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ABSTRACT: Western Equatorial Africa is one of the least sunny areas in the world. Yet, this has attracted little research
so far. As in many other parts of Africa, light availability is mainly estimated using in situ measurements of sunshine dura-
tion (SDU). Therefore, this study conducts the first characterization of SDU evolution during the annual cycle for the
region. It also evaluates the skill of satellite-based estimates of SDU from the Surface Solar Radiation Data Set–Heliosat,
edition 2.1 (SARAH-2.1). Mean annual SDU levels are low: less than 5 h day21 at the regional scale, with the sunniest sta-
tions in the northeast (Cameroon and Central African Republic) and the least sunny in an ∼150-km-wide coastal strip in
Gabon and Republic of the Congo (RoC). For most of the stations except the southeast ones in the Democratic Republic
of Congo, the lowest SDU levels are recorded in July–September, during the main dry season, with persistent overcast con-
ditions. They are as low as 2.5 h day21, especially on the windward slopes of the Massifs du Chaillu and du Mayombé, and
of the Batéké Plateaus in Gabon and RoC. Although the mean annual and monthly spatial patterns are well reproduced in
SARAH-2.1, SDU levels are systematically overestimated by 1–2 h day21. The largest positive biases are recorded during
the December–February dry season, especially at the northernmost stations. Analyses at the daily time scale show that
SARAH-2.1 biases arise from a twofold problem: the number of dark days (SDU, 1 h day21) is 50% lower than observed
whereas that of sunny days (SDU. 9 h day21) is 50% higher than observed.

KEYWORDS: Africa; Bias; Climatology; Cloud cover; Shortwave radiation; In situ atmospheric observations; Satellite
observations; Seasonal cycle; Local effects; Clustering

1. Introduction

Solar radiation is a key component for climate and ecosys-
tems functioning and is relevant for many applications such as
in the fields of energy, agronomy, hydrology. In the energy
field, the seventh goal of the Sustainable Development Goals
of the United Nations (https://sdgs.un.org/goals), which aims
at ensuring access to affordable, reliable, sustainable, and
modern energy for all by 2030, implies a shift away from fos-
sil-fuel-based sources toward renewable energy sources (e.g.,
Gielen et al. 2019). Both photovoltaic (PV) and concentrated
solar power (CSP) systems rely on solar radiation measures
and estimates and would be promising solutions for sustain-
able power production (Neher et al. 2020; Hagumimana et al.
2021), especially in sub-Saharan Africa where more than one-

half of the people still lack access to electricity (e.g., Quansah
et al. 2016).

In the agronomic field, solar radiation is known to control
and play on several parameters critical for plant growth and
crop yields. For example, with regard to phenology, solar
radiation and photoperiodism have been recently shown to be
the main controlling factors of crops growth periodicity in
Africa (onset, end, Adole et al. 2019; flowering, Upadhyaya
et al. 2021). The evergreen forests functioning is also tightly
related to solar radiation (Yang et al. 2021). This is especially
true in Amazonia where mean annual variations in light avail-
ability have been shown to be the governing factor for photo-
synthesis (Huete et al. 2006; Myneni et al. 2007; Wagner et al.
2017): the sunny dry season sustains the highest photosynthe-
sis levels.

The picture is different for central Africa forests. First,
because mean annual rainfall is much lower, forests photosyn-
thesis is primarily tied to water availability (Guan et al. 2015).
The mean seasonal cycle of photosynthesis is in phase with
that of rainfall: both are bimodal with two maxima in March–
May and September–November (Gond et al. 2013). At the
interannual time scale, anomalously low rainfall amounts dur-
ing key periods of the seasonal cycle have been shown to lead
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to decline in forest greenness (Zhou et al. 2014). Second, the
seasonality and quantity of light available for forests in central
Africa are different from those in Amazonia. The highest
light levels are recorded during the rainy seasons (Philippon
et al. 2016; Bush et al. 2020) and not during the dry seasons.
Moreover, the dense forests of western equatorial Africa
(WEA) grow under particularly low light levels (Philippon
et al. 2019) mainly because the main dry season is character-
ized by overcast skies (Dommo et al. 2018).

In WEA as in many other parts of Africa, measurements of
incoming global solar radiation are infrequent. Pyranometers
are rarely installed at synoptic weather stations. Most stations
are equipped with the relatively cheap and easy to maintain
Campbell–Stokes sunshine recorders that provide sunshine
duration records (SDU). Actually, SDU is the measured char-
acteristic of solar radiation with the longest records, thus yield-
ing the most robust results with respect to the mean sunshine
climatologies and long-term variability. However, time series
length does not compensate for coarse spatial cover. Thus, to
get an as accurate spatial picture as possible of light availabil-
ity in WEA forests, it is necessary to rely on satellite products.
Most of them, though, provide estimates of solar radiation and
not SDU. Interestingly, the EUMETSAT Satellite Applica-
tion Facility on Climate Monitoring (CMSAF) has recently
issued a 35-yr record of SDU estimates for the Africa–Europe
zone from Meteosat within the Surface Solar Radiation Data
Set–Heliosat, edition 2.1 (SARAH-2.1), product.

Therefore, the objective of this study is twofold: 1) to char-
acterize sunshine duration in WEA}actually, this is one of
the areas in the world with the least sunshine, yet this has
attracted surprisingly little research so far}and 2) to assess
the reliability and accuracy of SARAH-2.1 SDU estimates

against in situ measurements from two independent databa-
ses}the Food and Agriculture Organization (FAO) archives
and the synoptic (SYNOP) weather observations.

The main questions we intend to answer are the following:
what are the observed levels of sunshine duration across WEA?
How do they vary along the annual cycle? What are the physi-
cal factors explaining these variations? How good is SARAH-
2.1 at reproducing the mean spatial patterns and seasonal evolu-
tion of SDU as compared with in situ measurements?

