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Abstract: Many species of Talaromyces of marine origin could be considered as non-toxigenic fungal
cell factory. Some strains could produce water-soluble active biopigments in submerged cultures.
These fungal pigments are of interest due to their applications in the design of new pharmaceutical
products. In this study, the azaphilone red pigments and ergosterol derivatives produced by a
wild type of Talaromyces sp. 30570 (CBS 206.89 B) marine-derived fungal strain with industrial
relevance were described. The strain was isolated from the coral reef of the Réunion island.
An alternative extraction of the fungal pigments using high pressure with eco-friendly solvents
was studied. Twelve different red pigments were detected, including two pigmented ergosterol
derivatives. Nine metabolites were identified using HPLC-PDA-ESI/MS as Monascus-like azaphilone
pigments. In particular, derivatives of nitrogen-containing azaphilone red pigment, like PP-R,
6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V, N-threonine-monascorubramin, N-glutaryl-rubropunctamin,
monascorubramin, and presumed N-threonyl-rubropunctamin (or acid form of the pigment PP-R)
were the major pigmented compounds produced. Interestingly, the bioproduction of these red
pigments occurred only when complex organic nitrogen sources were present in the culture medium.
These findings are important for the field of the selective production of Monascus-like azaphilone red
pigments for the industries.

Keywords: Talaromyces; azaphilone; marine fungi; N-threonyl-rubropunctamin; PP-R; greener
extraction; red pigments; fungal pigments

1. Introduction

With the progress of biotechnologies, the investigation and exploitation of rich natural sources to
isolate natural products with commercial applications has gained increasing interest. Interestingly,
the quest for novel drugs has driven research back to look closer at what nature has to offer: biodiversity
and untapped natural resources [1,2]. Microorganisms represent a vast repertoire of natural products,
many of them with industrial importance. Industrially important fungal bioactive compounds, such as
enzymes, organic acids, biochemicals and pigments (with shades of orange, yellow, red, etc.), can be
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produced from specific fungi [3–7]. As some synthetic colorants have carcinogenic and teratogenic
effects, fungal pigments represent an alternative source of natural colorants that are independent of
agro-climatic conditions [7,8]. Red colorants of fungal origin have become more and more valued and
sought after in the industries, like textiles, food, cosmetics, and pharmaceutics [9,10]. Indeed, to this
day, very few stable red colorants of natural origin are available for the industries. Consequently,
fungal red pigments are now well established in the industry among the natural colorants, competing
with plant and microalgae pigments [3,11].

Fungi of marine origin represent a source of active metabolites exerting pharmacological properties
for drug applications [2,6]. In accordance with their genetic potential, some marine-derived fungal
strains of Talaromyces produced toxin-free polyketide-based pigments and could then be exploited in the
industries as a non-toxigenic fungal cell factory in future. Polyketide-based pigments are characterized
by a multitude of complex and diverse chemical structures, including quinones (naphthoquinones,
hydroxy-anthraquinones) and azaphilones [5]. They involve biosynthetic pathways catalyzed by
multiple polyketide synthase enzymes (PKS). The biological properties of fungal azaphilone pigments
with pyrone–quinone structures may open new avenues for their use in the production of valuable
drugs for medical use. Since ancient times, the fermentation of Monascus species has been used to
color food products (like meat, wine, cheese, rice and koji) in Asian far-east countries. These fungi
produced well-known, yellow-orange-red, azaphilone-based pigments [3,5], but their use as food
colorants is not allowed in the USA and in European countries due to the occasional occurrence of
the mycotoxin citrinin, along with the undesirable compound mevinolin [9,12–15]. Recent studies
have shown that some Talaromyces/Penicillium sp. non-pathogenic to humans, such as Talaromyces
aculeatus, T. pinophilus, T. funiculosus, T. atroroseus, T. minioluteus, T. marneffei and T. albobiverticillius,
naturally secrete soluble Monascus-like azaphilone red pigments and their amino acid derivatives,
without side-production of mycotoxins [15–18]. Talaromyces/Penicillium species are promising sources
of fungal polyketide-based red pigments (monascorubramin, rubropunctamin, PP-R, etc.), which
can be safely applied in the industries (such as animal feed supplementation, foods, nutraceuticals,
pharmaceuticals and cosmetics) [19]. More recently, studies performed by Chen et al. [20,21] and Liu
et al. [22] have explained the biosynthetic pathway of Monascus-like azaphilone pigments in Monascus
and Talaromyces/Penicillium genera. They described a common gene cluster responsible for the pigment
production in these genera, as well as differences regarding the gene organization, copy numbers and
allelic diversity.

Traditionally, the Monascus-like azaphilone pigments are being extracted from microbial biomass by
conventional solid–liquid extraction processes and require extended extraction times, high temperatures
and important volumes of various organic solvents (n-hexane, acetone, chloroform, ethyl acetate,
etc.) [23]. Extracting the fungal pigments via green processing technologies presents a promising
approach to pursue a more sustainable production of natural colorants [24]. Therefore, alternatives
are assessed for pigment extraction by different technologies (e.g., extraction assisted by ultrasound,
microwave, enzymatic or high-pressure treatments) [5,25–27].

The aim of this study is focused on the characterization of the target bioactive compounds
(e.g., derivatives of nitrogen-containing azaphilone red pigments and ergosterol derivatives) produced
by a wild type of Talaromyces sp. 30570 (CBS 206.89 B) marine-derived fungal strain isolated from the
coral reef of the Réunion island. The influence of the nutrients’ profile on the fungal pigments production
in two submerged cultures, either with simple or complex sources of nitrogen, were also studied.
Furthermore, we investigated the use of an alternative Pressurized Liquid Extraction (PLE) method
based on the extraction procedure published in our previous work [25], using eco-friendly solvents
(e.g., water, methanol and/or ethanol, which are allowed in the US and in the EU for the extraction of
natural products), for advanced mycelial pigment extraction from the marine-derived Talaromyces sp.
30570 fungal strain. This alternative extraction consists of a high-pressure extraction process from the
mycelial cells carried out at a high temperature and elevated pressure (>10 MPa) in order to maintain the
solvents at liquid state when applied to the sample, as well as to maximize the extraction efficiency [5,25].
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The pigment composition was characterized by high-performance liquid chromatography-diode array
detection-electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS).

