
HAL Id: hal-03426458
https://hal.univ-reunion.fr/hal-03426458

Preprint submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperplanes in matroids ans the Axiom of Choice
Marianne Morillon

To cite this version:

Marianne Morillon. Hyperplanes in matroids ans the Axiom of Choice. 2021. �hal-03426458�

https://hal.univ-reunion.fr/hal-03426458
https://hal.archives-ouvertes.fr


HYPERPLANES IN MATROIDS AND THE AXIOM OF CHOICE

MARIANNE MORILLON

Abstract. We show that in set-theory without the axiom of choice ZF, the statement
sH: �Every proper closed subset of a �nitary matroid is the intersection of hyperplanes
including it� implies ACfin, the axiom of choice for (nonempty) �nite sets. We also provide
an equivalent of the statement ACfin in terms of �graphic� matroids. Several open questions
stay open in ZF, for example: does sH imply the Axiom of Choice?

1. Introduction

A choice function for a family (Ai)i∈I of nonempty sets is a family (xi)i∈I such that for
every i ∈ I, xi ∈ Ai. The Axiom of Choice (AC) is the following statement: �Every family
of nonempty sets has a choice function.� We work in set theory without the axiom of choice
ZF. We shall also consider the more general set theory ZFA (see [8, p. 44-45]), a modi�ed
version of set theory, in which �atoms� (i.e. nonempty objects which are not sets) are allowed.
Consider the statement VB (Vector Basis): �Every vector space has a basis� (see [7, Note 75
p. 271]). It is known that in ZFA, VB implies the Multiple Choice axiomMC ([7, form 67]),
and that in ZF, MC is equivalent to AC, but it is an open question to know whether VB
imply AC in ZFA. In this paper, we discuss various statements about ��nitary matroids�
(which can been seen as generalisations of vector spaces, see Section 2.3.3) and their links
with AC. We show that the statement �Every �nitary matroid has a basis� is equivalent
to AC in ZFA (see Proposition 5). We then consider the three following consequences of
AC involving hyperplanes in �nitary matroids, possibly satisfying the �binary elimination
property� (see Section 3.2):

sH: �Every proper �at in a �nitary matroid is the intersection of hyperplanes including
it.�

sHbep: �Every proper �at in a �nitary matroid with the binary elimination property is the
intersection of hyperplanes including it.�

H: �Every nonempty �nitary matroid has an hyperplane.�
It is known that AC⇒ sH and of course sH⇒ H and sH⇒ sHbep. In this paper, we shall
prove that sHbep implies the following axiom of choice for �nite sets:
ACfin: (form 62 of [7]) Every nonempty family of �nite nonempty sets has a choice function.
It is known (see [7]) that ACfin does not imply AC and that ACfin is not provable in ZF.
We do not know whether H implies sH or sHbep or ACfin nor do we know whether H or
sH implies AC (see Figure 2 at the end of the paper). For every natural number k ≥ 2 we
consider the following consequence of ACfin:
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ACk: �For every nonempty family (Ai)i∈I of �nite sets with k-elements,∏
i∈I Ai is nonempty.�

We also denote by ∀kACk the following statement, which is form 61 of [7]:

For every natural number k ≥ 2, for every nonempty family (Ai)i∈I of �nite
sets with k-elements,

∏
i∈I Ai is nonempty.

In ZF, for every natural number n ≥ 2, AC ⇒ ACfin ⇒ ∀kACk ⇒ ACn, and it is known
(see [7]) that in ZF, none of these implications is reversible, and that ACn is not provable.
Using the natural structure of �nitary matroid over a vector space (see Example 1), H

implies the following statement D: �Given a commutative �eld K and a non null vector space
E over K, there exists a non null linear form f : E → K�. For every commutative �eld
K, we denote by DK the previous statement restricted to vector spaces over K: �For every
non null K-vector space E, the algebraic dual of E is non null.� In [10, Corollary 2], we
proved that for every prime number p, the statement DFp (where Fp is the �nite �eld Z/pZ)
implies the statement C(p): �For every family (Ai)i∈I of nonempty �nite sets, there exists
a family (Bi)i∈I such that for every i ∈ I, Bi ⊆ Ai and p does not divide the cardinal of
Bi�. Denoting by ∀pC(p) the statement ∀p ∈ P C(p) where P is the set of prime natural
numbers, then ∀pC(p) implies (and thus is equivalent to) the statement ∀kACk (see [10,
Remarks 3 and 4]). It follows that sH ⇒ H ⇒ D ⇒ ∀kACk. However, we do not know
whether D implies H. Notice that in ZFA, D does not imply ACfin, since the statement
∀pMC(p) (see [7, form 218]) implies the Ingleton statement I (the ultrametric counterpart
of the Hahn-Banach statement, see [11]) which implies D, but ∀pMC(p) does not imply
ACfin (see Figure 2 at the end of the paper).
The paper is organized as follows. In Section 2 we review in set theory ZF some de�nitions

and results about operators on �nite or in�nite sets in the sense of Higgs ([3]) and Klee ([9]):
�nitary operators, matroidal operators with particular emphasis on circuits and hyperplanes.
We introduce the three notions of �circuit-accessibility�, �hyperplane-accessibility� and �sym-
metric circuits�. In Section 3, we formulate an equivalent of AC is terms of hyperplanes in
a certain (non �nitary) matroid, and we prove that the statement sH restricted to certain
binary matroids implies ACfin. Finally, in the last section, we prove that ACfin is equiva-
lent to various statements about �graphic� matroids. We end with several questions about
�nitary matroids and AC.