The study is organized into four sections: Section 2 describes
the three SDU databases used, namely, SARAH-2.1, FAO,
and SYNOP. Methods used to characterize SDU mean space–
time variations, and to assess SARAH-2.1 accuracy versus sur-
face measurements are also presented. Results are provided in
section 3. SDU mean annual patterns and monthly evolutions
are first discussed. A division of WEA into characteristic areas
based on SDU mean seasonal cycles is provided. The depen-
dence of SDU mean spatial patterns on topography is also
assessed. Then the accuracy of SARAH-2.1 SDU estimates at
the daily time scale is evaluated with a focus put on the June–
September overcast dry season. Links with cloudiness are also
explored. Section 4 closes the paper by discussing and summa-
rizing the findings.

2. Data and methods

In the present study, the focus is put on WEA, defined as
the region located between latitudes 88S and 78N and between
longitudes 88 and 208E (Fig. 1a). It comprises southern
Cameroon, Equatorial Guinea, Gabon, the Republic of the
Congo (RoC), the southwestern Central African Republic
(CAR), and the western Democratic Republic of Congo

FIG. 1. (a) Topography, and location of the stations extracted for WEA from (b) FAO and (c) SYNOP databases. There are 53 FAO and
17 SYNOP stations. In (c), the dashed cyan line indicates the southwest–northeast transect that was analyzed.
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(DRC). We jointly analyze three independent databases of
SDU: CMSAF SARAH-2.1 satellite estimates and in situ
measurements extracted from the FAO database and from
SYNOP reports. Only pixels and stations located within WEA
were extracted from the three databases. We selected the closest
SARAH-2.1 pixels to the respective FAO and SYNOP stations.
The main characteristics of these databases are described below.

a. CMSAF SARAH-2.1 sunshine duration estimates

The CMSAF SARAH-2.1 climate data record (referred to
as SARAH-2 herein), provides subdaily, daily, and monthly
records for Europe and Africa of six solar radiation related
parameters among which are daily and monthly sunshine
durations. Records cover the 35-yr period 1983–2017 with a
0.058 latitude–longitude resolution and are derived from
measurements from the Meteosat Visible and Infrared
Imager (MVIRI) and Spinning Enhanced Visible and Infra-
red Imager (SEVIRI) instruments on board the geostationary
Meteosat-2–Meteosat-10 satellites. SDU estimations are
based on the direct normalized irradiance (DNI) estimates.
The WMO threshold for bright sunshine is defined as DNI $
120 W m22. Daily SDU is computed as the ratio of Meteosat
daylight slots with DNI exceeding the WMO threshold to all
potential daylight slots, multiplied by the day length. Details
on the computation of SDU and in particular on the weight-
ing applied to slots as a function of the surrounding grid
points can be found in Kothe et al. (2017).

b. Sunshine duration in situ measurements from the
FAO database

The Food and Agriculture Organization has compiled a
global agroclimatic database called FAOCLIM2 (http://www.
fao.org/nr/climpag/pub/en1102_en.asp) that contains long-term
monthly averages at ∼28800 stations for up to 14 climatic varia-
bles including SDU. We have extracted from FAOCLIM2
long-term SDU monthly averages for 53 stations in WEA, that
is, 12 monthly SDU values per station. The location of the 53
stations is given in Fig. 1b as orange dots. These long-term
monthly averages are computed over time periods that vary
across stations but are generally within the period 1951–90.

To ensure the reliability of these long-term monthly aver-
ages, a quality check of FAO data against independent sour-
ces for a few stations has been performed (see the online
supplemental material). These include unpublished records
from RoC meteorological services and long-term monthly
means from a variety of publications (references provided in
the online supplemental material). At Douala (Cameroon),
old and more recent records show very large discrepancies,
associated with a documented shift of the station location pos-
sibly combined with a change in the recording instruments. At
Bangui (CAR), Callède and Arquisou (1972) found that old
sunshine records, based on unknown instruments, were
underestimating SDU relative to measurements made using
Campbell–Stokes heliographs. A similar change of instru-
ments at Douala may then explain the higher SDU values
published as 1961–90 climatological normals (WMO 1998)
relative to 1931–60 normals (WMO 1969), the latter being

retained in the FAO database. A few other cases of poor
agreement between the different sources [e.g., at Port-Gentil
(Gabon)] remain of unknown origin. On the whole however,
the comparison reveals a relatively good agreement between
FAO data and other sources at most stations, with discrepancies
seemingly due to the length of records available and the differing
periods. The FAO database was, therefore, used as is, with the
exception of the station of Dolisie (RoC), which has been
removed because of unreliable data, while for the station of
Pointe Noire (RoC) the inconsistent value for December, that is,
0 h day21, has been replaced by the annual mean, which equals
4.1 h day21. This is consistent with the mean value obtained
from the “OGIMET” database (see section 2c) for December
and the period 1999–2018 and that equals 4.25 h day21.

c. Sunshine duration and cloud cover in situ measurements
from SYNOP reports

SYNOP reports issued from national meteorological agen-
cies and collected via WMO’s Global Telecommunication
System, were extracted from the OGIMET database (http://
www.ogimet.com/index.phtml.en). For our study purposes,
we extracted daily SDU and 3-hourly cloud-cover (both
total and low cloud cover) data for 17 stations across WEA
(Fig. 1c, blue dots). The period covered is 1999–2018. SDU
values are given in hour per day. Cloud-cover data are in
octas, ranging from 0 for clear skies to 8 for totally overcast
skies. To enable comparisons with SDU, only daytime cloud-
cover records (from 0600 to 1800 UTC) were considered, and
a daily average was computed only if at least 3 of 5 three-
hourly records were available.

The best documented stations among the 17 stations avail-
able are Pointe Noire, Brazzaville (RoC), Douala, Bangui,
Libreville (Gabon), and Port-Gentil. The least documented
ones are Gamboma (RoC), Impfondo (RoC), and Makokou
(Gabon) (Fig. S1 in the online supplemental material). Note
also that there are only 15 stations common to both FAO and
SYNOP databases.

d. Dataset comparison and measures of skill

Given the time resolution of the databases studied, SYNOP
reports were compared with SARAH-2 in terms of both
mean annual cycles and the daily variations. Additionally,
SDU mean annual cycles were compared between SARAH-2
and FAO data. Note also that we did not work with the rela-
tive sunshine duration, that is, SDU divided by day length,
because in the equatorial band the length of daylight under-
goes very little variation over the year: the largest differences
in the daylight length between the northernmost and south-
ernmost stations studied [i.e., Bossangoa (CAR) and Muanda
(DRC)] are observed at the two solstices and do not exceed
45 min.

