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Abstract

This paper focuses on the modelling of occupant behaviour in the case of a non-residential
mixed-mode building on the tropical island of La Réunion. For such areas and types of buil-
dings, occupants can operate passive solutions to achieve comfort while energy-consuming
ones can offer alternatives during the hottest months. Yet, compared to other climatic zones,
specific knowledge on occupant comfort and behaviour is limited, making the work of engi-
neers difficult during the design phase. In this work, occupants’ operations on hygrothermal
comfort controls, such as windows and fans, were first measured and analysed. Secondly,
these behaviours were modelled using two deterministic methods based on machine learning
techniques and a probabilistic graphical model. A model was also implemented to estimate
the number of people, using the power demand of the electrical outlets. The estimation
ability of the behavioural models was evaluated and led to F1 scores greater than 0.7. A
two-classifier model was proposed to estimate the level of ceiling fan use. This combined
model slightly improves the F1 scores by more that 2 %, which demonstrates the necessity
of taking into account the links between the different controls.

Keywords: Tropical climate, bioclimatic mixed-mode buildings, occupant behaviour
modelling, machine learning techniques, operable openings, ceiling fans, thermal comfort

1. Introduction

1.1. Context
Buildings in tropical climates are facing a significant increase in energy needs. In particu-

lar, high energy-consuming systems such as cooling systems account for a significant portion
of the building energy consumption [1]. Reducing this usage is therefore an important chal-5

lenge. This study takes place in La Réunion, a French tropical island situated in the Indian
Ocean. Classified as category A by Köppen - Geiger[2], the climatic conditions of La Réunion
in summer (the wettest period) have a strong impact on the occupants’ comfort due to high
temperature and humidity. However, on this island, the trade winds, which are common
regular winds blowing from east to west in the intertropical areas, temper the hottest days.10

These specific climatic conditions foster the development of mixed-mode buildings.
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1.2. Definition of mixed-mode buildings
According to Brager et al. [3], a well-designed mixed-mode building first optimises the

facades design using as much as possible passive solutions to minimize cooling loads. Then
the conception promotes the use of natural ventilation, whenever it is feasible, to maximize15

comfort while reducing needs of energy-consuming systems. And finally, this type of buil-
dings integrates the use of energy-consuming systems like air-conditioning when and where
it is ultimately necessary. Mixed-mode buildings are classified into subcategories according
to the operation strategy. The study of Kim et al.[4] revealed that occupants of a mixed-
mode building are more tolerant or adapted to warm indoor thermal conditions when it20

is operated with natural ventilation, rather than air conditioning, in particular by adjus-
ting their clothing. Mixed-mode buildings are becoming increasingly popular as they offer
a more energy efficient alternative than conventional mechanical solutions. However, when
indoor temperatures and humidity levels are rising, it can be more difficult to maintain
comfortable conditions using only passive solutions, and occupants are more likely to add25

energy-consuming cooling systems. This is the principle of adaptive thermal comfort addres-
sed by Nicol et al. [5] : “If a change occurs such as to produce discomfort, people react in
ways, which tend to restore their comfort”.

Controls, like windows or fans [6], are equipment available to occupants to achieve com-
fort, in particular hygrothermal comfort. Occupants both adapt to the building and behave30

to adapt the building to their individual needs[7][8] .
Within mixed-mode buildings, the usual hygrothermal controls available are :

— Passive systems such as numerous operable openings on opposite facades. In addition
to providing a solution for air quality and thermal load removal, when airflow rates are
sufficient, they offer the occupants the possibility to have natural cross-ventilation that35

decreases their perceived temperature and therefore the level of comfort, without using
any energy. Openings are the key elements of a naturally ventilated design. According
to a review done by Roetzel, A. et al. [9], the type of window depends on the climate.
For instance, in warm climates, the effective size of the openings and their operability
may be more important factors than the ones used to protect the building from outdoor40

conditions ;
— Low energy-consuming systems such as variable speed ceiling fans. Ceiling fans also

have the task of reducing the occupants’ perceived temperature, and thus increasing
the comfort temperature, providing forced convective cooling by increasing the air
movement. Indraganti, M et al. [10] found that air speeds of about 1.0 m/s provided by45

ceiling fans push the comfort temperature up by about 2.7 °C in naturally ventilated
offices in the warm and humid climate of India. The term low energy-consuming is
justified by their ability to increase the level of thermal comfort with very low energy
requirements, unlike high energy-consuming systems such as air conditioning. Energy
is only needed for the motor to turn the blades and thus to increase the air speed. A50

ceiling fan at full power needs only 50-75 W on average. They play a key role and are
systematically made available to occupants in new efficient buildings in La Réunion ;
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— High energy-consuming systems such as air conditioning. These systems offer an alter-
native during the hottest months but at the cost of a much higher energy consumption.

In non-residential mixed-mode buildings in tropical climates, the switch between these55

different operation strategies can be determined either manually by the occupants, or auto-
matically by a building management system. It is a common practice to give occupants the
opportunity to manage their own comfort by being active on the systems.

