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1  |  INTRODUC TION

Agro-ecosystems comprise a significant proportion of land use and 
harbor a non-negligible fraction of biodiversity (Pimentel et al., 

1992; Tilman et al., 2011). More than many others, these ecosystems 
suffer from intense structural anthropogenic alterations. Conflicting 
imperatives to intensify production while simultaneously reducing 
environmental impacts increasingly drive short-term and fine-scale 
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Abstract
One promising avenue for reconciling the goals of crop production and ecosystem 
preservation consists in the manipulation of beneficial biotic interactions, such as 
between insects and microbes. Insect gut microbiota can affect host fitness by con-
tributing to development, host immunity, nutrition, or behavior. However, the deter-
minants of gut microbiota composition and structure, including host phylogeny and 
host ecology, remain poorly known. Here, we used a well-studied community of eight 
sympatric fruit fly species to test the contributions of fly phylogeny, fly specializa-
tion, and fly sampling environment on the composition and structure of bacterial gut 
microbiota. Comprising both specialists and generalists, these species belong to five 
genera from to two tribes of the Tephritidae family. For each fly species, one field and 
one laboratory samples were studied. Bacterial inventories to the genus level were 
produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample 
bacterial compositions were analyzed with recent network-based clustering tech-
niques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in 
all samples, microbial profiles varied across samples, mainly in relation to fly identity 
and sampling environment. Alpha diversity varied across samples and was higher in 
the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping 
samples according to their microbial profiles. The resulting groups were very congru-
ent with fly phylogeny, with a significant modulation of sampling environment, and 
with a very low impact of fly specialization. Such a strong imprint of host phylogeny in 
sympatric fly species, some of which share much of their host plants, suggests impor-
tant control of fruit flies on their gut microbiota through vertical transmission and/or 
intense filtering of environmental bacteria.
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ecological and evolutionary processes (Thrall et al., 2011), demand-
ing greater capacity to predict and manage their consequences 
(Gilligan, 2008). One promising avenue for reconciling the goals of 
crop production and ecosystem preservation consists in manipulat-
ing quantitatively and/or qualitatively beneficial biotic interactions 
(Gaba et al., 2014; Massol & Petit, 2013). Over the last decade, this 
strategy has taken a new turn by considering risks and opportunities 
associated with plant and insect microbiota. In particular, microbes 
associated with phytophagous insect are thought to offer great po-
tential for improved management of economically important pests 
(Crotti et al., 2012). For instance, gut bacteria can be used to reverse 
radiation-induced fitness decrease in sterile males used in the sterile 
insect technique, to produce new bacterial odoriferous attractants 
for insect traps, or to stimulate insect behaviors such as feeding or 
oviposition (Noman et al., 2020; Raza et al., 2020). Yet, identification 
of the associated microbial species, and of their respective role in 
plant–insect interactions and dynamics, is still far from complete.

There is now good agreement on the idea that microbes may play 
an important role in host adaptation (Macke et al., 2017). In partic-
ular, one of the major arenas for host–microbe interactions is the 
insect gut, which is typically colonized by a large number of diverse 
microbes, among which bacterial associations predominate (Engel & 
Moran, 2013). Empirical evidence accumulates, showing that insect 
gut microbiota can affect host fitness by contributing to develop-
ment, host immunity, nutrition, or behavior (Kolodny et al., 2020). 
Gut microbes have even been suspected to be the hidden key player 
of plant exploitation by their insect pests, as, for example, for the 
olive fly Bactrocera oleae (Ben-Yosef et al., 2014) and the coffee 
berry borer Hypothenemus hampei (Ceja-Navarro et al., 2015).

Gut microbiota are complex, heterogeneous, and variable com-
munities of microbes. First, they assemble within each host genera-
tion through different transmission routes. Specifically, gut microbes 
are mainly acquired via horizontal transfer from the surrounding 
environment (Broderick & Lemaitre, 2012). However, a number of 
mechanisms exist for inoculating progeny with microbial symbionts, 
increasing rates of vertical transmission, and enabling long-term as-
sociations (Engel & Moran, 2013). For example, in some flies egg-
shells are contaminated with parental bacteria (Capuzzo et al., 2005; 
Raza et al., 2020). Even when acquired horizontally at each genera-
tion, gut communities are not random assemblages of bacteria from 
the food or local environment, due to host filtering and promoting 
specific bacteria (Engel & Moran, 2013). Second, insect species vary 
immensely in their dependence on gut microbes: Some almost lack 
them entirely, while others have developed obligate dependence 
(Moran et al., 2019). Third, host–microbiota interactions extend 
along the parasite–mutualist continuum and the exact position may 
change according to the cost–benefit balance resulting from inter-
actions between bacteria composing the microbiota (Mushegian & 
Ebert, 2016). Fourth, gut microbiota are often considered as having 
a multilayered structure (Shapira, 2016). One layer would be the so-
called core microbiota, which would tend to be under host genetic 
and immune control, reliably transmitted across generations, and 
sharing evolutionary interests with the host (Macke et al., 2017). 

Some of these microbes may be beneficial to the host and contrib-
ute to essential functions or provide long-term adaptation to sta-
ble features of the host niche (Nougué et al., 2015). A second layer 
would be composed of a flexible, environment-modulated pool of 
microbes, varying within the course of individual life and exhibiting 
high interindividual variation. Because of possibly divergent evolu-
tionary interests, microbes from this second layer could either be 
beneficial or detrimental to the host (Macke et al., 2017), potentially 
depending on the rest of the gut microbiota members (Mushegian & 
Ebert, 2016).

In relation to this important variability of insect–microbe asso-
ciations, understanding the role of gut microbiota in plant–insect 
interactions may benefit from deciphering the determinants of gut 
microbiota composition and structure. Gut microbiota are affected 
by many factors, including host phylogeny and host ecology (Spor 
et al., 2011). First, the environment in which insects develop and live 
strongly determines the set of bacteria, with which they will have 
an opportunity to associate. In phytophagous insects, the environ-
ments encountered are not random. They depend on insect ecol-
ogy, a major feature of which is host range, that is, the host plant 
species an insect uses. For instance, one could expect that insect 
species specialized on different host plants encounter different 
initial microbe pools and that generalist insect species encounter 
a more diverse set of microbes than specialist species (Deb et al., 
2019). Second, host phylogeny could potentially structure insect gut 
microbiota through different mechanisms ranging from active filters 
(constrained by host development, immune function morphology, 
and physiology), to the sharing of similar microbe pools (through so-
cial interactions or similarity in diet; Brooks et al., 2016). While host 
phylogeny, host specialization, and sampling environment factors 
are all considered as potential determinants of gut microbial commu-
nities, their relative importance is still a matter of debate, not only 
because it probably varies across taxa but also because of the asso-
ciated technical challenge. Studies generally compare gut microbi-
ota among related host species with contrasting ecologies in natural 
environments (Ivens et al., 2018), and through broad phylogenetic 
sampling of animals with both divergent and convergent feeding 
ecologies (Nishida & Ochman, 2018). However, in addition to their 
differences in phylogenetic history and level of specialization, sur-
veyed host species may differ in their geographic ranges, thus expe-
riencing different microbial species pools in their local environment. 
Controlled or laboratory environments, used for studies of closely 
related host taxa (Erlandson et al., 2018; Kohl et al., 2018), may par-
tially reduce this bias. However, sampled microbial pools are unlikely 
to be representative of those encountered in the wild. This limita-
tion can be overcome by analyzing microbiota in sympatric species 
of known ecology and phylogenetic history (Martinson et al., 2017).

