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A B S T R A C T   

Little is known about the seed ecology of native plants from subalpine and alpine vegetation zones 
on oceanic islands, although their biodiversity is unique and vulnerable (e.g. facing fires and 
biological invasions). This study of seed germination focuses on five species, which are repre
sentative of the subalpine shrubland of Reunion Island. The main objectives are to identify the 
presence of dormancy and light requirements, and to evaluate whether GA3 or a smoke-infused 
water could substitute for the light requirement for seed germination. Over one month, germi
nation tests were performed under different conditions at three temperatures (15, 20 and 25 ◦C), 
in light (12-hours light/12-hours dark) and in dark. Seeds were also treated using a single 
spraying of gibberellic acid (GA3 at 1000 ppm) and a smoke-infused water (named Smoke Water 
in the study). No dormancy was detected for Stoebe passerinoides. For Erica reunionensis, Agarista 
buxifolia, Hubertia tomentosa and Hypericum lanceolatum subsp. angustifolium, a potential non-deep 
physiological dormancy (with a conditional dormancy state) was detected. Moreover, for Agarista 
buxifolia and Erica reunionensis (Ericaceae), light is required for seed germination. Gibberellic acid 
(GA3 at 1000 ppm) substitutes for light, except at 25 ◦C for E. reunionensis. Smoke Water does not 
improve seed germination, except at 15 ◦C in dark for E. reunionensis. A better understanding of 
seed germination for species from subalpine and alpine vegetation zones will mean better threat 
management and restoration actions.   

1. Introduction 

A small number of oceanic islands of the world have subalpine and alpine vegetations (Juvik et al., 2014; Leuschner, 1996). Their 
limits and terminology may vary depending on the island because of biogeographical singularities (Elias et al., 2016; Juan et al., 2000; 
Strasberg et al., 2005). Generally, subalpine and alpine vegetation zones are characterized by (1) low temperatures and high thermal 
amplitudes (Cadet, 1977; Juvik et al., 1993; Lacoste et al., 2014), (2) a low vegetation (0.5–2 m in height for shrubs of subalpine zones) 
(Leuschner, 1996), and (3) high biodiversity with a high level of endemism, especially in oceanic islands (Ah-Peng et al., 2014; 
Strasberg et al., 2005). Some human disturbances such as introduction of herbivores or fires can threatened endemic species, notably 
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seedling establishment, e.g. La Palma, Canary Islands (Irl et al., 2012, 2014), Hawaii (Steven and Hess, 2016), Reunion Island (UNESCO 
WHC, 2013). Fires can also promote germination and seedling establishment of some invasive alien species (Payet et al., 2015; Udo 
et al., 2017). Globally, invasive alien species which are historically one of the main threats to biodiversity on oceanic islands (Hughes 
et al., 1991; Payet et al., 2015; Russell and Kueffer, 2019). To these factors can be added new threats such as climate change (Juvik 
et al., 2014; Pouteau et al., 2010). Indeed, numerous studies have shown that subalpine and alpine ecosystems are among the most 
sensitive to climate change (e.g., Diaz et al., 2003). There is growing evidence that high mountain environments are warming more 
rapidly than lower elevations (Pepin et al., 2015). For islands, the threat of climate change is compounded by the fact that native 
species are often poor competitors to introduced species, their migration potential is limited due to the surrounding ocean, and for 
species at the highest elevations, higher migration is not possible (Harter et al., 2015). Climate change impacts on high islands may 
therefore result in a much greater overall loss of global biodiversity than elsewhere (Frazier and Brewington, 2020). 

Despite their conservation importance, the seed ecology of subalpine vegetation zones seems to be among the least studied in the 
world (Baskin and Baskin, 2014; Juvik et al., 2014). However, studying seed germination is crucial because the transition from seed to 
seedling is a critical step for the successful recruitment of a given plant population and species in a given period (Baskin and Baskin, 
2014; Donohue, 2002). Seed germination and emergence, and the establishment of seedlings are determined by morphological and 
physiological traits at the seed scale, and also by environmental, genetic and physiological factors at the mother-plant scale (Cotado 
et al., 2020; Fernández-Pascual et al., 2013; Luzuriaga et al., 2006). If the germination of a viable seed is blocked, despite favorable 
thermal and gas conditions, the seed is considered dormant (Benech-Arnold et al., 2000; Bewley, 1997). To determine the presence of 
dormancy, seeds need to be exposed to a set of environmental conditions, including temperature, which is an important factor for seed 
germination (Baskin and Baskin, 2014; Fernández-Pascual et al., 2021). Some studies in tropical subalpine and alpine vegetation zones 
reveal that the majority of species seem to have physical dormancy (48 %) or no dormancy (35 %), according to a review on 25 species 
(Baskin and Baskin, 2014). 

