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1.- Introduction 

Several European Union institutions have highlighted the importance of 

assessing efficiency in the use of water in all sectors (EC, 2012). In recent years, water 

drawn from the public water supply for use in industry has accounted for between 

2% and 50% of total use for all economic activities in European Union (EU) countries 

(EUROSTAT, 2014). Self-supplied water and water from other sources for industrial use 

represents over 60 % of this total use, with this figure reaching as high as 90% in some 

countries (EUROSTAT, 2014). Moreover, industrial activity is considered one of the 

worst polluters of water bodies (AMEC, 2014).  

As a consequence, a comprehensive evaluation of industrial water use becomes 

a key issue. On the one hand, industries can probably reduce water consumption and 

achieve significant water savings—an especially valuable option in a context of scarcity-

. On the other hand, pollution abatement is an additional aim when improving water 

management in the industrial sector. Pollutant emissions might be reduced, leading to a 

cleaner environment and water bodies. These aims related to water consumption and 

reducing pollution could be achieved through both the adoption of pro-environmental 
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organizational systems and/or investment in green technologies. In any case, both aims 

are significant when assessing the efficiency of water use from an integrated perspective.  

This paper is focused on the environmental efficiency of water use in a sample of 

Spanish industries in Zaragoza. This city lies in the Ebro river basin, which is Spain’s 

largest river basin, covering 85,660 km2. Public authorities have traditionally faced 

certain difficulties when managing water bodies. On the one hand, this area has suffered 

from severe water stress in recent years, with the water exploitation index reaching 

levels higher than 40% (EEA, 2018). On the other hand, the Ebro river basin has always 

experienced poor natural water quality due to its chemical composition. Moreover, the 

agricultural and urban wastewater discharges into the river have worsened the situation 

(de Marcos, 2016). On top of that, Zaragoza is the biggest city in the Ebro river basin, 

and an area of fairly intensive industrial activity (INE 2017a, 2017b). Consequently, 

industrial water pollution and water consumption are significant issues that must be 

addressed. 

From a methodological point of view, the efficiency in the use of industrial water 

has been assessed by means of Data Envelopment Analysis (DEA) techniques (Cooper 

et al., 2007), in particular, through the use of directional distance functions (Chambers et 

al., 1998) adapted to this specific scenario. This methodology proposes jointly modelling 

inputs, desirable and undesirable outputs by identifying the maximum attainable 

expansion of desirable outputs in one specific direction and the largest feasible 

contraction of inputs and undesirable outputs in another specific direction. The use of 

directional functions is considered a flexible technique that is perfectly suited to the 

economic problem examined in this research. The findings will be very useful when it 

comes to designing future public policies related to water efficiency in the industrial 

sector.   

The paper is structured as follows. The literature review section summarizes the 

main contributions to the literature in this field. Section 3 provides a detailed explanation 

of the method applied to evaluate the environmental efficiency of water use. The 

contextual framework, the variables and the data set are described in Section 4, while 

Section 5 presents the main results and empirical findings. Finally, Section 6 concludes 

with a summary of the main results, including a discussion about some policy 

implications and future extensions of this research.    
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2.- Literature review 

Although there are plenty of studies assessing the efficiency of water services 

(Abbott et al., 2012; D’Inverno et al., 2017; Dong et al. 2018; Gémar et al., 2018; Suárez-

Varela et al., 2017), papers analysing the eco-efficiency of water use in the industrial 

sector are relatively scarce in the literature. The eco-efficiency concept refers to create 

more value with less environmental impact. In 1992, the World Business Council for 

Sustainable Development (WBCSD) indicated that: “eco-efficiency is achieved by the 

delivery of competitively-priced goods and services that satisfy human needs and bring 

quality of life, while progressively reducing ecological impacts and resource intensity 

throughout the life-cycle to a level at least in line with the Earth’s estimated carrying 

capacity.” (WBCSD, 2000; p.9).  