Reunion, a small island in South-West Indian Ocean, harbors 
a community of eight sympatric fruit flies, considered as the main 
actors in the local guild of fruit-eating phytophagous arthropods 
(Quilici & Jeuffrault, 2001), which could constitute a convenient 
system to tackle this question. These species belong to five gen-
era from two tribes of the Tephritidae family (Moquet et al., 2021): 
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Three species are Ceratitinae (Ceratitis capitata, Ceratitis quilicii, and 
Neoceratitis cyanescens), and five species are Dacinae (closely related 
species Bactrocera dorsalis, Bactrocera zonata, and Zeugodacus cucur-
bitae on the one hand, and Dacus ciliatus and Dacus demmerezi, on 
the other). They differ in their level of specialization: Four are gen-
eralist species (the Ceratitis and Bactrocera species, commonly found 
on more than 30 plant species of several distant plant families), three 
are specialists of Cucurbitaceae (the Dacus and Zeugodacus species), 
and one is a specialist of Solanaceae (N.  cyanescens). Most impor-
tantly, both tribes comprise specialist and generalist species.

Gut microbiota of Tephritidae have received great attention 
among those of phytophagous insects due to their promises for 
innovative pest management strategies (Deutscher et al., 2018; 
Noman et al., 2020), and because Tephritidae, which have a world-
wide distribution, include some of the most economically damag-
ing fruit and vegetable crop pests (Qin et al., 2015). The functional 
role of some particular bacterial taxa has been investigated within 
Tephritidae revealing links with nutritional provisioning (Behar 
et al., 2005), resistance to pathogenic bacteria (Behar, Yuval, et al., 
2008), social interactions (Hadapad et al., 2016), pesticide resistance 
(Cheng et al., 2017), and foraging behavior (MacCollom et al., 2009). 
More recently, metabarcoding studies using next-generation se-
quencing have helped describe the diversity and structure of the gut 
bacterial communities associated with wild Tephritid flies (Noman 
et al., 2020). These studies have uncovered a substantial diversity of 
gut bacteria with a strong predominance of the Proteobacteria phy-
lum, including many genera of the Enterobacteriaceae family. Some 
conclusions, such as the lower diversity of microbial communities 
harbored in laboratory-reared insects compared with field-collected 
ones (Liu et al., 2016; Ras et al., 2017), and a core microbiota found 
only at the family level (De Cock et al., 2020; Deutscher et al., 2019), 
were shared by most studies. However, these studies also came to 
contrasted conclusions about the relative importance of host plants 
(Behar, Jurkevitch, et al., 2008; Majunder et al., 2019; Malacrinò 
et al., 2018; Ventura et al., 2018) or fruit fly species (De Cock et al., 
2020; Morrow et al., 2015) in determining the composition and vari-
ation of gut bacterial communities in natural populations.

Here, we aimed at using the fruit fly community of Reunion 
Island to test the contributions of fly phylogeny, fly specialization, 
and fly sampling environment on the composition and structure 
of their bacterial gut microbiota. To do so, for each species, whose 
precise host range and phylogenetic history are known, we studied 
bacterial gut communities in samples from two contrasted environ-
ments (field vs. laboratory). Assessing the amount of network varia-
tion driven by different environmental and biological factors is still 
an experimental and statistical challenge (Joffard et al., 2019). Here, 
bacterial inventories were conducted using 16S metabarcoding with 
the Oxford Nanopore Technology, reported to confer a greater tax-
onomic resolution than Illumina at the genus level (Matsuo et al., 
2021; Nygaard et al., 2020), and hence a key feature to dig into the 
diversity of Enterobacteriaceae. Moreover, meaningful network 
analyses relied on the framework recently proposed by Massol et al. 
(2021), based on two methods: (i) group decomposition followed by 

canonical correspondence analysis (CCA) and (ii) singular value de-
composition (SVD) followed by redundancy analysis (RDA).

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and DNA extraction

Details on each sample are provided in Table S1, Appendix S2. Field 
samples were collected in several localities between April and June 
2018. When possible, flies were caught with pheromone traps in 
places where several host plants coexist. For species with no effi-
cient trap, flies were collected from sets of infested fruits from a 
given locality (details in Table S1, Appendix S2). As pheromone traps 
only attract males, only male individuals were included in the study. 
Differences in gut composition between the sexes have been found 
nonsignificant in a preliminary study on C.  capitata and B.  dorsalis 
(not shown), and in previous studies on B. dorsalis (Andongma et al., 
2015; Liu et al., 2018) and on another Tephritid species (Bactrocera 
carambolae, Yong et al., 2017). Laboratory flies were collected using 
mouth aspirator in populations maintained in the laboratory of 
Plant Populations and Bio-agressors in Tropical Ecosystems Joint 
Research Unit (Saint-Pierre, Reunion Island). All flies were stored for 
at least 48 h in fresh 90% ethanol at −30°C in a 10× liquid/fly volume 
ratio to optimize washing and dilution of any external bacteria. One 
hour prior to dissection, flies were rinsed at ambient temperature by 
successive buffers providing three more washes (75% ethanol, 50% 
ethanol, and 25% ethanol, 5 min each), while ensuring a progressive 
rehydration of the abdominal tissues for dissection. Dissection of 
the abdominal gut portion was performed on a sterilized glass slide 
with a pair of sterile tweezers under a stereomicroscope. The ab-
dominal gut portion includes the midgut and the ileum of the hind-
gut, excluding anterior thoracic crop, foregut, and posterior rectum. 
For each sample, guts from around 30 males were dissected under 
sterile conditions and pooled.

DNA extraction from dissected guts was performed using the 
DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer's 
instructions, adding 0.5% N-lauroyl sarkosyl (Merck KGaA) for 30’, 
65°C at the end of the lysis step. DNA was subsequently checked 
for quantity and quality with a NanoDrop 2000 (Thermo Fisher 
Scientific Inc.).

2.2  |  Gene amplification and MinION sequencing

For each sample, ~10 ng of DNA was amplified using specific prim-
ers that target the whole 16S rRNA gene (27F 5′-AGAGTTTG​
GATCMTGGCTCAG-3′; 1492R 5′-GGTTACCTTGTTACGACTT-3′), as 
well as subsequent specific barcodes using a 16S Barcoding Kit (SQK-
RAB204; Oxford Nanopore Technologies). After bead purification for 
removal of excess primers, amplification products were attached to 
rapid sequencing adapters before being loaded on a MinION flow cell 
for real-time sequencing. Samples were analyzed in three separate 
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experiments (RUN1, RUN2C, and RUN3 in barcodes cited in Table 
S1), each containing a mock community sample (more details in 
Appendix S1).