2. Operators and the Axiom of choice

2.1. Operators on a set.

2.1.1. Operators and their circuits. An operator on a set X (see [9, p. 138]) is a mapping
φ : P(X)→ P(X) which is isotonic (for every subsets A, B of X, (A ⊆ B ⇒ φ(A) ⊆ φ(B)))
and enlarging (for every subset A of X, A ⊆ φ(A)). Given an operator φ on a set X, a subset
D of X is said to be φ-dependent if there exists x ∈ D such that x ∈ φ(D\{x}). A subset I
of X is said to be φ-independent if I is not φ-dependent i.e. if for every x ∈ I, x /∈ φ(I\{x}).
Minimal φ-dependent subsets of X are called φ-circuits. A loop of the operator φ on X is
an element x of X such that {x} is a φ-circuit i.e. {x} is φ-dependent i.e. x ∈ φ(∅). Two
distinct elements x, y of X are parallel if {x, y} is a φ-circuit.

Remark 1. Given an operator φ on a set X:
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(1) the collection Iφ of φ-independent subsets of X contains ∅ and is initial: for all
subsets A, B of X, if A ⊆ B and B ∈ Iφ, then A ∈ Iφ;

(2) the collection Dφ of φ-dependent subsets of X does not contain ∅ and is �nal: for
every subsets A, B of X, if A ⊆ B and A ∈ Dφ, then B ∈ Dφ.

(3) The collection Cφ of φ-circuits is an antichain of nonempty sets: no member of Cφ
includes another one.

2.1.2. Finitary operators. A operator φ on X is said to be �nitary if for every subset Y of X
and every x ∈ φ(Y ), there exists a �nite subset F of Y satisfying x ∈ φ(F ). If the operator
φ is �nitary, then every φ-dependent set includes a (�nite) φ-circuit.

De�nition 1. Given two �nitary operators φ1 and φ2 on setsX1 andX2 and given a bijection
f : X1 → X2, the following statements are equivalent:

(1) for every subset I of X1, I is φ1-independent if and only if f [I] is φ2-independent
(2) for every subset C of X1, C is a φ1-circuit if and only if f [C] is a φ2-circuit.

Every bijection f : X1 → X2 satisfying one of the two previous statements is called an
isomorphism of �nitary operators.

2.1.3. Hyperplanes of an operator. A subset A of X is said to be φ-spanning if φ(A) = X.
Subsets of X which are both φ-independent and φ-spanning are called bases of the operator
φ (or φ-bases). Maximal non-spanning subsets of X are called φ-hyperplanes. Subsets of X
which are �xed points of φ are called �ats or closed subsets of the operator φ.

Remark 2. Given an operator φ on a set X, for every nonempty family (Fi)i∈I of φ-closed
subsets of X, ∩i∈IFi is φ-closed, and thus, the poset Lφ of φ-closed subsets of X endowed
with the inclusion relation is a complete lattice (but it is not an induced sub-lattice of the
lattice (P(X),⊆) in general).

2.2. Minors of an operator.

2.2.1. Suboperators. Given an operator φ on a set X, and a subset Y of X, the mapping
φY : P(Y ) → P(Y ) such that for every subset Z of Y , φY (Z) = φ(Z) ∩ Y is an operator
on Y , called the suboperator induced by φ on Y , or restriction operator of φ to Y (see [13,
p. 263]). If the operator φ on X is �nitary, then the suboperator φY is also �nitary.

Remark 3. Given an operator φ on a set X, and a subset Y of X, then:

(1) The φY -dependent subsets of Y are the φ-dependent sets that are included in Y ;
(2) The φY -independent subsets of Y are the φ-independent sets that are included in Y .
(3) The φY -circuits are the φ-circuits that are included in Y .

2.2.2. Quotient operators. Given an operator φ on a setX, and a subset Y ofX, the mapping
φY : P(Y )→ P(Y ) associating to every subset A of Y the set Y ∩φ(A∪(X\Y )) is an operator
on Y . The operator φY on Y is called the quotient operator φY , or the contraction operator
φY (see [13, p. 263]). If the operator φ on X is �nitary, then the operator φY is also �nitary.

Proposition 1. Given an operator φ on a set X and a proper �at F of φ, then:
(1) φ-�ats including F are subsets F ∪Z where Z is a �at of the quotient operator φX\F

on X\F .
(2) φ-hyperplanes including F are subsets F ∪Z where Z is a hyperplane of the operator

φX\F .
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Proof. (1) Given a subset Z of X\F , the following sentences are equivalent: F ∪Z is a φ-�at;
φ(F ∪ Z) ⊆ F ∪ Z; φ(F ∪ Z)\F ⊆ Z; φX\F (Z) ⊆ Z; Z is a φX\F -�at subset of X\F .
(2) Given a subset Z of X\F , the following sentences are equivalent: F ∪Z is a φ-hyperplane;
(F ∪Z) is a proper φ-�at but for every x ∈ X\(F ∪Z), φ((F ∪Z)∪{x}) = X; Z is a proper
φX\F -�at but for every x ∈ X\(F ∪ Z), φX\F (Z ∪ {x}) = X\F ; the subset Z of X\F is a
φX\F -hyperplane. �

Remark 4. Proposition 1 implies that given a class O of operators which is closed by quotient
operators, if every φ ∈ O has an hyperplane, then for every φ ∈ O, every proper �at of φ is
included in a φ-hyperplane.

De�nition 2. Given an operator φ on a set X, a minor of an operator φ on a set X is an
operator ψ on a subset Y of X such that there exists a sequence of operators (φi)0≤i≤n such
that φ0 = φ, φn = ψ and for each i ∈ {1, . . . , n}, φi is a suboperator or a quotient operator
of φi−1.

2.3. Finitary matroidal operators.

2.3.1. Idempotency properties. A closure operator on X is an operator φ on X which is
idempotent (see [9, p. 140]): for every subset A of X, φ(φ(A)) = φ(A).
If the operator φ on X is idempotent, then for every subset Y of X, the operators φY and

φY are also idempotent.