To determine SARAH-2’s accuracy at estimating SDU for
WEA, a variety of measures was applied. First, Pearson corre-
lation coefficient (and the corresponding p values) and biases
(difference between SARAH-2 and in situ SDU values) were
computed. The aim is to assess the spatial and temporal
matches and point out over or underestimations in SARAH-2
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estimates as compared with in situ measurements for specific
areas or seasons. These measures are especially used when
dealing with mean annual and mean monthly SDU levels.
Second, we also applied metrics usually used for forecasts ver-
ifications (Wilks 2011) but also for satellite estimates and
models performance assessment (e.g., Amjad et al. 2020;
Maranan et al. 2018): the probability of detection (POD), the
false alarm ratio (FAR), and the Heidke skill score (HSS).
These measures are applied when analyzing SDU at the daily
time scale. Indeed, at this time scale, daily SDU levels do not
follow a normal distribution (cf. section 4c), so Pearson corre-
lations and biases are less appropriate. Second, POD, FAR,
and HSS, which are categorical skill scores, are less sensitive
to bias.

POD and FAR are computed for “dark days” (least sunny)
and “bright days” (sunniest) separately. Dark days are
defined as days recording SDU values below the 25th percen-
tile. Bright days are those recording SDU values above the
75th percentile. Two 2-dimensional contingency tables are
issued: one for the dark days where SDU raw values are cate-
gorized according to the 25th percentile, and one for the
bright days where SDU raw values are categorized according
to the 75th percentile. Table 1 provides an example of such
contingency tables.

POD corresponds to the fraction of bright (or dark) days
observed at the stations and correctly detected in SARAH-2
[i.e., POD = H/(H 1 M) in Table 1]. A perfect score is equal
to 1. Complementarily, FAR is the fraction of bright (dark)
days (i.e., 25th . day . 75th percentile) incorrectly detected
by SARAH-2, that is, not observed at the stations [i.e.,
FAR = FA/(H 1 FA) in Table 1]. A perfect score is 0. Last,
HSS is a measure of accuracy relative to that of chance.
HSS = (H + CN2 e)/(CN 2 e), where e is the correct random
forecasts. A perfect score is 1; a score of 0 indicates no skill.
Note that, unlike POD and FAR, HSS is not defined sepa-
rately for dark and bright days but rather from a three-dimen-
sional contingency table.

e. Clustering of the mean annual cycles

The k-means clustering analyses applied here have two
objectives: (i) discriminate subregions within WEA according
to the shape and amplitude of the mean annual cycle and (ii)
verify SARAH-2 capabilities. Two different approaches have
been tested: 1) a k-means clustering of FAO SDU data fol-
lowed by projections of the clusters onto SARAH-2 SDU
data, and 2) two k-means clustering analyses independently

applied to FAO and SARAH-2 SDU data. Only the results
from this latter approach were retained because with the for-
mer one the cluster that depicts the least sunny stations does
not show up in SARAH-2 because of the systematic overesti-
mation of SDU in this product.

A solution with four clusters was retained as optimal with
coherent and sounding spatial patterns and the highest silhou-
ette coefficient. This coefficient was computed using the mean
intracluster distance and the mean nearest-cluster distance. It
varies between 21 and 1, with 0 indicating overlapping clusters
and negative values indicating an assignment to a wrong cluster.

3. Results

a. Mean annual spatial distribution of sunshine duration
across WEA

The mean annual fields of SDU as depicted from SARAH-
2 satellite estimates, and FAO and SYNOP surface measure-
ments are provided in Fig. 2. First, annual SDU levels are
very low: on average they do not exceed 6.7 h day21 for
SARAH-2 (FAO: 5.2 h day21; SYNOP: 4.8 h day21), ranging
from 1.4 or 3.2 h day21 for the least sunny pixels or station,
respectively, to 10.6 or 7.7 h day21 for the sunniest pixels or
station, respectively. Second, although computed at different
time periods, the spatial patterns of SDU are in good agreement
among the three databases. The least sunny places are in the
vicinity of the Cameroon volcanic ridge (e.g., Douala, Malabo),
of the Monts de Cristal and Nyanga Valley (e.g., Tchibanga) in
Gabon, and extend to the south of RoC (Loubomo) and DRC
(Kondo, Luki, and Gimbi Plateau). Their mean annual SDU is
below 5 h day21 in SARAH-2 and below 4 h day21 in FAO and
SYNOP. From this band of low SDU somewhat parallel to the
Atlantic Ocean coast, durations gradually increase inland. Satel-
lite estimates also show that SDU increases offshore and is thus
higher over the ocean.

Figures 3a–c presents scatterplots between the mean SDU
annual values of the three databases taken two by two: FAO
against SYNOP, SARAH-2 against FAO, and SARAH-2
against SYNOP. The agreement between the 15 stations com-
mon to the two surface databases (FAO and SYNOP, Fig. 3a)
is good. The correlation coefficient reaches 0.86 suggesting
that the spatial distribution of SDU is comparable between
the two databases. The mean regional bias is weakly positive
(0.2 h day21), indicating that SDU levels are slightly higher in
SYNOP, especially for the sunniest stations as suggested by the
slope of the regression line. Scatterplots for SARAH-2 against
FAO or SYNOP and the respective correlation coefficients con-
firm that the spatial distribution of SDU mean annual values is
well captured by SARAH-2. However, the large positive biases
(∼1.4 h day21) indicate that SARAH-2 strongly overestimates
SDU levels for WEA. The slope of the regression lines suggests
that the less sunny the station, the larger the biases.