2.3  |  Bioinformatics

Basecalling, demultiplexing, and chimera removal were performed 
using Guppy v4.0.11 (https://commu​nity.nanop​orete​ch.com). Reads 
were trimmed (only nucleotides between positions 60 and 1460 bp 
of the 16S rRNA gene were kept) and filtered (only sequences longer 
than 900 bp and above quality score Q10 were kept) using Nanofilt 
(De Coster et al., 2018), leading to a total of 268,960 sequences 
(ranging from 4693 to 36,902 across the 16 samples). Taxonomy 
was assigned by confronting reads to the Silva 138 database (Quast 
et al., 2013; Yilmaz et al., 2014) using VSEARCH 2020.8.0 (Rognes 
et al., 2016) embedded in QIIME 2 2020.8 (Bolyen et al., 2019), 
with a percentage of identity of 90%. A phyloseq object was pro-
duced and imported in R (McMurdie & Holmes, 2013; R Core Team, 
2020). Examining mock samples revealed correct identification of 
mock taxa at all taxonomic levels, with relative abundances both 
very constant across runs and very close to the expectation (Figure 
S1 in Appendix S1). Among all reads, the percentage of successful 
assignment (proportion of total reads assigned to a taxon identified 
in the reference database) was 78.1% at phylum, class, order, and 
family levels. It dropped to 74.9% at the genus level and 34.0% at 
the species level. For further analyses, features were merged at the 
genus level, constituting an incidence table of 105 genera in 16 fruit 
fly samples. As the maximal relative abundance of a false-positive 
taxon was 0.001 in mock community samples, the incidence table 
was filtered of taxa below this threshold relative abundance. This 
led to a final incidence table of 46 genera (list provided in Table S2) 
in 16 fruit fly samples (Table S3), used for all following statistical 
analyses.

2.4  |  Community diversity analyses

Community diversity was described as “effective numbers” (Hill, 
1973; Jost, 2006, 2007) of bacterial genera within and among 
sample groups. The total (gamma) diversity of each group was 
multiplicatively partitioned into two components: (i) alpha di-
versity, the within-group component; and (ii) beta diversity, the 
among-group component, that is, the effective number of com-
pletely distinct communities present (Jost, 2006). Diversity de-
composition was performed using iNEXT (Hsieh et al., 2016) and 
the multipart() function of package vegan in R (Oksanen et al., 
2020). To approximate uncertainty around diversity estimates, 
hierarchical bootstrapping was used. Further exploration of the 
variability of gut microbiota was conducted by nonmetric multidi-
mensional scaling (NMDS) applied to the Bray–Curtis dissimilarity 
scores (Bray & Curtis, 1957).

2.5  |  Network analyses

To determine to what extent gut community structure is driven by 
fruit fly phylogeny, specialization, or sampling environment, we ap-
plied two network analysis methods exposed in Massol et al. (2021). 
To account for fly phylogeny, samples were divided into four groups 
based on fly genus: Neoceratitis, Ceratitis, Dacus, and the group 
formed by Bactrocera and Zeugodacus. The two latter genera are con-
sidered very close, to the point that until recently Z. cucurbitae was 
called Bactrocera cucurbitae (Virgilio et al., 2015; Zhang et al., 2010). 
Specialization groups are based on known host ranges in Reunion as 
inferred from long-term observational data (Moquet et al., 2021) and 
divide samples into three groups: generalists (Bactrocera and Ceratitis 
species), specialists of Cucurbitaceae (Z. cucurbitae and Dacus spe-
cies), and specialist of Solanaceae (N. cyanescens). Sampling environ-
ment opposes laboratory versus field samples.

The first method is based on inferring groups within the ob-
served network. It compares this grouping of nodes (here samples) 
with groups based on factors at stake (here fly phylogeny, fly special-
ization, and fly sampling environment). The second method assesses 
the link between multivariate explanatory variables and network 
structure using redundancy analyses after SVD of the incidence 
matrix. In both methods, the significance of effects can be gauged 
through randomization.

Read counts can be poor proxies of abundances due to dis-
tortions inherited from the PCR process itself, and to representa-
tion biases of bacteria in reference databases (Brooks et al., 2016; 
Pollock et al., 2018). Therefore, it is generally considered safer to 
use presence–absence data. Here mock samples suggested both 
repeatable and moderate biases in abundance estimates from read 
counts. Thus we systematically conducted all community analyses 
on two versions of the sample × bacterial taxa incidence matrix: the 
weighted matrix, containing raw read counts; and presence–absence 
matrices, obtained by applying a threshold after rarefaction of the 
weighted matrix. While presence–absence matrices are generally 
considered to enable coping with uncertainty on relative abun-
dance inference, they give rare taxa more weight into the analysis, 
as compared to weighted matrices. Importantly, because rarefaction 
is a random process, all analyses were applied on a distribution of 
presence–absence matrices, a safety step rarely done in microbiome 
studies.

2.5.1  |  Binary incidence matrices

Presence–absence matrices can be obtained from read count data 
by setting a read count threshold below which a taxon is considered 
absent. Such threshold will only be meaningful if samples are first 
rarefied to a common total read count. However, rarefaction is a 
random process generating different matrices each time it is applied 
(examples are provided in Figure S2, Appendix S2). To account for 
this variability, we conducted community analyses on 1000 binary 

https://community.nanoporetech.com
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matrices. Each binary matrix was obtained by rarefying the read 
count matrix to 3000 reads (the smallest read count was 3250 for 
a C. capitata sample) and applying a threshold of three reads. This 
threshold value was determined by rarefying the mock samples to 
3000 reads as well, and observing that false positives were never 
above three reads. For each observed binary matrix, a search of 
groups was conducted by maximizing network modularity with the 
leading eigenvector algorithm (Newman, 2006) using the R package 
igraph (Csardi & Nepusz, 2006). The membership of each fruit fly 
sample to inferred groups was summed up into a binary adjacency 
matrix (16 samples × 16 samples) with zero if samples belonged to 
two different groups and one if they belonged to the same group. 
The probability that two samples belong to the same group was then 
obtained as the proportion of the 1000 binary matrices leading to 
group these samples together.

2.5.2  |  Null models for binary bipartite networks

Subsequent analyses required producing null distributions of net-
work statistics. Following Massol et al. (2021), we produced a null 
model, called the configuration model, using the “curveball” algo-
rithm (Strona et al., 2014), with functions “simulate” and “nullmodel” 
of R package vegan. In theory, each observed binary matrix is associ-
ated with a specific null distribution, which can only be approached 
by simulating multiple networks. For the sake of computation time, 
in the following, each “curveball”-based test was performed using 
1000 simulated networks for each of 100 observed binary matrices.

2.5.3  |  Sample classification-based tests

We assessed the effect of sampling environment, fly phylogeny, and 
fly specialization on gut bacterial community structure. We first 
proceeded one factor at a time and tested the congruence of sam-
ple classifications obtained through community-search algorithms 
with those associated with external categorical variables, using the 
Normalized Mutual Information Index (NMI) (Astegiano et al., 2017) 
available through the function “compare” in the R package igraph 
(Csardi & Nepusz, 2006). The NMI takes values between zero, in-
dicating no congruence, and one, corresponding to perfect congru-
ence. One NMI value can be obtained for each rarefied matrix, and 
its associated significance can be inferred from 1000 corresponding 
matrices simulated under the null model as explained above. Here, 
mean NMI values were obtained on 1000 rarefied matrices, and the 
mean associated p-value was obtained by comparing 100 rarefied 
matrices with 1000 corresponding simulations each.