Water resource eco-efficiency has been analysed at different scales. In this 

respect, we find studies at a national (Chen and Jia, 2017; Hu et al., 2006; Wang et al., 

2018; You and An, 2016; Zhang et al., 2008) or regional scale (Charmondusit et al., 2016; 

Deng et al., 2016; Yang and Zhang, 2018), or even at the level of specific economic sectors. 

Regarding the latter, water use efficiency has been assessed in both agricultural (among 

others, Beltrán-Esteve, 2013; Huang, 2005; Speelman et al., 2008; Ullah et al., 2016) and 

industrial activities (Fan et al., 2017; Jiang et al., 2016; Karel and Charmondusit, 2008; 

Skouteris et al., 2018; Zhou et al., 2017). However, the number of papers focused on the 

environmental efficiency of water use in the agricultural sector far outnumbers the 

studies focused on industrial water use efficiency.  

When measuring the eco-efficiency of water resources at the industrial sector, 

most of empirical studies have applied any of the following methodologies: 1) the ratio 

approach (Charmondusit and Keartpakpraek, 2011; Ingaramo et al., 2009; Kharel and 

Charmondusit, 2008; Skouteris et al., 2018; Zhou et al., 2017); 2) Life Cycle Assessment 

(LCA) methods1 (Angelis-Dimakis et al., 2016; Georgopoulou et al., 2017; Maxime et al., 

2006; Wigger et al., 2017); and 3) the frontier approach, based on parametric Stochastic 

Frontier Analysis (SFA) (Atkinson and Halabí, 2005; Lei and Huang, 2015) or non-

	
1 Some studies (Wang et al., 2015; Zhang et al., 2008) have recommended combining DEA and LCA 
methods. LCA methodology requires the creation of an inventory of flows entering and leaving the 
production system for each activity. The application of this kind of methodologies would require detailed 
information related to water quality when finishing the production process (before being discharged) and 
the quality of water finally discharged. Thus LCA method requires detailed information on the 
concentration of aimed pollutant substances. In our case, since we are using a micro-data set of 
manufacturing firms located in the same geographical area, it has not been possible to get individual and 
detailed information on the concentrations of pollutant substances over an extended period of time. This 
shortage makes not possible to apply that specific methodological approach. 
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parametric DEA (Fan et al., 2017; Hu et al., 2006; Jiang et al., 2016; Wang et al., 2015; 

Wang et al., 2018; Yang and Zhang, 2018; You and An, 2016; Zhang et al., 2008).   

At present, most researchers use different DEA models to evaluate water use 

efficiency at national or regional level. For example, Hu et al. (2006) analyse water use 

efficiency in China at the country level under a conventional DEA framework. 

Nevertheless, their approach only measures economic efficiency and does not account 

for the fact that industrial activities produce both desirable and undesirable outputs (e.g. 

pollution). Hence, many researchers have improved DEA models by incorporating both 

desirable and undesirable outputs in efficiency analyses. In this respect, Generalized 

DEA (GDEA) methodology is a popular approach (Fan et al., 2017; Zhang et al., 2008; 

Wang et al., 2015; Jiang et al., 2016; Yu et al., 2017). Only a few papers have considered 

the use of directional distance functions (Wang et al., 2018; Yang and Zhang, 2018). 

Regarding the output variables, whereas the desirable output is represented 

through more standard indices like industrial value-added (Zhang et al. 2008; Yu et al., 

2016), or industrial Gross Domestic Product (Wang et al., 2015; Jiang et al., 2016; You and 

An, 2016; Fan et al., 2017; Yang and Zhang, 2018; Wang et al. 2018), there is more 

heterogeneity when it comes to define environmental pollutants. Most studies include 

more than one undesirable dimension. In this respect, the most popular parameters are 