2. Materials and Methods

2.1. Submerged Fermentation of Fungal Strain

The fungal strain was sampled from Réunion island coral-reef according to our previous study
and was identified as Talaromyces sp. CBS 206.89 B (collection strain No. 30570 in our collection
reference system) using morphological observation and gene sequencing [28]. Two submerged culture
media, the Defined Minimal Dextrose broth (DMD) and the Potato Dextrose Broth (PDB), containing
simple source of nitrogen (i.e., ammonium sulfate) and complex sources of nitrogen (like amino
acids and proteins), respectively, were used for the comparison in terms of pigment production in
submerged fungal cultures, as reported earlier [25]. Culture pH medium was adjusted to 6.0 ± 0.2
prior to sterilization. Pre-culture was prepared by taking a loop of fungus from 7-day old culture
grown on PDA Petri plates and transferred into 60 mL sterilized PDB culture medium. The flasks
were incubated at 26 ◦C for 72 h. Cultures were carried out in 250 mL Erlenmeyer flasks containing
100 mL of sterilized culture medium. The flasks were inoculated with 1% (w/v) 72 h-old seed culture
and incubated at 26 ◦C for 7 days at 150 rpm (Infors Multitron HT) (Figure 1).
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Figure 1. Morphological features of the marine-derived Talaromyces sp. 30570 strain: (a) Conidiophores
produced on Potato Dextrose Agar (PDA) media, stained with lactophenol blue (scale bar 5 µm);
(b) Reverse face of fungus grown on PDA; (c) Red pigment production in Defined Minimal Dextrose
(DMD) medium incubated for 7 days at 24 ◦C; (d) Red pigment production in Potato Dextrose Broth
(PDB) medium incubated for 7 days at 24 ◦C.

2.2. Biomass Separation, Extraction and Quantification of the Polyketide-Based Pigments

Fungal biomass was separated from fermentation broth by centrifugation at 10,000 rpm for 10 min
(Centrifuge Sigma 3 K 3OH) and vacuum filtration. Biomass was lyophilized (FreeZone 2.5 Liter 50C
Benchtop freeze dryer, LABCONCO, Kansas City, MO, USA) and then weighed. The fungal pigments
were extracted and fractionated from the mycelial cells of Talaromyces sp. 30570 using an alternative
pressurized liquid extraction (PLE) process with eco-friendly solvents (water, methanol and ethanol)
according to the method recently published by Lebeau et al. [25]. The PLE process was performed on
a Dionex ASE system (ASETM 350 apparatus, Dionex, Germering, Germany). The weighed sample
(lyophilized biomass) was transferred to a 10-mL stainless steel extraction cell equipped with two
cellulose filters on the bottom and containing glass balls (diameter 0.25–0.50 mm). Then, the sample
was subjected to a six-stage extraction procedure under high pressure as an attempt to entirely extract
the intracellular pigments from the mycelium. The sequence of solvents was set to display a decreasing
polarity profile: purified water was used as the first extraction solvent, followed by 50% methanol,
then 50% ethanol, >99.9% methanol, and MeOH:EtOH (1/1, v/v), and >99.9% ethanol as the last
extraction solvent (Figure 2). The PLE extraction conditions were: temperature: 90 ◦C, pressure
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>10 MPa, heating time: 5 min, static time: 18 min, flush: 100%, and purge: 5 min. Solvents (methanol
and ethanol, 99.9%-HPLC quality) were obtained from Carlo Erba (Val de Reuil, France). Purified
water was obtained from a Milli-Q system (EMD Millipore Co., Billerica, MA, USA).
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Figure 2. Red-colored dried residues obtained from submerged culture of the marine-derived Talaromyces
sp. 30570 strain (a) in DMD, or (b) in PDB medium; (c,d) intracellular (IC) liquid extracts obtained using
the pressurized liquid extraction method on mycelial cells of Talaromyces sp. 30570. The sequence of
solvents was set to display a decreasing polarity profile (from IC1 to IC6; or from IC7 to IC12): purified
water was used as the first extraction solvent, followed by 50% aqueous methanol, then 50% aqueous
ethanol, >99.9% methanol, and MeOH:EtOH (1/1, v/v), and >99.9% ethanol as the last extraction solvent.

The pigment content extracted from the mycelial biomass was analyzed by spectral analysis
using a UV-visible spectrophotometer (UV-1800, Shimadzu Corporation, Tokyo, Japan) at 276 nm
(i.e., λmax of the well-known Monascus-like pigments rubropunctamin and monascurubramin) according
the method earlier reported [25], and expressed in terms of milli-equivalents of polyketide-based
pigments per liter of culture medium (i.e., volumetric production in meqv·L−1 in the culture medium).
All experiments were conducted in triplicate. The extracts were then stored at 4 ◦C in an amber vial
prior to chromatographic analysis.

2.3. HPLC-DAD Analysis

Pigment composition was characterized by reverse phase HPLC-DAD using the Ultimate 3000
apparatus (Dionex, Germering, Germany) based on the analytical method reported by Lebeau et al. [25].
Analytical conditions: 25 µL injection; Hypersil GoldTM column (2.1 mm i.d. × 150 mm, 5 µm; Thermo
Scientific Inc., Waltham, MA, USA); temperature 30 ◦C; elution with a water-acetonitrile-formic acid
gradient system [25]. Data were analyzed by the Chromeleon v.6.80 software (Dionex). Acetonitrile
(99.9%-HPLC quality) and formic acid (purity 99%) were obtained from Carlo Erba (Val de Reuil, France).