To extend the same logic to multiple factors, we used CCA (ter 
Braak, 1986) using the function “cca” in the R package vegan. CCA 
allowed decomposing the variation of the community-based classi-
fication of samples relatively to fly phylogeny, fly specialization and 
sampling environment. CCA can classically test the significance of 
a given “fraction” (e.g., chi-square explained by factors X or Y once 

the effect of Z has been removed) by comparing the obtained F-
statistic with those yielded by randomizations of data rows (Peres-
Neto et al., 2006). Using the null model matrices, we could further 
test whether an effect that is deemed significant based on classical 
row permutations is purely due to heterogeneity in node degrees 
between communities (i.e., not significantly different from edge-
permuted expectation; richness effect) or not (affinity effect). Again, 
the whole CCA was conducted on 100 rarefied matrices, using 1000 
corresponding simulations each.

2.5.4  |  Singular value decomposition-based tests

As a complementary approach, we also modeled the effects of fly 
phylogeny, fly specialization, and sampling environment on network 
structure using SVD coupled with RDA as explained in Massol et al. 
(2021). Any given n × p bipartite network can be approximated as two 
matrices (L and R) with a low number of columns and as many rows 
as nodes (n in L, p in R). Matrices L and R can be analyzed through a 
RDA to gauge how much variation among rows is explained by ex-
ternal variables. The number of vectors to keep after SVD was fixed 
after examining the congruence between communities inferred from 
SVD-approximated networks with those inferred from the original 
network. SVD-approximated networks were obtained by multiply-
ing matrices L and R and setting a threshold for interaction predic-
tion. Congruence between communities was obtained using the 
NMI between module partitions on a number of rarefied matrices.

2.5.5  |  Weighted incidence matrix

A similar approach was applied to the weighted (read counts) inci-
dence matrix, with the following differences. First, with weighted 
matrices, it is recommended to proceed through latent block mod-
els (LBMs) rather than modularity maximization to look for groups of 
nodes in networks (Leger et al., 2015). We therefore inferred groups 
using LBM with the R package sbm (Chiquet et al., 2021). We used a 
Gaussian distribution to model log-transformed read counts. The best 
grouping was selected based on ICL criterion (Integrated Complete-
data Likelihood, a penalized likelihood criterion suited for clustering; 
Biernacki et al., 2000). Second, as no rarefaction step was used, analy-
ses were conducted only once. Third, the null model comprised 10,000 
matrices produced by Gaussian sampling on the outer product of mar-
gins of the log-transformed weighted incidence matrix.

3  |  RESULTS

3.1  |  Descriptive analyses

The full bacterial composition of samples is provided in Figure 1 and 
Table S3 (Appendix S2). Rarefaction curves for each sample are pro-
vided in Figure S3 (Appendix S2). The 46 bacterial genera identified 
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in the global dataset belonged to three phyla: Proteobacteria (97.7%), 
including two classes, eight orders, 15 families, and 36 genera; 
Firmicutes (2.0%), all of class Bacilli and order Lactobacillales, with 
eight genera in six families; and Bacteroidota (0.3%), only represented 
by two genera (Table S2). The genera above 1% in total abundance 
belonged to two classes (Bacilli and Gamma-Proteobacteria), with 
an overrepresentation of the latter (97.1%). Among the 11 detected 
orders, four were above 1% in total abundance (Enterobacterales, 
Lactobacillales, Orbales, and Pseudomonadales), with an overrepre-
sentation of Enterobacterales in all samples (52.5%–99.9%). Only five 
families (Enterobacteriaceae, Enterococcaceae, Morganellaceae, 
Orbaceae, and Pseudomonadaceae) were above 1% in total abun-
dance, with an overrepresentation of Enterobacteriaceae (69.1%) in 
all fly species but N. cyanescens, dominated by the phylogenetically 

close Morganellaceae. Only nine genera were above the 1% thresh-
old (Enterobacter, Klebsiella, Citrobacter, Providencia, Morganella, 
Raoultella, Gilliamella, Pseudomonas, and Enterococcus; Table S3). 
Some bacterial taxa have preferential associations with fly phyloge-
netic groups. The Bacteroidota phylum and the Alpha-Proteobacteria 
class tended to associate with samples of Dacus. The Firmicutes 
phylum associated with Bactrocera and Zeugodacus samples. Some 
bacterial taxa had variable prevalence across sampling environ-
ments as well. Examples of genera with variable prevalence between 
laboratory and field samples include Enterobacter, Morganella, and 
Citrobacter. Finally, for some bacteria, the prevalence seemed de-
termined by both fly phylogeny and sampling environment, such as 
the Orbales class, mainly found in field samples of Bactrocera and 
Zeugodacus.

F I G U R E  1  Relative abundances of bacterial taxa in the 16 samples. Within bars, colored areas indicate the proportion of each bacterial 
taxon in each sample from the weighted incidence matrix (Table S3), and white lines between two colored areas separate different genera. 
(a) Colors correspond to bacterial orders. (b) Colors indicate bacterial genera. Sample names are composed by the initials of fly species 
names (BD, Bactrocera dorsalis; BZ, Bactrocera zonata; CC, Ceratitis capitata; CQ, Ceratitis quilicii; DC, Dacus ciliatus; DD, Dacus demmerezi; 
NC, Neoceratitis cyanescens; and ZC, Zeugodacus cucurbitae) and the mention of sampling environment (Lab, laboratory; Nat, field, full details 
in Table S1)

(a)

(b)
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3.2  |  Diversity partitioning

The total (gamma) diversity of the 16 samples was 8.40 (95% CI 5.72–
10.18) genus equivalents.

The alpha diversity of samples ranged from 1.41 (95% CI 
1.41–1.45, for field C. capitata) to 6.86 (95% CI 6.84–7.11, labora-
tory D.  ciliatus) genus equivalents, with a mean of 4.01 (SE 0.41) 
(Figure 2). Average alpha diversity of laboratory (3.87, SE 0.54) and 
field samples (4.14, SE 0.65) was close. For all Dacinae samples but 
D. ciliatus, the field sample was more diverse than the laboratory 
sample, whereas in Ceratitinae, the laboratory sample was more 
diverse than the field sample (Figure 2). Among laboratory sam-
ples, there was no clear link between alpha diversity and the num-
ber of generations spent by populations in the laboratory prior to 
sampling (Appendix S2, Figure S4). Alpha diversity did not seem 
to particularly correlate with specialization (Figure 2): Diversity 
was not greater in generalists (3.45, SE 0.63) than in specialists of 
Cucurbitaceae and Solanaceae (5.06, SE 0.48 and 3.08, SE 0.31, re-
spectively). In contrast, sample diversity tended to differ between 
phylogenetic groups (Figure 2). Dacinae samples had an average 
of 4.83 (SE 0.47) genus equivalents, while Ceratitinae samples had 
only 2.64 (SE 0.27).