1.3. Occupant behaviour modelling : state of the art
The scientific community is already convinced that occupant behaviour has a significant60

impact on the energy performance of buildings [11]. Among other elements (such as the
climatic conditions, the building envelope and the efficiency of the systems) Liu, Y et al
[12] and Yu, Z. et al [13] listed occupant behaviour as one of the main element that affects
energy consumption. Occupants have an impact by their presence and also by their actions on
passive (i.e. windows), low energy-consuming (i.e. ceiling fans) and high energy-consuming65

systems (i.e. air conditioning) of the building. Presence is obviously a precondition for action
to take place. In addition to the level of energy consumption, the designers must also take into
account occupant behaviour and their needs, in order to make the right choices by designing
the building itself [14]. For example, in the case of a naturally ventilated building, they have
to determine the position of openings, their size and their type. If these systems are not70

ultimately accepted and used, the building does not operate efficiently. Another example,
reported in [15], highlights that spatial layout and distance to the system are among the
main factors influencing the opportunities for action. This study shows that occupants of
open spaces are more “passive” regarding windows and thermostats, due to a greater distance
with the control system, and also because they feel less free to perform actions when several75

people are present. Ignoring occupant behaviour can therefore be a potential cause of error
in the design phase, when engineers have to estimate the future energy consumption of the
building. The operational phase is often neglected and basic assumptions are made about
how the building will operate, thus leading to significant gaps between prediction and actual
performance. The work of the International Energy Agency (IEA), Annex 66 and more80

specifically Annex 79 : Occupant-Centric Building Design and Operation[16], has reinforced
the knowledge in this area by emphasising the need to focus on practical implementation of
behavioural models and their design consequences.

Many models have been developed to address this issue, but few are available for tropical
climates. Indeed, the recent state of the art done by Carlucci, et al [17] stresses that few85

models have been implemented in non-air-conditioned buildings and especially in tropical
climates. Among these few studies, energy demand prediction models have been developed.
For instance, Yu et al. [18] trained a decision tree on data measured in residential buildings
situated in the humid subtropical climate of Japan, but there are very limited feedbacks
on behaviours and on how occupants actually operate on buildings controls in these condi-90

tions. In [19], the responsibility of the internal heat gains and occupant behaviour on the
air-conditioning was revealed as the main source of the discrepancy between the models
employed (i.e. artificial neural network and white-box via EnergyPlus) and the actual values
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of energy demand in a university building located in Sao Paulo. Bavaresco, et al. [20] inves-
tigated the influence of occupant behaviour towards internal blinds on the energy efficiency95

of an office located in the south of Brazil, using surveys. The information collected was
directly used to identify the internal loads of a building modeled with EnergyPlus. From
surveys and environmental measurements, Indraganti, et al. [21] also emphasised the role of
fans as controls to offset discomfort in both naturally ventilated and air conditioned office
buildings in the hot and humid climate of India. A Logistic regression model was used to100

predict the probability of fan use according to different indoor environmental conditions.
The use of ceiling fans and their combination with the use of windows is poorly studied.

Indeed, in the review done by Stazi et al. [22] about the driving factors and the contextual
events influencing occupant behaviour in buildings, only 4 papers dealt with fan use. In
addition, only one took place in the tropical climate. In the work of Rijal et al. [23], a105

logistic regression model estimates the level of use of windows and fans and also evaluates
the change in the indoor environment caused by these actions. The buildings studied in this
work are naturally ventilated offices located in different sites, including a hot and humid
climate in Pakistan. A method for implementing the prediction algorithms in the ESP-r
dynamic thermal simulation software was also depicted.110

1.4. Problem statement and objectives of the study
Even if methods for predicting occupant behaviour already exist in the literature, we

believe that the implementation of specific equipment like windows and fans in tropical
mixed-mode buildings leads to specific occupant behaviors that is significantly different
from temperate climates. To the best of our knowledge, these specific behaviors are not115

fully described and modelled in the literature. As a consequence, it is necessary to develop
new specific models. A report of the Australian James Cook University [24] predicts that
almost 50% of the world’s population will be living in the tropics by 2050. It is therefore
important to boost the level of knowledge in these areas, where models are lacking and where
a significant increase in the population and construction rate is expected in the coming years.120

Considering the different issues highlighted above, the following questions raise up :
— How the occupants of mixed-mode buildings in a tropical climate use the different

available controls ?
— How do they combine these different controls ?
This works aims at providing new tools to understand and to accurately model the occu-125

pant behaviour of mixed-mode buildings in tropical climates, where controls on ceiling fans
and windows are available. More specifically, the developed models will estimate the use of
the passive (kind of windows called louvers) and low energy-consuming (fans) controls by
taking into-account the expected level of hygrothermal comfort of the occupants. Further-
more, as the operation of the considered controls are dependent, we also propose to link130

some of the developed models to represent the corresponding relationships.
To do this, we first monitored occupants’ actions in a mixed mode building located in

a tropical climate. Behavioural data on window opening, ceiling fan use and environmental
variables such as indoor air temperature, indoor relative humidity and meteorological data
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were collected over a one-year period. Occupancy was not directly recorded. But as mentio-135

ned above, building’s occupancy is a prerequisite key factor. Thus, a method for estimating
the number of occupants, based on a regression decision tree algorithm and on the consump-
tion data of the electrical outlets, is proposed. To model occupant behaviour, three types of
machine learning techniques have been implemented : decision trees (DT), random forests
(RF), and bayesian networks (BN). The development of these models is part of an overall140

desire and need to improve the assumptions made in the building design phase.
This paper is organised as follows. Section 2 describes the case study and the monito-

ring experimental set-up. Section 3 outlines the methodology and the different modelling
techniques. The results of the study are discussed in section 4. Finally, section 5 gives some
concluding remarks .145

2. Case study

2.1. Description of the building
The case study is a design office of 310 m², occupying the ground floor of a residential

building, located in La Réunion. Its 30 employees are architects, building engineers, land-
scape architects or urban planners, all using bioclimatic design principles in their projects,150

i.e. with an environmental awareness. This bioclimatic non-residential building is architec-
turally representative of the current construction trends. It is also easy to exploit since
metering systems are already partially installed. Theses features justified the selection of
this building as a case study.

