stack operating conditions and fault detection. The literature presents
a wide variety of methods used for diagnosing the water management of PEMFC.
Mostly, theses faults are generated by the voluntary change of PEMFC operating
conditions such as temperature [47] [45] [41][46] [48], relative humidity [45] [44] [40]
[43] and gas stoichiometry [42][46]. The control of these operating conditions is
usually ignored in their studies. Indeed, with a robust controller to disturbances and
system parametric uncertainties, these operating conditions are maintained at the
desired operating conditions. This is verified unless there is a fault that impacts the
actuator and/or the sensor of a control loop. Depending on the severity of the fault,
this can affect the controllability and observability of the system.
For this purpose, first, it is proposed, to control the stack temperature and inlet
pressure with model-free controller to ensure smooth stack operation. Secondly,
a new diagnosis approach that is inspired by model-free control is presented and
applied to PEMFC diagnosis. The developed method is employed to detect a fault
in stack temperature which results in faults related to water management that is also
detected.
In the overall view of the PEMFC diagnosis, in the present study, the water manage-
ment faults are studied as a consequence of the temperature sensor fault. This fault
is detected in real time at the instant of its manifestation without any requirement
of the PEMFC analytical model. Unlike [61] authors use the accurate model of the
temperature management system to detect and isolate the sensor fault. Authors in
[62] use a data driven classification method coupled with deep learning algorithm,
which is not based on the PEMFC model. The approach requires a significant quan-
tity of data with offline training, which makes real-time application challenging task.
In related work, the impact of temperature management faults on PEMFC operation
is not considered.
Concerning water management fault diagnosis, in the case of water condensation,
the fault is detected after 10 minutes of the occurrence of a sensor fault. This
detection time is considered satisfactory for limiting severe PEMFC degradation.
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Membrane dehydration and water condensation in the cells fault are detected without
any requirement of additional sensors. Even measuring the outlet cathode pressure is
unnecessary in the proposed strategy, which limits the number of additional sensors.
It is interesting to highlight that the proposed method offers the opportunity to both
control the operating conditions of the PEMFC and detect potential faults that may
affect it. Such a double performance is not provided by the already existing PEMFC
diagnosis methods. These advantages and the way of addressing the diagnosis of fuel
cell water management are making the proposed approach a novelty compared to
the existing methods in the literature.
However, this method presents a limitation for fault detection in the transient regime
for highly nonlinear systems as PEMFC. This is mainly due to the β parameter used
for the correction of the estimated output which requires a readjustment. Conse-
quently, in this study, all the considered faults are detected in steady state.

7. Conclusion

In the present paper, water management fault diagnosis is treated as the result of a
sensor stack temperature fault. A novel diagnosis approach in a model-free context
is presented and validated in real time on a 1.2 kW fuel cell. The overall conclusion
can be synthesized as follows:

1. In order to ensure the PEMFC proper operation, the control of stack tem-
perature and inlet pressure are ensured with model-free control. The applied
controller is based on an ultra-local model that is continuously updated, abso-
lutely not on the precise model of the PEMFC.

2. A theoretical proof is presented for model-free fault detection. The developed
diagnosis method is mainly relied on the estimation of the ultra-local model
output that is used in the control part. Any deviation of the calculated residue
is considered as an indication of fault presence. Firstly, the proposed diagnosis
method is applied to detect a loss of back pressure performance. This fault is
studied to illustrate the proposed method as an initiation to water management
diagnosis.

3. The fault in temperature sensor is the principal cause of water condensation in
the cells and membrane dehydration. All theses faults are detected and isolated
in real time by evaluating the residuals of stack temperature and cathode inlet
pressure.

4. The proposed approach does not rely on precise knowledge of the model and
offers the possibility to control the system and detect a fault. However, the
model-free fault detection requires some improvements to be able to detect
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faults in transient conditions. This is mainly due to the necessity to recalculate
the β parameter used in the residual generation.

Nomenclature

α Controller design parameter

ŷ Estimated system output

ŷinO2 Estimated inlet air pressure

ŷTout Estiamted outlet temperature

f Sensor fault

rp Residual of the cathode side

rtemperature Temperature residual

Tout Real outlet stack temperature

y Measured system output

yCool Measured cooling flow rate

yinH2 Measured inlet hydrogen pressure

yinO2 Measeured inlet air pressure

yT in Measured inlet stack temperature

yTout Measured outlet stack temperature
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