Proposition 2. Given an idempotent operator φ on a set X, a subset H of X is a φ-
hyperplane i� H is a maximal proper φ-closed subset of X.

Proof. Given an operator φ on a set X, for every φ-hyperplane H, then either φ(H) = H,
and thus H is a maximal proper φ-closed subset of X, or φ(H) is spanning (else H (
φ(H) ⊆ φ(φ(H)) ( X and H would not be a φ-hyperplane since φ(H) would be a non
spanning subset of X strictly including H). It follows that if φ is idempotent, then every
φ-hyperplane is a maximal proper φ-closed subset of X (else, φ(H) would be spanning i.e.
X = φ(φ(H)) = φ(H) by idempotency, and thus H would be spanning). Reciprocally, if H
is a maximal proper φ-closed subset of X, then for every x ∈ X\H, φ(H ∪ {x}) is closed
and thus φ(H ∪ {x}) = X whence H is a φ-hyperplane. �

De�nition 3. An operator φ on X is circuit-accessible if for every subset Y of X and every
x ∈ φ(Y )\Y , there exists a φ-circuit C such that x ∈ C ⊆ Y ∪ {x}.

Remark 5. Every �nitary idempotent operator is circuit-accessible.

Proof. Let φ be a �nitary idempotent operator on a set X. Given some subset A of X, and
some x ∈ φ(A)\A, let I be a minimal �nite subset of A such that x ∈ φ(I). Then I is
independent, else there exists y ∈ I such that y ∈ φ(I\{y}), whence, denoting by G the set
I\{y}, x ∈ φ(G ∪ {y}) and thus, by idempotency of φ and since y ∈ φ(G), x ∈ φ(G) which
contradicts the minimality of I. Since I∪{x} is �nite and dependent, there exists a φ-circuit
C such that C ⊆ I ∪ {x}. Since I is independent, x ∈ C and �nally, x ∈ C ⊆ A ∪ {x}. It
follows that φ is circuit-accessible. �

2.3.2. Exchange properties. An operator φ on a set X is said to satisfy the exchange property
(see property (E) in [9, p. 140]) if for every subsets Y , Z ofX and every x ∈ X, if x ∈ φ(Y ∪Z)
and x /∈ φ(Y ), then there exists y ∈ Z such that y ∈ φ(((Y ∪ Z)\{y}) ∪ {x}).
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De�nition 4. Given an operator φ on a set X, a φ-circuit C is symmetric if for every x ∈ C,
x ∈ φ(C\{x}).

Remark 6. If an operator φ on a set X satis�es the exchange property, then every φ-circuit
is symmetric.

2.3.3. Matroidal operators. We say that an operator φ on a set X is matroidal if φ is idem-
potent and satis�es the exchange property.

Example 1 (The operator spanX associated to a vector space X). Given a vector space X
over a commutative �eld K, the operator span on X, associating to every subset Y of X
the vector subspace generated by Y in X is a �nitary matroidal operator on X. The span-
independent subsets of X are the K-linearly independent subsets of X; the span-bases of X
are the bases of the K-vector space X; the span-�ats are the vector subspaces of X, and the
span-hyperplanes of X are the kernels of non null linear forms f : X → K. The only loop of
this operator is {0X}.

Example 2 (The matroidal operator associated to a family of vectors). Given a K-vector
space X and a mapping f : I → X, the mapping φ : P(I) → P(I) associating to every
subset J of I the set {i ∈ I : f(i) ∈ span(f [J ])} is a �nitary matroidal operator. Loops of
this operator are elements i ∈ I such that f(i) = 0X . Two elements i, j of I are parallel i�
i, j are not loops and if f(i) and f(j) are colinear.

Given a (commutative) �eld F, a �nitary matroidal operator φ on a set X is said to be
F-representable if there exist a K-vector space E and a mapping f : I → E such that the
matroidal operator φ is isomorphic with the �nitary matroidal operator associated to f .

Remark 7. There are many equivalent de�nitions for the notion of matroid on a �nite set (see
[15, Chapter 1] or [16, Chapter 2]). Given an in�nite set X, the notion of �nitary matroidal
operator on X is equivalent to the notion of �transitive dependence relation� on X (see for
example [17, p. 97], [1, Prop. 2.1 p. 253], [15, Chapter 20.5], [2, p. 2]). In ZFC, �nitary
matroids have bases, but in�nite matroids do not haves bases in general.

2.3.4. Hyperplane-accessibility.

De�nition 5. An operator φ on a set X is hyperplane-accessible if every proper �at of φ is
the intersection of the set of the φ-hyperplanes including it.

Given a commutative �eld K, the statement DK: �Every non null vector space has a non
null linear form.� is equivalent to the statement �For every K-vector space E, the �nitary
matroidal operator is hyperplane-accessible.�

2.4. Finitary operators and the Axiom of choice.

2.4.1. Axiom of Choice and �nitary operators.

Proposition 3 ( [14, p. 95] and [4]). AC is equivalent to each of the following statements:

(1) AL′3: [14, p. 95] �For every �nitary closure operator φ on a set X, for every collection
F of subsets of X which has �nite character (i.e. for every subset Z of X, Z ∈ F
i� for every �nite subset Y of Z, Y ∈ F), for every proper φ-�at F of X such that
F ∈ F , then there exists a maximal φ-�at G such that F ⊆ G and G ∈ F .�

5



(2) AL′′3: �For every �nitary closure operator φ on a set X, for every proper φ-�at F of
X and every x ∈ X\F , then there exists a maximal φ-�at G such that F ⊆ G and
x /∈ G.�

(3) K (Krull): �Every proper ideal of commutative unitary ring has a maximal proper
ideal.�

It follows thatAC implies the statement sH: �Every �nitary matroid is hyperplane-accessible.�

Proof. AC ⇒ AL′3: The set P := {Z ∈ F : F ⊆ Z and φ(Z) = Z} endowed with the
order induced by ⊆ is inductive (for every chain C of P , ∪C ∈ P ) and thus, Zorn's lemma
implies a maximal element G of P . AL′3 ⇒ AL′′3: given a proper φ-�at F and x ∈ X\F ,
the collection F of subsets of X which do not contain x has the �nite character, and thus
AL′3 implies a maximal φ-�at including F and not containing x. AL′′3 ⇒ K: Given a proper
ideal I of a commutative unitary ring A, consider the closure operator φ on A associating to
each subset Z of A the ideal of A generated by Z. Then φ is �nitary, and thus AL′′3 implies
a maximal φ-closed subset M of A including I such that 1 /∈M . K ⇒ AC: this implication
is due to Hodges (see [4]).
In the conditions of statement AL′′3, if moreover φ satis�es the exchange property, then G is
a φ-hyperplane, so the statement sH is the restriction of statement AL′′3 to �nitary matroids.
It follows that AC⇒ AL′′3 ⇒ sH. �

2.4.2. Axiom of choice and �nitary matroids.

De�nition 6. An operator φ on a set X is said to satisfy the interpolation property (for
bases) if for every φ-independent subset I of X and every φ-generating subset G of X such
that I ⊆ G, there exists a φ-basis B such that I ⊆ B ⊆ G.

A B-matroidal operator on a set X (see [3, p. 217], [13, p. 264]) is a matroidal operator
φ on X such that for every subset Y of X, the suboperator φY satis�es the interpolation
property. Of course, every suboperator of a B-matroidal operator is B-matroidal.

Proposition 4 ([3, p. 219]). Every B-matroidal operator is hyperplane-accessible and circuit-
accessible.

Proof. Higgs de�nes a �C-matroid� as a matroidal operator which is both hyperplane-accessible
and circuit-accessible. He proves that every B-matroid is a �C-matroid�. �

Proposition 5. (1) AC is equivalent to each of the following statements:
FB0: �Every �nitary matroid satis�es the interpolation property�
FB1: �Every �nitary matroid is a B-matroid�
FB2: �Every �nitary matroid has a basis�
FB3 (form [1A] of [7]): �Given a vector space E, every generating subset of E

includes a basis of E.�
FB4 �Every connected graph has a spanning tree.�

(2) The statement H: �Every nonempty �nitary matroid has an hyperplane.� is equiva-
lent to the statement �Every proper �at of a �nitary matroid is included in a hyper-
plane.�

Proof. (1) AC⇒ FB0. Given a �nitary matroidal operator φ on a set X, a φ-independent
subset I of X and a φ-generating subset G of X such that I ⊆ G, consider the set J of φ-
independent subsets J such that I ⊆ J ⊆ G. Then the poset (J ,⊆) is inductive (every chain
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(Jt)t∈T of this poset is dominated by
⋃
t∈T Jt), so with Zorn's lemma, one gets a maximal

element B of the poset (J ,⊆), and B is a φ-basis such that I ⊆ B ⊆ G. FB0 ⇒ FB1

follows from the previous point and the fact that every submatroid of a �nitary matroid is
�nitary. FB1 ⇒ FB2 is trivial. FB2 ⇒ FB3: Consider a vector space E and a generating
subset G of E. The operator φ induced by span on G is �nitary and matroidal, and thus
FB2 implies a φ-basis, which is a basis of the vector space E included in G. FB3 ⇒ FB4:
See [6]. FB4 ⇒ AC: See [5].
(2) Given a �nitary matroidal operator φ on a set X, and a proper �at F of φ, the statement
sH applied to the �nitary operator φF provides a hyperplane Z of φF , and then F ∪ Z is a
φ-hyperplane using Proposition 1. �

3. Hyperplanes in matroids and the axiom of choice

3.1. The operator associated to an antichain of nonempty sets.

Proposition 6. Every circuit-accessible operator φ on a set X such that φ-circuits are
symmetric satis�es the exchange property.

Proof. Assume that Y , Z are two subsets of X and that for some x ∈ X, x ∈ φ(Y ∪ Z) but
x /∈ φ(Y ). Since φ is circuit-accessible, let C be a φ-circuit such that x ∈ C ⊆ (Y ∪Z)∪{x}.
Since the circuit C is symmetric, x ∈ φ(C\{x}), and thus C\{x} meets Z (else C\{x} ⊆ Y
so φ(C\{x}) ⊆ φ(Y ) whence x ∈ φ(Y ), which is contradictory!). Let z ∈ (C\{x})∩Z; then,
since the circuit C is symmetric, z ∈ φ(C\{z}) ⊆ φ(((Y ∪ Z) ∪ {x})\{z}). �

Lemma 1. Given an antichain C of nonempty subsets of a set X, denote by φ the operator
on X associating to each subset Y of X the set Y ∪B where B is the set of elements x ∈ X
such that there exists C ∈ C satisfying x ∈ C ⊆ Y ∪ {x}.

(1) φ is an operator on X.
(2) Each element of C is a symmetric φ-circuit.
(3) C is the set of φ-circuits, and the operator φ on X is circuit-accessible.
(4) The operator φ satis�es the exchange property.
(5) If elements of C are �nite sets, then the operator φ is �nitary.