Pairwise beta diversity between samples ranged between 1.03 
(between laboratory B. dorsalis and field C. capitata) and 1.91 (be-
tween laboratory N.  cyanescens and D.  ciliatus). Differentiation 
among bacterial communities was not particularly structured by 
sampling environment, as beta diversity between laboratory and 
field samples was 1.12. In contrast, beta diversity, even though es-
timated on the whole dataset (i.e., with both laboratory and field 
samples), tended to be higher between specialization groups (1.70) 
and between host phylogenetic groups (1.83).

Nonmetric multidimensional scaling attained a stress value of 
0.1932. It tended to group samples by phylogenetic group, rather 
than by sampling environment or fly specialization (Figure 3), a result 
also observed in NMDS ordination of presence–absence matrices 
(Figure S5 in Appendix S2). Dacus samples seemed to distinguish from 
other samples by higher relative abundance of Bacteroidota (genera 
Elizabethkingia and Sphingobacterium), lower relative abundance of 
Firmicutes (eight genera, all of class Bacilli, order Lactobacillales), 
and higher relative abundance of several genera from two orders 
of Alpha-Proteobacteria (Rhizobiales and Burkholderiales). Field 
Bactrocera and Zeugodacus samples tended to preferentially as-
sociate with the Lactobacillales Streptococcus, Lactobacillus, and 
Vagococcus, and among Gamma-Proteobacteria, with three Orbales 

F I G U R E  2  Alpha diversity for each 
sample. Bars indicate Hill numbers of 
order one (exponential of Shannon 
diversity, in genus equivalents). Bar 
colors correspond to fly phylogenetic 
groups, and shading stands for sampling 
environment. Codes at the bottom of each 
bar designate fly specialization groups: 
“Gen” for generalist species, “Cucu” for 
specialists of Cucurbitaceae, and “Sola” 
for the specialist of Solanaceae. Error 
bars represent 95% confidence intervals 
estimated by bootstrapping
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genera (Frischella, Gilliamella, and Orbus) and some Enterobacterales 
genera. Field Ceratitinae mainly differed from others by their asso-
ciation with Enterobacterales genera such as Kosakonia and Pantoea 
and with the Burkholderiales genus Herbaspirillum.

3.3  |  Network analysis

3.3.1  |  Sample groups

Applying the leading eigenvector community-search algorithm to 
the 16 samples over 1000 observed presence–absence matrices 
led to identify 4.203 groups of nodes in the network on average 
(SE = 0.057, Figure 4a and Figure S6 in Appendix S2), with a relatively 

high and significant modularity score (Q  =  0.301, SE  =  0.0005, 
95% PI = 0.262–0.328, left panel of Figure S7, Appendix S2). Over 
a random subset of 100 observed binary matrices, the p-value of 
the observed modularity had a mean of 0.005 (SE  =  0.002, 95% 
PI = 0.000–0.0461, right panel of Figure S7, Appendix S2), suggesting 
that observed matrices were more structured than expected under 
the null model. All binary matrices separated at least two relatively 
stable groups (Figure 4a). The first group tended to split into two 
subgroups: (i) all Dacus samples, whatever their environment, most 
frequently grouped together (72%–95% of observed binary matri-
ces), and (ii) field samples of Ceratininae species (genera Ceratitis 
and Neoceratitis). Field Ceratitis species were associated with 80% 
of observed binary matrices. Neoceratitis was less frequently as-
sociated with them (68% of observed binary matrices). Samples of 

F I G U R E  3  Nonmetric multidimensional scaling (NMDS) ordination of fruit fly gut microbiome communities compared using the Bray–
Curtis similarity coefficient of bacterial genera relative abundances. (a) Sample ordination. Colors represent fly phylogeny. Symbols represent 
sampling environment. (b) Ordination of bacterial genera. Colors represent bacterial orders. Symbols correspond to phyla

(a)

(b)
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both subgroups (Dacus and field Ceratitinae) were associated with 
22.4%–63.6% of observed binary matrices. The second group was 
also composed of two main subgroups, with more variable composi-
tion: (i) Zeugodacus samples and field Bactrocera samples (percent-
ages varying from 51% to 84%), and (ii) all remaining samples, that is, 
laboratory Bactrocera and Ceratitinae samples.

The same community-search algorithm also revealed an aver-
age of 3.45 (SE = 0.02) groups among field samples only and 3.81 
(SE = 0.03) groups among laboratory samples, with congruent com-
positions with the 16-sample grouping (Figure 4b,c).

On the whole weighted incidence matrix, LBM identified three 
groups of samples (Table S4, Figure S8 in Appendix S2, and Figure 5): 
one with field samples of Zeugodacus and Bactrocera species, one 
with all Dacus samples, and the remaining samples (all Ceratitinae 
samples and laboratory samples of Zeugodacus and Bactrocera). On 
field samples only, two groups of samples were found: one with 
Dacinae species (Bactrocera, Dacus, and Zeugodacus) and one with all 
Ceratitinae species (Ceratitis, and Neoceratitis) (Figure S9, Appendix 
S2). On laboratory samples, no group was identified (Figure S9, 
Appendix S2).

F I G U R E  4  Mean clustering of samples 
based on gut microbial groups identified 
from 1000 rarefied presence–absence 
matrices. Color gradient corresponds 
to the percentage of rarefied matrices 
in which two samples are found in the 
same cluster (white = 0%, black = 100%). 
Red contours indicate the most common 
clustering. (a) All 16 samples. (b) Only field 
samples. (c) Only laboratory samples

F I G U R E  5  Groups identified from the full read count matrix. Log-transformed read counts are represented on a continuous gradient from 
white for log10(reads + 1) = 0, to black for log10(reads + 1) = 4.4. Red lines delimit clusters identified under the best latent block model
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3.3.2  |  Congruence of classifications

Distributions of the congruence indices (NMI) are provided in 
Table 1. The communities found in the whole network were most 
congruent with genus-level fly phylogeny (mean p-value  <  0.05). 
Other classifications of samples, that is, based on higher-level fly 
phylogeny (Ceratitinae vs. Dacinae), sampling environment, or 
fly specialization, were not statistically more congruent with gut 
microbiota-based clustering than expected by chance (see Figure 6 
for an illustration).

3.3.3  |  Canonical correspondence analyses

The results of CCA applied to the communities found on both 
presence–absence and read count data confirmed the results found 
by congruence comparisons. Fly phylogeny significantly explained 
gut bacterial communities, irrespective of the removal of the ef-
fects of environment, host specialization, or both (Table 2A,B). On 
presence–absence data, none of the models omitting phylogeny 
or removing the effect of phylogeny was significant (Table 2A). 
Significant models were all doubly significant (with permutation 
tests on rows and edges), indicating both node richness and affinity 
differences between groups. On read count data, the models associ-
ated with the lowest p-values included both phylogeny and sampling 
environment (Table 2B). Most significant effects were not significant 
under edge permutations, indicating an effect mainly driven by dif-
ferences in gut microbiota richness between groups of nodes.