Light can also stimulate or induce germination (Baskin and Baskin, 2014; Flores et al., 2006; Leperlier et al., 2018). Light re
quirements increase with decreasing seed mass and mother-plant height (Flores et al., 2011, 2016; Koutsovoulou et al., 2014; Milberg 
et al., 2000). For example, light requirements for seed germination in alpine habitats in Japan were also reported for 86 % of 27 studied 
species, including Ericaceous shrubs with very small seeds (< 1 mg) (Shimono and Kudo, 2005). In addition, interactions between 
phytochromes and phytohormones with regulation of abscisic acid (ABA) and increasing of biosynthesis of gibberellins (GAs) upon 
light activation for seed germination are reported (Lymperopoulos et al., 2018; Oh et al., 2006; Seo et al., 2009). Without light, added 
gibberellins (GA3 at 500–1000 ppm) or smoke exposure could be an alternative treatment to improve seed germination (Alcorn and 
Kurtz, 1959; Ortega-Baes and Rojas-Aréchiga, 2007; van Staden et al., 1995; Todorović et al., 2007). 

Fig. 1. Prospected sites in our study of subalpine shrubland (Reunion Island), with RE: Roche Écrite, MD: Maïdo, RV: Route du Volcan and PS: Pas 
des Sables. Map and data from BD TOPO REUNION IGN-MNT Data Base and “Milieux Naturels Remarquables” shape (Geographic Information 
System shape from administration.carmencarto.fr). 
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Reunion Island is an appropriate natural laboratory to study the seed ecology of subalpine habitats, with elevations from 1700 m to 
3070 m and the presence of small-seeded species (Bosser et al., 1976; Cadet, 1977). Ericaceae and Asteraceae dominate and structure 
subalpine shrubland landscapes (Lacoste et al., 2014; Lacoste and Picot, 2011; Strasberg et al., 2005). Species richness of these habitats 
(i.e. 30 species) is lower than for other habitats on the island, but endemism can reach up to 83 % in shrubland of lapilli habitats (Cadet, 
1977; Lacoste and Picot, 2011; Strasberg et al., 2005). These habitats are often considered as protected from human transformation. In 
reality, endemic species persistence and seedling establishment may be vulnerable when a disturbance occurs, e.g. arson and accidental 
fires that burn from 760 to 4500 ha depending on the year (Payet et al., 2015; Strasberg et al., 2005). But, even if wildfires could be 
frequent in Réunion Island, their magnitude is generally very low. However, it clearly appears that the persisting drought over the 
coming years will increase the vulnerability of vegetation to fires (Brou, 2019). In addition, there are other potential pressures to 
manage, such as tourism and local planning, which could also facilitate the introduction of exotic species seeds and others bioagressors 
(UNESCO WHC, 2013). 

Seed ecology data can help to target conservation and restoration programs. To our knowledge, no scientific data about seed 
germination of native and endemic species in subalpine habitats of Reunion Island have been published. As a consequence, this study 
aims:  

(1) To identify germination requirements at three temperatures and two photoperiods for five species (Agarista buxifolia, Erica 
reunionensis, Stoebe passerinoides, Hubertia tomentosa and Hypericum lanceolatum subsp. angustifolium);  

(2) To evaluate whether GA3 or a smoke-infused water can substitute for the light requirement for seed germination of Ericaceae 
species. 

2. Materials and methods 

2.1. Study sites 

A transect of 12.8 km, with an elevation from 1931 to 2350 m on the Fournaise Massif in the South of Reunion Island (from Route 
du Volcan, RV, 21◦ 12‵ 33‶ S; 55◦ 36‵ 34‶ E to Pas des Sables, PS, 21◦ 13‵ 53‶ S; 55◦ 38‵ 55‶ E) was monitored monthly in 2019 and 
2020. At an elevation of approximately 2200 m, on the Piton des Neiges Massif, the site of Maïdo (MD, 21◦ 4‵ 15‶ S; 55◦ 23‵ 13‶ E) in the 
West of the island and the site of Roche ́Ecrite (RE, 21◦ 0‵ 39‶ S; 55◦ 27‵ 36‶ E) in the North were punctually prospected in May and June 
2020 (Fig. 1). Air temperatures at these sites vary from − 2 ◦C to 15 ◦C, with a mean annual temperature ranging from 6◦ to 8◦C (Meteo 
France, 2022). In addition, the maximum temperature recorded is 25 ◦C (Meteo France, 2022). 

