
HAL Id: hal-03692592
https://hal.univ-reunion.fr/hal-03692592

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A more efficient microgrid operation through the
integration of probabilistic solar forecasts

Faly H Ramahatana, Josselin Le Gal La Salle, Philippe Lauret, Mathieu David

To cite this version:
Faly H Ramahatana, Josselin Le Gal La Salle, Philippe Lauret, Mathieu David. A more efficient
microgrid operation through the integration of probabilistic solar forecasts. Sustainable Energy, Grids
and Networks, 2022, pp.100783. �10.1016/j.segan.2022.100783�. �hal-03692592�

https://hal.univ-reunion.fr/hal-03692592
https://hal.archives-ouvertes.fr


A more efficient microgrid operation through the
integration of probabilistic solar forecasts

Faly Ramahatanaa, Josselin Le Gal La Sallea, Philippe Laureta, Mathieu
Davida

aUniversity of La Réunion - PIMENT laboratory, 15, avenue René
Cassin, Saint-Denis, 97715, Reunion

Abstract

This work proposes a methodology based on the probabilistic dynamic pro-
gramming (PDP) to integrate operational probabilistic forecasts of a pho-
tovoltaic (PV) plant into the optimization of the day-ahead schedule of an
energy storage system (ESS). The proposed approach is tested on a micro-
grid based on a real educational building, a PV farm and Li-ion batteries.
The objective is to minimize the operating cost of the microgrid. The oper-
ational day-ahead forecasts are derived from the Ensemble Prediction Sys-
tem (EPS) provided by a well-known Numerical Weather Prediction (NWP)
model. Contrary to the classical use of deterministic forecasts, we demon-
strate that the integration of the probabilistic forecasts in the optimization
process leads to a more efficient microgrid management and to a reduction of
up to 38% of the operating costs. Besides, it is shown that the non linearity
resulting from the power dependency of the efficiency of the inverters must
be taken into account in order to yield relevant optimization results.
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1. Introduction

For the grid manager, the unit commitment (UC) is an important op-
eration for grid and microgrid management. The objective of the UC is to
schedule the operation of the production units with a minimum cost and at
a reliable level. The optimization of unit commitment is extensively stud-
ied in the literature, as described by Saravanan et al. [1] and by Abdou
and Tkiouat [2]. Indeed, numerous optimization techniques are proposed
to solve the unit commitment problem, like DP (Dynamic Programming),
MILP (Mixed Integer Linear Programming), SP (Stochastic Programming),
RO (Robust Optimization), QP (Quadratic Programming) and others. The
use of those optimization methods depends on the system characteristics,
the constraints and the objectives of the grid manager. For example, con-
sidering worst-case operating scenarios, Jiang et al. [3] used a RO (Robust
Optimization) to solve the UC problem.

With the seek of decarbonization and energy supply security, the current
trend is on increasing renewable energy productions in the energy mix. Wind
and solar energy are abundant RES (Renewable Energy Source) and the as-
sociated conversion systems, such as photovoltaics (PV) or wind turbines, are
mature technologies. But those intermittent RES are highly variable in both
space and time. In this work, we will focus on the PV production. Indeed,
this technology is currently the most affordable RES and also the most used
worldwide [4]. Furthermore, unlike conventional generators, intermittent en-
ergy plants are non-dispatchable production units. These two characteristics
of intermittent RES result in an important uncertainty of their generation.
As a consequence, the increase of the intermittent renewables share in the
production mix adds more complexity to the grid management, especially to
take these new uncertainties into account in the UC problem. To solve the
UC problem in the presence of uncertainty, two complementary approaches
exist: the use of forecasts and the stochastic optimization called stochastic
UC.

First, the use of point forecast, which gives a single value to predict a
future level of power generation and which assumes a deterministic dynamic
of the system, allows improving the scheduling. For example, Yang et al.
[5] show that the use of PV and wind forecasts lead to better decisions in
the UC problem. A lot of forecasting techniques exists to predict the future
production of solar renewables. Diagne et al. [6], Antonanzas et al. [7] or Sobri
et al. [8] propose reviews of solar forecasting methods and they highlight that
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the suitable techniques depend on the spatial and temporal scales.
In the literature, one can find several works dealing with the integration

of deterministic forecasts of renewable power generation in UC problems for
grids and microgrids [9, 10]. For example, relying on a Dynamic Program-
ming (DP) approach, Grillo et al. [11] use a perfect forecast to optimize the
control of a non-ideal storage (with a non-linear behavior such as the tem-
perature of the cells and the variation of their resistances). Ramahatana
and David [12] use deterministic solar irradiance predictions provided by the
ECMWF (European Centre for Medium-Range Weather Forecasts) as input
of a DP to optimize the day-ahead operation of an ESS (Energy Storage
System) embodied in a microgrid.

The major drawback of deterministic solar forecasts is their nature. In-
deed, they are intrinsically uncertain because the weather is a chaotic pro-
cess. Thus a surge of interest is observed for the probabilistic forecasts, which
quantify the uncertainty associated to the predictions [13, 14, 15]. The use of
probabilistic forecasts could increase the value of the forecasts for the users.
They provide additional information that can be used to improve decision-
making. Unlike a binary event such as the rainfall probability, the RES
power generation is a continuous variable. More precisely, the probabilistic
forecast of an RES is a cumulative distribution function (CDF) that gives
the probability associated to the level of production (i.e. power or energy).
However, the underlying physics and the economical interpretation of the
results of such forecasts are complex to understand. Indeed, the contribution
of the probabilistic information is difficult to interpret and the added value
to the operation of energy systems is still poorly understood in the domain
of smart-grids and grids.

Only a few works deal with the use of probabilistic forecasts of variable
RES for the optimization of grid operation. The work of Zhou et al. [16], for
example, shows the potential value of probabilistic wind production forecasts
in power system operations through construction of scenarios. The forecasts
can be incorporated into deterministic UC through probabilistic reserve re-
quirements or can provide scenarios as input to stochastic UC. Furthermore,
most of these works propose to associate the uncertainty to a point forecast
rather than using the probabilities provided by a probabilistic forecast. The
two main methods proposed to take into account the forecasting error are to
build scenarios or to use the correlation of the error between the simulation
time steps as detailed by Pinson et al. [17]. Alharbi and Raahemifar [18]
use the former approach. They build scenarios for the day-ahead schedul-

3



ing of controllable DG (Distributed Generator) (Wind, PV and storage). In
their work, the scenarios are derived from non-realistic forecast errors asso-
ciated with arbitrarily chosen probabilities. Among others, as presented by
Botterud et al. [19, 20], probabilistic forecasts, such as predictions of wind
generation quantiles, can be used in reserve sizing or operation to reduce oper-
ating cost. For demand-side management, as shown by El-Baz et al. [21, 22],
the use of probabilistic solar forecasts can increase the self-sufficiency of a
microgrid by 24%. However, in these cases, the selected approach does not
capture the effect of the serial correlation of the wind power forecast errors.