Chemical Oxygen Demand (COD) emissions (Zhang et al., 2008; Wang et al., 2015; Yu et 

al., 2016; Fan et al., 2017), Ammonia Nitrogen (NH4–N) discharges (Wang et al., 2015; Yu 

et al., 2016; Wang et al., 2018), Suspended Solid (SS) waste (Zhang et al., 2008; Fan et al., 

2017; Yang and Zhang, 2018) or Sulphur Dioxide (SO2) emissions (Zhang et al., 2008; Fan 

et al., 2017; Yang and Zhang, 2018). Other variables, such as dust or soot emissions are 

less frequently used (Zhang et al., 2008; Jiang et al., 2016; Yang and Zhang, 2018). With 

regard to input variables, water consumption is systematically included in all the studies 

assessing the industrial water use efficiency.   

Although results are heterogeneous, it is possible to detect some common 

findings. First of all, a positive relationship between development and eco-efficiency has 

been detected. Then, the most developed areas exhibit the better performance levels 

(Chen and Yia, 2017; Deng et al., 2016; Yang and Zang, 2018; You and An, 2016; Zhang 

et al., 2008). Closely connected to the previous issue, it has been remarked the role of 

technology, with a positive impact on water use efficiency (Li and Ma, 2015; Wang et al., 

2015; Yang and Zang, 2018; You and An, 2016; Zhang et al., 2017). Furthermore Deng et 
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al. (2016) indicates that higher dependence on foreign trade leads to improve water use 

efficiency.   

Additionally, it has been found that institutional factors are significant key-

drivers of water use efficiency. Higher levels of efficiency have been detected in those 

areas with stringent regulations linked to water quality (Li and Ma, 2015; Wang et al., 

2018; You and An, 2016). Moreover, water pricing (level and structure issues) could lead 

to get strong improvements in water use efficiency (Chen and Jia, 2017; Wang et al., 2018; 

You and An, 2016; Zhan et al., 2008).  

Regarding pollutant substances, Yu et al. (2016) find that COD emissions are still 

the main driver of inefficiency in the pulp and paper industry. Wang et al. (2015) indicate 

that the inefficiency of industrial sector in Chinese regions is mainly generated by 

pollutants' abatement performance as shown by potentials reduction of COD and NH4–

N. Fan et al. (2017) conclude that SO2 emissions are the limiting factor for eco-industrial 

development. Moreover, they show that there is great potential for water and energy 

conservation in industrial parks in China. 

Finally, all of the studies focused on industrial water efficiency have been 

developed on the base of aggregated data (provincial, regional or national). The most 

disaggregated view is adopted by Fan et al. (2017), who analyse the eco-efficiency level 

in 40 industrial parks in China. Although an overwhelming majority of them have 

assessed water use efficiency considering the global industry sector, a few of them have 

analysed specific industrial activities. This is the case of Yu et al. (2016) who assess the 

eco-efficiency of the pulp and paper industry—a major polluter—in 16 Chinese 

provinces. Definitively, all previous studies have used aggregated data rather than 

micro databases where the observational unit is the firm. In this paper, we use a different 

approach based on individual information related to a sample of manufacturing 

industries. Moreover, a temporal dimension is considered in the analysis, which allows 

us to assess the impact of public policies.  

 

3.- Methodological issues 

The methodological approach adopted in this research extends the metafrontier 

approach (O’Donnell et al., 2008) to measure technological differences in the 

management of particular inputs and/or outputs with the integration of environmental 

aspects when assessing productive efficiency. This is an approach used in several recent 
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empirical papers as Beltrán-Esteve (2013), Beltrán-Esteve et al. (2014), Picazo-Tadeo et 

al. (2014) or Suárez-Varela et al. (2017).  