2.2. Study species and seed collection 

Achenes or capsules of five species (Table 1; Fig. 2) were randomly hand-collected, directly from the plant (authorization from local 
authorities: National Park of Reunion Island). Five to twenty-five shrubs were selected for sampling, depending on the availability of 
seeds. Collected fruits were packaged in paper bags for transport. Seeds were extracted and stored at ambient room temperature 
(±26.6 ◦C) for one to 45 days (depending on lots) before germination tests. 

2.3. Germination tests 

Seeds were selected using a binocular microscope (Leica – Wild M3B), according to morphological characteristics shown in Fig. 3 
and Table 2. Germination tests were completed in laboratories of the Pole of Protection des Plantes located in the South of Reunion 
Island (21◦ 19‵ 16‶ S; 55◦ 29‵ 06‶ E). Five replicates of 20 seeds were sown in plastic Petri dishes (60 ×15 mm, Greiner Bio-One In
ternational GmbH) on a flat disc of cotton, which was moistened with water until saturation. Due to the environmental conditions of 

Table 1 
Study species and seed lot details. The sites PS, RV and MD correspond respectively to Pas des Sables, Route du Volcan (high and low area of the 
transect located on the Fournaise Massif) and Maïdo. ‘# of shrubs’ is the number of shrubs from which the seeds were harvested. ‘Age’ is the number of 
days between the seed collection date and the sowing date for the germination test.  

Family Species Site # of shrubs Collection date Age (days) 

Ericaceae Agarista buxifolia 
(Comm. ex Lam.) G. Don 

PS 6 15/01/2019 7 

Erica reunionensis 
E.G.H. Oliv. 

RV 10 06/04/2019 12 
MD 20 16/05/2020 45 

Asteraceae Hubertia tomentosa 
Bory 

RV 20 03/06/2020 2 
MD 12 10/07/2020 11 
RV 20 20/07/2020 1 

Stoebe passerinoides 
(Lam.) Willd. 

PS 20 05/02/2019 2 
RV 27 20/07/2020 3 
RV 25 03/06/2020 2 

Hypericaceae Hypericum lanceolatum subsp. angustifolium 
(Lam.) N. Robson 

PS 5 23/01/2019 2 
MD 22 10/07/2020 7  
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Fig. 2. Studied species in their natural habitats, with their estimated height (m). (a) general view of subalpine shrubland vegetation zones (Pas des 
Sables, 2350 m, in the South of Reunion Island), (b) Hubertia tomentosa (2 m), (c) Hypericum lanceolatum subsp. angustifolium (4 m), (d) Stoebe 
passerinoides (0.5 m), (e) Agarista buxifolia (0.5 m) and (f) Erica reunionensis (1 m). Note: all species are endemic to Reunion Island, except 
A. buxifolia (endemic to Madagascar and the Mascarene Archipelago). 
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the greenhouse and nursery sites operated for the restoration programs, replicates were placed in growth chambers (Sanyo, MLR 350) 
at 3 different temperatures (15, 20, or 25 ◦C), with 80 % relative humidity, under 12 h of light (white fluorescent lamps) or in darkness 
(in a black box). Two treatments were also tested because they are easy to produce in a greenhouse and nursery: sprinkling the cotton 
disc with a solution of gibberellic acid (GA3) at 1000 ppm (Duchefa Biochemie) or smoke-infused water (term simplified to ‘Smoke 
Water’) according to Leperlier et al. (2018) (Supplementary data). Germination was detected by the emergence of the radicle (> 1 mm) 
if possible, otherwise by a more advanced stage (Figs. 4 and 5). Seeds were checked weekly for four weeks (only on the second and the 
fourth week for the black boxes) and Petri dishes were watered as necessary. 

2.4. Data analyses 

Data analyses were performed using R version 4.1.2 (R Core Team, 2021), and figures were created with the package “ggplot2” 
(Wickham, 2016). 

For each seed lot by species, we calculated the cumulative germination (total number of seeds = 100), in the fourth week after 
sowing, at three temperatures, in light or in dark, and after exogenous treatment in the case of A. buxifolia and E. reunionensis. We 
calculated also an exact binomial confidence interval with the binom.test function. We adopted an optimistic approach, considering 

Fig. 3. Seeds of study species. (a) Agarista buxifolia, (b) Erica reunionensis, (c) Hubertia tomentosa, (d) Hypericum lanceolatum subsp. angustifolium, and 
(e) Stoebe passerinoides. The characteristics of the studied seeds are shown in Table 2. 