2.4. UHPLC-HR-ESI-MS Analyses

The pigments were identified by UHPLC- High Resolution Electrospray Ionization (HR-ESI) MS
analyses according to the method published by Klitgaard et al. [29], and using the Agilent 1290 Infinity
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LC system with a DAD detector, coupled to an Agilent 6550 iFunnel Q-TOF with an electrospray
ionization source (Agilent Technologies, Santa Clara, CA, USA), and a Poroshell 120 Phenyl–Hexyl
column (2.1 mm i.d. × 250 mm, 2.7 µm; Agilent). The analytical conditions used in this study were those
earlier reported by Klitgaard et al. [29]: the separation was performed at 60 ◦C with a water-acetonitrile
gradient (with 20 mM formic acid) going from 10% (v/v) to 100% acetonitrile in 15 min, followed by
3 min with 100% acetonitrile. The flow rate was kept constant at 0.35 mL/min. Mass spectra were
recorded as centroid data for m/z 85–1700 in positive and negative ESI-MS mode, with an acquisition
rate of 10 spectra/s.

3. Results

3.1. Alternative Extraction and Characterization of Monascus-Like Azaphilone Pigments from the
Marine-Derived Talaromyces sp. 30570 Strain

Results from the analysis of the pigmented extracts using the alternative PLE method revealed
a great diversity of the chemical structures of the Talaromyces sp. 30570 pigments. A series of
intracellular extracts (IC) (Figure 2) were collected based on the PLE extraction procedure investigated,
and their compositions in terms of fungal pigments were characterized by HPLC-DAD chromatography
(Figure 3). Twelve pigmented compounds (compounds 1 to 12) and one other colorless secondary
metabolite (compound 13, identified as ergosterol, see below) were identified. In particular, our results
highlighted that the multi-step PLE procedure gives encouraging results in terms of selectivity of the
extraction of the polyketide-based red pigments. This can be shown by two elements.

First, the initial extraction using hot pressurized water (90 ◦C and 10 MPa) enables the extraction
with high selectivity of a highly polar pigment from fungal mycelium, namely compound 1, found
only in the aqueous fraction (Figure 3A), without co-extraction of side metabolites. Indeed, only one
single peak (Rt 1.71 min; Figure 3A) was observed on the LC chromatogram. This compound 1
exhibits two absorption maxima at ca. 423 and 514 nm, which is characteristic of the Monascus-like
nitrogen-containing azaphilone pigments [5,30]. Unfortunately, further dereplication experiments
using HPLC-PDA-ESI/MS were not conclusive enough to fully elucidate the chemical structure of
this highly polar red pigmented compound. Presumably, this highly polar compound 1, exhibiting
UV-visible λmax at 201, 216, 244, 276, 423, and 514 nm, was presumed to be to a highly polar diglycoside
derivative of a Monascus-like azaphilone red pigment. However, it cannot be concluded here that it
represents only one compound, and alternative polar stationary phases (i.e., amide) should be used in
further works for more relevant analysis of that/those compound(s).

Then, the following extractions using hot pressurized (90 ◦C and 10 MPa) hydroalcoholic mixtures
such as 50% aqueous methanol (Figure 3B) or 50% aqueous ethanol (Figure 3C) enabled the extraction
of others major Monascus-like red pigments from mycelium (pigments 2–12) with a certain selectivity.
Indeed, the extraction of other non-pigmented compounds such as ergosterol 13 (present in the
intracellular metabolites produced by the mold) occurred only when less polar solvents, like pure
methanol, were used (Figure 3D).

The UV-visible absorption spectra of the major pigmented molecules (compounds 1, 5, 6, 8, 9 and
10 detected by HPLC-DAD, Figure 3) produced by the marine-derived Talaromyces sp. 30570 fungal
strain are shown in Figure 4.
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Figure 4. UV-visible absorption spectra of the major identified or assumed compounds 1, 5, 6, 8,
9 and 10 detected in intracellular extracts of the marine isolate Talaromyces sp. 30570 cultivated in
PDB with reference to the chromatogram shown in Figure 3. Assignment of the nitrogen-containing
azaphilone red pigments were done by UV-visible spectra and HRMS according to their mass to
charge ratio. Pigments: 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V 6; N-threonine-monascorubramin
8; N-glutaryl-rubropunctamin 9; and monascorubramin 10. Pigment 1, not tentatively identified,
was presumed to be to a highly polar compound, like a diglycoside derivative of a Monascus-like
azaphilone red pigment. Then, it is presumed that the pigment 5 might reasonably be the molecule
N-threonyl-rubropunctamin (or the acid form of the aforementioned PP-R), as recently reported by
Rasmussen [30]. See Figure 5 for the chemical structure of the molecules.

The UV-Vis absorption spectra gave some indications on the chemical structure of the pigments
produced. All the compounds (1–12) responsible for the pigmentation (with absorption in visible
region) shown the same UV-visible spectral characteristics, i.e., a mountain-like spectrum with three or
four UV λmax in the range 193–201, 216–218, 244–250 and 272–287 nm. Furthermore, all these aromatic
compounds displayed the characteristic nitrogen-containing Monascus-like azaphilone red pigments
double visible peaks around 430 and 515 nm (range 423–430 and 514–546 nm) (Figure 4, Table 1) in
accordance with the literature data [5,30]. This unique chemical fingerprint of these pigments would
suggest the presence of the monascorubramin or rubropunctamin-type chromophore in the molecule,
as reported earlier [30].



Microorganisms 2020, 8, 1920 8 of 20

Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 19 

type chromophore) were detected, and nine were tentatively identified as derivatives of nitrogen-
containing azaphilone red pigment (see Figure 5 for the chemical structures of the major identified 
or assumed red pigments of Talaromyces sp. 30570). The retention time (Rt), UV-Vis λmax, accurate 
masses of parent ion and of adduct ions, color, molecular formula and average mass for each 
compound identified in the extracts of the marine-derived Talaromyces sp. 30570 strain cultivated in 
PDB are gathered in Table 1. 