Maps of raw biases (Figs. 3d–f) do not exhibit any particu-
lar spatial pattern. Some stations in Cameroon display biases
above 2.5 h day21, reaching ∼3 h day21 at Douala and Bitam.
Douala’s large bias may be attributed to the uncertain reli-
ability of the FAO record, as discussed previously. However,

TABLE 1. Example of contingency table for assessing SARAH-2
skills to detect either dark (25th percentile) or bright (75th
percentile) days.

In situ (SYNOP)

#25% ($75%) .25% (,75%)

SARAH-2 #25% ($75%) Hits (H) False alarms (FA)
.25% (,75%) Misses (M) Correct negatives

(CN)
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it can be seen in Figs. 3g–i that stations at or close to the coast
that are also the less sunny, tend to have higher relative biases
(above 50%).

b. Seasonal evolution of sunshine duration

1) SARAH-2 SKILL AND BIASES ALONG THE

ANNUAL CYCLE

The mean spatial distribution of SDU in WEA for the rep-
resentative months of January, April, July, and October
and the three databases is displayed in Fig. 4. In SARAH-2
(Fig. 4, top panels) the highest SDU levels (.6 h day21) are
observed in January, during the boreal dry season, with max-
ima in the northern part of the study region. The lowest levels
(,5 h day21) are recorded in July, during the austral dry sea-
son, except for a band stretching from the center of RoC to
the north of Angola where levels are the highest of the year.
This band encompasses the western escarpment and the sum-
mit of the Batéké Plateau characterized by an encroachment
of savanna in the rain forest (Verhegghen et al. 2012). At the
coast and within a ∼150-km-wide band inland, SDU levels are
particularly low: less than 3 h day21. The months of April and
October correspond to the core of the two rainy seasons.
However, SDU levels are not as low as in July, during the aus-
tral dry season, a typical feature of WEA (Philippon et al.
2016; Bush et al. 2020). April is slightly sunnier than October
but not as sunny as January.

The spatial match between SARAH-2 and FAO-SYNOP in
the course of the annual cycle is further assessed through
monthly scatterplots presented in Fig. 5. First, scatterplots
clearly display the evolution in the range of SDU levels along
the annual cycle: the March–May rainy season is the one when
spatial differences in SDU mean levels are the smallest (,4 h
day21) across WEA as opposed to the June–August dry sea-
son (.6 h day21). Second, the largest biases (.2 h day21) are
in December–February, the boreal winter dry season, and the
lowest are in May–June and September–October, that is, the
transition months between the two rainy seasons and the aus-
tral winter dry season. The best spatial agreement (correlation
coefficients $ 0.85), is observed in June–September (austral
winter dry season) when SDU levels are the lowest, then in
November–December. Last, the slope of regression lines also
indicates that the agreement between SARAH-2 and in situ
measurements is better at the sunniest stations.

The match between databases at station scale for the mean
annual cycle is provided in Fig. 6 through correlation coeffi-
cients between the three databases taken two by two. In gen-
eral terms, the best correspondence is observed for the
northernmost and southernmost stations. This is related to
the fact that SDU annual range is higher and that its seasonal-
ity is more pronounced at these stations. Discrepancies are
larger for the Gabonese stations as well as the stations to the
center and the north of RoC. SDU annual range is small at
these stations and many RoC stations have short recording
periods in SYNOP (Fig. S1 in the online supplemental

FIG. 2. SDUmean annual fields for (a) SARAH-2, (b) FAO, and
(c) SYNOP.
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material). The bad fit for Brazzaville in SARAH-2 versus
FAO or SYNOP in contrast to the good fit between FAO and
SYNOP, suggests that the annual cycle inferred from
SARAH-2 is wrong for this location.

Last, the SDU annual cycle from FAO, and the SARAH-2
biases with respect to FAO for the 53 stations ordered from
north to south are presented in Fig. 7. Stations showing the
largest seasonal variations are located in the north (highest

FIG. 3. Scatterplots and corresponding regression lines for SDU annual mean for (a) SYNOP against FAO, (b) FAO against SARAH-2,
and (c) SYNOP against SARAH-2 (1 point = 1 pixel/station). The time period for computing the annual mean for SARAH-2 is 1983–2017
in (b) and 1999–2017 in (c) (black circles are for 1983–2017). The Pearson correlation coefficients (with their corresponding p values) and
biases are annotated. Also shown aremaps of (middle) raw and (bottom) relative biases for (d),(g) SYNOP minus FAO; (e),(h) FAO
minus SARAH-2; and (f),(i) SYNOP minus SARAH-2.
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SDU in boreal winter) and in the south (highest SDU in aus-
tral winter), but there are many stations where this pattern is
substantially altered. These stations are characterized by very
low SDU values in June–September (extending to October in
the south), regardless of the latitude. They are all located in
the western part of the region, along and close to the Atlantic
Ocean. The southern part of the region is, therefore, remark-
able by its strong contrasts in SDU annual cycles. In
SARAH-2, biases are the largest (and positive) for the north-
ernmost and southernmost stations and the boreal winter dry
season (December–February). Apart from this, it is notewor-
thy that there is not any systematic bias especially for the least
sunny stations and months.

2) REGIONALIZATION OF WEA BASED ON SDU MEAN

ANNUAL CYCLE

Analyses developed in the above sections suggest that
SARAH-2 reproduces well the spatial patterns of SDU mean
seasonal evolution in WEA but is affected by large positive
biases. They also suggest that differences exist between sta-
tions in the timing of minima and maxima during the annual
cycle. These points are further explored through a distinction
of WEA into subregions based on two k-means clusterings
applied independently on FAO and SARAH-2 SDU mean
annual cycles.