Proof. (1) By de�nition of φ, the mapping φ is expansive; moreover φ is isotonic since if
Y1 ⊆ Y2 ⊆ X, for every x ∈ X and every C ∈ C such that x ∈ C ⊆ Y1 ∪ {x}, then
x ∈ C ⊆ Y2 ∪ {x}, thus φ(Y1) ⊆ φ(Y2).
(2) If C ∈ C, then, by de�nition of φ, for every x ∈ C, x ∈ φ(C\{x}), thus C is φ-dependent;
moreover, the set I := C\{x} is φ-independent, else let y ∈ I such that y ∈ φ(I\{y}); then
there would exist C ′ ∈ C such that y ∈ C ′ ⊆ I ( C which is contradictory since C is an
antichain.
(3) Let C be a φ-circuit. Then there exists x ∈ C such that x ∈ φ(C\{x}). By de�nition
of φ, let C ′ ∈ C such that x ∈ C ′ ⊆ (C\{x}) ∪ {x} = C; using Point (2), C ′ is a φ-circuit,
and since the set of φ-circuits is an antichain, C ′ = C, and thus C ∈ C. Since C is the set of
φ-circuits, it follows by de�nition of φ that the operator φ is circuit-accessible .
(4) This follows from Proposition 6 using the fact that φ is circuit-accessible and has sym-
metric circuits.
(5) Trivial since φ is circuit-accessible. �
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3.2. Binary matroids. A family C of subsets of a set X is said to satisfy the binary elimi-
nation property if for all distinct elements C1, C2 of C, the symmetric di�erence C1∆C2 is a
union of pairwise disjoint elements of C.

Theorem 1 ([12, Th 9.1.2 p . 344]). Given a matroidal operator φ on a �nite set X and
denoting by C the set of φ-circuits, the following statements are equivalent:

(1) The operator φ is representable over the two-element �eld F2

(2) The symmetric di�erence of any set of circuits is either empty or contains a circuit
(3) C satis�es the binary elimination property
(4) For all distinct circuits C1, C2 ∈ C, C1∆C2 is a (�nite) union of circuits
(5) For all distinct circuits C1, C2 ∈ C, C1∆C2 includes a circuit.

The following corollary holds in ZF for in�nite �nitary matroids.

Corollary 1. Given a �nitary matroidal operator φ on a (non necessarily �nite) set X and
denoting by C the set of φ-circuits, the following statements are equivalent:

(1) φ is F2-representable
(2) Every �nite submatroid of φ is F2-representable
(3) C satis�es the binary elimination property
(4) For all distinct φ-circuits C1, C2 ∈ C, C1∆C2 is a (�nite) union of circuits
(5) For all distinct φ-circuits C1, C2 ∈ C, C1∆C2 includes a circuit.
(6) The symmetric di�erence of any set of φ-circuits is either empty or contains a circuit.

Proof. (1) ⇒ (2) is easy and (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are consequences of Theorem 1.

We prove (6) ⇒ (1). We consider the vector space F2
(X) and its canonical basis (ex)x∈X

where for every x ∈ X, ex : X → F2 is the indicator function of the singleton {x}. Let V be

the vector subspace of F2
(X) generated by the set {vC :=

∑
x∈C x : C φ-circuit}. Let Q be

the quotient vector space F2
(X)/V and let f : X → Q be the quotient mapping x 7→ ex + V .

The (�nitary) matroidal operator ψ associated to f is isomorphic with φ since φ and ψ have
the same circuits: given a subset C of X, C is a ψ-circuit i�

∑
x∈C(ex + V ) = 0Q and for

every proper subset I of C,
∑

x∈I(ex + V ) 6= 0Q; equivalently,
∑

x∈C ex ∈ V and for every
proper subset I of C,

∑
x∈I ex /∈ V ; this means that there exist φ-circuits C1, . . . , Cm such

that C = C1∆ . . .∆Cm and that no proper subset I of C is the symmetric di�erence of a
nonempty sequence of φ-circuits; using (2) it means that C is a φ-circuit. �

De�nition 7. A �nitary matroid is said to be binary if it satis�es one of the previous
equivalent statements.

3.3. The matroidal operator associated to a a family of pairwise disjoint nonempty
sets.

De�nition 8. Given an integer n ≥ 2, a family C of subsets of a set X is said to satisfy the
n-binary elimination property if for all distinct elements C1, C2 of C, the symmetric di�erence
C1∆C2 is a union of at most n elements of C.

Theorem 2. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty sets, consider
the set X =

⋃
i∈I Ai ∪ {O} where O is some set such that O /∈

⋃
i∈I Ai. For every i ∈ I, let

C1
i := Ai ∪ {O}, and for all distinct elements i, j ∈ I, let C2

i,j = Ai ∪ Aj. Let C := {C1
i : i ∈

I} ∪ {C2
i,j : i, j ∈ I; i 6= j}.
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(1) C is an antichain of nonempty subsets of X
(2) C satis�es the 2-binary elimination property.
(3) Let φ be the operator associated to the antichain C. Then φ is �nitary i� for every

i ∈ I, the set Ai is �nite.
(4) The operator φ is idempotent (and thus matroidal).

Proof. Points (1), (2) and (3) are easy to check.
(4) Let Z be a subset of X. Let I1 be the set of elements i ∈ I such that Ai\Z has at least
two elements. Let I2 = I\I1. If O ∈ Z then φ(Z) = Z ∪

⋃
i∈I2 Ai and thus, φ(φ(Z)) = φ(Z).

If O /∈ Z and if there exists i0 ∈ I2 such that Ai0 ⊆ Z, then φ(Z) = Z ∪ {O} ∪
⋃
i∈I2 Ai and

thus, φ(φ(Z)) = φ(Z); if O /∈ Z and if for every i ∈ I2, Ai\Z has exactly one element, then
φ(Z) = Z and thus φ(φ(Z)) = φ(Z). �

De�nition 9. In the conditions of the previous theorem, we call φ the matroidal operator
associated to O and the family (Ai)i∈I .

De�nition 10. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty sets, a selec-
tor for this family is a subset S of

⋃
i∈I Ai such that for every i ∈ I, S ∩Ai has at most one

element; the selector S is said to be total if for every i ∈ I, S ∩ Ai has exactly one element.