3.3.4  |  Singular value decomposition and 
redundancy analyses

As a first step, the number of vectors required to faithfully approxi-
mate incidence matrices was determined by estimating the congru-
ence between groups obtained from the approximated matrices 

with groups obtained on the full matrix. On presence–absence data, 
congruence tended to increase with the number of vectors retained, 
but the first local maximum occurred between two and four vectors 
retained depending on the rarefied matrix. On read counts, a single 
local maximum was observed at four vectors. Adjusted R2 values of 
individual fractions are given for these various options (Figure 7) and 
are all very congruent. Residual error (i.e., variance not explained by 
fly phylogeny, fly specialization of sampling environment) increased 
steadily with the number of vectors, but remained high (>36%). For 
any given number of vectors, fly phylogeny had the highest adjusted 
R2, followed by the interaction between fly phylogeny and fly spe-
cialization. Sampling environment explained a marginal part of vari-
ance on read counts only.

4  |  DISCUSSION

The gut bacterial microbiota of eight Tephritidae species were de-
scribed using Oxford Nanopore MinION full-length 16S metabarcod-
ing. At taxonomic levels ranging from phylum to family, the abundance 
of bacterial taxa was found congruent with former descriptions ob-
tained with Illumina MiSeq data from other Tephritidae species (for 
a review, see Noman et al., 2020 and Raza et al., 2020), and from 
some of these species in other geographic area (De Cock et al., 2020; 
Hadapad et al., 2016; Malacrinò et al., 2018). Enterobacteriaceae, 
identified as the most prevalent family in nearly all samples, are re-
portedly transferred vertically in some species (Aharon et al., 2013; 
Lauzon et al., 2009; Majunder et al., 2019) and thus are considered 
important for Tephritid development and physiology. At genus 
level, existing published studies exhibit substantial variability in de-
scriptions of abundant bacteria. Here, thanks to the higher resolu-
tion of long-read metabarcoding, 46 genera were found, the most 
abundant of which have also been described in other Tephritidae 
studies, including Enterobacter, Klebsiella, Citrobacter, Providencia, 
Morganella, and Raoultella (for a review, see Noman et al., 2020 and 
Raza et al., 2020). In contrast, some genera mentioned as frequent 

TA B L E  1  Congruence between classifications of samples based on gut bacteria presence–absence data, and potential determinants of 
community structure

Classification of samples NMI with clustering based on gut bacteria p-Value

Factor Modalities Mean SE Percentile interval Mean SE

Phylogeny Dacinae–Ceratitinae 0.169 0.002 0.055–0.302 0.462 0.030

Ceratitis–Neoceratitis–
(Bactrocera + Zeugodacus)–Dacus

0.572 0.003 0.427–0.746 0.044 0.007

Sampling environment Field–laboratory 0.267 0.004 0.056–0.497 0.210 0.026

Specialization Generalists—specialists of Cucurbitaceae—
specialist of Solanaceae

0.304 0.003 0.111–0.466 0.372 0.029

Note: Congruence was estimated by NMI obtained from 1000 observed rarefied matrices. NMI ranges from zero for no congruence, to one for 
perfect congruence. Significance of these NMI values was obtained from 100 comparisons between one observed rarefied matrix and 1000 random 
null model matrices.
Abbreviation: NMI, Normalized Mutual Information Index.
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in other Tephritid studies were only found at low abundances here, 
as for example, Acetobacter, Escherichia, Pectobacterium, and Serratia. 
Whether these discrepancies are due to methodological issues or 
natural variability cannot be fully deciphered here. In the present 
study, only one pooled sample by fly species and fly sampling envi-
ronment was studied, hampering considerations on natural intraspe-
cific variability in gut microbiome composition. For some abundant 
taxa, results of functional studies monitoring fruit fly fitness are 
worth mentioning. For instance, Enterobacter and Klebsiella enhance 
larval nutrition (Noman et al., 2020 and references herein). An addi-
tion of Klebsiella in controlled conditions increases pathogen resist-
ance of C. capitata (Ben-Ami et al., 2010). In the same way, Cheng 
et al. (2017) have described the resistance of Citrobacter to resist 
trichlorfon insecticide in B. dorsalis. Finally, Enterobacter, Raoultella, 
Klebsiella, Citrobacter, and Providencia may also play a role in sex-
ual and host plant attractiveness (Raza et al., 2020 and references 
herein). In contrast, Providencia and Morganella have been described 
as potential pathogens of fruit flies (M'Saad Guerfali et al., 2018; 
Salas et al., 2017), thus able to decrease fruit fly fitness.

The recent accumulation of sequence data from microbial com-
munities has made some authors plead for an extension of commu-
nity analyses beyond the exploration of alpha- and beta-diversity 
patterns in order to detect robust associations between microor-
ganisms and hosts (Barberán et al., 2012; Burns et al., 2016). Here, 
classic diversity analyses were supplemented with network-based 
clustering techniques (Massol et al., 2021) using either the leading 

eigenvector of presence–absence matrices (Csardi & Nepusz, 2006) 
or LBMs for the read count matrix (Chiquet et al., 2021). Such tech-
niques may help cluster bacterial taxa according to their pattern of 
association with host flies and gut samples based on their microbial 
community profiles. Clustering methods may thus provide a natu-
ral way of revisiting the notion of core microbiome. Here, the use 
of various clustering analyses (on all, only laboratory or only field 
samples, and on read count vs. presence–absence data) supported 
at least three congruent groups of samples: all Dacus samples, field 
Bactrocera and Zeugodacus samples, and other samples (Ceratitinae 
and laboratory Bactrocera and Zeugodacus). Within this latter group, 
presence–absence matrices suggested possible subgrouping of 
Ceratitinae vs. the Dacinae Bactrocera and Zeugodacus. Clustering 
of bacteria highlighted a group of bacterial genera accounting 
for more than half of the bacterial prevalence in all samples: the 
Enterobacteriaceae Citrobacter, Enterobacter, and Klebsiella, and the 
Morganellaceae Providencia. This group, also supported by numer-
ous studies of Tephritidae microbiota (Behar, Jurkevitch, et al., 2008; 
Hadapad et al., 2016; Liu et al., 2016; Morrow et al., 2015; Ventura 
et al., 2018; for a review, see Noman et al., 2020 and Raza et al., 
2020), could be considered as a core microbiota at the scale of the 
Tephritidae family. A second group of bacterial genera, common in 
field Bactrocera and Zeugodacus samples, was rare in Dacus samples 
and of variable abundance in other samples. This group included 
Enterobacterales (Kluyveria, Morganella, Serratia), two Orbales 
(Gilliamella and Orbus), and all the Lactobacillales (represented 