Table 2 
Characteristics of studied seeds. Letters are shown in Fig. 3. Seed size refers to the mean of the longest dimension ( ± sd). Measurements were made 
using ImageJ 1.53e software (Schneider et al., 2012) on pictures of 20 seeds per species acquired using an AZ100 Multizoom Microscope (Nikon, 
Japan), except the measurement on Fig. 5b for Stoebe passerinoides. Seed mass ( ± sd) were measured using a precision balance (readability 0.01 mg; 
Sartorius, Cubis©) on three lots of 20 seeds per species.  

Letters Species Seed size (mm) Seed mass (mg) 

(a) Agarista buxifolia 1.50 ± 0.19 0.052 ± 0.008 
(b) Erica reunionensis 0.64 ± 0.04 0.022 ± 0.003 
(c) Hubertia tomentosa 2.17 ± 0.31 0.140 ± 0.044 
(d) Hypericum lanceolatum subsp. angustifolium 1.0 0.060 ± 0.005 
(e) Stoebe passerinoides 1.24 ± 0.14 0.120 ± 0.009  

M. Naze et al.                                                                                                                                                                                                          



Global Ecology and Conservation 38 (2022) e02269

6

the cumulative germination added to the upper bound of the exact binomial confidence interval. For tropical species in given tem
perature and light conditions, a seed lot was recorded as having dormant seeds if, the cumulative final germination percentage (plus 
the upper bound of the confidence interval) was less than 50 % in the fourth week after sowing (Baskin and Baskin, 2014; Ng, 1978). 

To compare germination conditions (i.e. temperature, light and/or exogenous treatment before sowing), we built a Generalized 
Linear Model on binomial data (with a logit link function), including interactions between fixed effects. For A. buxifolia and 
E. reunionensis, we built a Generalized Linear Mixed Model (GLM, “lme4” package, Bates et al., 2015), including replicates as a random 

Fig. 4. From the imbibed seed to the seedling for (a) Hypericum lanceolatum subsp. angustifolium, (b) Agarista buxifolia and (c) Erica reunionensis. The 
second stage represents seed germination sensu stricto with the emergence of the radicle, followed by the growth and development of the radicle. The 
fourth stage is the emergence of the cotyledons, still bound to the tegument. For the fifth stage, the cotyledons are fully visible. Pictures were taken 
using an AZ100 Multizoom Microscope (Nikon, Japan). Some pictures are the result of an assembly of several views and digital work. 
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effect. We validated the GLMM after the analysis of deviance table between GLM and GLMM based on a Chi-square distribution. We 
tested the fixed effects by a deviance test based on a Chi-square distribution. We used the package “emmeans” (Russel, 2021) to obtain 
Estimated Marginal Means (EMMs) for germination probabilities and corrected Confidence Intervals (95 %) and to make pairwise 
post-hoc comparisons based on Odds-Ratios (H0: OR = 1), integrating a Bonferroni-like correction (Benjamini and Hochberg, 1995). 
For analyses of A. buxifolia and E. reunionensis, we made comparisons for light and dark separately (considering interactions between 
factors). 

Fig. 5. From the imbibed seed to the first leaves for (a) Hubertia tomentosa and (b) Stoebe passerinoides. The pappus of S. passerinoides seeds has been 
removed. The same stages are represented as those described in Fig. 4, except the sixth stage which represents the first true leaves. Pictures were 
taken using an AZ100 Multizoom Microscope (Nikon, Japan). Some pictures are the result of an assembly of several views and digital work. 
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3. Results 

3.1. Germination at three temperatures in light and in dark 

For A. buxifolia, photoperiod and temperature had a statistically significant effect on cumulative germination (Deviance test, 
P < 2.2e-16). In light, cumulative germination of the seed lot from PS were greater than 50 %, considering the upper bound. From the 
pairwise comparisons tests, the highest cumulative germination of 95 % and 97 % were observed in light at 20 ◦C and 25 ◦C, 
respectively, and were not significantly different (P = 0.0585), but were different from that at 15 ◦C (P < 0.001). In dark, no 
germination was observed at 15 ◦C and the cumulative germinations at 20 ◦C and 25 ◦C were lower than 50 %, with the upper bounds 
< 43 % (Table 3, Supplementary data). 