The office is composed of two floors divided into several areas : open-spaces, a meeting155

room, a computer room and two individual offices. A floorplan of the case study is provi-
ded in Appendix A. Even if the building is located in an urban site, it is surrounded by
vegetation, which helps to improve the hygrothermal, acoustic and aeraulic comfort condi-
tions. The building was delivered in 2008, when there was no building regulations adapted
to the tropical climate of Réunion Island. During the design phase the engineers followed160

the principles of natural ventilation and solar protection (see Figure 1). Figure 2 shows an
interior view of the building under study. In the office areas, the temperature is regulated
by natural crossing airflows. The latter are made possible trough the use of many manually
adjustable and full-height openings, called louvers. The top and bottom parts are adjustable
independently. Ceiling fans can also help to reduce the temperature felt by occupants, on the165

hottest days, when air temperatures are high and when there isn’t enough wind. The compu-
ter room is air-conditioned thanks to a split system. Finally, the meeting room is equipped
with louvers allowing natural ventilation, a ceiling fan and it is also air-conditioned by a
split system. According to Brager et al. [3], we will refer to a zoned mixed-mode building
because natural ventilation and mechanical cooling operate in different areas of the building.170

Occupants are active and have manual control over the systems. Note that in this study, we
focused on occupant behaviour in the open space area.

2.2. Data collection
Environmental and occupant action data were monitored for approximately 1 year, from

November 2019 to March 2021. The environmental data are the indoor air temperature175

5



Figure 1. Overview of the North facade of the case study : green patio with large solar protections

Figure 2. View of the louvers and ceiling fans in
open-spaces

Figure 3. Opened window (called louvers) with
magnetic contact

and humidity measured by 9 sensors TESTO 174H. The outdoor temperature, humidity,
wind and solar radiation were recorded using a weather station. Point measurements of
the operative temperature (including radiation effects from walls) were made at 3 different
positions inside the building, and compared with the indoor air temperature. The data
related to the occupants’ operation are the average power demand for the ceiling fans and180

for the electrical outlets, recorded every 10 minutes by energy meters. The status of the
louvers was given by 37 magnetic contacts (see Figure 3) providing binary signals (0 =
the louver is open, 1 = the louver is closed). For these kind of sensors, the data flow is
asynchronous since new information only appears when there is a new action. An overview
of the monitoring equipment is provided in Table 1.185

The data recorded by the different sensors located inside the building show that the
whole office area behaves as a single thermal zone. In fact, in this zone, the temperature
and humidity differences measured were within the accuracy range of the sensors and were
therefore ignored. The individual offices, with probably less thermal loads, were excluded
from the data because their thermal conditions were significantly different. As a consequence,190

in this work, we used the average indoor air temperature and humidity of the remaining 8
sensors located in the open space area.

The number of occupants was not directly recorded. However, occupancy is a prerequisite
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Table 1. Monitoring equipment inside the building

Equipment Denomination Number
Air temperature and hygrometry sensor Testo 174H 9

Magnetic contact NODON SDO-2-1-05 37
Multichannel concentrator + meters modules OMEGAWATT 1

Data acquisition system JEEDOM Pro v2 1

for action to take place and it is important to estimate occupancy prior building occupant
behaviour models. The classical methods employed to infer the occupants’ presence, such as195

CO2 sensors, occupancy detectors like passive infrared sensors (PIR)[25], acoustic sensors,
RFID tags on ID cards, sonar sensors or video cameras [26], were not suitable for an open and
naturally ventilated building where important air change rates are observed. In addition, the
information obtained by some of these sensors, such as video cameras, sometimes requires
heavy post-processing. The employees’ time schedules can also provide knowledge, but we200

chose not to record them, because they can vary considerably from one individual to another
and from one week to another. For example, in the present context, the specific work of
building engineers (who are mobile workers) did not allow for the setting of regular time
schedules. To estimate this data, we therefore developed a new model based on the total
power demand of the electrical outlets, detailed in section 3.205

3. Methodology

3.1. Data analysis
Prior to the modelling of occupant behavior, a statistical analysis of the data was carried

out. The first objective was to understand the evolution of occupant behaviour regarding
the opening of windows and the use of ceiling fans over a full year. The second one was to210

determine the proportion of control use as a function of the environmental variables in order
to highlight thresholds for triggering controls.

3.2. Overall methodology
Let us recall that our main objective is to model occupant behaviour in mixed mode

buildings in tropical climates. Specifically, we are interested in modelling behaviours rela-215

ted to the level of ceiling fans and window opening. To this end, three machine learning
classification techniques were implemented. In order to complete the measured data, the
“Electrical outlets power” was used as an input feature of a regression decision tree model to
estimate the number of people. All the measured data and the estimated number of people
were scaled to an hourly time step in order to build the final behavioural models. Figure220

4 provides a general overview of the methodology employed. Note that the modelling com-
ponents (i.e. occupancy and occupant behaviour models) of the proposed methodology are
based on machine learning techniques namely Decision Tree (DT), Random Forests (RF)
and Bayesian Networks (BN). These techniques are depicted at length in Appendix B.
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Figure 4. Overall methodology. In this scheme, DT stands for Decision Tree, RF for Random Forest and
BN for Bayesian Networks