Results are provided in Fig. 8 with the spatial patterns dis-
played in Fig. 8a (with FAO stations as circles) and the corre-
sponding annual cycles in Fig. 8b and Fig. 8c for FAO and
SARAH-2, respectively. The clusterings discriminate first sta-
tions/pixels to the northeast (“trop. inland northeast,” colored
in orange, comprising CAR, N Cameroon, and DRC) and the
southeast (“trop. inland southeast,” colored in gray, compris-
ing southern DRC), which are both tropical inland patterns
but with reversed annual cycles: maxima are in December–
January and June–July, and minima are in August and
December, respectively. Second, it discriminates stations to
the west (“coastal,” colored in green, comprising southern
Cameroon, Gabon, southwest RoC, and DRC) and the east
(“equat. inland,” colored in purple, comprising central RoC
and DRC, as well as coastal Angola). These stations/pixels
are characterized by (i) lower SDU levels than the tropical
inland northeast and southeast, and (ii) maxima shifted to
August–September. Despite their very different locations, the
coastal and tropical inland northeast regions have remarkably
similar annual cycles except that the coastal region has a
much lower SDU, by 25%–50% in any month. Actually,
besides differences in the annual mean SDU and amplitude of
the annual cycle, the cluster’s differentiation is mainly con-
trolled by how much SDU differs in boreal summer from the
rest of the year.

FIG. 4. (left) January, (left center) April, (right center) July, and (right) October SDU mean monthly fields for (top) SARAH-2, (middle)
FAO, and (bottom) SYNOP.
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Last, it is noteworthy that the borders of the four regions
extracted either from FAO or SARAH-2 match very well.
Because of the positive biases in SARAH-2, the brightest
region, that is, the tropical inland north (orange), is slightly

moved southward as compared with FAO. Similarly, the least
sunny region, that is, the coastal one (green) has a more
restricted spatial extension toward the north and east as com-
pared with FAO.

FIG. 5. Scatterplots and corresponding regression lines between SARAH-2 and FAO (orange) or SARAH-2 and SYNOP (green) SDU
monthly means (1 point = 1 pixel/station). Regression lines, correlation coefficients (and their p values), and biases are annotated.

FIG. 6. Maps of the correlation coefficients between mean annual cycles for the three databases taken two by two. Gray-edged circles rep-
resent correlations that are significant at the 99% level.
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3) SDU’S MEAN SPATIAL DISTRIBUTION DEPENDENCE

ON TOPOGRAPHY

While in Fig. 8 the delineations between clusters east of
158E are relatively zonal, the inland boundary of the “coastal”
region is complex, suggesting that local features have a major
influence. WEA is characterized by a complex topography
(Fig. 1) organized around several inland plateaus (Bamiléké
in Cameroon, Batéké in RoC) and mountain ranges (Cristal
and Chaillu in Gabon, Mayombé in RoC, and western DRC).
With the exception of the volcanic peak of Mount Cameroon
(4090 m) in the northwestern corner of the region, these
mountains and plateaus are of low elevation: most of them
culminate around 1000 m, but they are relatively parallel to
the coastline. They are intersected by several valleys, for
example, the upper Ogooué and Niari Valleys. Although
there is a large coastal plain in Gabon at the mouth of the
Ogooué, other coastal plains are relatively narrow (,100
km). To investigate the potential influence of topography on
SDU spatial organization during the annual cycle, we used
the USGS Shuttle Radar Topography Mission (SRTM) topo-
graphical data at 30 s resolution, regridded at 0.058 to match
with SARAH-2.

Scatterplots (not shown) between SARAH-2 SDU mean
monthly values and altitude do not depict any clear depen-
dence of SDU on altitude. Similarly, spatial correlations com-
puted between SDU and altitude over 28 square sliding
windows for the 4 months of interest, that is, January, April,
July, and October, picture inconsistent patterns (not shown).
More interesting are the relationships with slope and aspect

provided in Fig. 9 and that focus on the regions south of the
equator. SDU tends to be slightly higher on flat terrain in
whatever month. In July and October, strong contrasts in
SDU levels are pictured between the northeast (high SDU)
and southwest-facing slopes (lower SDU). In July, differ-
ences in SDU mean levels between the two orientations
exceed 2 h day21 (the steepest the slope, the greatest the con-
trast). These contrasts might be explained by the dominant
wind direction, the atmospheric stability, and the type of
clouds in presence. In the eastern equatorial Atlantic and
adjacent coastal areas, low-level winds are south-southwest
throughout the year (Lacaux et al. 1992; Neupane 2016).
Southwest-facing slopes might act as a barrier to the low-
level winds, triggering cloudiness as the air mass is forced to
uplift (which in turn strongly dampens the incoming solar
radiation). However, the strong interaction found with
topography in July (and somewhat in October) may be
related to the fact that the lower troposphere is very stable at
this time of the year while in the rest of the year it is much
more unstable, resulting into widespread ascending motion
(Cook and Vizy 2015; Longandjo and Rouault 2020). Even if
the genesis of convective clouds may be impacted by interac-
tions between low-level flow and topography, their subse-
quent drift in the direction of the easterly midtropospheric
winds may blur any relationship with topography. In contrast,
the low-level stratiform clouds that develop in June–September
in a more laminar flow are likely less mobile than the convective
clouds, so that their spatial spread is much more prone to be
controlled by topography.

FIG. 7. Evolution along the annual cycle of (a) SDU in FAO and (b) raw biases in SARAH-2 vs FAO for each of
the 53 available stations. Stations are ordered from the northernmost one to the southernmost one. In (a), black and
white triangles respectively denote months of maximum and minimum SDU.
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To further document these contrasts linked to topography,
SDU levels are plotted along a southwest–northeast cross sec-
tion running through RoC, from the Atlantic coast at Pointe
Noire (∼128E) to Impfondo (∼188E; cyan dashed line in Fig. 1)
for the four months of interest (Fig. 10, upper panel, thick
lines). This cross section intersects the Mayombé Massif and
the Batéké Plateaus (Fig. 10, bottom panel). For validation
purposes, SDU levels recorded at seven stations along the
cross section are also reported. The influence of aspect on
SDU is clearly the strongest in July. The orographic effect of
Mayombé and Batéké Plateaus is obvious: their southwest-
facing slopes record SDU levels much lower than their sum-
mits and east-facing slopes suggesting that cloudiness is larger
on southwest-facing slopes. The sheltering effect of Batéké
Plateaus is striking and coherent between SARAH-2 and in
situ measurements despite the systematic bias. In October, the
Mayombé coastal range still has an effect, but inland, while
SDU remains low, topography does not seem to play a signifi-
cant role any more. On the whole, SARAH-2 well captures
SDU levels variations along the cross section and the annual
cycle even if some discrepancies exist: in situ records suggest
that SDU levels are higher in April than January in the
western part of the transect, that is, on the southwest-facing
slopes west of Djambala. This feature is not well captured
by SARAH-2 where values are quite similar between the

two months. Conversely, SDU levels east of Djambala are
higher in January than in April (they are constant in April),
which is well depicted by SARAH-2. In situ records also sug-
gest that SDU levels on southwest-facing slopes (Dimonika,
Mouyondzi) are lower in July than in October. The reverse is
observed in SARAH-2: SDU levels are lower in October than
in July at these two locations.