F I G U R E  6  Alluvial plot showing how the 16 samples group according to fly specialization, fly phylogeny, fly sampling environment, and 
gut bacterial composition. Fly specialization counts three groups of samples: the specialists of Solanaceae (the two Neoceratitis cyanescens 
samples), the generalists (the eight Bactrocera and Ceratitis samples), and specialists of Cucurbitaceae (Dacus and Zeugodacus samples). The 
factor “Phylogeny” groups samples by fly genus: N, D, C, and B+Z stand for Neoceratitis, Dacus, Ceratitis, and Bactrocera or Zeugodacus, 
respectively. Environment separates laboratory samples (Lab) from field samples (Nat). The last grouping factor (Gut bacteria) is the mean 
clustering of samples based on gut microbial subcommunities identified from 1000 rarefied presence–absence matrices (the four red squares 
in Figure 4a). Colors correspond to fly phylogeny
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by Enterococcus, Lactococcus, and Vagococcus). Associations be-
tween Lactococcus and B. zonata have already been described (De 
Cock et al., 2020). The third group of bacteria was preferentially 
associated with Dacus samples: the Alpha-Proteobacteria genera 
Rhizobium and Ochrobactrum, the Bacteroidia genera Elizabethkingia 
and Sphingobacterium, and among Gamma-Proteobacteria, genera 
belonging to diverse orders (the Burkholderiales Comamonas and 
Delftia, the Pseudomonadales Acinetobacter and Pseudomonas, the 
Xanthomonadales Stenotrophomonas, and the Enterobacterales 
Raoultella). Other bacteria fell in a fourth cluster, with no obvious 
association profile, likely due to their low abundances. These non-
random associations of bacterial taxa with fly samples were further 
confirmed by NMDS. Interestingly, some preferential associations 
occurred at higher taxonomic scales. For instance, Bacteroidota and 
Alpha-Proteobacteria were mainly associated with Dacus samples. In 
contrast, Firmicutes were completely absent from Dacus samples, as 
well as from field Ceratitis samples. Many preferential associations 
involved different families of Gamma-Proteobacteria and different 
genera within the Enterobacteriaceae family, raising the need for a 
finer taxonomic resolution within this key bacterial family. Because 
of the genuine sympatry of the eight species, the highlighted clusters 

could not be considered as determined by geographic differentiation 
in microbial pools, and therefore offer candidate taxa for subsequent 
functional analyses.

The different methods used to evaluate the relative importance 
of fly phylogeny, fly specialization, and fly sampling environment 
converged to the conclusion that fly phylogeny was the main factor 
explaining microbial profile. In contrast, host ecology (i.e., fly spe-
cialization and sampling environment) did not imprint significantly 
gut microbial communities. For instance, samples of the species 
Z.  cucurbitae, a specialist of Cucurbitaceae host plants, systemati-
cally grouped with the Bactrocera samples, which correspond to 
generalist species, and not with Dacus samples, which share the 
same host range but are more distant phylogenetically. Samples 
of both Ceratitis generalist species tended to group with the other 
Ceratitinae species, N. cyanescens, a specialist of Solanaceae, rather 
than with Bactrocera samples, which share this generalist niche. 
The methodological robustness of our results was achieved by the 
observation of both read count (which tend to give more weight to 
very abundant species) and of presence–absence (which are more 
affected by rare taxa) data. Our results, suggesting that microbial 
profiles are affected by host phylogeny rather than host ecology, 

TA B L E  2  Canonical correspondence analyses (CCA) between groups based on gut microbiota and sampling environment (samp env), fly 
specialization (fly spe), and fly phylogeny (fly phy)

Formulas

(A) Presence–absence data (B) Read counts

p-Value 
(row perm.)

p-Value 
(edge perm.)

Chi2 F
p-Value 
(row perm.)

p-Value 
(edge perm.)Mean SD Mean SD

samp env 0.163 0.204 — — NS 0.250 2.000 0.269 — NS

samp env + Cond (fly spe) 0.118 0.163 — — NS 0.250 2.678 0.119 — NS

samp env + Cond (fly phylo) 0.071 0.127 — — NS 0.250 7.200 0.044 0.027 **

samp env + Cond (fly spe) + Cond (fly phy) 0.070 0.127 — — NS 0.250 6.600 0.041 0.031 **

fly spe 0.255 0.218 — — NS 0.630 3.216 0.049 0.389 *

fly spe + Cond (samp env) 0.202 0.186 — — NS 0.630 3.653 0.023 0.395 *

fly spe + Cond (fly phy) 0.410 0.241 — — NS 0.000 0.000 NA — NS

Cond (samp env) + fly spe + Cond (fly phy) 0.334 0.252 — — NS 0.000 0.000 NA — NS

fly phy 0.018 0.031 0.020 0.042 ** 1.333 10.000 0.000 0.283 *

fly phy + Cond (samp env) 0.010 0.026 0.014 0.035 ** 1.333 14.933 0.000 0.113 *

fly phy + Cond (fly spe) 0.024 0.033 0.031 0.057 ** 0.704 6.861 0.007 0.486 *

Cond (samp env) + Cond (fly spe) + fly phy 0.015 0.027 0.021 0.048 ** 0.704 10.133 0.001 0.248 *

samp env + fly spe 0.096 0.127 — — NS 0.880 3.664 0.017 0.211 *

samp env + fly phy 0.008 0.022 0.010 0.032 ** 1.583 14.250 0.000 0.067 *

fly spe + fly phy 0.035 0.055 0.036 0.068 ** 1.333 7.500 0.002 0.471 *

samp env + fly spe + fly phy 0.014 0.037 0.016 0.049 ** 1.583 11.400 0.000 0.244 *

Note: Significance of individual fractions was tested by row permutations or edge permutations. Significance based on row permutations is evaluated 
based on the corresponding p-value, and estimated as the probability that a randomized version of the explained contingency table, once removed 
the effect of conditioning variables, obtains a F-statistic equal or larger to the one obtained with real data. Significance based on row permutations 
is indicated with a star. NS stands for not significant. Significance based on edge permutations is only computed for effects significant with the first 
test. It is obtained as the probability that a randomized version of the contingency table, keeping node degrees constant, obtains a F-statistic equal or 
larger to the one obtained with real data. Double significance is indicated with two stars. (A) Mean-p-values associated with any given combination of 
factors (with SD) obtained from 100 rarefied presence–absence matrices, with 1000 simulated null matrices each. (B) Chi-square, and F and p-values 
associated with any given combination of factors obtained for the read count matrix.
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are thus unsupportive of the hypothesis formulated by Zhao et al. 
(2016), according to which the Tephritidae gut community member-
ship would be controlled by host genetics, while bacterial abundance 
would be driven by nongenetic factors.

Phylogenetic determinism of gut microbial communities has 
been observed in a diversity of taxonomic groups, including nema-
todes, numerous insect clades, fish, mammals, and hominids (Moran 
et al., 2019). Such a pattern may indicate a shared, faithful history 
between hosts and their microbes (Brooks et al., 2016). This pro-
cess, sometimes referred to as “phylosymbiosis,” has been observed 
in Nasonia wasps, and is prone to co-adaptations between hosts and 
microbes (Brucker & Bordenstein, 2012). Alternatively, this same 
pattern may very well be driven by physiological, morphological, 
ecological, or behavioral similarities in closely related hosts that lead 
to similar environmental filtering of microbial pools (Moran & Sloan, 
2015). In Tephritidae species of Reunion Island, host ecology likely 
determines social interactions. Bactrocera and Ceratitis species on 
the one hand, and Dacus and Zeugodacus species on the other hand, 
are often found developing in the same fruits (Facon et al., 2021). 
We do not find such clustering when analyzing their gut microbiota, 
which suggests that such social interactions unlikely contribute to 
the structure of gut microbiota in the studied species.