3.3. Occupancy modelling225

Zhao et al. [27] proposed to estimate the occupancy of an open-space, based on the in-
dividual behaviours of 15 employees, using 3 techniques namely C4.5 decision tree, locally
weighted naïve Bayes, and support vector machine. The data collected over 3 months were
the electric consumption of the office appliances for each occupant, like the computers, mo-
nitors, desk lamps and other office equipment. In addition to these individual consumption230

data, pedometers were used as field data to train and validate the individual presence models.
By combining this individual presence and absence information, the group occupancy sche-
dule was generated for the open space. This study showed the correlation between presence
and consumption of office equipment but at the expense of many expensive and intrusive sen-
sors. Furthermore, it was noted that the results may be biased and dependent on occupant235

stringency, since occupants may forget to remove their pedometers outside the office.
In this work, we developed a simple occupancy model that does not require specific

sensors (like pedometers) to estimate the number of people. Instead, we assumed that the
overall occupancy can be inferred from the total power demand of the electrical outlets,
which mainly include the computers of each person. The latter is directly measured by the240

energy meters. To build the training database, the first step was to count manually, every
hour, the number of people present at their workstation, during 1 week (5 working days and
2 weekend days). The selected week was considered to be representative of a typical working
week. Secondly, we extracted the total power demand of the electrical outlets recorded during
this week. Then, we approximated the number of people present every hour, with a regression245

decision tree (DT) model, which is depicted in Appendix B. The time of the day and the
total power demand of the electrical outlets were used as input features. Figure 5 describes
the implementation of the model. 55% of the data were taken for training and 5-fold cross-
validation, 45% for the test phase. Finally, the results of the model were extended to the
whole year, in order to obtain a realistic estimation of the number of people over the year.250

The output of this first regression decision tree was used as input for all subsequent
behaviour models.

3.4. Behavioural modelling : Data preparation
The measured data and the estimated occupancy were pre-processed to get an homoge-

neous hourly time step for every variable. The choice of an hourly time step was motivated255
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Figure 5. Implementation of Decision Tree (DT) regressor for the prediction of the number of people

by the fact that no significant variation in the number of occupant actions was detected
below the 1h granularity.

Different input features were tested to build the behavioural models. Only the most
relevant ones are listed in Table 2.

Table 2. Summary of the data used to create the models

Input variable Type Class / Range
Indoor air temperature [°C] Numerical [19.95 : 31.51]

Indoor humidity [%] Numerical [46.50 : 93.14]
Outdoor wind speed [m/s] Numerical [0 : 15.90]

Level of wind Categorical Low, Medium, High
(Low for wind speed ≤ 4.7 m/s and High wind speed ≥ 9 m/s)

Level of comfort Categorical Discomfort, Comfort at 0 m/s, Comfort at 0.5 m/s, Comfort at 1 m/s
Number of people [u] Numerical [0 : 23]

Occupancy Categorical Absent, Medium, High
(Absent for Occupancy ≤ 2 and High for Occupancy ≥ 19)

Number of open louvers [u] Numerical [0 : 43]
Ceiling fans Power [W] Numerical [0 : 750]

Output variable Type Class / Range

Level of louver opening Categorical
Low, Medium, High

(Low for a louver opening rate ≤ 16% and
High for a louver opening rate ≥ 47 %)

Level of ceiling fans Categorical
Low, Medium, High

(Low for ceiling fans power ≤ 17% of the installed power
and High for ceiling fans power ≥ 45% of the installed power)

Occupant behaviours were modelled using the classification techniques presented in Ap-260

pendix B, namely classification decision trees, random forest and Bayesian networks. The
models were constructed using either numerical or categorical variables, or both. Only ca-
tegorical data were used in the case of BN. Regarding the outputs of the behavioral models
i.e. level of fans and louvers opening, classes were created using the unsupervised clustering
K-means algorithm, to reduce the number of possible values for each variable. A detailed265

description of this algorithm is provided in [28]. The goal is to group similar data points
together from data without output labels. Furthermore, we believe that estimating beha-
viours in terms of classes and thus intervals of values is more realistic than discrete numerical
outputs. 3 categories for each variable were defined, for a trade-off between modelling perfor-
mance and physical consistency in the interpretation of the classes. For example, with only270

2 categories for the variable “Level of ceiling fans”, the difference between the minimum and
maximum bounds of the “High” level was several hundred watts. This does not permit to
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accurately ascertain the impact of this control. Table 2 summarises the variables and their
possible values. For example, the occupancy variable in categorical form is called “Occupan-
cy” and can take one of the following 3 levels : Absent, Medium or High while occupancy in275

discrete numerical form is called “Number of people” and ranges between 0 and 23. In the
same way, the “Level of louver opening” and the “level of ceiling fans” were classified as :
“Low”, “Medium” or “High”, based respectively on their numerical forms called “Number of
open louvers” and “Ceiling fans Power”.

For classification decision tree and random forest, thermal comfort data were directly280

expressed using the continuous variables of indoor air temperature and humidity. For baye-
sian network, the class form of thermal comfort level was defined based on the comfort levels
inspired by the Givoni diagram, a tool widely used in design offices in tropical climates. This
graphical display identifies comfort zones based on air temperature and relative humidity
[29]. A comfort level of 0.5 m/s means that an air speed of 0.5 m/s is required to be in a285

comfortable situation. It should be noted that an air speed of 1 m/s can be achieved with the
help of ceiling fans. For the comfort zone at 0 m/s, no wind is necessary to be comfortable
The reader is refered to Appendix C for more details regarding the Givoni diagram.

Finally, it must be stressed that, in our case study, we are dealing with a dataset composed
of multiple imbalanced classes, i. e. the number of instances available for the different classes290

is unequal. For example, the “Low” class for the level of ceiling fans contains 7620 data points
while the “Medium” class contains 528 data points.

Original data of this study are available at Mendeley Data (doi : 10.17632/cyh3z6dnr3.1).

3.5. Behavioural modelling : Implementation
We implemented the following classification models :295

1) Estimation of the level of louver opening deduced from indoor air temperature, indoor
humidity and the number of people. The impact of the external wind speed on these
results was also analysed (See Figure 6) ;

2) Estimation of the level of ceiling fan deduced from the same inputs, i.e. indoor air
temperature, indoor humidity and the number of people (See Figure 7) ;300

Figure 6. Model 1 : Classifier description for the
estimation of the level of louver opening. Note
that the classifier can be either a decision tree
(DT), a random forest (RF) or a bayesian net-
work (BN).