For E. reunionensis (seed lot from RV), a significant interaction between light and temperature conditions was detected (Deviance 
test, P < 2.2e-16). From the pairwise comparisons tests, the highest cumulative germinations were observed in light at 20 ◦C (82 %) 
and 25 ◦C (87 %) and were not significantly different (P = 0.3540), but were different from that at 15 ◦C (42 %, P < 0.001). In dark, all 
the cumulative germinations were lower than 50 %, with the upper bound < 38 % (Table 3). At 15 ◦C, a difference to qualify was 
detected (P = 0.0449) between light (42 %) and dark (28 %). However, no germination was observed for E. reunionensis seeds from MD 
(Table 3, Supplementary data). 

For H. tomentosa, only the seed lot from RV had a cumulative germination greater than 50 % in light at 25 ◦C, with a cumulative 
germination observed of 46 % with the upper bound at 56 %. 

For S. passerinoides, all seed lots had cumulative germinations greater than 50 %, except in three different conditions (in light at 
15 ◦C and 20 ◦C for the lot from PS in February 2019, and in light at 25 ◦C for that from RV in June 2020, Table 3, Supplementary 
data). A significant interaction between temperature, light and seed lot was detected (Deviance test, P = 0.01081). The analyses of 
each seed lot revealed that, firstly, for the site of PS (in February 2019) the highest cumulative germinations, 73 %, was at 20 ◦C in the 
dark (significantly higher than other percentages, P ≤ 0.0046). Secondly, for the site of RV (in June 2020), the highest percentages 
were observed at 20 ◦C (65 % in dark and 64 % in light, respectively) and were not significantly different (P = 0.8875). Thirdly, for the 
site of RV (in July 2020), no significant effects were detected between all final germination percentages (P ≥ 0.3306). 

For H. lanceolatum subsp. angustifolium, seed lots from MD and SM had cumulative germinations considerably lower than 50 %, with 
the upper bounds < 19 % (Table 3, Supplementary data). 

3.2. Germination of Agarista buxifolia and Erica reunionensis after GA3 and smoke water treatments 

In light for E. reunionensis (Fig. 6a), the three estimated final germination percentages (EFGP) with GA3 (62 % at 15 ◦C, 87 % at 
20 ◦C and 7.5 % at 25 ◦C) were significantly different (P ≤ 0.0191). At 15 ◦C, the EFGP were not different, 41 % without GA3 (Control) 
and 62 % with GA3 (P = 0.1654). At 20 ◦C, they were also not different, 84 % without GA3 and 87 % with GA3 (P = 0.6654). At 25 ◦C, 
they were different, 88 % without GA3 and 7.5 % with GA3 (P < 0.0001). For the treatment with Smoke Water, no differences were 
observed between the highest EFGP, 78 % at 20 ◦C and 74 % at 25 ◦C (P = 0.7264). However, they were different from that at 15 ◦C 
(16%, P < 0.0001). At 15 ◦C, the EFGP of 41 % without Smoke Water (Control) and 16 % with Smoke Water were significantly 
different (P = 0.0313). The EFGP with or without Smoke Water, respectively 84 % and 78 % at 20 ◦C, and 88 % and 74 % at 25 ◦C, 
were not different (P ≥ 0.1460). 

In dark for E. reunionensis, with GA3, the EFGP at 15 ◦C (49 %) and 20 ◦C (37 %) were not different (P = 0.4420), but they were 
different from that at 25 ◦C (5.8 %, P ≤ 0.0012). At 15 ◦C, the EFGP were not different, 27 % without GA3 and 49 % with GA3 
(P = 0.1228). At 20 ◦C, they were different, 0.8 % without GA3 and 37 % with GA3 (P = 0.0010). For the treatment with Smoke Water, 
the highest EFGP was 58 % at 15 ◦C. This was also the highest value for all conditions in the dark. It was different from those at 20 ◦C 
and 25 ◦C, which were close to 0 (P < 0.0001). At 15 ◦C, the EFGP, 27 % without Smoke Water and 58 % with Smoke Water, were 

Table 3 
Cumulative germination (upper bound of exact binomial confidence interval with 95 %-confidence) in the fourth week after sowing, for the five 
species, by site and collection date (Coll. date), in light (12 h out of 24) or in dark, at three temperatures (15, 20 and 25 ◦C). The upper bounds are only 
shown for values lower than 50 %. The upper bound for the value 0 is 4.  