Another issue of the UC problem is to handle uncertainties during the
optimization process. An important number of stochastic methods exists to
solve UC problems as described by Dai et al. [23] or Zheng et al. [24]. The
3 main classes of methods are the SP (Stochastic Programming), the RO
(Robust Optimization) and the methods based on the SDP (Stochastic Dy-
namic Programming). The review of Zhou et al. [25] details techniques and
strategies based on stochastic methods applied to the optimization of power
system operation in presence of RES. In the field of stochastic optimization,
the distributions of the random variables, which corresponds to the inputs of
the optimization problem, are generally supposed to be known and the opti-
mization requires the generation of scenarios derived from these distributions.
Thus, as showed by Bayraksan and Morton [26] or by Nesterov and Vial [27],
the solution of the optimization depends on the sampling techniques used to
generate the scenarios, which implicitly relies on the knowledge of the dis-
tributions of the random variables. Furthermore, as the actual distributions
of the random variables are frequently unknown, a first method proposes to
use approximations based on parametric distribution laws such as Beta dis-
tribution [28], truncated Normal distribution [29, 30] or Gamma distribution
[31]. Another approach relies on historical data, and it is equivalent to use
a climatological forecast. Different variants of this approach are discussed
by Linderoth et al. [32]. This strategy avoids the need to know the actual
distribution. But as stated by Kaut [33] or Shapiro and Nemirovski [34],
the long-term trends could not be suitable to represent the near future. As
variable RES are very fluctuant, because they result from chaotic weather
systems, the use of the climatology as a description of the short-term fu-
ture is not the best answer. Finally, to the best of our knowledge, it seems
that there is no framework to evaluate the effect of the approximation of the
input distributions on the quality of the solution obtained by a stochastic
optimization.
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This work attempts to bridge the gap between the community that de-
velops probabilistic solar forecasts and the one that develops stochastic opti-
mization methods for UC. More precisely, this work proposes a methodology
to assess the link between the quality1 of probabilistic solar forecasts, like
the CDF derived from an EPS generated by a NWP, and the results of a
stochastic optimization applied to a UC problem. Furthermore, regarding
the current state of the art, it is not clear how improving the quality of
probabilistic solar forecasts, in terms of improved scores or increased reliabil-
ity, may lead to added value for the decision-makers. Thus, the goal of this
work is two-fold. First, it aims at proposing a method based on the Proba-
bilistic Dynamic Programming (PDP) to integrate probabilistic forecasts of
PV production to minimize the operation cost of a microgrid. Second, this
work will highlight the opportunity of using probabilistic forecasts instead of
deterministic ones to optimally schedule the UC one-day ahead.

A case study based on a real building, an associated PV plant, records
of a weather station and operational weather forecasts will serve as support
for the proposed methodology. The considered microgrid is composed with a
net-zero energy building (NetZeb), Li-ion batteries and a connection to the
main grid. The objective is to use day-ahead probabilistic solar forecasts to
schedule the commitment of the ESS and to minimize the operation cost of
the microgrid.

This work is organized in 4 parts. Section 2 describes the case study and
the corresponding data. Section 3 details the microgrid model. Then, section
4 gives an extensive description of the implementation of the probabilistic
forecasts inside the optimization framework. Results are discussed in section
5 while section 6 will give some concluding remarks.

2. Case study: Enerpos a NetZeb in the tropics

The considered case study is a NetZeb university building located in Re-
union Island [35]. The NetZeb has an annual PV production greater than its
energy consumption. Indeed, passive solutions ensure the thermal comfort
of the users and a Building Integrated PV (BIPV) farm covers the building
needs.

1Here, quality refers to the correspondence between the forecasts and the corresponding
observations.
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2.1. Monitoring system and records
The Enerpos building has a complete monitoring system that records the

weather parameters, the electricity consumption and the PV generation. The
on-site weather station complies with the WMO standards and records the
main weather variables (solar irradiance, dry bulb temperature, relative hu-
midity, rainfall, wind, etc.). Energy meters measure the PV generation and
the electricity consumption for the different usages of this educational build-
ing: cooling, lights, fans, appliances, lift, etc. The recording time step is of
1 minute for all the parameters and for the considered period (2010-2011).
Unfortunately, it is hard to maintain a continuous flow of 1-min measure-
ments and the time-series of data experience an important number of gaps.
The consideration of the correlations between the load, the weather and the
NWP production is necessary to simulate the microgrid. As a consequence,
traditional gap-filling methods, such as interpolation, could not be used in
our case. Thus, we built a 2-years time series of 1-min data by aggregating
entire days without gaps from the years 2010, 2011 and 2012. The resulting
files can be download at [36]. For our case study, hourly averages of the
1-min data have been used. Furthermore, year 2010 will be used to train the
calibration procedures described in the next subsection and year 2011 will
be used to test the models.

The PV power output is computed from the meteorological data as shown
in equation (1). The computation of the PV power output [10] takes into
account the global horizontal irradiance (GHI), the ambient temperature
(T a) and the operating characteristics of the PV modules given in Table 1.

PVt = λ× PV max ×
(
GHIt
IrSTC

)
×
(
1− ν ×

(
T ct − T c,STC

))
,

T ct =
T a +

(
T c,NOCT − T a,NOCT

)
×
(

GHIt

IrNOCT

)
×
(
1− ηSTC ×

(
1− ν × T c,STC

)
ϕ× ζ

)
1 + (T c,NOCT − T a,NOCT )×

(
GHIt

IrSTC

)
×
(
ν × ηSTC

ϕ× ζ

) .

(1)

2.2. PV power Forecasts
In this work, we focus on the integration of the PV forecasts in the opti-

mization of the microgrid operation. The future loads of the microgrid (i.e.
the different usages of the building) are assumed to be known. Thus, the load
forecasts are perfect forecasts corresponding to the measured data. Regard-
ing the solar power generation, 1 deterministic and five probabilistic forecasts
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Table 1: PV array characteristics used for the case study
Symbol Designation Value Unit
PV max Rated capacity of the PV array 6 kW
ηSTC Maximum PV efficiency at STC 15.46 %
ν PV temperature coefficient of power -0.43 %/◦K
T a Ambient temperature 25 ◦C

T a,NOCT Ambient temperature at NOCT 20 ◦C

λ
PV derating factor (wiring losses, shad-
ing factor) 95 %

IrSTC Incident radiation at STC 1 kW
IrNOCT Incident radiation at NOCT 0.8 kW
T c,STC PV cell temperature at STC 25 ◦C

T c,NOCT
Nominal operating cell temperature at
NOCT 45 ◦C

ϕ Solar transmittance of PV array 90 %
ζ Solar absorptance of PV array 90 %

from the state of the art will be used, as detailed in Table 2. First, this set of
forecasts will allow assessing the improvement brought by the probabilistic
approach compared with the deterministic one. Second, we will be able to
evaluate the impact of the quality of the forecasts on the value for the users.