Figure 7. Model 2 : Classifier description for the
estimation of the level of ceiling fan. Note that
the classifier can be either a decision tree (DT), a
random forest (RF) or a bayesian network (BN).

It is common to assume that occupants will use the openings first before turning on
the fans. This is evidenced by the data collected in the present study (see Section 4) which
demonstrate that the controls are linked. As a consequence, in this work, we designed models
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that link the louver openings and the fan operations. Therefore, two additional variants to
estimate the level of ceiling fan, incorporating information on the level of louver opening in305

addition to the previous inputs, were assessed :

3) Estimation of the level of ceiling fan deduced from measured level of louver opening
(see Figure 8) . This is an “ideal” case where field data on the opening of louvers is
available.

Figure 8. Model 3 : Classifier description for the estimation of the level of ceiling fan with information
about louver opening from measurements. Note that the classifier can be either a decision tree (DT), a
random forest (RF) or a bayesian network (BN).

4) Estimation of the level of ceiling fan adding estimated level of louver opening as input,310

i.e. linking with model 1. This model could be used when field data on louver opening
are not available. Figure 9 explains the principle of linking classifiers. The structure
of this model, i.e. the link between the opening of louvers and then the use of ceiling
fans, is consistent with the results obtained in section 4 showing that an occupant first
acts on the louvers and then on the ceiling fans in order to satisfy his comfort needs.315

Figure 9. Model 4 : Combination of 2 classifiers to estimate the level of ceiling fan with estimated level of
louver opening as input. Note that the classifiers can be either decision trees (DT), random forests (RF) or
bayesian networks (BN).

Regarding the building and the assessment of the models, 70% of the data were used
respectively for the training phase and 30% for the testing phase. It must be noted that we
also employed a 10-fold cross-validation in order to optimize the models’ hyper-parameters.

Finally, following the framework proposed by [30] in their review of machine learning in
building load prediction, we propose a synthetic description of our models in Appendix D.320

3.6. Performance evaluation
The performance of the occupancy model by regression decision tree was evaluated using

the classical determination coefficient (R²) and the Root Mean Square Error (RMSE) [31].
R² must be maximised while RMSE must be minimised. RMSE is described as follow :

RMSE =

√∑N
i=1 ( Estimated i − Actual i)

2

N
(1)

11



where Actual is the value taken by variable to predict, Estimated the value estimated by325

the model and N the number of observations.
To assess the performance of classifiers, the accuracy metric is the most employed indi-

cator [32]. However, as mentioned in section 3.4, we are dealing with imbalanced datasets
and some metrics are more appropriate than the accuracy metric. For instance, the F1 score
is used in [33] to compare the performance of several classification models on an imbalanced330

multiclass dataset. Hence, in this work, the F1 score, also known as balanced F-score or F-
measure, is used to assess the performance of the different classifiers used to model occupant
behaviours .

The F1 score is a harmonic mean combining model precision and recall into a single
number (see Equation 4). Precision and Recall are calculated from the confusion matrix (see335

Figure 10) for each class, according to equations 2 and 3. Finally, the F1 scores of every
classes are averaged and combined into a single value, the overall F1 score. More precisely,
it should be noted that, to deal with the imbalance in the data, the average F1 scores were
weighted by the number of true instances of each class.

Figure 10. Confusion matrix related to a specific class

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 · precision · recall

precision + recall
(4)

The F1 score metric should be maximised, i.e. an F1-score reaches its best value at 1340

and its worst score at 0.

4. Results

4.1. Data analysis
Temporal analysis. The operation of controls fluctuates depending on the period of the year.
In summer 1, their use is more frequent than in winter. Figure 11 shows the evolution of the345

1. Note that summer in La Reunion runs from November to April.
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level of ceiling fans along the year. The hours of use of the fans are regular, between 9 :00
am and 8 :00 pm, i.e. during the occupancy hours. The highest levels of fans are found
between December and April, the warmest months. In 2020, the fans are less employed in
March-April than in 2021 at the same period. This situation may relate to the COVID-19
pandemic that happened during these two particular years. Indeed, a total lockdown (red350

zone on Figure 11 ) took place for a few days in March 2020, with no employee able to access
the offices. During the two periods of partial lockdown (orange zone on Figure 11) came the
implementation of teleworking and shift work. During this phase, employees were present
but in a reduced number. Even if the number of occupants was lower during these periods,
there were still actions on the controls of hygrothermal comfort. Indeed, occupation is the355

starting point of an action on louvers or fans that is why our models are built to take into
account a decrease in occupancy. However, it can be assumed that for a “typical” year the
period of high fan use would extend over the whole period from December to April with
higher levels in February-March. Similarly, louvers are employed in high proportions during
the month of March. Between April and May, it is a medium use and between June and360

August it is a low use.

Figure 11. Evolution of power levels for ceiling fans. The y-axis gives the hourly evolution of the fan use
while the x-axis provides around 1.5 year of daily operation.

Time periods of high levels of use for both controls are those of hygrothermal discomfort
as well.