 
Figure 5. Main Monascus-like nitrogen-containing azaphilone pigments produced by the marine-
derived Talaromyces sp. 30570 fungal strain. Assignment of the pigments (2–10) and ergosterol (13) 
were done by UV-visible spectra and HR-ESI-MS according to their mass to charge ratio. It is 
presumed that the major red pigment 5 produced by the fungal strain (see sidebar) might reasonably 
be the molecule N-threonyl-rubropunctamin (C25H29NO7, m/z 455) or the acid form (R-COOH) of the 
pigment PP-R (C25H29NO7, m/z 455) as recently reported by Rasmussen [30]. 

  

Glycyl-rubropunctatin  
(m/z 413) (3) 

N-GABA-rubropunctatin  
(m/z 439) (4) 

6-[(Z)-2-Carboxyvinyl]- 
N-GABA-PP-V (m/z 497) (6) 

PP-R (m/z 425) (2) 

N-glutaryl 
monascorubraminic acid 

(m/z 541) (7) 

N-threonine- 
monascorubramin  

(m/z 483) (8) 
N-glutaryl-rubropunctamin  

(m/z 483) (9) 

Monascorubramin (m/z 
381) (10) 

N-threonyl-rubropunctamin (m/z 455),  or acid form of PP-R (m/z 455) (5) 

Ergosterol (colorless) (m/z 
396) (13) 

Figure 5. Main Monascus-like nitrogen-containing azaphilone pigments produced by the marine-derived
Talaromyces sp. 30570 fungal strain. Assignment of the pigments (2–10) and ergosterol (13) were done
by UV-visible spectra and HR-ESI-MS according to their mass to charge ratio. It is presumed that the
major red pigment 5 produced by the fungal strain (see sidebar) might reasonably be the molecule
N-threonyl-rubropunctamin (C25H29NO7, m/z 455) or the acid form (R-COOH) of the pigment PP-R
(C25H29NO7, m/z 455) as recently reported by Rasmussen [30].

Thus, among the great number of compounds observed, twelve Monascus-type azaphilone red
pigments (with absorption in the visible region due to the monascorubramin or rubropunctamin-type
chromophore) were detected, and nine were tentatively identified as derivatives of nitrogen-containing
azaphilone red pigment (see Figure 5 for the chemical structures of the major identified or assumed red
pigments of Talaromyces sp. 30570). The retention time (Rt), UV-Vis λmax, accurate masses of parent ion
and of adduct ions, color, molecular formula and average mass for each compound identified in the
extracts of the marine-derived Talaromyces sp. 30570 strain cultivated in PDB are gathered in Table 1.
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Table 1. Overall compounds (12 derivatives of nitrogen-containing azaphilone red pigments and ergosterol 13) identified from the fungal extracts of the marine-derived
Talaromyces sp. 30570 fungal strain cultivated in Potato Dextrose Broth (PDB), with reference to the chromatograms shown in Figure 3.

No Rt. (min) UV-Vis λmax (nm) Observed Peak HR-ESI
MS (m/z)

Tentative Identification (Identified or
Assumed Compounds)

Proposed Molecular
Formula

Monoisotopic Mass in
Da (Mass Error) (1) Ref.

1 1.71 201, 216, 244, 276, 423, 514 n.d. Diglycoside derivative of a Monascus-like
azaphilone red pigment (n.i.) n.d. n.d. -

2 28.52 192, 245, 274, 421, 515 488.1820 [M + CAN + Na]+ PP-R [7-(2-hydroxyethyl)-monascorubramin] C25H31NO5 425.22 (0.0380) [14–16]

3 29.60 193, 245, 274, 421, 518 416.1960 [M + H]+ Glycyl-rubropunctatin C23H27NO6 413.18 (2.0160) [31–33]

4 30.15 193, 245, 274, 426, 515 440.1936 [M + H]+ N-GABA-rubropunctatin (GABA:
γ-aminobutyric acid) C25H29NO6 439.51 (0.3164) [20]

5 30.97 195, 245, 274, 424, 520 456.1543 [M + H]+ N-threonyl-rubropunctamin (or acid form of
PP-R) (presumed) C25H29N07 455.20 (0.0457) [25,30]

6 32.66 193, 218, 250, 287, 424, 546 498.1665 [M + H]+ 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V C27H31N08 497.54 (0.3735) [28,34]

7 36.11 196, 247, 288, 422, 522 542.1598 [M + H]+ N-glutaryl-monascorubraminic acid C28H31N010 541.20 (0.038) [30]

8 38.04 193, 246, 273, 426, 521 484.1910 [M+H]+ N-threonine-monascorubramin C27H33N07 483.55 (0.0402) [34]

9 39.10 193, 216, 250, 277, 426, 532 484.5110 [M + H]+ 546.1556
[M + CAN + Na]+ N-glutaryl-rubropunctamin C26H29N08 483.51 (0.0010) [15,34–36]

10 43.95 193, 245, 272, 424, 519 381.1198 [M + H]+ Monascorubramin C23H27NO4 381.19 (1.0702) [15,16]

11 70.40 192, 248, 271, 282, 293, 434, 513 n.d. Derivative of a Monascus-like azaphilone
red pigment (n.i.) n.d. n.d -

12 70.64 192, 248, 271, 282, 293, 434, 510 n.d. Derivative of a Monascus-like azaphilone
red pigment (n.i.) n.d. n.d. -

13 69.78 192, 248, 271, 282, 293 393.2693 Ergosterol (colorless compound) C28H44O 396.65 (0.3807) [37,38]

n.d.: not determined.; n.i.: not identified; (1) the mass error (Da) between the observed MS peaks and proposed formula (for the molecular ion).
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Among the derivatives of nitrogen-containing azaphilone red pigments identified, the compound
2 eluting at Rt. 28.52 min that presents UV-Vis λmax at 192, 245, 274, 421 and 515 nm, was characteristic
of the red pigment PP-R [7-(2-hydroxyethyl)-monascorubramin] which has previously been isolated
from some other species of Talaromyces [14–16]. Indeed, the ACN-Na adduct ion [M + CAN + Na]+

observed at m/z 488.1820 was in agreement with the calculated masses of the C25H31NO5-CH3CN-Na+

adduct ion (m/z 488) and of molecular ion (m/z 425.22) to the red pigment PP-R suggesting a C25H31NO5

molecular formula (Table 1, Figure 5; Figure S1) [14–16].
Additionally, our results suggested that the compound 3 (Rt. 29.60 min; λmax at 193, 245,

274, 421 and 518 nm; m/z 416.1960 [M + H]+) might reasonably correspond to the red pigment
glycyl-rubropunctatin (C23H27NO6; average mass m/z 413.18) (Figure S2) previously isolated from
Monascus cultures [31–33].