The weather forecasts used here are provided by the Ensemble Predic-
tion System of the European Centre of Medium-range Weather Forecasts
(ECMWF-EPS) [37]. They consist in up to 10 days ahead of forecasts with
a 3-hours granularity. The ECMWF-EPS has 50 members obtained by run-
ning 50 times the Integrated Forecasting System (IFS), which is the NWP
model used at the ECMWF. Indeed, a small deviation in error analysis can
lead to strong differences in the results of the stochastic physics of the at-
mospheric model. Thus, to take into account uncertainty, initial conditions
of the NWP are perturbed and 50 different forecasts are generated simul-
taneously [38]. Because the raw ECMWF-EPS represents the repartition of
the possible outcomes, the sorted members can be interpreted as a set of
quantiles of a cumulative distribution function (CDF) [39].

The probabilistic forecast used for the optimization of the grid operation
is more precisely the ensemble forecasts generated at midnight with an initial
time resolution of 3 hours and a horizon of up to 72 hours. As we plan to
optimize the hourly schedule of the storage operation, a down-scaling of the
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original ECMWF-EPS is required. The probabilistic forecasts with an hourly
granularity are obtained with an oversampling method. The process takes
place in two stages:

• Oversampling: The method was developed during the ENDORSE project
[40] by the Mines Paristech’s team. The method generates a linear in-
terpolation at higher time resolution of the solar irradiance time series
assuming energy conservation from shorter to longer samples. It is
worth noting that the oversampling procedure can change the order of
the EPS members.

• Sorting: The probabilistic forecast, which corresponds to a CDF, is
obtained by ordering theM members of the EPS. This commonly used
method defines a cumulative distribution function with a probability
jump of 1/(M + 1) between the members. This way to associate the
sorted members of the EPS to a CDF is called “uniform” by [39].

The following subsections briefly detail how the other PV power foracasts
are generated from this oversampled EPS.

2.2.1. Deterministic forecast
One can easily create a deterministic forecast by taking the mean of

the members of the EPS. This deterministic forecast will be referred as
“Mean(EPS)”. The mean ĜHI

eps

t+h in (2) is the average value of the 50 mem-
bers available at time t and for a forecast horizon h. The mean is considered
as the most consistent forecast when the evolution of perturbations in the
NWP is nonlinear [38]. However, when the evolution of the perturbations in
the model is linear, the mean forecast is almost equal to the deterministic
forecast provided by ECMWF. Thus, the mean of the EPS commonly out-
performs the control run, and it can be considered as a good challenger of
the probabilistic forecasts. This deterministic forecasts reads as

ĜHI
eps

t+h =
1

M

M=50∑
k=1

epst+h,k. (2)

2.2.2. Probabilistic forecasts
In addition to the oversampled EPS derived from the ECMWF-EPS, four

probabilistic forecasts will be considered in this work. First, a deseasonalized
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climatology ĜHI
Clim

t+h is proposed in (4). Its predictive CDF summarized by
a set of quantiles with probability levels τ spanning the unit interval is de-
rived from the whole clear sky indices CSI of the training data set sorted in
ascending order as given in equation (3). The CSI is the ratio GHI

GHIClearSky

between the measured GHI and the GHI observed under a clear sky. The
clear sky irradiances GHIClearSky required to compute the clear sky indices
are provided by the McClear model [41]. The climatology will be used as
a reference because it is perfectly reliable and has no resolution (i.e. the
forecasted CDF F̂ (CSI train) is always the same). The choice to use the CSI
for the construction of the climatology is motivated by the elimination of the
seasonal and diurnal variation of the GHI along the year. For instance, in
winter, a raw climatology based on raw GHI records will misrepresent the
possible values of GHI and the higher quantiles will overestimate the occur-
rence of the GHI outcomes. The equations related to this second probabilistic
model are given by

CSI(τ) = inf
{
CSI train | F̂ (CSI train) ≥ τ

}
,

τ ∈ {0, 1}, (3)

and
ĜHI

Clim

t+h (τ) = CSI(τ)×GHIClearSkyt+h . (4)

Second, we use three calibrated ensemble forecasts derived from the over-
sampled ECMWF-EPS. Indeed, the literature shows that calibration [42] is
necessary to increase reliability and consequently the overall quality assessed
by proper scores such as the CRPS (see section 2.3). The calibrated forecasts
are generated by three different methods namely the Variance Deficit (VD),
the analog ensemble, and the Linear Quantile Regression (LQR). These three
methods are non-parametric, meaning that there is no need for an ex-ante
assumption on the characteristics of the forecast distribution.

The variance deficit is a procedure specially designed to answer the lack of
variance of the forecast distribution, the most prominent well-known weak-
ness of ensemble forecasts [43]. This is a member-by-member adjustment. It
transforms individually each member of an ensemble, in such a way that the
calibrated ensemble meets a required condition, i.e. that its variance equals
the mean error of the mean of the ensemble. The VD method is exhaustively
described by David and Lauret [15].

The second technique used in this study, the LQR, estimates each quan-
tile of the predictive CDF separately. The quantile forecast Qτ for each
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probability level τ is calculated linearly from the mean µR and the standard
deviation SR of the raw ensemble and is defined by

Qτ = ατ × µR + βτ × SR + γτ . (5)

This formulation implies that both the mean and the variance of the
raw ensemble are assumed to be linearly related to the level of the quantile
forecasts. The parameters ατ , βτ , and γτ are calculated by a minimization
of the quantile loss function over the training period (see [42] for details).

Finally, the third calibration method is based on the analog ensemble
technique which is widely used by the solar forecasting research community
[44, 45]. The idea of this method is to associate to a new forecast the closest
forecasts in the training period (relatively to some metric). The correspond-
ing measurements of the training period constitute the new ensemble. In
this study a very simple method of analog ensemble has been implemented,
from the complete procedure explained by Le Gal La Salle et al. [46]. In
this version, only the mean of the raw ensemble members is considered as a
predictor. It is worth noting the strong differences in the philosophy of the
three considered models. When analog ensemble only takes into considera-
tion the mean of the raw ensemble members, linear quantile regression adds
the variance to the set of the predictors. Conversely, the variance deficit
method considers all the members to build the predictive CDF.