c. SARAH-2 accuracy at the daily time scale: Focus on
the austral winter dry season (June–September)

As SYNOP provides daily SDU records, this database is
used to assess SARAH-2 accuracy at daily time scale. Only
16 couplets of “station–pixel” are available for analysis:
Gamboma has been excluded because of too few data for the
period 1999–2017 common to the two databases (Fig. S1 in
the online supplemental material). In addition, missing dates
in each database have been respectively masked in the other
one. In this section a focus is put on the June–September dry
season. This season pictures the lowest SDU levels over most
of the SYNOP stations under analysis because of the presence
of a large low-level cloud cover. It is also the season for which
SARAH-2 biases are the lowest (cf. section 3b).

Figure 11 presents the distribution of SDU daily values for
SARAH-2 and SYNOP considering the whole year (Fig. 11a)
and the June–September season only (Fig. 11b). In WEA,

FIG. 8. Characteristic regions of SDU in WEA according to the mean annual cycles and based on k-means clustering
analyses performed independently for FAO and SARAH-2. The solution with four clusters has been retained.
(a) Location of the four classes, with FAO stations as circles and SARAH-2 pixels as colored fields. Also shown are
the corresponding mean annual cycles for (b) FAO and (c) SARAH-2, with error bars for 61 std dev. In (b), dashed
lines give the SDU mean annual cycle computed from the SARAH-2 pixels corresponding to the FAO stations of the
cluster.
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according to SYNOP the most frequent days are those record-
ing less than 1h of sunshine. This is particularly so in June–
September, the overcast dry season: the least sunny days
(SDU , 1 h day21) account for 25% of the total number of
days. In SARAH-2, the number of sunless days is 50% lower
than in SYNOP. Reciprocally, there are more than twice as
many days recording more than 9 h of sunshine in SARAH-2
as compared with SYNOP. This suggests that there are both
too many clear-sky days and not enough totally overcast days
in SARAH-2. Therefore, biases found in SARAH-2 at the
annual and monthly time steps in the previous sections are
linked to this twofold problem.

Given these large biases, SARAH-2 accuracy for properly
estimating sunshine duration for a given day is evaluated using
the categorical metrics POD, FAR, and HSS (cf. section 2d),
in addition to the Pearson correlation coefficient. Scores
obtained are presented in Fig. 12. The linear match at daily
time scale between SARAH-2 and SYNOP (Figs. 12a,b)
is globally good: at ∼13 of 16 stations, correlations are
above 0.75 (i.e., 56% of common variance at least). The HSS
are . 0.4, at 6 stations of 15, namely, Douala, Port-Gentil,

Brazzaville, Pointe Noire, Bangui, Libreville (the best docu-
mented stations; Fig. S1 in the online supplemental material),
indicating that SARAH-2 performs statistically much better
than chance at identifying the least sunny and the sunniest
days. Conversely, HSS are ,0.1 at eight stations. For these
stations SARAH-2 only performs slightly better than chance.
This also suggests that, for these stations, correlations are
driven by the skill for “average days” (i.e., days with SDU
values between the 25th–75th percentiles). Stations with the
lowest correlations and HSS scores are the Gabonese stations
(noticeably, Mvengue and Makokou), those at the center
and north RoC (Ouesso, Djambala) plus Malabo. POD
scores are almost always .0.6; that is, more than 60% of the
least sunny and sunniest days in SARAH-2 are actually
the least sunny and sunniest days in SYNOP. FAR scores
are almost always ,0.3; that is, less than 30% of days
detected as the least sunny and sunniest by SARAH were not
so in SYNOP. Again Mvengue, Makokou, and Malabo stand
out with low POD/high FAR scores, especially for the least
sunny days. This is consistent with the low correlation and
HSS scores obtained for these stations.

FIG. 9. Relationships between monthly SDU from SARAH-2 and slope and aspect from a digitalized elevation
model for pixels south of the equator only. DEM values were regridded to SARAH-2 resolution. The mean SDU is
given for each slope–aspect couple.
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As a last step, taking advantage of the cloud-cover data
provided in SYNOP database, we briefly analyze relationships
between SDU and cloud cover for the June–September over-
cast dry season only. The aim is to verify that the relationship
observed in SYNOP is properly reproduced in SARAH-2.
Results are provided in Fig. 13 considering the total cloud
cover (TCC; left panels) and the low cloud cover only (LCC;
right panels), and all the stations together (results for individ-
ual stations and LCC are provided in Fig. S2 of the online
supplemental material).

First, SDU levels are globally well discriminated across
classes of octas, with regularly decreasing SDU levels as cloud
cover increases for both TCC and LCC. On average, in June–-
September (JJAS), clear-sky days (zero octa), which are rare
(22 days in total), coincide with SDU levels around 8 h day21

according to SYNOP. To the contrary, totally overcast days
(8 octas) are associated with SDU levels below 1 h day21.
A few inconsistencies are nonetheless observed for the clear-
est days/skies. For the 1-octa class and LCC SDU levels
are lower than or equal to SDU levels for the 2-octa class.
These inconsistencies come from a few stations (Impfondo,
Bangui, Ouesso, and Djambala; supplemental Fig. S2). Sev-
eral hypotheses can be proposed to explain these discrepan-
cies, especially given the fact that SDU is measured with an
instrument while cloud reports are performed by observers.
Inaccuracies in cloud observations or inconsistencies between
observers may be greater when skies are slightly cloudy and/
or clouds are broken. The number of daytime cloud-cover
observations may also be insufficient to be representative of
the day while sunshine duration is an integration over daytime
hours.