3.1. Distance functions. Managerial and technical efficiency 

Let us suppose that there are k = 1…K production units that use a set of N inputs 

x = (xf, xv), where xf denotes the fixed input and xv a bundle of variable inputs used to 

obtain the vector of outputs Y =(y, b). The output vector includes a set of M desirable 

outputs and J undesirable outputs, y and b, respectively.  The metatechnology is 

represented by a set that contains all achievable combinations of variable inputs xv that, 

given an amount of fixed input xf, allow obtain a level of good output y, and generate a 

bad output b. It is formally defined as: 

 L (xf, y, b) = [xv| (x, y, b) ∈ T]                                                              (1) 

 T denotes all technologically feasible combinations of inputs and outputs. It is 

assumed that the metatechnology satisfies the standard properties that Shephard (1970) 

suggests. Additionally, we assume weak disposability of undesirable outputs, b, which 

means that a simultaneous reduction of good and bad outputs is feasible, but the isolated 

disposal of bad outputs may not be possible (Färe et al, 1989). Moreover, we adopt the 

hypothesis of null-joint production, so good and bad outputs are jointly produced 

(Shephard and Färe, 1974). These methodological assumptions are frequently used in 

the literature when modelling the performance of pollution-generating technologies 

(Dakpo et al., 2016). When there are undesirable outputs, the directional metadistance 

function (Färe and Grosskopf, 2000) is as follows: 

"# = %&, (, ); + = ,−+./, +0, −+123 

= 456[8|(&/ − 8+./)]=> ?&@, ,( + 8+02, () − 8+1)B																																																														(2) 

where g=(-gxv, gy, -gb) denotes the so-called direction vector. The function in (2) has a 

lower bound of zero (Chambers et al., 1998), and models inputs and outputs trying to 

find the maximum achievable expansion of outputs in the gy direction and the largest 

possible contraction of variable inputs and bad outputs in the –gxv and –gb directions, 

respectively. Moreover, the directional metadistance function is a versatile tool for 

assessing efficiency as it allows approaching the technological frontier by means of 
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alternative methods focused on different performance frameworks (Suárez-Varela et al., 

2017). 

As a consequence, this methodology is especially useful when analysing the use 

of specific inputs or outputs. In this case, it would be interesting to assess firms’ water 

use efficiency by focusing, on the one hand, on water consumption, and on the other 

hand, on water pollution. In other words, the aim here is to examine a potential 

reduction of variable input i (water consumption) and the bad output (water pollution), 

while maintaining the other inputs and outputs, i.e., to assess technical efficiency in the 

management of water. In this context, the directional metadistance function becomes: 

	"#D
	 = 〈&, (, ); + = %,−&/F, 0/HF2, 0, −)3〉 

																					= 456%8D|,(1 − 8D)&/F, &/HF23=>%&@, (, (1 − 8D))3                                                     (3)                           

The directional distance functions can also be determined regarding the 

technology of different industry sectors. Accordingly, the technology of sector h is made 

up only of observations of production units within this group, and can also be denoted 

by the short-run input requirement set defined as: 

Lh (xf, y, b) = [xv| (x, y, b) ∈ Th]               (4) 

with Th representing all the combinations of inputs and outputs achievable by producers 

in sector h. Formally, the directional distance functions computed with regard to the 

technology of sector h (composed of Kh operational units) in the integrated management 

of water use (w) are :  

	4#D
	 = 〈&, (, ); + = %,−&/F, 0/HF2, 0, −)3〉 

											= 456%KD
	 |,(1 − KD

	 )&/F, &/HF23=>
L%&@, (, (1 − KD))3                                                 (5)                                                                                          

So directional distance functions linked to the technology of sector h will always 

be equal to or lower than directional metadistance functions computed with regard to 

the metatechnology. Figure 1 presents an intuitive approach to the analytical framework 

described above. Water technology includes two dimensions, the input xvw, (water 

consumption) and the negative output b (water pollution). Note that only two 

dimensions are represented. In this context, we are interested in optimizing the use of 

water and reducing water pollution. In short, we aim to minimize the damage to water 
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bodies. The technology is graphically represented under the assumption of weak 

disposability.   