For all the five probabilistic forecasts used in this work, the predictive
distributions are given by a set of M = 50 discrete quantiles with probabil-
ities spanning the unit interval. In other words, the quantiles range from a
probability level of τ1 = 0.02 to τ50 = 0.98 with a step of 0.98− 0.02

50− 1
. We

chose this distribution of the quantiles to be consistent with the EPS, which
has 50 members. Indeed, the EPS can be seen as a CDF with each mem-
ber corresponding to a quantile and a uniform spacing of the corresponding
probabilities (see [39]). The extreme probabilities of 1 and 0 will not be re-
quired by the optimization process because their corresponding expectations
are null. Indeed, the expectation is the product of the probability with the
outcome. And for instance, a probability level of 1 corresponds to an out-
come of 0 Wh (i.e at least a production of 0 Wh) and a null probability gives
a null expectation.
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Table 2: Overview of the 6 solar forecasts considered in this work
Short name Description Type
Climatology Climatological forecast based on the

distribution of the clear sky index
Probabilistic (naive)

EPS Ensemble Prediction System pro-
vided by the ECMWF

Probabilistic

Mean(EPS) Mean of the ECMWF-EPS Deterministic
LQR Linear Quantile Regression based on

the mean and standard deviation of
the ECMWF-EPS

Probabilistic

VD Variance Deficit applied to the mem-
bers of the ECMWF-EPS

Probabilistic

ANALOG Analog Ensemble based on the mean
of the ECMWF-EPS

Probabilistic

2.3. Forecast quality
A forecast is characterized by three attributes namely consistency, quality

and value [47]. Consistency refers to the agreement between the forecaster’s
judgement and his forecast. Quality evaluates the correspondence between
forecasts and observations. Value quantifies the benefits (economical or oth-
ers) for the users of the forecasts. In this section, we will detail the main
metric defined in the literature that allow assessing both the quality of de-
terministic and probabilistic forecasts. The value will be addressed through
the case study and its computation will be detailed in section 4.

A recent article clearly defines an evaluation framework to carry out a
comprehensive assessment of solar probabilistic forecasts [39]. The quality of
a probabilistic forecast is characterized by two attributes. First, reliability
refers to the statistical consistency between forecasts and observations. Also
called calibration, this attribute of the forecast is the most important one.
Indeed, non-reliable forecasts would lead to a systematic bias in subsequent
decision-making processes [48].

Ensemble calibration can be visually assessed through the use of rank
histograms (RH). This graphical tool gives a qualitative assessment of the
reliability and it will be used here to characterize the different probabilistic
forecasts provided in this work. A RH also gives relevant information about
the bias of the forecasts. Their construction is detailed by Lauret et al. [39].
A forecast can be stated as reliable if the histogram of the ranks remains
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inside the consistency bands. In the case where statistical consistency is
not verified, the different possible other interpretations of a RH are given
below. A U-shape RH corresponds to an over-confident probabilistic model
(i.e. under-dispersion of the set of forecasts) meaning that the observation
is often an outlier in the distribution of forecasts. Conversely, a RH with
hump shape means an under-confident model (i.e. distribution of forecasts
consistently too large). It indicates that the observation may too often be in
the middle of the set of forecasts. Also, asymmetric (or triangle shape) RH is
an indication of unconditional forecast biases. Furthermore, overpopulation
of the smallest (resp. highest) ranks will correspond to an overforecasting
(resp. underforecasting) bias.

Fig. 1 shows the rank histograms of the five considered probabilistic
forecasts. As expected, the climatology is perfectly reliable and exhibits a flat
rank histogram whose bars remain inside the consistency lines (dotted lines).
It is well known that the EPS produces too sharp prediction intervals and
the resulting rank histogram has a U-shape, which indicates a lack of spread
of the members. The three calibrated forecasts (i.e. LQR, Analog and VD)
have a better reliability than the raw EPS. However, the highest rank of the
VD and of the LQR is overpopulated and indicates an underforecasting. For
these two forecasts we can also observe a bias highlighted by an asymmetric
shape of their respective RH. The Analog forecast seems to have the best
calibration.

The second attribute is the resolution that measures the ability of a model
to generate case dependent forecasts. In other words, a highly resolute fore-
cast is the opposite of the climatological forecast defined in section 2.2.2,
which generates a single predictive distribution irrespective of the different
forecast situations. A high resolution also ensures sharp prediction intervals.
Unfortunately, no visual tool exists to evaluate the resolution. However, the
resolution can be quantified by the decomposition of the Continuous Rank
Probability Score (CRPS) presented hereafter. The overall quality of a prob-
abilistic forecast can be evaluated with the CRPS [49]. This score is appealing
because it corresponds to the mean absolute error (MAE) for a determinis-
tic forecast. It is expressed with the same units as the forecast and it can
be decomposed into reliability and resolution. Equation 6 gives the general
formulation for a set of N forecast/observation {F̂ fcst

j ;F obs
j } pairs:

CRPS =
1

N

N∑
j=1

∫ ∞
−∞

[
F̂ fcst
j (x)− F obs

j (x)
]2

dx. (6)
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Figure 1: Rank histograms of the five probabilistic forecasts. For sake of clarity, the
relative frequency axis has been bound to 3.2%.

To compute the CRPS and its decomposition, we used the R package
called “Verification” [50] based on CRPS estimation defined by Gneiting et al.
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[42]. Equation (7) gives the CRPS decomposition used in this package and
initially proposed by Hersbach [49], where Reli is the reliability, Resol is the
resolution and U is the uncertainty, which is a constant term that depends
only on the observations. In this work we prefer to use the potential CRPS
(CRPSpot = U − Resol), also proposed by Hersbach [49]. Indeed, as the
uncertainty is constant, the CRPSpot is equivalent to the resolution, and it
has the advantage to be negatively oriented (lower values are better) like the
reliability and the CRPS. The decomposition of the CRPS is given by

CRPS = Reli−Resol + U = Reli+ CRPSpot. (7)

For scores like CRPS that are negatively oriented, the goal of a forecasting
model is to minimize as much as possible the Reli and the CRPSPot terms.
In fact, a forecasting model with a high resolution term means that the model
has captured the maximum of the variability present in the data (which
variability is measured by the uncertainty term). Table 3 shows the CRPS
of the five forecasts with their respective decomposition. The decomposition
of the deterministic forecasts considered in this work (i.e. Mean(EPS)) is
possible. However, the interpretation of the reliability and the resolution
of a deterministic forecast is not relevant when compared to probabilistic
ones. Thus, the decomposition of the CRPS of the forecast Mean(EPS) is
not provided.

The values of the reliability confirm the assessment done with the RH.
The Analog forecast has the best reliability, which is equal to the reliability of
the Climatology forecast. According to the CRPS, the Analog and the LQR
forecasts have the best quality. The relationships between these indicators
and the value of the forecasts will be analyzed in detail in section 5.