The UV-visible and HR-ESI-MS spectra of the compound 4 (Rt. 30.15 min; λmax at 193, 245, 274, 426
and 515 nm) were characteristics to the red pigment N-GABA-rubropunctatin (GABA: γ-aminobutyric
acid) [20]: the protonated molecular ion [M + H]+ observed at m/z 440.1936 was in agreement with the
calculated mass of the N-GABA-rubropunctatin molecular ion (m/z 439.51) suggesting a C25H29NO6

molecular formula (Table 1, Figure 5; Figure S3) [20].
Interestingly, our results demonstrated that the major pigment produced by the marine-derived

Talaromyces sp. 30570 strain, i.e., the compound 5 eluting at Rt. 30.97 min with UV-Vis λmax at 195, 245,
274, 424 and 520 nm (Figure 3, Table 1) was a derivative of nitrogen-containing azaphilone red pigment
and it is presumed that this pigment might reasonably be the molecule N-threonyl-rubropunctamin [25],
or the acid form of the aforementioned PP-R, as recently reported by Rasmussen [30] from another
species of Talaromyces (i.e., T. atroroseus). Indeed, this compound 5, displayed a protonated molecular ion
[M + H]+ at m/z 456.1543 (Figure S4), and the aforementioned derivatives N-threonyl-rubropunctamin
and acid form of PP-R have the same nominal mass of 455.20, suggesting a C25H29NO7 molecular
formula [25,30] (Table 1, Figure 5), which should be in agreement with the protonated molecular ion
observed in this study. Further works are needed to purify and fully characterize this red pigment
produced by the fungus by NMR analysis.

The compound 6 (Rt. 32.66 min; λmax at 193, 218, 250, 287, 424 and 546 nm) was identified as the
derivative 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V. Its [M + H]+ ion, observed at m/z 498.1665, matched
up well with the expected mass of the corresponding molecule (molecular ion m/z 497.54) suggesting a
C27H31NO8 molecular formula (Table 1, Figure 5; Figure S5). This derivative of azaphilone red pigment
has recently been isolated from another marine-derived strain of Talaromyces sp. 30548 (e.g., strain CBS
206.89 A, identified as T. albobiverticillius) also collected from the coral reef of the Réunion island [28,34].

The compound 7 (Rt. 36.11 min; λmax at 196, 247, 288, 422 and 522 nm) was characteristic of the
red pigment N-glutaryl-monascorubraminic acid (acid form) according to the data reported earlier [30].
Its protonated molecular ion [M + H]+ at m/z 542.1598 was consistent with the calculated mass of the
molecular ion m/z 541.20 of the corresponding molecule, suggesting a C28H31NO10 molecular formula
(Table 1, Figure 5; Figure S6) [30].

The compound 8 (Rt. 38.04 min; λmax at 193, 246, 273, 426 and 521 nm) was characteristic to
the red pigment N-threonine-monascorubramin [34]. Its protonated molecular ion [M + H]+ at m/z
484.1910 was in agreement with the calculated mass m/z 483.55 of the N-threonine-monascorubramin
molecular ion, suggesting a C27H33NO7 molecular formula (Table 1, Figure 5; Figure S7) [34].

The compound 9 (Rt. 39.10 min; λmax at 193, 216, 250, 277, 426 and 532 nm) was characteristic to
the red pigment N-glutaryl-rubropunctamin. Its protonated molecular ion [M + H]+ at m/z 484.5110
supported by its ACN-Na adduct ion [M + ACN + Na]+ at m/z 546.1556 (Figure S8) coincided nicely
with the expected mass 483.51 of the N-glutaryl-rubropunctamin (with formula C26H29NO8) isolated
from other Monascus and Talaromyces species [15,34–36].

Then, the compound 10 (Rt. 43.95 min; λmax at 193, 245, 272, 424 and 519 nm) seemed to correspond
to the red pigment monascorubramin according to its protonated molecular ion m/z 381.1198 (Figure S9)
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relatively close to the calculated mass of the molecular ion m/z 381.19 of the corresponding molecule
(C23H27NO4) [15,16].

In addition to these Monascus-like azaphilone pigments, no known mycotoxins were reported in
the extracts obtained from the PLE extraction investigated here. Finally, our results suggested that
the apolar and colorless compound 13 (Figure 6, Table 1) eluting at Rt. 69.78 min is assumed to be
the molecule ergosterol (C28H44O; 396 g/mol), according to its similar absorption spectrum and to the
HR-ESI-MS characteristic ion [M + H]+ at m/z 393.2693 (Figure S10). Indeed, ergosterol can undergo
desaturation during LC-MS [37,38] (Table 1), consequently yielding a second molecular ion at m/z
393 in addition to the conventional molecular ion at m/z 397 [M + H]+. The results described in the
present study are consistent with several earlier investigations which have highlighted the presence
of ergosterol and derivatives of ergosterol from fungi [38]. On top of everything, ergosterol and its
derivates are proven, with interesting bioactivities with potential uses in pharmaceutics [38,39].
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Figure 6. UV-visible spectra of the ergosterol (colorless compound 13) and the two pigmented ergosterol
derivatives of azaphilone compounds 11 and 12 with reference to the chromatograms shown in Figure 3,
detected in the present study in intracellular extracts of the marine isolate Talaromyces sp. 30570.
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Interestingly, based on the UV-visible spectra of the last molecules 11 and 12 (Figure 6), these two
red pigments (with absorption at ca. 515 nm in the visible ‘red’ region) not tentatively identified by
HPLC-PDA-ESI/MS (signal too weak) seemed to correspond to two pigmented ergosterol derivatives
of azaphilone compounds. Indeed, they exhibited similar absorption spectra in the ultraviolet region
to ergosterol molecule (i.e., λmax at 248, 271, 282 and 293 nm). Surprisingly, they also displayed the
characteristic nitrogen-containing Monascus-like azaphilone red pigments double visible peaks around
430 and 515 nm. To our knowledge, this is the first isolation of that kind of pigmented ergosterol
derivatives of azaphilone red compounds from microorganisms. However, it was not possible to assign
masses and chemical formulas to these two minor compounds.