[FIGURE 1] 

The operational units of two industrial sectors (1, 2) are denoted by crosses (x) 

and dots (�) respectively. A joint frontier or metafrontier is built by enveloping the units 

of both sectors (dotted grey line). However, it is also possible to build a specific frontier 

for each sector, in order to assess their managerial performance. The upper dashed line 

corresponds to the Sector 1 frontier, while the solid line represents the Sector 2 frontier. 

Also note that the frontier functions in Figure 1 have a vertical and parallel section to the 

ordinate axis to allow the possibility to exclusively reduce input xvw. Assume that we 

want to assess the performance of an inefficient operational unit in Sector 1, which is 

circled in Figure 1. It is considered inefficient because it is responsible for higher levels 

of consumption and generates higher levels of water pollution than other units lying on 

the frontier. Other firms are able to obtain the same level of output as the unit evaluated, 

ceteris paribus the remaining inputs.  

By projecting the inefficient unit to the metafrontier (the distance from the unit 

to point A in Figure 1), we can assess the global technical efficiency of that unit. In other 

words, our reference group is composed of all the observations in the industry, without 

distinguishing between sectors. Nevertheless, two units in different sectors are not 

directly comparable through this distance measure (Suárez-Varela et al., 2017). The 

technical efficiency index breakdown into two components (managerial efficiency and 

the metatechnology ratio) has a more straightforward reading, as shown as follows. 

With managerial efficiency (the distance from the unit to point B in Figure 1) we 

match the inefficient unit with other units in the same sector. By comparing similar firms, 

e.g., two paper-producing firms, the performance assessment complies with an 

important requirement for applying non-parametric techniques, namely the need for 

relatively homogeneous units (Hwang et al., 2016). By establishing different 

manufacturing groups, we reduce the heterogeneity of the units analysed.  

Additionally, the sector efficiency measured though the metatechnology ratio is 

based on the distance between the specific sector frontier and the joint frontier (which	
includes	all	the	sectors	in	the	sample). This gap, which shows technological differences 

between the two sectors, represents how far each sector is from global water use 

efficiency. Analytically, we use the directional distance/metadistance functions 
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presented in Section 3.1 to calculate the metatechnology ratios proposed by O’Donnell 

et al. (2008). Specifically, the metatechnology ratio (MR) of sector h for a global water 

performance assessment w can be defined as: 

"MD
L 〈&, (, ); +D = %,−&/F, 02, 0, −)3〉 = 	NOPℎRSPTU	OVVSPSORP(D NOPℎRSPTU	OVVSPSORP(D

L⁄  

																																																																											= (1 − 8D) (1 − KD
	 )⁄ 	                                         (6) 

Note that the metatechnology ratio is calculated using technical efficiency scores 

with an upper bound of one –which indicates full efficiency. Moreover, efficiency scores 

computed considering the technology of sector h will be equal to or higher than those 

related to the metatechnology. In line with O’Donnell et al. (2008), our approach gives a 

satisfactory decomposition of technical efficiency assessed with regard to the 

metafrontier, into the product of technical efficiency evaluated with regard to the 

frontier of sector h and the metatechnology ratio for sector h (which evaluates the 

distance between the technology of this sector to the joint technology). Moreover, this 

procedure permits the decomposition of technical efficiency into managerial efficiency, which 

assesses the performance of decision units in the sample as contrasted to top performance 

in their group, and sector efficiency, which measures the nearness of the technology of sector 

h to the joint technology.  