3. Microgrid model

The considered microgrid is a building load, a building integrated PV
(BiPV) farm, an ESS, a connection to the grid and an Energy Management
System (EMS) as described in section 1. Energy flows (plain lines) and data
transmissions (dashed lines) are illustrated in Fig. 2. The BiPV generation
(PVt), the ESS (ESSt) and the main grid (Grt) are supposed to meet at
each time t the load (Lt). However, when there is an excess of production
of the microgrid, the energy can be fed into the grid. The balance at time t
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Table 3: The CRPS and its decomposition for 6 considered forecasts. For the deterministic
forecast Mean(EPS), the CRPS is the MAE.

Models CRPS CRPSpot Reliability
(Wh/m2) (Wh/m2) (Wh/m2)

Climatology 70.14 69.86 0.29
EPS 73.61 64.76 8.85

Mean(EPS) 91.89 - -
LQR 65.86 65.39 0.46
Analog 68.69 68.41 0.29
VD 73.00 70.42 2.57

between the supply and the demand is given by equation (8) hereafter

Grt + ESSt + PVt = Lt. (8)

SOC of the battery

Production
Forecast

data
Energy

Load Forecast

Grid cost

NWP

DSOGRID

PV

Li.ion
ESS

USER LOAD

EMS

Figure 2: Microgrid energy flows and control diagram

Because the PV farm and the batteries work with direct current (DC) and
the building with alternating current (AC), the microgrid has two inverters.
Here, we assume that they have the same efficiency curve, defined in equation
(9). The inverter efficiency ηinv is computed with the model proposed by
Riffonneau et al. [10]. The efficiency depends only on the ratio In between
the input power and the nominal power of the converter and is defined by

ηinv =
1

In
(0.0094 + 0.043× In+ 0.04× In2), (9)
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The state of charge (SOC) defines the level of energy stored in the ESS.
In this work, we assume that the SOC of the ESS can be measured and
calculated deterministically. At time t, the SOC depends on the current
energy stored in the ESS (Cat) and on the nominal capacity Caref :

SOCt =
Cat
Caref

. (10)

Considering a variation ∆SOCt of the SOC between two time step (t and
t − 1), equation 11 gives the relationships that govern the energy transfers
during discharge (ESSDischarget ≡ ∆SOCt > 0) and charge (ESSCharget ≡
∆SOCt < 0) of the ESS

ESSt =

ESSCharget = − ∆SOCt × Caref
ηCharge × ηinv,ESS

, if ∆SOCt < 0

ESSDischarget =∆SOCt × Caref×ηinv,ESS × ηDischarge, if ∆SOCt > 0.

(11)
One can see in this equation that the round trip efficiency of the batteries

(ηESS) is distributed between charge and discharge (ηCharge = ηDischarge =√
ηESS).
The state of health (SOH) quantifies the level of degradation of the ESS

capacity. The SOH variation i.e. ∆SOH is proportional to the SOC vari-
ation ∆SOC but only when a discharge occurs. Equation (12) details the
degradation model where Z is the aging coefficient that can be derived from
the ESS lifetime expressed in number of full cycles and from the correspond-
ing reduction of the state of health of the ESS. The ESS in this study is an
lithium iron phosphate battery (LFP). The characteristics of this ESS come
from the IRENA cost-of-service tool [51] with reference data from 2020. The
full characteristics of the Li-ion batteries used in this work are given in Ta-
ble 4. The inverter connected to the ESS as a maximum power of 13,5 kW
corresponding to 1 C-rate (i.e. 1 capacity of the battery per hour). This
relatively low sizing is well suited to our case study because the power of
the considered PV field is 6 kWp and the maximum power demand of the
building is approximately 7 kW.

∆SOHt = Z ×∆SOC{∆SOC>0},

= Z × (SOCt−1 − SOCt){SOCt−1−SOCt>0}.
(12)
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Table 4: Characteristics of the Li-ion batteries considered in the study case
Symbol Designation Value Unit
Caref Storage nominal capacity 13.5 kWh

ESSDischargemax Maximal energy discharge hourly (1C) 13.5 kWh
ESSChargemax Maximal enrgy charge hourly (1C) 13.5 kWh

SOCmin, SOCmax Minimal and maximal state of charge 10− 100 %
SOHmin Minimal state of health 80 %

Z Ageing coefficient of the storage 8.31−5

ηESS Round Trip Efficiency 95.5 %
P inv,ESS ESS Inverter / Chargers rated power 13.5 kW

Sic Total invest per usable kWh of storage 443.62 e/kWh

4. Optimization problem

As presented by Powell [52], the DP is the best candidate to optimize a
computable value function under uncertainty and to solve problems with low
dimensions. Furthermore, DP is one of the most successful approach used to
solve UC problems [53, 54, 55, 2]. Indeed, the DP is a global optimization
methods that works for non-convex and non-linear cost functions. Consid-
ering probabilistic solar forecasts as input, a probabilistic version of the DP
[56] will be used. In order to avoid going through intermediate processes,
such as scenario generation that add more complexity and inaccuracies in
the optimization, the choice fell on the direct use of CDF provided by the
forecasting models. Thus, we selected the PDP framework to solve a UC
problem by taking into account probabilistic forecasts of intermittent RES
production.

The aim of the EMS studied in this work is to minimize the operation
cost of the microgrid thanks to day-ahead forecasts of the load and of the
PV generation. The ESS is the unique controllable device of the system.
As a consequence, the objective is to optimize the charging and discharg-
ing schedule of the ESS. The following subsections detail the formulation of
the optimization problem and how it is implemented in the PDP and in the
selected method of reference i.e. SDDP (Stochastic Dual Dynamic Program-
ming) proposed by Pereira and Pinto [57].

4.1. Problem formulation
The objective of the optimization is to minimize the annual operating

cost of the microgrid as shown in equation (13). Even if the PV production
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is part of the operating cost of the microgrid, it is constant and it will not
influence the result of the optimization. As a consequence, the operating cost
defined here is the sum of the costs of the storage (Rt) and of the exchanges
with the grid (U grid

t ×Grt).