3.2. Influence of the Nutrients Profile on the Production of Monascus-Like Azaphilone Red Pigments by the
Marine-Derived Talaromyces sp. 30570 Strain

Surprisingly, among the twelve red pigments detected in this study from the marine-derived
Talaromyces sp. 30570 when cultivating in PDB, our results shown that only three
well-known red pigments, i.e., the glycyl-rubropunctatin 3, N-GABA-rubropunctatin 4 and the
N-threonyl-rubropunctamin 5, are common to both submerged culture conditions: in PDB (Figure 7A)
and defined minimal dextrose broth (DMD) (Figure 7B). Our results, reported in Table 2, indicated that
the nutrients’ profile of the fermentation broth has a clear impact on the pigment production by the
marine-derived Talaromyces sp. 30570 fungal strain. These findings are corroborated by the results of
earlier studies performed on Talaromyces/Penicillium species by Ogihara and Oishi [40] and Arai et al. [41],
which have demonstrated that the fungal pigmentation will depend on the medium composition.
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Figure 7. Chromatograms of the overall compounds detected by HPLC-DAD in the samples obtained
by pressurized liquid extraction (PLE) using 50% aqueous ethanol as extraction solvent from the
mycelium of the marine-derived Talaromyces sp. 30570 strain cultivated in submerged culture: (A) in
Potato Dextrose Broth (PDB); and (B) in Defined Minimal Dextrose broth (DMD). Assignment of the
polyketide-based compounds were done by UV-visible spectra and HRMS according to their mass to
charge ratio. See Table 2 for the identification of the molecules.
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Table 2. Overall compounds identified from the fungal extracts of the marine-derived Talaromyces sp. 30570 fungal strain cultivated in 2 different submerged cultures:
in Potato Dextrose Broth (PDB) and in Defined Minimal Dextrose broth (DMD), with reference to the chromatograms shown in Figure 7.

No Rt. (min) UV-Vis λmax (nm) (Bold: λmax in Visible) Tentative Identification (Identified or Assumed Compounds)
Polyketide-Based Compounds Content (meqv.L−1)

in PDB (1) in DMD (1)

1 1.71 201, 216, 244, 276, 423, 514 Diglycoside derivative of a Monascus-like azaphilone red pigment 124.8 ± 5.0 -

2 28.52 192, 245, 274, 421, 515 PP-R [7-(2-hydroxyethyl)-monascorubramin] 6.7 ± 0.4 -

3 29.60 193, 245, 274, 421, 518 Glycyl-rubropunctatin 22.1 ± 1.3 7.3 ± 0.3

4 30.15 193, 245, 274, 426, 515 N-GABA-rubropunctatin (GABA: γ-aminobutyric acid) 8.0 ± 0.3 4.9 ± 0.4

5 30.97 195, 245, 274, 424, 520 N-threonyl-rubropunctamin (or acid form of PP-R) 83.4 ± 4.1 9.0 ± 0.8

6 32.66 193, 218, 250, 287, 424, 546 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V 33.5 ± 1.3 -

7 36.11 196, 247, 288, 422, 522 N-glutaryl-monascorubraminic acid 7.3 ± 0.4 -

8 38.04 193, 246, 273, 426, 521 N-threonine-monascorubramin 24.3 ± 0.6 -

9 39.10 193, 216, 250, 277, 426, 532 N-glutaryl-rubropunctamin 5.7 ± 0.2 -

10 43.95 193, 245, 272, 424, 519 Monascorubramin 19.6 ± 0.9 -

11 70.40 192, 248, 271, 282, 293, 434, 513 Derivative of a Monascus-like azaphilone red pigment (n.i.) 4.1 ± 0.2 -

12 70.64 192, 248, 271, 282, 293, 434, 510 Derivative of a Monascus-like azaphilone red pigment (n.i.) 4.2 ± 0.4 -

13 69.78 192, 248, 271, 282, 293 Ergosterol (colorless compound) 24.0 ± 1.0 73.8 ± 1.9