3.2. Two-step empirical approach 

The empirical approach proposed in this research has been structured in two 

steps. First of all, efficiency indices have been calculated using directional 

metadistance/distance functions. These functions have been computed using Data 

Envelopment Analysis (DEA) techniques.  Details on DEA programs could be checked in 

the Appendix. Additionally, variable returns to scale (VRS) are assumed. However, 

Chen and Ang (2016) show that simply adding a convexity constraint to the constant 

return to scale (CRS) model with weak disposability would not necessarily mean that 

the new model is one with VRS technology with weak disposability (Färe and Grosskopf, 

2003). The right VRS formulation under the weak disposability hypothesis was first 

shown by Shephard (1970), who developed a highly non-linear model. Kuosmanen 

(2005) and Kuosmanen and Podinovski (2009) extended Shephard’s VRS model by 

designing a convex and fully linearizable model. In this research, the linearization 

proposed in Kuosmanen (2005) and Kuosmanen and Podinovski (2009) is applied to 

calculate efficiency indices.  
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Next, a second step is applied to identify key drivers of efficiency. This second 

stage could provide some insights to guide public policies related to water use in the 

manufacturing sector. The equation to be estimated is the following: 

KD
X = V,YX, Z[, \X2																																																						(7) 

Managerial efficiency could be explained by firms’ specific factors (sk), temporal 

factors (rt) and subsector dummies (dk). To empirically estimate equation (7), we use 

Simar and Wilson’s (2007) contribution to analyse managerial efficiency scores obtained 

through DEA techniques. Their methodological approach allows us to account for the 

nature of our DEA-based scores of efficiency and their serial correlation. Basically, it 

involves simulating a sensible data-generating process, by means of artificial bootstrap 

samples from this process, and computing standard errors and confidence intervals for 

the parameters of interest (Simar and Wilson, 2007).  

 

 

4.- Data set 

The sample considered in this research includes 60 firms in Zaragoza’s manufacturing 

industry over the period 2004-2007.	Since it is a short period of time, we evaluate the 

performance under the assumption that there is no technological change. Database 

elaboration is an important contribution of this research, since it is the first applied study 

considering a micro-database in this field. As specified hereafter, it includes information 

taken from different sources, related to water use and production process.  

Zaragoza is located in the central area of the Ebro River Basin in North-Eastern 

Spain (South-Western Europe). It is the fifth largest city in Spain with 666,938 inhabitants 

(INE, 2017c). Water management in the city is based on an in-house provision 

framework. A non-outsourced public organization is providing supply and sewerage 

water services in the city. Moreover, Zaragoza is an important industrial core (Arbués et 

al., 2010), with 2,040 companies registered in the city council in 2015 (INE, 2017b). Table 

1 displays some economic indices revealing the weight of industrial activities in 

Zaragoza. 

[TABLE 1] 
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In terms of the number of industrial companies, Zaragoza ranks fourth, very 

close to the third-ranked city (Valencia). Looking at the proportion of employment in the 

industrial sector, Zaragoza has the highest rate (10.89%), far above other big cities such 

as Valencia (2.64%), Madrid (3.76%) or Bilbao (7.04%). 

The panel database is not balanced, and it includes production data for different 

manufacturing activities in Zaragoza. Activities are classified according to the NACE 

Rev.2 (Statistical classification of economic activities in the European Community), using 

a 4-digit code. Manufacturing firms have been split into three sectors. Sector 1 (SEC1) 

includes processed food and chemical activities, comprising 22 firms and 82 observations. 

Sector 2 (SEC2) is related to metal manufacturing activities, including 22 firms and 79 

observations. Finally, Sector 3 (SEC3) covers electrical equipment and furniture 

manufacturing, with 16 firms and 59 observations2. 

Since we have access to the specific activity of each manufacturing firm, we built 

the data base controlling that the kind of activities included in each NACE Rev 2 4-digit 

code are developing homogeneous activities (i.e., in the paper industry, no recycled-paper 

producers are included). Moreover, when clustering the activities we considered some 

aspects linked to the final use of water3. In this respect, Sector 1 is including manufacturing 

activities where water is an essential component of their products. The majority of 

companies in Sector 2 use water mainly for cleaning their installations. Finally, firms in 

Sector 3 basically consider sanitary and cooling uses. 