J(SOC) = min
T∑
t=0

(Rt + U grid
t ×Grt) (13)

The cost of the storage at time t (Rt) is derived from the aging model pro-
posed by Riffonneau et al. [10]. As stated above, the degradation of the ESS
is proportional to the discharged energy. Furthermore, the storage replace-
ment occurs when the minimal state of health SOHmin is reached. Thus, the
storage cost is computed considering a linear degradation of the capacity due
to the aging process as described in the following equation:

Rt =

{
Sic× Caref × ∆SOHt

1−SOHmin
, if SOCt−1 − SOCt>0

0, otherwise,
(14)

where SOHmin is the minimal state of health of the storage and Sic the stor-
age investment costs obtained from the IRENA projections [51]. Depending
on the direction of the energy flow, the grid U grid

t can generate costs or rev-
enues for the microgrid as detailed in equation (15). For the considered case
study, the price of electricity (Egpt) is the sum of the unit cost and of the
penalties that depend on hours and seasons [58]. It is worth noting that there
is no electricity market in Reunion Island. The prices are fixed by the French
national authorities and they are fully known in advance. Furthermore, only
the local DSO provides ancillary services and additional incomes by this way
are not possible. Table 5 gives an insight of the unit cost of energy and
also of the penalties applied in case of overpower. Here, we have set up the
power limit at 1kW which is the average power demand of the building and
corresponds to a peak reduction of a factor of 7. The aim is to significantly
reduce the impact of the microgrid on the main grid. Conversely, when the
electricity is fed into the grid because the microgrid produces more energy
than required, the system generates incomes. In this second case, the elec-
tricity is sold to the grid with a constant feed-in-tariff FiT (6.90 ce/kWh)
according to the current regulation.

U grid
t =

{
FiT, if Grt < 0

Egpt, if Grt ≥ 0.
(15)
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Table 5: Purchased tariff, taxes included, of electricity and penalties applied in case of
overpower for the considered study case. All the values are given in ce/kWh.

Designation Peak normal low
summer winter summer winter

Unit cost 21.60 11.42 7.38 5.71 5.08
Penalties 1,704.54 715.91 51.14 85.23 34.09

The optimization is subject to 5 constraints. The first one, given by equa-
tion (8), is the energy balance of the microgrid . The two following constraints
relate to the ESS limitations. The storage capacity in (16) is limited by its
minimum and maximum SOC, respectively SOCmin and SOCmax. Then, if
the minimal state of health SOHmin is reached (17), the ESS cannot operate
anymore and must be replaced. Furthermore, the charge and discharge must
not exceed the maximum energy that can flow in and out to the ESS due to
the limitation of the power unit (18). The last constraint, given by equation
(19), rules the exportation of energy towards the grid (Grt ≤ 0). Indeed, the
exportation is allowed only if the microgrid has a excess of production.

SOCmin ≤ SOCt ≤ SOCmax (16)

SOHt ≥ SOHmin (17)

−ESSChargemax ≥ ESSt ≤ ESSDischargemax (18)

Grt ≤ 0 if PVt − Lt + ESSDischarget ≥ 0 (19)

4.2. Dynamic programming (DP)
In the literature, several methods are proposed to optimize the schedule

of a microgrid operation. Among these techniques, one can cite Multi-agent
algorithms [59, 60, 61, 62], Model Predictive Controller (MPC) optimizer
[63, 64, 65] and others [66, 67] that mainly carry out local optimization.
The dynamic programming, which allows reaching a global optimum, is also
widely used [10, 68, 69, 57]. In this work, we rely on the Hamiltonian Ja-
cobi Bellman equation (HJB) [70] that is a recursive equation depending on
the future value of the cost function and on the transition between states.
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The definition of the state refers to the work of Bertsekas [71] : "State vari-
able is the minimally dimensioned function of history that is necessary and
sufficient to compute the decision function, the transition function, and the
contribution function". Thus, the cost function is computed recursively and
backward (i.e. t + 1 toward t) for each state change. The following equa-
tion gives the general formulation of DP where the Vt(St) is the value of the
objective function at time t, depending on the action xt to reach the state
St:

Vt(St) = min

(
Ct(xt) + γ × EVt+1(St+1)

)
. (20)

xt is the action taken to switch between state t and state t + 1 from the
policy space π. In our case the action is a charge or a discharge of the ESS
that respects the maximum and minimum capacity of the ESS. Ct(xt) is the
contribution to the cost of the decision xt, where C is a function depending
on the state at time t and at time t+ 1. Obviously in our case study, St and
St+1 are the SOC) of the ESS at t and t+1 and EVt+1(St+1) is the expectation
of the value for a change between state St+1 and state St. Furthermore, xt
corresponds to ESSt, which is a decision of charge or discharge of the ESS.
Finally, γ represents the time value of money. It relates on the weight that
a future decision has less influence in the total cost [72]. Considering an
infinite horizon, γ is inferior to 1. Because the problem is solved numerically,
the state needs to be a real value and will be discretized.

Equation (20) refers to the general formulation of dynamic programming.
To take into account the uncertainty associated to the forecasts, two variants
of the DP have been proposed: SDP and PDP [56]. Most of the works
dealing with grid management use the SDP [10, 68, 73]. For the SDP, many
formulations of the Bellman optimal policy are available. For instance, Powell
[72] proposed a SDP that uses a stochastic forecast based on a tree search
(i.e. a scenario) and roll-out heuristics. Furthermore, the SDP is frequently
associated with a Monte Carlo sampling or a Markov Decision process (MDP)
[74] to reduce the dimension of the research space and thus to cope with the
curse of dimensionality. In this work, we propose to use the PDP algorithm.
The HJB equation presented above will not be solved with a Contraction
Mapping Point (CMP) [71] method or a differentiation because we assume
that the cost-to-go function is not necessarily monotonous or a contraction
(γ < 1). The actual problem is restricted to a 1-dimension problem and it
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can be solved directly without any sampling techniques. More precisely, we
use the Bellman-Ford [75] backward resolution without space reduction or
sampling. This resolution eludes the use of the transition matrix between
states, but relies on the known probability distribution of the input data.

4.3. Implementation of the PDP with Probabilistic Forecasts
As a remainder, the objective of this case study is to schedule the SOC

of the storage one day ahead. This problem is also called look-ahead policies
[72], because we need to solve future problems with the knowledge of future
information (forecasts). To take into account events that may occur beyond
the first day of operation and that may influence the decisions, we chose to
optimize the schedule for the next 3 days but only the first day will be used
to operate the ESS. This rolling horizon procedure [76, 5] has been studied
extensively for finite or infinite horizon problems.

Furthermore, the storage cost depends only on a decision of discharge
(14). As a consequence, the future states of the ESS do not rely on the PV
production forecast which is a CDF in our case. This assumption implies
that the costs, which are computed by the DP for every possible SOC vari-
ations of the ESS, are not probabilistic. In our probabilistic framework, the
PV production outcome (P̂ V ) is a probabilistic distribution of the expected
generation. Thus, the grid outcome Ĝr depends on P̂ V and on the SOC. As
a consequence, the apparent cost of a {P̂ V ,Ĝr} pair is computed for each
quantile P̂ V τq of the PV forecast and each possible future SOC of the ESS.

It is important to note that a quantile with a probability level τq of
a PV forecast namely P̂ V τq corresponds to the minimum value of the PV
production that is expected. Indeed, we have a probability τq to have a PV
production, which corresponds to the quantile P̂ V τq , that is the minimum
expected value. In our case, we are interested by the contrary event, that
is to say the probability to exceed the forecasted quantile, as defined in the
following equation:

Prob(P̂ V t > P̂V τq) = 1− τq
= 1− CDF (P̂ Vt).