Species Site Coll. date Light Dark 

15 ◦C 20 ◦C 25 ◦C 15 ◦C 20 ◦C 25 ◦C 

A. buxifolia PS 01/2019 47 (57) 95 97 0 22(31) 33 (43) 
E. reunionensis RV 04/2019 42 (52) 82 87 28(38) 1(5.4) 0 

MD 05/2020 0 0 0 0 0 0 
H. tomentosa RV 06/2020 27(37) 26(36) 46 (56) 2(7.0) 13(21) 6(12) 

RV 07/2020 8(15) 10(18) 6(13) 3(9) 7(14) 0 
MD 07/2020 0 0 1(5.4) 0 0 0 

S. passerinoides PS 02/2019 35(45) 38(48) 46 (56) 51 73 47(57) 
RV 06/2020 49(59) 64 31(41) 48(58) 65 46(56) 
RV 07/2020 47(57) 49(59) 46(56) 44(55) 60 53 

H. lanceolatum PS 01/2019 4(10) 5(11) 0 1(5.4) 0 0 
MD 07/2020 11(19) 10(18) 0 0 0 0  
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different (P = 0.0216). At 20 ◦C and 25 ◦C, the EFGP with and without Smoke Water were very low (close to 0) and not different 
(P = 1). 

In light for A. buxifolia (Fig. 6b), with and without GA3, the highest EFGP were at 20 ◦C and 25 ◦C. The three EFGP with GA3 (59 % 
at 15 ◦C, 98 % at 20 ◦C, and 88 % at 25 ◦C) were different (P ≤ 0.0229). At 20 ◦C, the EFGP 95 % without GA3 and 98 % with GA3 were 
also not different (P = 0.3173). At 25 ◦C, the EFGP, 97 % without GA3 and 88 % with GA3 were different (P = 0.0375). For the 
treatment with Smoke Water, no differences were observed between the highest final germination percentages at 20 ◦C and 25 ◦C, both 
86 %, but they were different from that at 15 ◦C (49 %, P < 0.0001). At the three temperatures, all pairwise comparisons for final 
germination percentages with or without Smoke Water were not significantly different (P ≥ 0.0515). 

In dark for A. buxifolia with GA3, the three final germination percentages (71 % at 15 ◦C, 79 % at 20 ◦C and 25 ◦C) were not 
different (P ≥ 0.1695). All pairwise comparisons for final germination percentages with and without GA3 for a given temperature 
indicated a difference (P < 0.0001). For the treatment with Smoke Water, the final germination percentages at 20 ◦C (29 %) and 25 ◦C 
(40 %) were not different (P = 0.1277), but they were different from that at 15 ◦C, 5 % (P < 0.0001). All pairwise comparisons for final 
germination percentages with and without Smoke Water for a given temperature did not indicate a difference (P ≥ 0.1622). 

4. Discussion 

4.1. Identification of germination requirements for the five species 

For Agarista buxifolia and E. reunionensis (Ericaceae), light is required for seed germination. This trait is thought to be an adaptative 
germination strategy for small-seeded species to ensure germination only when seeds are close to soil surface in gaps (Bliss and Smith, 
1985; Woolley and Stoller, 1978). These light requirements may also vary depending on temperature (Heschel et al., 2007). For 
instance, for E. reunionensis, cumulative germination is higher at 15 ◦C than the others temperatures in dark. Perhaps, there is a specific 
interaction between phytochrome and temperature, as observed for Arabidopsis thaliana (Dechaine et al., 2009). Photoreceptors PHYB 
promote germination under cold temperature, while photoreceptors PHYA suppress it. Concerning detection of dormancy for these 
species, the threshold of 50 % in the fourth week after sowing is reached in light at three temperatures. Therefore, we assume that the 

Fig. 6. Estimated final germination percentages (black squares), Confidence Intervals (gray lines) (adjusted by models), observed percentages by 
replicate (blue points), in light (12 h per 24 h) and in dark, without treatment (Control), with GA3 (1000 ppm) and Smoke Water, at three tem
peratures (15, 20 and 25 ◦C), for two species (a) Erica reunionensis and (b) Agarista buxifolia. The black dotted line represents the 50 %-threshold 
used to define dormancy in the data analyses (Baskin and Baskin, 2014; Ng, 1978). Pairwise comparisons with a Bonferroni-like correction 
(Benjamini and Hochberg, 1995) were made by light condition (lower-case letter in light and upper-case letter in dark). Means with the same letter 
are not significantly different at the 95 % level (Supplementary data). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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seeds of Agarista buxifolia and E. reunionensis have non-deep physiological dormancy, with a state of conditional dormancy in our study 
(Baskin and Baskin, 2004, 2014). In other words, seeds germinate under a narrow range of conditions, i.e. only in light for these three 
temperatures. To confirm these results, it would be interesting to use a series of alternating temperature regimes and a wider range of 
conditions (Baskin et al., 2006). In addition, despite our objective to confirm this result in E. reunionensis by another replication, at 
another site, our second seed lot (from MD) was not conclusive. For collection seeds, there is a high risk that these seeds were not yet 
mature, according to our additional phenology studies (data not shown). 