Second, SDU levels are lower for LCC than for TCC (for
the same cloudiness amount). In addition, the dispersion of
SDU values for a given cloudiness amount is greater when
considering LCC than TCC. These points suggest that 1) low
clouds are not the only clouds that reduce incoming solar radi-
ation (if LCC = 4, TCC may vary between 4 and 8 octas) and
2) they are not as good as TCC to match SDU variations,
which is expected. Nonetheless low clouds have a particularly
strong impact on SDU in JJAS as compared with the other
types of clouds as illustrated in Fig. S3 of the online
supplemental material. This figure compares SDU levels
when the cloud cover (TCC) is dominated by middle and high
clouds (LCC , 3octas; Fig.S3a) with those when the cloud
cover is dominated by low clouds (LCC = TCC; Fig. S3b).
SDU levels are systematically and significantly higher when
TCC is mainly composed of low clouds as compared with mid-
dle and high clouds. The mean bias evolution along octas clas-
ses (not shown) is very subtle, indicating that bias in
SARAH-2 does not depend much on the cloud coverage.
Overall, the general tendency from this comparison between
SDU and cloudiness is that in JJAS SDU can be viewed as a
good proxy for the presence of an extensive low-level cloud
cover.

FIG. 10. Variations of (bottom) elevation and (top) SDU in
WEA along a southwest–northeast cross section starting from
Pointe-Noire and ending at Impfondo via the stations of Dimonika,
Dolisie, Mouyondzi, Djambala, and Gamboma (see Fig. 1). In the
top plot, there is one color for each of the four representative
months of January, April, July, and October; thick lines are for
SARAH-2 SDU, and dots are for FAO SDU at the given station.

FIG. 11. Distribution of daily sunshine in WEA for (a) the whole year and (b) the June–September cloudy dry sea-
son, in SARAH-2 (gray bars) and SYNOP (black curve) for the period 1999–2017. The dashed thin gray and black
curves give the cumulative distribution for SARAH-2 and SYNOP, respectively.
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FIG. 12. Scatterplots of HSS and Pearson correlation coefficients for the 16 SYNOP stations retained for analysis for
(a) the whole year or (b) the JJAS season only. Scatterplots of POD and FAR scores for (c),(d) dark and (e),(f) bright
days considering the whole year in (c) and (e) or the JJAS season only in (d) and (f). The names of stations recording
the lowest scores are provided. In (a) and (b), HSS are both for dark and bright days.
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4. Discussion and conclusions

Because of the importance of solar radiation for climate
and ecosystems functioning, especially that of the tropical for-
ests, but due to the lack of long-term in situ solar radiation
data for WEA, we were led to investigate sunshine duration
records. To quantify mean spatial and temporal evolutions of
sunshine duration in the course of the annual cycle we jointly
analyzed in situ measurements from the FAOCLIM database,
SYNOP reports from OGIMET, and satellite estimates pro-
vided by CMSAF within the SARAH-2.1 dataset. The good
spatial coverage of FAOCLIM complemented by SYNOP
reports allowed a much finer characterization of irradiance
for WEA than done in previous studies dedicated to SDU in
tropical Africa as in Kothe et al. (2017).

On the whole, WEA displays low SDU levels: SDU annual
average is around 5 h day21 with the lowest levels at the coast
(,4 h day21) and the highest ones to the southeast and north-
east fringes (.6 h day21). Most stations register minimum
levels in July–September and maximum levels in January–
March, except the southeasternmost ones, which exhibit an
opposite pattern. The July–September low levels of sunshine
duration are due to a large cloud fraction}most of the days
record a cloud fraction above or equal to 4 octas}mainly
resulting from low-level clouds. SDU spatial distribution in
July is tightly controlled by topographic features: for instance,
the leeward slopes of Mayombé and Batéké Plateaus are 3
times as sunny as the windward slopes. This is likely related to
the dominant southwesterly monsoon winds that blow over

FIG. 13. Boxplots of June–September SDU vs (left) TCC and (right) LCC for (a),(b) SYNOP and (c),(d) SARAH-
2 for the period 1999–2017. TCC and LCC records are expressed in octas from 0 for clear skies to 8 for totally overcast
skies and come from SYNOP. Boxes extend from the lower to the upper quartile of data, with the median as an
orange line. Green triangles give the mean. Circles are outliers beyond the lower or upper quartile divided by the
interquartile range (whiskers). The number of available observations (day x station/pixel) by class of cloud cover is
given at the top of (a) and (b).
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the region during this season, combined with a stable low-
level troposphere.

While SARAH-2 satellite estimates fairly well reproduce
the spatial and seasonal patterns of sunshine duration in
WEA, sunshine duration is consistently overestimated. This
complements and is in line with results by Kothe et al. (2017)
for the neighboring West Africa, CAR, and South Sudan
areas. These authors observe a mean annual bias of more than
1.6 h day21 for SARAH-2 for these regions, with the largest bias
for the months of September–November. In WEA, there seems
to be a tendency for a larger overestimation during the boreal
winter months (December–February), especially to the north,
which experiences a sunny dry season, than during the boreal
summer months (July–September), when most of the region
experiences an overcast dry season. Analyses at the daily time
scale show that overestimation arises from too few days with
SDU levels below 2 h day21}these days are the most frequent
over the region, especially in June–September}and too many
days with SDU levels above 9 h day21.

The suspected reasons for such overestimations are (i)
errors in in situ measurements, (ii) determination of the maxi-
mum reflectivity in regions with frequent milky skies as
WEA, (iii) high-altitude thin clouds, and (iv) thresholds and
parameters in algorithms not valid for the region.