(21)

As the energy balance of the microgrid depends on the variation of storage
SOC (i.e. ∆SOC) and on the forecast, the transition between states is
implicit. So the probability of transition between states in the general DP
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formulation (20) is equal to p = 1. As a consequence, the constraint resulting
from the energy balance of the microgrid (8) is formulated as follow:

Ĝri,t,q − ESSChargei,t + ESSDischargei,t + P̂ V t,τq = Lt, (22)

where i corresponds to the state of the ESS (i.e. the SOC) and Ĝri,t,q
is the energy exchanged with the grid. As mentioned previously, the SOC
is discretized. In our case, we chose a step of discretization of 1%, such as
i ∈ {SOCmin, SOCmin + 0.01, . . . , SOCmax}. The predictive CDF of the PV
production is also discretized in M = 50 quantiles.

The cost-to-go function Ct for the problem is an expectation E that de-
pends on the probability τq to exceed the quantile P̂ V τq given by the PV
generation forecasts:

E[Ct(ESSt)] = Ri,t +
1

M

M∑
q=1

τq ×
(
U grid
t × Ĝri,t,q

)
, (23)

Regarding more precisely the implementation of the deterministic fore-
cast, we simply defined a Heaviside step function with a probability jump of
1 at the forecast value.

Finally, the generated predictive schedule has an 1-hour time step. The
receding horizon produces a schedule of the ESS charges and discharges for
the next 24 hours based on an optimization done with a horizon of 72 hours.
Even if it is possible to adjust online the planning produced by the PDP (e.g.
with a MPC), we choose to not do it. Indeed, in this work, we will focus
on the performance of the proposed method of optimization. Fig. 3 and
4 show respectively an example of the implementation of the deterministic
forecast and of the probabilistic forecast for the same day. In both cases,
the ESS runs as scheduled by the lookahead optimization. For the selected
day, the deterministic forecast experiences an important overestimation of
the PV generation for the second part of the daytime while the probabilistic
forecast indicates a significant probability of a lower production in the af-
ternoon. Thus, the fulfillment of the schedule of the ESS obtained with the
deterministic forecast results in a purchase of energy from the grid at the end
of the afternoon to compensate the error and obviously at a high operating
cost. Conversely, the high risk of under-production detected by the proba-
bilistic forecast leads the optimization to slightly discharge the ESS at the
end of the afternoon and thus to avoid an important purchase from the grid.
As a consequence, the cost of operation is lower.
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Figure 3: Example of the microgrid operation when using the deterministic forecast to
generate the optimal schedule of the ESS. For sake of readability, the load Lt is represented
in this figure as a negative quantity.
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Figure 4: Example of the microgrid operation when using the LQR probabilistic forecast
to generate the optimal schedule of the ESS. The grey-scale color shows the quantiles
given by the probabilistic forecast. For sake of readability, the load Lt is represented in
this figure as a negative quantity.
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4.4. Implementation of the reference method: SDDP
To schedule the day-ahead operation of the ESS, we propose to use a well-

known stochastic optimization method, i.e. the SDDP, as reference. Here we
reproduce the implementation of the SDDP proposed by Kumar et al. [77]
that also used a receding horizon. Even if this implementation of the SDDP
is close to the one used to implement the PDP some modifications in the
problem formulation are required. Indeed, to use the SDDP, the problem
must be convex, linear and the objective function has to be positive. To
ensure the linearity of the problem, the inverter efficiency (ηinv) is fixed to a
constant value of 0.9. Furthermore, the state of the system is now the energy
stored in the ESS (Cat). A change of the state comes from charging and
discharging operations and the system cannot do both at the same time:

Cat = Cat−1 + ESSCharget ×ηinv,ESS × ηCharge − ESSDischarget

ηinv,ESS × ηDischarge
. (24)

The constraint resulting from the energy balance (8) of the microgrid
becomes:

Grt − ESSCharget + ESSDischarget + PV t × ξt = Lt, (25)

where the mean PV production (PV t) is associated with a perturbation
parameter ξt that takes the uncertainty into account. Here, the distribution
of the historical PV generation (i.e. the training dataset) is used to assess
the mean and the uncertainty of the PV production. More precisely, they are
both derived from the historical distribution of the clear sky index. Indeed,
the clear sky index captures the seasonal variability of the solar resource,
which is deterministic, and, in the field of solar energy, distributions derived
from clear sky indices are known to outperform the ones directly computed
from GHI [78]. Thus, to reproduce the uncertainty of the PV production,
the SDDP considered in this work uses the distribution called climatology,
which is also used with the PDP and detailed in section 2.2.

The linearization of the constraint relative to the exportation rules (19)
is given by the following equation:

−Grt ≤

{
ESSDischarget + PVt − Lt, if PVt − Lt ≥ 0

ESSDischarget − Lt, otherwise.
(26)

To ensure the tractability of the calculation, the sampling method pro-
posed by Shapiro [79] is used to generate a limited number of disturbance
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values ξt (i.e. scenarios with equal probabilities). It is important to note
that the sample size and the sampling technique could influence the solution
of the optimization. Tests were carried out with sample size ranging from 50
to 200. For the considered case study, the sample size does not significantly
change the resulting operating cost and all the results presented below are
obtained for a sample size of 50.

Finally, the SDDP was implemented thanks to the SDDP.jl package [80]
based on the JuMP modeling [81].

5. Results and discussion

5.1. SDDP versus PDP
A comparison of the operating costs obtained with the PDP and the

SDDP approaches implemented as detailed above will result in a better per-
formance of the SDDP in all cases (see operating costs given in Tables 6 and
7). Indeed, as illustrated in Fig. 5, the real efficiency of the inverters used in
the case study depends on the input power ratio as defined in (9). Thus, the
assumption of a constant efficiency of 0.9 done with the SDDP leads to sig-
nificantly underestimate the losses due to storage charges and discharges. As
a consequence the energy flowing through the ESS is overestimated when the
input power is lower than 20% of the rated power of the inverter. Finally, as
the inverter runs frequently at low input power, the SDDP underestimate the
operating cost of the microgrid. This result shows that it is very important
to take the non-linearity of the inverters into account to produce relevant
optimization results.