For Asteraceae, for S. passerinoides, no dormancy was detected in seeds. In contrast, for H. tomentosa, the optimal temperature for 
seed germination is 25 ◦C in our study. However, it is not possible to conclude on the kind of dormancy in this species because of the 
impossibility to do a reliable viability test before sowing, to evaluate initial viability rate, and at the end of the test (Baskin and Baskin, 
2014). Indeed, for this species, it was not possible to have an intact embryo during the cuts. To evaluate seed viability is important, in 
particular for species in the Asteraceae. For example, some species have recalcitrant seeds, e.g. in the Hawaiian Islands (Chau et al., 
2019; Walters et al., 2005; Yoshinaga and Walters, 2003). Nevertheless, we can assume the presence of a non-deep physiological 
dormancy, with a change of dormancy state for H. tomentosa, as for A. buxifolia and E. reunionensis (Baskin and Baskin, 2004, 2014). In 
addition, temperature requirements appear to be narrower for H. tomentosa (probably, 25 ◦C) than for A. buxifolia and E. reunionensis. 

For H. lanceolatum (Hypericaceae), like for H. tomentosa, it is not possible to confirm the kind of dormancy. However, it is likely that 
H. lanceolatum seeds exhibits physiological dormancy, based on reports in other scientific publications. For instance, H. perforatum, a 
medicinal plant recognized in Europe and H. aviculariifolium subsp. depilatum var. depilatum, a Turkish endemic species, have dormant 
seeds caused by a chemical inhibitor in the capsule (Baskin and Baskin, 2014; Campbell, 1985; Çirak et al., 2007). This chemical 
dormancy considered by Nikolaeva (1969) corresponds to a part of physiological dormancy in the classification of Baskin and Baskin 
(2004). Light is also required for seed germination in these two species. 

4.2. Germination of Agarista buxifolia and Erica reunionensis after GA3 and smoke water treatments 

Seed germination is controlled by several parameters such as light, temperature and phytohormones (Lymperopoulos et al., 2018; 
Ortega-Baes and Rojas-Aréchiga, 2007). In our study, inhibition and improvement of Ericaceae seed germination were investigated for 
GA3 and Smoke Water, in light and in dark. 

The presence of gibberellins (GA3 at a concentration of 1000 ppm) in light, did not influence seed germination of A. buxifolia. 
However, for E. reunionensis, the effect of GA3 is different according to temperature. The importance of gibberellins and temperature is 
also highlighted for seed germination of another Ericaceae, E. junonia (Small et al., 1982). For E. reunionensis, the final germination 
percentage was slightly improved at 15 ◦C. No effect on seed germination was detected at 25 ◦C. To explain this, our hypothesis is 
based on the regulation of gibberellins by the interaction between light quality, phytochrome and temperature (Dechaine et al., 2009; 
Lymperopoulos et al., 2018; Oh et al., 2006; Seo et al., 2009). To this regulated endogenous biosynthesis is added exogenous GA3 
(1000 ppm) which affects seed germination by raising the concentration of gibberellins in the seed (Cerabolini et al., 2004; Razmjoo 
et al., 2009). In dark, GA3 could be a substitute for light for seed germination of A. buxifolia and E. reunionensis, except at 25 ◦C. 

In the presence of Smoke Water, seed germination may be affected differently, with no germination, improvement or inhibition, 
depending on species. This was observed by Schwilk and Zavala (2012) for 11 of 15 grassland species, which showed no response or 
inhibition of seed germination. In light, for the two species studied, it seems that there is no major inhibition of seed germination 
(neutral effect). In comparison to other Ericaceae, Smoke Water significantly improves seed germination of numerous species from the 
fynbos of South Africa (33 of 53 studied species) and does not affect seed germination of 10 species (Brown and Botha, 2004). In dark, 
no major effect of Smoke Water was observed, except for an improvement at 15 ◦C for E. reunionensis. To complete the study on the 
effect of temperature, the authors propose to do a further replication on another lot and to add lower and alternating temperatures. 
According to Cadet (1977), low temperatures in dry seasons and the absolute thermal amplitudes could have a significant effect, even 
more than average values on the ecology of species. For seed germination, a case study of 445 species from the subalpine and alpine 
vegetation zones of the eastern Tibet Plateau in China has shown no effects of alternating temperatures (Liu et al., 2013). However, 
small-seeded species are more sensitive to alternating temperatures than large-seeded species. This is an interesting point to study in 
the subalpine and alpine zones of Reunion Island. Seed germination may also depend on the composition and the concentration of 
smoke extract and species (Brown, 1993). Concerning the Smoke Water in our study, we know that cyanide, one compound that can 
improve germination was not present (Brown and van Staden, 1997; Chiwocha et al., 2009; Kulkarni et al., 2007; Leperlier et al., 
2018). It would be interesting to identify the chemical compounds in the Smoke Water of our study and to test another Smoke Water 
made by burning subalpine shrubland plants. 