14 1.63 198, 260 Colorless compound (n.i.) - 31.1 ± 1.2

15 2.01 196, 258 Colorless compound (n.i.) - 6.1 ± 0.3

16 23.79 203, 256, 298 Colorless compound (n.i.) - 6.3 ± 0.3

17 25.93 196, 264, 278, 479 Yellow pigment (n.i.) - 5.2 ± 0.2

18 32.03 193, 252, 294, 428, 546 Purple-red pigment (n.i.) - 5.0 ± 0.3

19 32.73 192, 220, 246, 289, 415, 546 Purple-red pigment (n.i.) - 3.8 ± 0.3

20 36.30 193, 260, 274 Colorless compound (n.i.) - 2.7 ± 0.2

21 38.57 192, 211, 243, 391 Colorless compound (n.i.) - 1.5 ± 0.2

22 40.21 210, 292, 421 Colorless compound (n.i.) - 0.4 ± 0.1

23 43.43 192, 280, 409, 431 Yellow pigment (n.i.) - 0.4 ± 0.1

24 52.93 192, 248, 271, 282, 293, 414 Yellow pigment (n.i.) - 17.4 ± 1.1
(1) mean (± standard deviation) expressed in meqv.L-1 of polyketide-based compounds produced in PDB and DMD broths.
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Indeed, in minimal nutrient condition (e.g., DMD broth) containing glucose and inorganic nitrogen
source (with salts and bio-elements), the extraction and recovery of derivatives of nitrogen-containing
azaphilone red pigments from the marine-derived Talaromyces sp. 30570 mycelia was very low.
In this minimal nutrient condition, the fungus yielded compounds, which were mostly unpigmented
(e.g., ergosterol 13 and the not identified compounds 14–16 and 20–22) (Table 2). Thus, the yield
of nitrogen-containing azaphilone red pigments in this minimal culture medium was very poor
compared to PDB medium containing complex organic nitrogen (such as amino acids and proteins)
and carbon sources. When cultivated in the minimal medium, the fungal strain produced only
the glycyl-rubropunctatin 3, the N-GABA-rubropunctatin 4, and the N-threonyl-rubropunctamin
5 as red pigments (Figure 7, Table 2), whereas in PDB the fungus yielded twelve derivatives of
nitrogen-containing azaphilone red pigments (pigments 1–12; Table 1).

More particularly, it is worth noticing that the fungal strain was unable to produce
monascorubramin 10 and derivatives of monascorubramin like N-glutaryl-monascorubraminic acid
7, N-threonine-monascorubramin 8 and 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V 6 when cultivated in
minimal nutrient condition without amino acids and proteins in the medium. These findings are
consistent with the results described in previous reports, suggesting that organic sources of nitrogen
favor high red pigment production by Talaromyces/Penicillium species [19]. Thus, the non-production of
monascorubramin and its amino derivates, when the strain of Talaromyces sp. 30570 was cultivated in
minimal medium could be explained by the unavailability of more suitable organic nitrogen sources
(amino acid, peptides, etc.) for the biosynthesis of such nitrogen-based azaphilone compounds. This
suggests that the presence of amino acids and peptides in PDB medium enables the functionality of
this specific pathway.

4. Discussion

4.1. Efficiency and Selectivity of the Alternative Pressurized Liquid Extraction (PLE) of Azaphilone Red
Pigments from the Mycelial Cells of the Marine-Derived Talaromyces sp. 30570

The Monascus-like azaphilone red pigments are water-soluble, thus they are readily extracted
with polar solvents [42]. Our results revealed the alternative PLE technique to be highly efficient
in removing Monascus-like azaphilone red pigments from mycelial biomass of the marine-derived
Talaromyces sp. 30570 by using water, methanol and/or ethanol at 90 ◦C and 10 MPa as extraction
solvents. The sole use of these eco-friendly solvents, which can be biosourced, adds to the novelty
of our results. Indeed, solvents such as ethanol and methanol can be produced from carbon-neutral
homoacetogenic gas fermentation [43] and biogas produced from wastes, respectively, strengthening
the sustainability of such process. This alternative PLE technique should be considered as a promising
eco-friendly extraction process for natural products from biological samples [5,24–26,39,44]. It also
opens the way to further optimizations to the solvent mixture to use for isolating specific polyketide
red pigments. Additionally, the use of pressurized nitrogen gas protects the target molecules (fungal
pigments) from oxidation and ensures a higher quality of the recovered target molecules.

Although the different azaphilone red pigments identified isolated in this study have already been
previously individually isolated in some species from Monascus (e.g., M. ruber) [20,21] and Talaromyces
(e.g., T. atroroseus [30] and T. albobiverticillius [34]), this is the first report to our knowledge of the
concomitant occurrence of these twelve azaphilone pigments in a fungal extract obtained from a culture
of a wildtype marine strain of Talaromyces (e.g., Talaromyces sp. 30570). Azaphilonoids, and in particular,
derivates of the pigmented monascorubramin and rubropunctamin produced by non-toxicogenic
species from Talaromyces sp., are non-toxic compounds highly wanted in pharmaceutical industries
due to their bioactivities (antibiotic, anti-inflammatory activities amongst others) [19,45,46]. Therefore,
this ability to produce molecules with high industrial interest by the wildtype marine strain of
Talaromyces sp. 30570 could be further expended and scaled up to commercial production. It is worthy
of notice that other studies performed on strains of T. atroroseus [30] and T. alboverticillius [34] have
reported the presence, in fungal extracts, of different pigmented compounds, such as monascusone
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A, monascorubrin, PP-V, PP-Y, PP-O, as well as new pigmented azaphilone-like molecules, formerly
known as atrorosins [47,48], and not detected in fungal extracts of Talaromyces sp. 30570 studied here.
This observation clearly highlights the vast diversity of the polyketide-based pigments biosynthesized
by the Talaromyces species, and in particular those from marine origin. This could also suggest the
occurrence of an intraspecies diversity, as is already the case in other complexes of mold species, like in
the Talaromyces pinophilus species complex [49] and in the Fusarium oxysporum species complex [39].

4.2. Putative Metabolic Pathway for the Production of Derivatives of Nitrogen-Containing Monascus-Like
Azaphilone Red Pigments in the Marine-Derived Talaromyces sp. 30570

Monascus-like azaphilone pigments are colored metabolites with a pyrone–quinone structure [5].
They involve biosynthetic pathways catalyzed by multiple polyketide synthase enzymes (PKS). For over
a decade now, a number of studies have attempted to assess the biosynthetic pathways of Monascus-like
azaphilone pigments in the genera of Monascus and Talaromyces/Penicillium [17–21]. In the in vitro study
of Chen et al. [20], the metabolic pathway of Monascus-like azaphilone pigments was elucidated in
Monascus ruber M7. Then, Chen et al. [21] demonstrated that the biosynthetic gene clusters responsible
for the pigment production in these fungi share orthologous genes for a conserved unitary trunk
pathway [21]. They also described four physiological strategies responsible for the diversity of the
Monascus-like azaphilone pigment structures in Monascus and Talaromyces/Penicillium genera, as well
as differences regarding the gene organization, copy numbers and allelic diversity [20–22]. They
mentioned that five and four gene clusters have been described to date from the Monascus and
Talaromyces genera, respectively [20,21].