Theorem 3. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty sets, consider
the set X =

⋃
i∈I Ai∪{O} where O is some set such that O /∈

⋃
i∈I Ai. Let φ be the matroidal

operator associated to O and the family (Ai)i∈I .

(1) A subset L of X is φ-independent i� either (O ∈ L and ∀i ∈ IAi 6⊆ L), or (O /∈ L
and there exists at most one element i0 ∈ I such that Ai0 ⊆ L).

(2) A subset G of X is φ-generating i� S := (
⋃
i∈I Ai)\G is a selector for the family

(Ai)i∈I , which is not total if O /∈ G.
(3) A subset B of X is a φ-basis i� there exists a total selector S for the family (Ai)i∈I

such that B = ((
⋃
i∈I Ai)\S) ∪ {a} where a is some element of {O} ∪ S.

(4) A proper subset F of X is a φ-�at i� (O ∈ F or ∃i0 ∈ IAi0 ⊆ F ) ⇒ ∀i ∈
I Ai\F is not a singleton

(5) A subset H of X is a φ-hyperplane i� H = (
⋃
i∈I Ai)\S where S is a total selector

for the family (Ai)i∈I , or H = X\{x, y} where i0 ∈ I and x, y ∈ Ai0 with x 6= y.
(6) The following statements are equivalent:

(a) The operator φ is hyperplane-accessible.
(b) Every family (Bi)i∈I such that for every i ∈ I, ∅ ( Bi ⊆ Ai has a total selector.
(c) The operator φ is B-matroidal.
(d) The operator φ satis�es the interpolation property for bases

Proof. Points (1), (2), (3), (4) and (5) are consequences of the de�nitions. We prove Point (6).
(a) ⇒ (b): Given a family (Bi)i∈I such that for every i ∈ I, ∅ ( Bi ⊆ Ai, consider the
proper φ-�at subset F :=

⋃
i∈I(Ai\Bi) of X; since φ is hyperplane-accessible, let H be a

φ-hyperplane such that F ⊆ H and O /∈ H; then
⋃
i∈I(Ai\H) is a total selector for the

family (Bi)i∈I .
(b) ⇒ (c): Let Y be a subset of X. Let L be a φ-independent subset of Y and let G be
a φY -generating subset of Y such that L ⊆ G. Let J := {i ∈ I : Y ∩ Ai 6= ∅}. Let
J1 := {i ∈ J : Ai 6⊆ G}. Let J2 = {i ∈ J : Ai ⊆ G and Ai 6⊆ L}. Let J3 = {i ∈ J : Ai ⊆ L}:
notice that J = J1 ∪ J2 ∪ J3 and that J1, J2 and J3 are pairwise disjoint. For each i ∈ J1,
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let xi be the element of Ai\G. Using (b), consider a choice function (xi)i∈J2 for the family
(Ai\L)i∈J2 . If J3 is nonempty, then J3 has a unique element i0 and let xi0 = O if O ∈ Y . If
O ∈ Y , let B := Y \{xi : i ∈ J}, and if O /∈ Y , let B := Y \{xi : i ∈ J1 ∪ J2}. Then B is a
φY -basis such that L ⊆ B ⊆ G.
(c) ⇒ (d) follows from the de�nitions.
(d) ⇒ (a): Let F be a proper subset of X which is a φ-�at and let x ∈ X\F . If x = O,
then for every i ∈ I, Ai\F has at least one element (else O would belong to F ), and thus
F is φ-independent; then G =

⋃
i∈I Ai is φ-spanning and F ⊆ G: using the interpolation

property, there exists a φ-basis B such that F ⊆ B ⊆ G; it follows that there exists a total
selector S for (Ai)i and en element i0 ∈ I such that B = Ai0 ∪ (

⋃
i 6=i0 Ai)\S; let xi0 ∈ Ai0\F ;

then H = B\{xi0} is a φ-hyperplane including F such that O /∈ H. If x 6= O, then let
i0 be the element of I such that x ∈ Ai0 . If Ai0\F contains an element y distinct from x,
then H := X\{x, y} is a φ-hyperplane including F and not containing x. If Ai0\F = {x},
then for every i ∈ I\{i0}, Ai\F 6= ∅ and O /∈ F (else x would belong to F ); using the
independent set L = F\{O} and the generating set G =

⋃
iAi, consider a φ-basis B such

that L ⊆ B ⊆ G; then B yields a selector S for the family (Ai\F )i∈I (and thus x ∈ S). It
follows that H := (

⋃
i∈I Ai)\S is a φ-hyperplane including F . �

Corollary 2. AC is equivalent to the following statement: �For every nonempty family
(Ai)i∈I of pairwise disjoint nonempty sets, and for every set O such that O /∈

⋃
i∈I Ai, the

matroidal operator associated to O and the family (Ai)i∈I has an hyperplane not containing
O.�

3.4. The axiom sH implies ACfin. We denote by sHbep the axiom sH restricted to �nitary
matroids with the binary elimination property. For every natural number n ≥ 2, we denote by
sHbepn the axiom sH restricted to �nitary matroids with the n-binary elimination property.
We denote by Hbep (resp. Hbepn) the axiom H restricted to �nitary matroids with the binary
elimination property (resp. n-binary elimination property).

Remark 8. The matroidal operator associated to a family (Ai)i∈I of pairwise �nite disjoint
nonempty sets satis�es the 2-binary elimination property (and hence is binary).

Theorem 4. In ZF, sH⇒ sHbep ⇒ sHbep2 ⇒ ACfin.