Statistics and thresholds. Figure 12 shows the ratio of opened windows and fan use during
occupancy hours, for each level of comfort given by the Givoni chart. The distribution of the365

hygrothermal data is plotted in the Givoni diagram (see Appendix C). For both controls,
the proportion of use increases as the comfort decreases, which is in line with the principle
of adaptive thermal comfort mentioned in the introduction [5]. Windows are employed alone
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in the comfort zone with no wind (0 m/s). The fans start to be employed when an air speed
of 0.5 m/s is required to be comfortable.370

Figure 13 specifically focuses on the proportion of control use as a function of the indoor
air temperature only. As shown by this figure, when the interior temperature is 25°C, in
average 25% of the louvers are opened and all the fans are off. The occupants switch on the
fans once this threshold of 25°C is overtaken, while the louvers are already opened. Therefore,
users operate first on louvers then on fans. A proportion of open louvers of 0.5 is obtained375

for an average indoor air temperature equals to 27.6°C, while for the ceiling fan control, this
proportion is reached at 31.5°C. It should be noted that our data showed that the effect
of wall radiation was not significant for our case study due to the large solar shading on
the facades. The indoor air temperature is therefore considered equivalent to the average
radiant temperature. In the study by Kumar, S. et al [34], the window opening proportion380

of 0.5 was obtained for 28.5°C. In addition, the maximum proportions they found were 75%
for window opening and 81% for fan use. In our case study, the occupants operate more on
the openings since up to 88% are opened at 32°C. However, the maximum rate of use of the
fans did not exceed 62% over the year of measurement. The operation of controls increases
as comfort decreases, but they are never used at their maximum.385

This suggests either the controls are not easily accessible or available, or there are too
many systems available compared to the occupants’ needs to achieve thermal comfort.

Figure 12. Controls use ratio according to the level of comfort

Figure 14 reveals a strong correlation between the operation of the controls during hours
of occupancy and the indoor air temperature. Indeed linear regressions give coefficients of
determination r² = 0.7 for ceiling fans power and r² = 0.82 for the number of open louvers.390

According to our measurements, the relationship between external wind speed and the use
of the controls studied does not appear to be linear.

The first control threshold is 22°C for louver opening. The following one is above 25 °C for
turning on the ceiling fans. This is consistent with our model construction 3 and 4 where the
estimation of the level of ceiling fans is linked to the estimation of the louver opening level.395

When the temperature exceeds 26°C, the minimum power demand of the ceiling fans is 200W.
This power demand increases in accordance with the indoor air temperature augmentation.
This means that either the speed of the selected fans increases, or the number of fans switched
on increases, or both at the same time. The maximum power demand is observed between
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Figure 13. Proportion of the controls use according to indoor air temperature

28°C and 30°C. On the other hand, an average of less than 10 louvers are opened below 26°C.400

Above 26°C, the number of open louvers is more than 20. Whatever the comfort level, some
louvers always remain closed since we never reach the maximum number of louvers present
in the building. An analysis of the spatial distribution of the louvers showed that the ones
situated furthest from the workstations were the least opened. In the study of Rijal et al.
[23], the threshold at which controls were activated is an indoor temperature of 20°C. In our405

study, the higher thresholds suggest that the building is better designed towards ventilation,
the controls more efficient and the occupants may be more adapted to higher temperatures.
Note also that the “discomfort” and “comfort at 1m/s” zones overlap for the most important
uses of controls, which questions the Temperature/Relative Humidity bounds defined for
these two zones.410

4.2. Occupancy modelling
The regression DT implemented to estimate the occupancy has a fairly good determi-

nation coefficient R² = 0.937 and an Root Mean Square Error (RMSE) = 2.176 people,
highlighting the link between the occupancy, the time of the day and the electrical outlets
power demand. Figure 15 shows the resulting tree, for the first 4 levels of depth, that high-415

lights the structure of the model. The final leaves are the possible values that occupancy
can take, i.e. the number of people. The general rule is that a higher power demand means
a higher number of people. Above a power demand of 1279.5 W, i.e. on the right side of the
tree, the occupancy can range from 10 to 26 people, except during the lunch break when no
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Figure 14. Relationships between occupant behaviour, i.e ceiling fan use and windows opening, and the
indoor air temperature, indoor humidity and outdoor wind speed

one is present. Indeed, on this branch, we can see a specific rule which takes into account420

the decrease in the occupation between 12 :00 pm and 1 :30 pm. Below a power demand
of 1279.5 W, i.e. on the left side of the tree, the occupancy does not exceed 5 persons. A
minimum power demand of 990 W is also observed, even during the night. This lower bound
of the power demand refers to a fixed consumption of equipment always plugged in, such
as the water cooler or refrigerator, as well as the standby power of appliances such as the425

printer. Some computers are also not switched off during night. In addition, arrival and
departure times seem to be well taken into account since specific rules exist at 7 :00 am and
4 :30 pm, which are key times for some employees.

We built a first DT that only took the average energy demand of electrical outlets and
the hour as unique input features. Unfortunately, as some people leave their computers on430

during lunch time, this early model was unable to take into account the drop in occupancy
at noon. Incorporating the time of day into the features enables more realistic estimations
during the lunch break, when the number of people decreases. A weakness of this model is
the small amount of data taken for the validation phase, and it would be desirable to collect
a new set of real occupancy data over a new week to confirm the results.435
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Figure 15. Regression Decision tree obtained for occupancy estimation for the first 4 levels of depth

4.3. Behaviour modelling
Figure 16 represents the overall F1 scores obtained for the estimation of the level of louver

opening (model 1). The hatched bars are the results obtained when the outdoor wind speed
is included as an input feature. As shown by Figure 16, overall the RF classifier performs
slightly better than the two other models. In addition, the inclusion of the external wind440

speed therefore provides additional information and slightly improves the performance of
the DT and RF model for the level of window opening.

Figure 17 compares the ceiling fan level estimation with models 2 (light-coloured bars),
3 (bright-coloured bars) and 4 (gridded bars). Again, when no information on louver is used,
the RF classifier slightly outperforms the two other classifiers, although the others perform445

also well. First, it must be noted that the addition of louver data as input (i.e. models 3
and 4) improves the modelling results for the estimation of the level of ceiling fans. This
confirms the link between these two controls. Second, and more interestingly, the integration
of louver opening estimated by model 1 (i.e. model 4) does not significantly degrades the
performances of the models. Model 4 can therefore be used when no window opening data450

is available.
This section only presents the overall results of the weighted average F1 score. The

detailed scores obtained by each class can be found in Appendix E.