4.3. Implications for threat management and conservation 

Subalpine and alpine vegetation zones are unique due to their limited area and high endemism (Juvik et al., 2014; Strasberg et al., 
2005). However, plant colonization is slow in subalpine shrubland, in particular on lapilli habitats (Cadet, 1977). On Reunion Island, 
fire is an additional factor that may increase the colonization time of native and endemic plants contrary to invasive alien species. On 
islands, invasive alien species are among the major threats to biodiversity (Russell and Kueffer, 2019). A study supervised by the 
National Park in Maïdo has shown that post-fire vegetation cover by alien species tends to increase compared to that of endemic 
species, including E. reunionensis (Payet et al., 2015). These results agree with seed germination data acquired in our study for light 
requirements. In protected areas, E. reunionensis is dominant, while in impacted areas, even with low impact, E. reunionensis cover 
decreases. This is explained by the significant presence of species, such as Pteridium aquilinum and Ulex europaeus, which deprive seeds 
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of light, required for germination. In particular, U. europaeus, one of the world’s 100 worst invasive species seems to be more 
competitive than native species on Reunion Island (Lowe et al., 2000). This species has a physical dormancy, but seeds from Reunion 
Island are better able to germinate without scarification (Udo et al., 2017). Great variations in germination between populations and 
according to temperature are also reported, ranging from 10 % to 60 %. In addition, little is known about the species’ conservation in 
the soil seed bank and the competition with endemic species, including those in our study. For U. europaeus, Hill et al. (2001) reported 
that its soil seed bank is perennial but its dynamics depend on site. 

Temperature is one of the determinant factors for recruitment and community persistence in mountainous areas, such as subalpine 
and alpine vegetation zones in particular in the context of climate change (Buytaert et al., 2011; Juvik et al., 2014; Pouteau et al., 
2010). Seed germination may be the most sensitive stage of plant regeneration to climate change (Walck et al., 2011; Wu et al., 2019). 
Responses to increase in temperature are variable depending on species (Ooi et al., 2011; Pérez-Sánchez et al., 2011). More generally, 
climate change could influence other plant life-history traits and determine species distribution and persistence in the ecosystem 
(Parmesan and Hanley, 2015; Walck et al., 2011; Wu et al., 2019). 

Thus, a better understanding of native and endemic species seed germination in the presence and absence of disturbances, such as 
fires and biological invasions (in our case) is relevant to target restoration actions (Kildisheva et al., 2020). For instance, Payet et al. 
(2015) proposed studying the potential of reseeding burnt areas. This would involve acquiring more data about germination ecology 
and more generally about mother-plant phenology such as fruit maturation (Côme and Corbineau, 2006). In addition, this study must 
include soil factors and the impact of fires on life-history traits. 

5. Conclusion 

To our knowledge, these first explorations are the first data officially published on seed germination from subalpine shrubland on 
Reunion Island. For the first objective, to identify the presence of dormancy and light requirements, our results suggest that light is 
required for seed germination for E. reunionensis and A. buxifolia. Without the possibility to test seed viability, we are not able to 
confirm the kind of dormancy for H. tomentosa and H. lanceolatum ssp. angustifolium. However, we hypothetise that these four species 
have non-deep physiological dormancy with a conditional dormancy state. Seeds of S. passerinoides have no dormancy. 

Concerning the second objective, to evaluate whether GA3 and Smoke Water could substitute for light for seed germination of 
Ericaceae species, GA3 (1000 ppm) substitutes for light, except at 25 ◦C for E. reunionensis. With regard to the Smoke Water of our 
study, this solution does not improve seed germination, except at 15 ◦C in dark. 

This study adds more data on the germination ecology of species of tropical oceanic islands. In particular, on Reunion Island, the 
need for data is important for ecological restoration actions in disturbed areas where biodiversity is exceptional and vulnerable. This is 
particularly true in the case of subalpine shrubland, which only exists on a small number of islands in the world. In the context of 
disturbances by fires and biological invasions, every seed of native and endemic species is important for the conservation of 
biodiversity. 
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