Proof. Notice that ACfin is equivalent to the statement �For every nonempty family (Ai)i∈I
of pairwise disjoint �nite nonempty sets,

∏
i∈I Ai is nonempty.�: given a family (Ai)i∈I of

nonempy sets, consider the family (Ai×{i})i∈I . Given a nonempty family (Ai)i∈I of pairwise
disjoint �nite nonempty sets, consider the set X =

⋃
i∈I Ai ∪ {O} where O /∈

⋃
i∈I Ai,

and consider the �nitary matroidal operator φ on X associated to the family (Ai)i∈I (see
Theorem 2). Since φ has no loops, φ(∅) = ∅, so ∅ is a proper �at of φ and thus, sHbep2

implies a φ-hyperplane H not containing O. It follows from Theorem 3 that for each i ∈ I,
Ai\H is a singleton {xi} where (xi)i∈I is a choice function for the family (Ai)i∈I . �

Question 1. We have shown that AC ⇒ sH1 ⇒ sH ⇒ sHbep ⇒ sHbep2 ⇒ ACfin and of
course sH ⇒ H ⇒ Hbep ⇒ Hbep2 . Does sHbep imply sH? Does H imply ACfin? Does H
imply sH?

4. Graphic matroids and the finite axiom of choice

4.1. Strong and weak elimination properties.
10



De�nition 11. A family C of subsets of a set X is said to satisfy the elimination property
if for all distinct elements C1, C2 ∈ C, for every x ∈ C1 ∩ C2, there exists C3 ∈ C such that
C3 ⊆ C1 ∪ C2 and x /∈ C3. The family C is said to satisfy the strong elimination property if
for every elements C1, C2 ∈ C, for every x ∈ C1 ∩C2 and every y ∈ C1\C2, then there exists
C3 ∈ C such that y ∈ C3 ⊆ C1 ∪ C2 and x /∈ C3.

Notice that the binary elimination property implies the strong elimination property, which
in turn implies the elimination property.

Notation 1. For every �nite set F , we denote by |F | the cardinal of F .

The following result is classical:

Proposition 7 ([15], [2]). Let C be an antichain of nonempty �nite subsets of a set X, and
let φ be the (�nitary) operator associated to C. If C satis�es the weak elimination property,
then:

(1) C satis�es the strong elimination property.
(2) The operator φ is a closure operator.
(3) The operator φ is matroidal.

Proof. (1) See [15, Theorem 2 p. 24] or [2, Lemme 4 p. 17].
(2) See [2, Théorème 8 p. 18]. We sketch the proof. Let A be a subset of X and let x ∈
φ(φ(A)). Let us show that x ∈ φ(A). Let C ∈ C such that x ∈ C ⊆ φ(A)∪{x}, and such that
C ∩ (φ(A)\A) is minimal. If (C\{x})∩ (φ(A)\A) is nonempty, let y ∈ (C\{x})∩ (φ(A)\A);
since y ∈ φ(A), let C1 ∈ C such that y ∈ C1 ⊆ A∪{y}. Using the strong elimination property,
let C2 ∈ C such that x ∈ C2 ⊆ (C ∪C1)\{y}: then |C2 ∩ (φ(A)\A)| < |C ∩ (φ(A)\A)|, which
contradicts the minimality of C ∩ (φ(A)\A). It follows that (C\{x}) ∩ (φ(A)\A) = ∅ and
thus, (C\{x}) ⊆ A so x ∈ φ(A).
(3) Using Lemma 1, C is the set of φ-circuits and φ satis�es the exchange property, whence
the closure operator φ is a matroidal operator on X. �

4.2. The binary matroid associated to a multigraph.

4.2.1. Multigraphs. A multigraph on a set V is given by a mapping f : X → [V ]1 ∪ [V ]2,
where, for each natural number n ≥ 1, [V ]n is the set of n-element subsets of V . Elements
of X such that f(x) ∈ [V ]1 are called loops of the multigraph.

Denoting by (ev)v∈V the canonical basis of the vector space F(V )
2 , the incidence matrix

of the multigraph f is the mapping f̃ : X → F(V )
2 such that for every x ∈ X, f̃(x) is

0F(V )
2

if f(x) ∈ [V ]1, and f̃(x) = ev1 + ev2 if f(x) is the two-element sets {v1, v2}. The

matroid associated to the multigraph f is the (binary) matroidal operator on X associated

to the incidence matrix f̃ . Loops of this matroid correspond to loops of the multigraph. A
matroidal operator which is isomorphic with the (binary hence �nitary) matroid associated
to a multigraph is said to be graphic.

4.2.2. Simple graphs. A simple graph on a set V is a binary relation R on V which is
irre�exive (for every x ∈ V , x��Rx) and symmetric (for every x, y ∈ V , xRy ⇒ yRx).
Elements of V are called the vertices of the graph, and pairs {x, y} of vertices such that xRy
are the edges of the simple graph. A simple graph on a set V with set E of edges is also
denoted by (V,E). A (partial) subgraph of a simple graph G on a set X with set of edges E

11



is a simple graph (X ′, E ′) such that X ′ ⊆ X and E ′ ⊆ E. Two graphs (V1, E1) and (V2, E2)
are isomorphic when there exists a bijection f : V1 → V2 which respects the edges.

Notation 2. Given some integer n ≥ 3, we denote by Cn the simple graph on Z/nZ =
{0, . . . , n− 1} with set of edges En = {{i, i+n 1} : i ∈ Z/nZ}, where +n is the additive law
on Z/nZ;

Given some integer n ≥ 3, a simple graph is a n-cycle if it is isomorphic with the simple
graph Cn. Given a simple graph G = (V,E), a cycle of the graph G is a (partial) subgraph
of G which is isomorphic with a n-cycle for some natural number n ≥ 3.

4.2.3. Graphic matroids. Given a set V and a multigraph f : X → [V ]1 ∪ [V ]2, if E =
f [X]∩[V ]2, then (V,E) is called the simple graph underlying the multigraph f . Reciprocally,
every simple graph (V,E) underlies the multigraph idE : E → E on V .