The present results do not conform to the hypothesis that gen-
eralist species should have more diverse gut microbial communi-
ties (Deb et al., 2019), as confirmed in scavengers and omnivores 
(Shukla et al., 2016; Yadav et al., 2015; Yun et al., 2014). The gen-
eralist Ceratitis species had lowest gut microbial diversity (around 
two genus equivalents). Their relative specialist of Solanaceae, 
N. cyanescens, had slightly higher microbial diversity, noticeably due 
to a relatively high abundance of Morganellaceae. The specialists 
of Cucurbitaceae (Dacus and Zeugodacus species) had the highest 

microbial diversity (around five genus equivalents), whereas their 
relative generalists of genera Bactrocera had less diverse gut content 
(around four genus equivalents). The observation that fruit fly spe-
cialization does not significantly imprint gut microbial communities 
is rather a surprise (but see De Cock et al., 2020, for a first men-
tion). Plants present numerous nutritional and defensive challenges 
to phytophagous insects. A growing body of research emphasizes 
the potential contribution of symbiotic microbes to phytophagous 
diets (Feldhaar, 2011; Felton & Tumlinson, 2008; Oliver et al., 2010). 
Nevertheless, the accumulated evidence is mixed and requires fur-
ther sampling and functional analyses of the fruit fly gut microbiota. 
Gut microbiota respond more to host phylogeny rather than to host 
ecology in aphids (McLean et al., 2019) and in lycaenid butterflies 
(Whitaker et al., 2016). The reverse has been observed in both fruit-
feeding and mycophagous drosophilid species (Adair et al., 2020), 
ants (Anderson et al., 2012), and beetles (Blankenchip et al., 2018).

In interaction with phylogeny, the environment of sampling 
(here field vs. laboratory) had a detectable moderate effect on 
gut communities, in terms of both diversity and composition. In 
most Dacinae species (all but D.  ciliatus, the most recent labora-
tory population), laboratory populations had less diverse gut mi-
crobiota as compared to natural populations. This observation has 
been made repeatedly in Tephritidae, such as B.  tryoni (Morrow 
et al., 2015), B. oleae (Ras et al., 2017), and a range of arthropod 
species (Belda et al., 2011; Ng et al., 2018; Pérez-Cobas et al., 
2015; Staubach et al., 2013; Xiang et al., 2006). In clear contrast 
with these observations, we found that Ceratitinae laboratory 
populations were more diverse than field ones. Besides, except 
for Dacus samples, laboratory and field populations tended to dif-
fer strongly in terms of composition. In the present study, labo-
ratory populations almost missed the class of Orbales (as already 

F I G U R E  7  Venn diagrams representing the partition of variation (redundancy analysis) within the reduced matrices obtained by singular 
value decomposition of incidence matrices. Given values are non-negative adjusted R2 of individual fractions. Negative adjusted R2 are 
omitted for clarity. Bold numbers were obtained on the read count matrix approximated with four retained vectors. Nonbold numbers 
were obtained from presence–absence matrices approximated with two (upper black numbers), three (middle dark gray numbers), and 
four (bottom light gray numbers) vectors. These latter values are means from 100 presence–absence matrices. All standard errors ranged 
between 0.002 and 0.004
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observed by Martinson et al., 2017), several Enterobacterales and 
Lactobacillales. Laboratory samples were also less dominated by 
the genus Klebsiella. Three genera were only present in the labora-
tory (Aeromonas, Fructobacillus, and Pluralibacter), and some genera 
very rare in nature had important relative abundance in the labo-
ratory, such as the Yersiniaceae Serratia and the Morganellaceae 
Morganella. Some differences between laboratory and field pop-
ulations contrasted with former observations, for example, de-
scribing a dominance of Providencia or Acinetobacter in laboratory 
populations (Ben-Yosef et al., 2015; Kounatidis et al., 2009).

The laboratory populations are occasionally supplemented 
with field individuals so that this differentiation cannot be ex-
plained by pure drift. This suggests a genuine recomposition of 
gut microbiota in laboratory populations in response to local con-
ditions (missing nutriments, antifungal treatment…). Interestingly, 
while laboratory populations did share very similar conditions, the 
constraint of phylogeny on microbial communities was still much 
apparent. Such a result has implications for fruit fly management 
strategies based on sterile insect techniques, as well as for ecolog-
ical and evolutionary studies using laboratory populations. Many 
studies have mentioned a loss of competitiveness of laboratory 
flies vs. field individuals. It is possible that part of this lesser fit-
ness is due to gut microbiota modifications, that it could be atten-
uated by working of microbiota restoration, and that the intensity 
of this effect is species-specific.

Overall, gut microbiota were strongly imprinted by fly phylogeny, 
but could be subject to important restructuring in the face of new 
environmental conditions. As a consequence, the observed lack of 
correlation between gut microbiota and both fly specialization and 
fly sampling environment is a surprise and needs to be addressed. 
It is possible that most gut microbes have functions other than 
fruit digestion (Ben-Ami et al., 2010; Cheng et al., 2017; Hadapad 
et al., 2016) or that there is functional redundancy; that is, microbial 
functions can be ensured by different taxa (Moya & Ferrer, 2016). 
Importantly only adults were studied here. In fruit flies, adults do 
not eat much, and only larvae feed on fruit. Yet, adult gut bacte-
ria are the ones with a chance to be vertically transmitted. It could 
then be advantageous for flies that adults keep and transmit bac-
teria beneficial to larvae, including bacteria associated with plant 
use. Alternatively, it is possible that some useful gut bacteria are 
transitorily acquired by larvae in the fruit they grow in, before being 
eliminated at metamorphosis. Such ability to select and breed use-
ful bacteria in the environment would confer an adaptive plastic 
response to host plants. These bacteria, which would likely differ 
across sampling environments, would not be detectable in studies 
focused on adults as here. And studying the contribution of gut mi-
crobiota to fly host range would require studying larvae as well. In 
Tephritidae, comparisons between larval and adult gut content are 
too rare and divergent for any conclusion to be drawn as to whether 
or not larvae acquire essential bacteria in the fruit, which would be 
released upon metamorphosis. Evidence from comparisons between 
larvae and fruits does not point toward this hypothesis. In B. tryoni, 
larval gut microbiota were more diverse than those of fruits and not 

influenced by fruit (Majunder et al., 2019). But in other flies, such as 
drosophilid flies, host ecology seems to have detectable impact on 
larval gut microbiota (Chandler et al., 2011). Another possible fac-
tor affecting gut microbiota composition and transmission might be 
the effect of larval diet on adult immunity (Fellous & Lazzaro, 2010). 
Adult immunity is likely the final gate filtering microbial taxa inher-
ited by their progeny, and thus factors affecting immunity, including 
diet and other environmental conditions, could explain phylosym-
biosis (or the lack thereof). Besides, the interactions between the 
host and a given microbe could be highly dependent on the other 
microbes constituting the microbiota. In such cases, a high rate of 
vertical transmission for a given microbe could greatly influence the 
rest of the microbiota. Dissecting the contribution of niche-based 
processes in the assembly of the gut microbiota is therefore still an 
important challenge for future research using both field samples and 
gnotobiotic animals in controlled conditions.
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