4.4. Discussion
The analysis of a full year of monitoring data suggests that dynamic thermal simula-455

tions in the design phase should take into account the dependency between the indoor air
temperature, the surface of opened windows and the level of fans. Indeed, above 22°C, an
increasing air change rate due to window opening should be defined and, in the same way,
above 25°C the electrical consumption of ceiling fans should rise. The thermal simulation
models should also assume seasonal calendars for the operation of the systems and not just460

a single one for the whole year.
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Figure 16. F1 score for the estimation of the
level of louver opening (model 1)

Figure 17. F1 scores for estimating the level of cei-
ling fans without louver data (model 2) VS integrating
louver data : optimal case from measured data (model
3) VS combined case from estimated louver data (mo-
del 4)

Occupancy data is difficult to capture in a mixed-mode building composed mostly of
open spaces and using natural ventilation most of the time. To overcome this difficulty, a
new occupancy model was implemented using the power demand of the electrical outlets and
the hour of the day. This non-intrusive method provides a reliable estimate of the number465

of people in the building. Collecting occupancy data for an additional week would complete
and confirm the current validation phase. In addition, the occupancy model proposed in
this work estimates the number of people based on the energy consumption of the building,
and is therefore valid for this specific case study. In order to generalize the approach, a
possible solution would be to use dimensionless ratios such as “electrical outlets/floor area”470

and “percentage of people”.
In this work, three modelling techniques were investigated to estimate the level of win-

dow (called louvers) opening and ceiling fan use. In both cases, the Random Forest classifier
obtained the highest F1 scores. However, each of the other models also provides useful infor-
mation for designers. Decision trees have the advantage of providing readable classification475

rules by highlighting the most important key variables. Bayesian networks can generate
additional information by calculating the probabilities of class membership.

Different input features data sets were tested in the modelling process. Better results were
obtained by using directly the numerical values of indoor air temperature and of humidity
instead of using the classes derived from the Givoni comfort zones. This result highlights the480

discrepancies between this comfort model and the comfort actually perceived by occupants.
An indoor condition corresponding to a comfort zone different from “comfort without wind”
does not necessarily mean that the controls are employed. On the other hand, they can be
operated outside the comfort zone of 1 m/s. Similarly, the addition of outdoor wind speed
as an input feature also slightly improved the F1 score for the estimation of the level of485

window opening. However, for an application on other case studies, it may be more suitable
to choose a model without this feature. Indeed, this data is not always reliable and available
on-site.

As demonstrated in this work, the estimation of ceiling fan use was improved by adding
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information on window opening as an input feature, which demonstrates that these two490

controls are linked. A model combining 2 classifiers was therefore proposed, which provides
an answer to Carlucci’s statement [17] about the need to model “combined actions providing a
wider view of human actions and their impact in terms of energy consumption and occupants’
comfort”. Hence, since the design phase of the building, these two systems should not be
considered separately.495

The lockdown and teleworking periods occurred during the summer, when the controls
are the most solicited. The temperature and humidity data for these periods indicate that
the “Medium” and “High” levels classes for the use of controls should be better populated
under normal conditions of operation. This particular distribution of the data has two effect
on the results. First, the models were trained with a higher proportion of low occupancy500

data than would be expected for a normal year. Consequently, they probably perform better
under these low occupancy conditions. However, even if the lockdown periods had been
removed from the data set, the training samples corresponding to medium and high level
of behaviours, would have been the same and the models should perform identically for
these conditions. Second, for a distribution of the data corresponding to a normal year, the505

differences in terms of F1 scores between the different classes should be significantly reduced.
Oversampling or undersampling techniques could also be applied to reduce these differences.
However, we use the F1 score to compare the performance of the different models developed
in this work and the particular distribution of the classes resulting on the lockdown period
has no effect on the results of the comparison.510

5. Conclusion and outlooks

The main objective of this work was to model occupant behaviour in mixed mode buil-
dings in tropical climates. The behaviors were related to the use of ceiling fans and window
opening. A mixed mode office building, representative of the current construction trend,
located in the tropical climate of La Réunion was therefore monitored during one year. Data515

related to hygrothermal comfort and occupant behaviour towards ceiling fans and window
opening were collected. A new occupancy model based on a regression decision tree was first
implemented to estimate the number of people. In a second step, the occupant behaviour
was modelled using classification decision trees, random forests and bayesian networks.

A statistical analysis allowed to determine thresholds for the operation of the controls.520

Above 22°C, the rate of indoor air exchange increases due to the increase in the level of
window opening, and then, above 25°C, the power consumption of the ceiling fans increases.
The estimation ability of the models was evaluated and random forests led to the best F1
scores. However, the other methods also demonstrated their capacity to represent occupant
behaviour reliably and provided useful information. A combined model of two classifiers525

was proposed to estimate the level of ceiling fans. The relationship between occupancy
and behaviours, comfort level and behaviours, and between the controls themselves was
highlighted. More importantly, it was shown that the use of windows and ceiling fans are
linked and should not be considered separately.
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This study is a new contribution to the understanding and consideration of occupant530

behaviour in tropical climates. The solution of mixed mode buildings, which take advantage
of natural ventilation and reduce the use of air conditioning, is an interesting option in
tropical climates, or even in other climates which are likely to become warmer in the coming
years. The methodology proposed in this work for estimating, firstly, occupancy in a non-
intrusive way, and secondly, the level of use of the controls, provides a framework that can be535

replicated to collect more data in other buildings. We believe that the amount of field data
measured for different building configurations and occupant types needs to be increased in
order to help understand behaviours in tropical climates.