Proposition 8 ([12, Proposition 1.1.7]). Let G = (V,E) be a simple graph. Let CG be the set
of (�nite) subsets F of E such that F is the set of edges of a cycle of G. Then CG is the set
of circuits of the (binary) matroidal operatorMG associated to the multigraph idE : E → E.

Proof. Let W be the F2-vector space F(V )
2 . For every v ∈ V we denote by ev the v-th vector

of the canonical basis of W . We identify each edge {a, b} of G with the vector ea + eb of W .
A subset F of E is a circuit of the matroid MG i� F is nonempty,

∑
e∈F e = 0W and for

every nonempty proper subset G of F ,
∑

e∈G e 6= 0W ; replacing each element e = {a, b} of
E by ea + eb, this means that F 6= ∅, every vertex of the subgraph (∪F, F ) has even degree,
but for every proper subset G of F , some vertex of the subgraph (∪G,G) has an odd degree;
this means that F is a nonempty �nite union of cycles of G, and that no proper subset of F
is a cycle of G; equivalently, F is a cycle of the graph G. �

Remark 9. If f : X → [V ]1∪ [V ]2 is a multigraph on a set V , ifMf is the matroid associated
to the multigraph f , loops of Mf are the singletons {x} such that x ∈ X and f(x) is a
singleton; circuits of cardinal two ofMf are the pairs {x, y} of distinct elements of X such
that f(x) = f(y). Given some natural number n ≥ 3, then the n-circuits of Mf are the
n-element subsets {x1, . . . , xn} of X such that {f(x1), . . . , f(xn)} is the set of edges of a
n-cycle of the underlying simple graph of f .

4.3. An equivalent of ACfin in terms of graphic matroids.

Theorem 5. The following statements are equivalent:

(1) ACfin

(2) For every family (Ai)i∈I of pairwise disjoint nonempty �nite sets with at least two
elements, the (binary hence �nitary) matroid associated to this family is graphic.

Proof. (1) ⇒ (2) Let (Ai)i∈I be an in�nite family of pairwise disjoint nonempty �nite sets,
such that for every i ∈ I, ni := |Ai| ≥ 2. Let M be the matroid associated to the family
(Ai)i∈I : the underlying set of M is M :=

⋃
i∈I Ai ∪ {O} where O /∈

⋃
i∈I Ai. We consider

a family (Vi)i∈I of pairwise disjoint linearly ordered �nite sets such that for each i ∈ I,
|Vi| = ni − 1. We also consider two distinct elements a and b not belonging to

⋃
i∈I Vi, and

we de�ne the set V := {a, b} ∪
⋃
i∈I Vi. Since each Vi is linearly ordered, for each i ∈ I, we

consider a graph Gi on Vi ∪ {a, b} which is a ni-cycle and such that {a, b} is an edge of this
graph: we denote by Ei the set of edges of Gi which are not equal to the edge {a, b} of Gi.

12



We consider the simple graph G on V which admits E :=
⋃
i∈I Ei∪{a, b} as set of edges (see

Figure 1). Notice that every �nite subgraph of G is planar. We denote by G the matroid on
E associated to the graph G. Using ACfin, we consider a family (fi)i∈I such that for every
i ∈ I, fi : Ei → Ai is a bijection. It follows that f :=

⋃
i∈I fi is a bijection from

⋃
i∈I Ei

to
⋃
i∈I Ai and we extend it into a bijection from E to M . Then the bijection f respects

circuits ofMG andM thus t the matroidM is graphic.
(2)⇒ (1) Let (Ai)i∈I be a family of pairwise disjoint nonempty �nite sets with at least two

Oa b

Figure 1. The graph G associated to the matroidM

elements. Let M be the �nitary matroid on {O} ∪
⋃
i∈I Ai associated to this family. Let

G = (V,E) be a graph such thatM is the graphic matroid associated to G. Let a, b be the
two extremities of the edge O of G. Then, for every i ∈ I, Ai ∪ {O} is the set of edges of a
cycle of the graph G: let ei be the the unique edge of Ai which is incident to the vertex a.
Then (ei)i∈I is a choice function for the family (Ai)i∈I . �

Consider the following well known consequences of AC imply ACfin:
MG1: �For every binary matroid M, if every �nite minor of M is graphic then M is

graphic�.
MG2: �For every binary matroidM, if every �nite submatroid ofM is graphic and planar

thenM is graphic�.
MG3: �For every binary matroid M, if every �nite minor of M is graphic and planar

thenM is graphic�.
Notice that both statements MG1 and MG2 imply MG3. Moreover, every �nite minor

of the binary matroid used in the proof of Theorem 5 is graphic and planar, and thus, MG3

imply ACfin.

Question 2. Does ACfin or sH imply one of the statements MG1, MG2 or MG3?

Question 3. Is the following statement provable in ZF: �Every (in�nite) graphic matroid
is hyperplane-accessible.�

In the diagram in Figure 2, we add the statement DQ which implies the statement ACZ:
�Every family of posets isomorphic with the linear order Z has a nonempty product.� (see
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Figure 2. Summary diagram of the axioms

[10, Theorem 4]). We also add the statement D0 (resp. Dp) which is D restricted to vector
spaces over a commutative �eld K of characteristic 0 (resp. p).

Question 4. The statementsBPI (�Every non trivial Boolean algebra has a maximal ideal�),
OEP (�Every partial order on a set X can be extended into a linear order on X�) and O
(�On every set X there exists a linear order�) (see forms 14, 49 and 30 of [7]) are well known
consequences of AC which are stronger than ACfin. Are there implications between one of
them and H or sH or sHbep or sHbepn for some integer n ≥ 2?
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