However, a fair comparison between the PDP and the well-known stochas-
tic optimization SDDP is required to assess the performance of the method-
ology proposed in this work. In this subsection, we propose to run the PDP
with a constant efficiency of the inverters. Table 6 shows the optimization
results for the reference method (i.e. SDDP) and for the proposed PDP
approach with this constant efficiency of 0.9 for both approaches. Not all
the forecasts associated with the PDP are able to outperform the SDDP.
Only the optimizations done with the Analog and LQR forecasts give lower
operating cost than the reference method. As the same climatology fore-
cast has been used for both approach, we could expect that the PDP and
SDDP results will be fairly close. The difference observed between the two
approaches likely results from the control of the ESS done during the online
step. Indeed, for the online step of the SDDP, a linear function of the real
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Figure 5: Visual representation of inverter efficiency used for with the PDP (blue line)
and with the SDDP (red dashed line)

SOC and of a persistence of the PV production controls the commitment
of the ESS. Whereas the PDP predefines the operation of the ESS the day
before without any possibility to adjust the planning online.

Table 6: Annual operating obtained with the SDDP (first row) and with the PDP (other
rows) costs using a constant efficiency of the inverters for both approaches

Optimization method Forecasting model Operating cost
e

SDDP Climatology(CSI) 1587.23
PDP Perfect 337.81
PDP Mean(EPS) 2192.46
PDP EPS 1816.45
PDP LQR 1525.01
PDP Climatology(CSI) 1767.77
PDP VD 1991.87
PDP Analog 1494.37

5.2. Deterministic versus probabilistic
From an economic point of view, the probabilistic forecasts, even the

worst one (i.e. EPS) clearly outperforms the deterministic forecast. Indeed,
as illustrated in Table 7, the operating cost of the microgrid (13) obtained

26



Table 7: Economic and technical annual performance indices [82] of the PDP using a
quadratic efficiency curve for the inverters

Forecasting Model Operating cost Autonomy rate
e %

Perfect 399.87 55.54
Mean(EPS) 3037.67 54.92

EPS 2427.32 56.03
LQR 1889.09 54.67

Climatology 2379.59 49.08
VD 2461.85 53.70

Analog 1966.55 51.97

with the deterministic forecast is reduced by approximately 20% for the worst
probabilistic forecast (i.e. EPS) and by 38% for the best ones (i.e. LQR and
Analog). Even the climatology, which is a naïve model used in this work as
a reference, performs better than the deterministic forecast. Unfortunately,
the technical indicator, i.e. the autonomy rate as described by Simpore [82],
does not provide relevant information to understand the big gap in terms of
operating costs between the probabilistic and deterministic approach.
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Figure 6: Decomposition by time-of-use rates of the annual cost of the microgrid operation
for the PDP results

In Fig. 6, which presents a decomposition of the operating cost by elec-
tricity time-of-use rates, we can observe that the perfect forecast purchases
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little electricity to the grid and mainly during low hours (i.e. mainly at
night). During the daytime, the microgrid is nearly an autonomous system.
In the case of the deterministic forecast (Mean(EPS)), the additional op-
erating cost corresponds to the compensation of the forecast errors. These
errors are observed only during the normal and peak hours. Obviously, the
PV plant produces only on daytime and the low hours occur at night. As a
consequence, most of the total cost is normal and peak hours. Using proba-
bilistic forecasts, the EMS tends to counter balance the forecast inaccuracies
by purchasing energy mainly during low and normal hours. It allows reduc-
ing the overall microgrid demand during peak hours. Finally, as shown in
Fig. 7, the costs due to exceeding the power demand constraint (i.e. the
penalties) of the electrical grid are considerably reduced with probabilistic
forecasts.
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Figure 7: Decomposition of the annual cost of the microgrid operation by type of expense
for the PDP results

5.3. Influence of the quality of the forecasts
Several error metrics used to assess the quality of probabilistic and deter-

ministic forecasts exist. All these scores are statistically relevant. However,
in the field of solar forecasting, there is no clear framework for choosing the
metric which will lead to the best microgrid management. In Table 3, the
CRPS of EPS and VD are almost identical (around 73 Wh/m2) and the mi-
crogrid operation cost is almost the same. The VD calibration improves the
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reliability of the EPS but decreases the resolution of the forecasts. Thus,
the gain in reliability is counterbalanced by the loss in resolution. Regarding
the 5 probabilistic forecasts considered in this work, the LQR and Analog
methods generate the lowest operating costs.

In Fig. 7, the cost is decomposed by type of expenses (i.e. purchase
from the grid, penalties, ESS operation and exportation to the grid). The
penalties due to overpower are the most important part of the total cost.
Indeed, the selected power limit is restrictive because we chose to reduce
at its maximum the impact of the microgrid on the main grid by avoiding
high peak power demands. Thus in this study case, the best probabilistic
forecast is the one that generates the fewest penalties (i.e. LQR and Analog
methods).

One can also note that, except the VD method, the calibration of the
EPS leads to forecasts of increased quality and consequently to a better
ESS schedule. First, the reliability is significantly improved. Second, the
resolution (i.e. CRPSpot) deteriorates. But, the loss in resolution is less
important than the gain in reliability. We can conclude that the more efficient
methods improves the reliability without deteriorating the resolution.

A sensitivity analysis on the power limit, which is the main cause of the
penalties, has been done. When the power limitation is not restrictive, the
difference of operating cost observed between the forecasting models is less
important. Indeed, the penalties disappear and the cost only depends on the
storage operation and on purchases and sales to the grid. But the forecast
with the best CRPS still gives the lower operating cost.

6. Conclusion

This work proposes a method for using probabilistic forecasts of intermit-
tent RES, which take the form of discrete quantiles, in order to minimize the
operating cost of a microgrid. Our approach combines the probabilistic dy-
namic programming (PDP) with a receding horizon to solve an optimization
problem of scheduling. The PDP can solve linear and non-linear problems
and is specifically suitable for the integration of predictive distributions ar-
ranged in discrete quantiles. The proposed method has been applied to a
microgrid energy management to plan the ESS operation one day ahead.
Our case study was a microgrid with a NetZeb building, a BiPV plant and
Li-ion batteries.
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The comparison between the proposed approached based on the PDP and
the well-known SDDP highlights that the consideration of the non-linearity
of the converters’ efficiency is of paramount importance. Indeed, the chosen
implementation of the SDDP, which involves a linearized version of the prob-
lem with a constant efficiency of the converters, significantly underestimates
the losses and consequently the operation cost.

With the proposed method and for this specific case study, the integra-
tion of the probabilistic forecasts in the optimization process results in a
more efficient microgrid management and significantly lower operating costs
than the use of a deterministic forecast. The probabilistic approach allows
anticipating the risk of penalties due to overpower. Indeed, in our case, the
power limit is highly restrictive and the operating cost is mainly driven by
the penalties.

The approach and tools proposed in this work can be extended to other
applications of the EMS in an operational framework. For instance, it can be
used for the integration of other intermittent RES, such as wind and wave.
However, the study was carried on 1-hour time steps. It will be interesting to
test it in real condition with real-time data and a control loop for adjustment
and correction.
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