Further work will consist in implementing these models with a dynamic thermal simula-
tion tool like EnergyPlus, in order to improve hypotheses in the design phase.540

We hope these models will permit reducing the gap between predicted and actual energy
consumption in buildings, while enlightening designers on the potential of passive or low
energy-consuming solutions, towards an efficient architecture where occupants are placed at
the centre of the thinking.
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Appendices
A. Floorplan of the case study
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B. Machine learning techniques selected in this study640

Decision Trees. The first technique we employed is the supervised algorithm of decision
trees (DT). Decision trees are part of the data-driven deterministic methods and are able
to predict either a numerical value (regression tree, as applied for the estimation of the
number of people) or a class (classification tree, as applied for the behavioural models). A
tree is a decision aid for a plausible value of the target variable Y (the label) we want to645

explain, when the values of the input variables (the features) are known. A tree is read
by going down from the root to one of the final leaves where the final decisions (i.e. the
possible values of Y) are located, passing through intermediate nodes. It is built iteratively.
At each step, or “node”, the data is separated into two subsets, following an “If, Then” rule
applied to an input variable. For each step, these input features are chosen to provide the650

best possible separation of Y values. The objective is to obtain the optimal sequences of
rules to explain the different possible values of Y[35]. For a new dataset, the resulting tree
will lead to a decision, following the path obtained when applying the rules. In this way, we
can understand the relationships between the variables in an explicit way [18]. Moreover,
decision trees require relatively little effort for data preparation, which represents a great655

advantage during the design phase. Several algorithms have been developed over the years
for decision trees. We used the decision tree algorithm of the scikit-learn library available
for Python, which is based on an optimised version of the CART algorithm [36].

Random Forests. Trees can are easily prone to overfitting i.e. over complex trees will not
perform well on unseen data. Trees can also become unstable to small variations in the660

data. To avoid this situation, we can control the model complexity by using mechanisms
such as pruning the tree, setting the minimum number of samples required at a leaf node or
setting the maximum depth of the tree. Another solution is the use of derived models such
as random forests (RF), also belonging to the data-driven deterministic models. RF will fit
a number of decision tree classifiers to various boostrapped subsamples of the data set and665

take the average (for a numerical variable) or the majority answer (for categorical variables)
to improve the performance of the model during the testing phase. Several decision trees will
therefore be trained. The strengths (and weaknesses) of each tree are aggregated. However,
contrary to DT, the results obtained by a RF are not easily readable. In this work, we used
the random forest classifier algorithm from the scikit-learn library of Python [37].670

Bayesian Networks. The third type of technique is the Bayesian network (BN) which belongs
to the probabilistic graphical methods. A BN contains conditional probabilities which is
the main difference with deterministic trees. The principle of this method is to calculate
a probability for the target variable, given specific observations. Like a decision tree, a
BN provides an explicit and intuitive graphical representation. In addition, a BN provides675

additional information included in the probability distributions. The figure below represents
the structure of the BN implemented in this work to estimate the level of louver opening.
The nodes represent the random variables associated with a conditional probability table.
The arcs that connect the nodes are oriented and indicate not only a simple correlation, but
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also the cause/effect relationship between 2 variables [38]. To build the BN models, we used680

an algorithm from the pgmpy python library [39].

C. Hygrothermal data on the Givoni chart

8.6% of the hygrothermal data are in the discomfort zone during occupancy hours, 48.5%
are in the zone where no wind is needed to be comfortable (0 m/s), while 42.9% are in the
zone where an air speed of 0.5 or 1 m/s is necessary to achieve comfort. These air speeds685

can be reached by natural ventilation (use of louvers) or by the use of ceiling fans.

D. Identity card of the models implemented in this work

This identity card framework was proposed by Zhang et al. [30].
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General information

Building type Office building
Building numbers Single building
Type to predict level of ceiling fans / level of louver opening

Application scenario Building parameter design
Forecasting horizon Hours

Data description

Source of data Real Building Automation System / independent sensors
Sampling interval of data Hours

Data cleaning method Timestamp formatting, Data cleaning, Data resolution processing, Scaling
Training/validation/testing data 70 % training + 10-fold cross validation dataset 30 % testing dataset

Nb of data 8640 points from March 2020 to February 2021

Feature engineering Feature extraction From measurements, Occupancy estimated by regression decision tree
Final features used Nb of people/level of louver opening/Indoor temperature & humidity

Algorithm Main algorithm structure Decision trees / Random Forest / Bayesian network
Other support techniques Clustering technique : kmeans

Performance evaluation Error metrics Weighted average F1 score

E. Detailed results

Model 1 Model 2 Model 3 Model 4

Class
BN
+

wind

RF
+

wind

DT
+

wind
DT RF BN DT RF BN DT RF BN

Low 0.76 0.83 0.81 0.96 0.96 0.95 0.97 0.97 0.97 0.96 0.96 0.95
Medium 0.68 0.82 0.80 0.19 0.16 0.00 0.26 0.19 0.04 0.20 0.16 0.00
High 0.56 0.74 0.75 0.80 0.83 0.62 0.86 0.87 0.88 0.82 0.84 0.73
Weighted avg 0.70 0.82 0.80 0.90 0.91 0.87 0.92 0.92 0.90 0.91 0.91 0.88

The imbalanced nature of the dataset can be seen in the estimation performance of the690

fan use. The class Medium scored lower than the classes “High” and “low”. Indeed, this
class has the lowest amount of data, thus penalizing the training phase. As a result, the
overall weighted average F1 score depends significantly on the score obtained for the class
“low” since it is the most populated in terms of number of data. However, the most energy
intensive class is the class “High”, which had relatively good F1 scores, up to 0.9 even for695

the BN, making all the tested models suitable.
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