Although this cannot account for all the SARAH-2 biases
found in this study, in situ sunshine measurements are error
prone. Callède and Arquisou (1972) found a difference of 5%
between sunshine duration recordings obtained at two nearby
locations in Bangui, CAR. According to Iqbal (1983), the reli-
ability of the Campbell–Stokes heliograph, generally used to
record sunshine duration, may be affected by the humidity of the
recording card. However, the fact that the difference between in
situ records and SARAH-2 satellite estimates in WEA are even
larger in the boreal winter dry season suggests that this is not a
major reason for the discrepancies found in the region.

Milky skies are thought to be particularly common over the
region because of high water vapor content due to the prox-
imity of the ocean and transpiration from the underlying
dense evergreen forests, and/or aerosols. Aerosol loadings in
the WEA atmosphere principally stem from local and neigh-
boring (Angola and CAR) biomass burnings, and are the larg-
est in boreal summer (Liousse et al. 2010; Sayer et al. 2019).
But aerosols from Saharan mineral dust have also been traced
down to central Africa (Ruellan et al. 1999). Drame et al.
(2015) obtained for the neighboring West African region sig-
nificant improvements in the estimation of incoming solar
radiation by considering diurnal variations in both aerosol
loads and composition. Actually, aerosol load variations are
not explicitly treated in SARAH-2 retrieval, which could also
explain biases observed (Neher et al. 2020).

Aerosols would also prevent satellite retrieval from detect-
ing clouds at all, especially the low-level ones. For instance,
over the adjacent southeast tropical Atlantic, low clouds lay
under the aerosol plumes (LeBlanc et al. 2020), while those
inland have a cloud-top temperature close to the ground one.
High-altitude thin clouds might also strongly influence satel-
lite estimates more than in situ observations. Dommo et al.

(2018) show that during the June–September season, WEA
regularly experiences a high semitransparent cloud coverage:
its fraction reaches on average 20%.

In the satellite retrieval used for the generation of the
SARAH-2.1 data record, the measured reflectivity is com-
pared with the so-called clear-sky reflectivity, which is derived
as the minimum reflectivity throughout the month. In almost
all situations the minimum reflectivity corresponds to a clear-
sky situation. However, in areas with regular cloud coverage
and/or very milky skies as in WEA, no clear-sky situation
might be observed from the satellite in several months. In this
case, the “clear-sky reflectivity” (i.e., the minimum reflectiv-
ity) does not represent clear-sky conditions but “milky”/partly
cloudy conditions. As a consequence, the contrast between
clouds and the clear-sky reflectivity is reduced, clouds appear
too dark and, hence, too thin in retrievals, resulting in an
overestimation of surface irradiance and possible sunshine
duration. This has also been suggested as the reason for the
overestimation of surface solar irradiance in West Africa in
the SARAH dataset (Hannak et al. 2017; Kniffka et al. 2019).

In addition, thresholds and parameters values used for the
estimation of SDU from DNI might not be appropriate for the
region. The actual DNI threshold used in SARAH-2 for bright
sunshine equals 120 W m22 following the WMO definition,
however, for the surface measurements this threshold may vary
from 70 W m22 for a dry climate to 280 W m22 for a very
humid climate according to Suehrcke et al. (2013). This raises
the question of the comparability of the satellite-based and the
surface-measured sunshine duration, even though it is expected
that the sunshine duration is only moderately sensitive to the
exact value of the threshold radiation. These points definitely
require further analysis so that the future versions of SARAH
dataset are corrected for these biases for the region.

Because sunshine duration is computed from solar DNI (cf.
section 2), our results indicate that solar surface irradiance
itself is also overestimated in the SARAH-2.1 dataset for the
region. Such an overestimation might be critical for several
applications that use these estimations, for instance, the
energy sector, but also hydrological and agronomic modeling,
climate variability and trends analyses.

The deployment of any solar power plant at a given loca-
tion requires accurate and precise solar resource assessment
at that location (e.g., Yushchenko et al. 2018). Global hori-
zontal irradiance (GHI), which includes both DNI and diffuse
horizontal irradiance, is the key value to estimate the final
energy yield of a PV project (e.g., Neher et al. 2020). Like-
wise, DNI is the key value to estimate the final energy yield of
a CSP project (Blanc et al. 2014; Hagumimana et al. 2021).
Because SDU in this study is calculated from satellite-derived
SARAH-2.1 DNI, biases in SDU over WEA point to some
extent toward biases in DNI that may result in uncertainty in
the power output of the plant and endanger its financial feasi-
bility (or bankability; Polo et al. 2016). Therefore, it would be
recommended to apply a site-adaptation procedure to reduce
uncertainty in the satellite-based long-term estimates of DNI
from SARAH-2.1 by combining them with a short-term
ground measurement campaign at the site of the CSP project
(Polo et al. 2015; Fernández-Peruchena et al. 2020).
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Similarly, SDU and solar radiation are widely used as inputs
in crop/vegetation modeling. Bois et al. (2008) note that the
propagation of uncertainties in solar radiation estimates at
daily time scale can be considerable for solar radiation based
ET estimations. Uncertainties in calculated or estimated SDU
and SR have also been shown to have significant impacts on
yields’ simulations (e.g., Wang et al. 2015). Tests should be
conducted to assess, for the region, differences obtained in the
simulation of ET, yields, and so on when using SDU in situ
measurements versus SARAH-2.1 estimates. It would also
worth evaluating what would be the added value of interpolat-
ing SDU in situ measurements using SARAH-2.1 SDU esti-
mates or converting SDU in situ measurements into GHI with
the several existing equations, then interpolating them using
SARAH-2.1 (Good 2010). The use of SARAH-2.1 estimates
without a bias correction in the agronomic field for the WEA
region is expected to lead to too much potential evapotranspi-
ration (and perhaps too-fast phenological cycles).

Last, despite the overestimations observed, skill scores
obtained at daily time scale suggest that the time of occur-
rence of the least sunny and the sunniest days is properly
reproduced. Actually, this is promising for studying the intra-
seasonal and interannual variability of solar radiation over
the region. The 35-yr-long historical records offered by
SARAH-2.1 (Müller et al. 2015) should allow climate trends
detection and analysis, if any, for the region.
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