Thus, based on the previously reported models for Monascus-like azaphilone pigments biosynthesis
in other Monascus and Talaromyces/Penicillium species [20–22], a putative pathway for the biosynthesis
of derivatives of nitrogen-containing Monascus-like azaphilone red pigments and intermediates
thereof in this marine-derived Talaromyces sp. 30570 strain was proposed in this study and described
in Figure 8. Concerning the trunk pathway, the biosynthesis of yellow and orange azaphilone
pigments is initiated via the polyketide pathway by a nonreducing PKS (known as MrPigA in M.
ruber M7) [20,21] that features different domains like a starter unit acyl carrier protein transacylase
(SAT), a ketoacyl synthase (KS), an acyltransferase (AT), a product template (PT), two acyl carrier
proteins (ACP), a C-methyltransferase (MT) and a reductive release domain (R) [20–22] as shown
in Figure 8. Then, the first stable azaphilone pigments intermediate (FK17-P2a) was synthetized
by a ketoreductase (e.g., MrPigC in M. ruber M7) [20,21]. Next, an FAD-dependent monooxygenase
(e.g., MrpigN in M. ruber M7) [20,21] is then critical to obtain the bicyclic pyran-containing azaphilone
core. The polyketide-chromophore may come from further modifications to this azaphilone core by
enzymatic or non-enzymatic reaction. Finally, the orange azaphilone pigments are formed by the
esterification of a β-ketoacid (e.g., 3-oxo-octanoic acid and 3-oxo-decanoic acid resulted from the fatty
acids biosynthetic pathway by a dedicated two-subunit fatty acid synthetase: e.g., MrPigJ/K in M. ruber
M7) to the aforementioned polyketide-based chromophore, as shown in Figure 8.
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Figure 8. Putative metabolic pathway for the production of derivatives of nitrogen-containing
azaphilone red pigments in the marine-derived Talaromyces sp. 30570 strain, based on
the previously reported models for Monascus-like azaphilone pigments biosynthesis in other
Monascus and Talaromyces/Penicillium species according to Chen et al. [20,21] and reviewed by
Liu et al. [22]. Names of the enzymes are specified with reference to those identified in
M. ruber M7 [20,21]. The non-reducing polyketide synthase MrPigA gene cluster encodes for a
starter unit acyl carrier protein transacylase (SAT), a ketoacyl synthase (KS), an acyltransferase
(AT), a product template (PT), two acyl carrier proteins (ACP), a C-methyltransferase (MT)
and a reductive release domain (R). MrPigC: C-11-Ketoreductase; MrPigD: 4-O-Acyltransferase;
MrPigM: O-Acyltransferase; MrPigN: FAD-dependent monooxygenase; MrPigE: NAD(P)H-dependent
oxidoreductase; MrPigF: FAD-dependent oxidoreductase; MrPigO: Deacetylase. This figure was
adapted from Chen et al. [20] and Liu et al. [22] with some modifications.
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Woo et al. [17] also described similar findings in P. marneffei PM1: they demonstrated that the
biosynthetic pathway for the production of azaphilone pigments is regulated by a gene cluster (pks3)
that also encodes for KS, AT, ACP, MT and thiolester reductase (R) domains [17]. These authors
suggested that the synthesis of the orange Monascus-like azaphilone pigments such as rubropunctatin
and monascorubrin begins through the polyketide pathway, initially modulated by this pks3 gene cluster
in P. marneffei PM1 [17]. These orange pigments and their well-known derivatives, e.g., the pigments
glycyl-rubropunctatin 3 and N-GABA-rubropunctatin 4 isolated in this study, may be formed by the
esterification of 3-oxo-octanoic acid or 3-oxo-decanoic acid to the polyketide-based chromophore [17].
From there, red derivatives of Monascus-like azaphilone pigments can be synthetized by Schiff
base formation reactions [17–19,22]. Indeed, the amination of the orange Monascus-like azaphilone
pigments with proteins, amino acids or nucleic acids yields the azaphilone red pigments, including the
derivatives of rubropunctamin (e.g., N-threonyl-rubropunctamin 5 and N-glutaryl-rubropunctamin
9) and the derivatives of monascorubramin 10, like PP-R 2, 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V 6,
N-glutaryl-monascorubraminic acid 7 and N-threonine-monascorubramin 8 identified in this study
from the marine-derived Talaromyces sp. 30570 strain (Figure 8).

5. Conclusions

In this study, we demonstrated the potential of the marine-derived fungal strain Talaromyces
sp. 30570 to produce a wide variety of water-soluble Monascus-like azaphilone red pigments
with respect to the medium composition. Such environment-dependent responses confirmed
that the manipulation of the culture conditions (in particular, the presence of organic nitrogen
sources) may trigger the expression of certain biosynthetic pathways and the production of a
high amount of nitrogen-containing red azaphilone pigments by the fungi. Among the twelve
different pigments detected in the fungal extract, nine derivatives of nitrogen-containing azaphilone
red pigments were identified. N-threonyl-rubropunctamin or the acid form of the pigment PP-R,
6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V, N-threonine-monascorubramin, N-glutaryl-rubropunctamin,
and monascorubramin were the major pigmented compounds. Bioproduction of these molecules
occurred only when complex organic nitrogen sources were present in the culture medium. These
findings are important for the field of the selective production of these fungal red azaphilones. They
may represent relevant metabolites for the industries. Indeed, among the natural colorants, the red ones
are the most interesting, as they are increasingly used in human foods and in ingested drugs. These
fungal red azaphilones are not only ‘colored,’ they often exhibit remarkable antibiotic and antitumoral
activities, and are of interest due to their applications in the design of new pharmaceutical products.
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