Six variables are used to characterize the production set. Regarding the output 

variables, both the economic activity and water pollution have been considered. On the one 

hand, firms’ net sales (NSAL) is the variable representing the firms’ good output. The 

information on net sales is taken from the SABI database4.  

On the other hand, a water pollution index (F) is considered as a negative output. 

This index is calculated by the Zaragoza city council, and it indicates the quality of water 

	
2 The main activities included in Sector 1 comprise food and beverage manufacturing and the 
manufacture of paper and chemical products. Sector 2 includes manufacturing activities related 
to metal and metallic components (steel, metal smelting, metalworking, metallic products). 
Finally, Sector 3 is basically comprised of the manufacture of electrical and transport equipment, 
machinery and furniture.  
3  The information related to industrial water uses is taken from a survey conducted by the 
Zaragoza City Council in 2004. In particular, companies were asked whether they use water for 
product elaboration, cleaning, cooling and/or sanitary needs of their workers. 
4  SABI is a broad database including balance sheet analysis of more than two million Spanish 
companies. For further information, see https://sabi.bvdinfo.com/. 
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emissions. It is based on the concentration of pollutants per volume of water discharged, 

with respect to the average values of residential water users. The main parameters 

considered in the formula are the Suspended Solid (SS) waste and the Chemical Oxygen 

Demand (COD) 5 . Wastewater quality controls carried out by the Ebro River Basin 

Authority6  and the Zaragoza City Council indicate that the majority of reported and 

controlled pollutants are Chemical Oxygen Demand (COD) and Suspended Solid (SS) 

waste. Consequently, available data strongly suggest that the use of the index F (based on 

the most frequent pollutants detected) is fairly well reflecting the industrial wastewater 

quality in Zaragoza. Moreover, Zaragoza City Council indicates that 33 firms (out of 64) in 

the sample treat water before discharging it into the public network. Three procedures are 

detected: sewage, decantation, and separation, being sewage the most frequent treatment 

(22 firms have their own wastewater treatment plant). Although some direct discharges are 

observed in some industrial states, none of the firms included in this sample is discharging 

wastewater directly to water bodies. 

Moreover, four input variables have been defined. Labour (L) is measured in terms 

of the number of workers. The value of the firm’s assets (K) represents the capital of the 

company. Capital comprises the structural firms’ assets. That is, the assets which are 

consumed in more than one economic period. The assets’ value is calculated discounting 

the accumulated depreciation. Both tangible and intangible assets are included. 

Water consumption is considered as an additional input (WATER), and includes 

water drawn from both the municipal network and wells. Finally, the remaining operating 

expenses (excluding water and labour expenses) are aggregated in a global index (OPEX). 

Data for all the input variables except water consumption have been taken from the 

abovementioned SABI database, while the municipal water department has provided 

information about industrial water consumption.  

Regarding the key drivers of efficiency, three main variables have been defined. 

First of all, the percentage of water taken from wells (PWELL) is included. This source of 

water is not as closely controlled as the water taken from the municipal network, so the 

related levels of water efficiency could be lower. However, in general well water quality is 

	
5 The formula applied to calculate the pollution index is the following: F= 0.6* COD/700 + 0.4 * 
SS/250. Both parameters are expressed in mg/l.  
6 In this respect, the Ebro River Basin Authority ensures periodic water quality controls. This 
monitoring activity is carried out before applying any wastewater treatment at the municipal 
sewage treatment plant. Ebro River Basin monitoring results (check Appendix B) show that the 
presence of heavy metals or other toxic substances in the wastewater is not significant.  
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lower when being closer to surface. As a consequence, firms need to abstract water from 

deeper levels. Thus, energy costs necessary to extract water from wells could emerge as a 

strong incentive for an efficient water use.  

Two additional dummy variables are built. The first one takes a value of 1 when the 

firm is located in an industrial estate, and 0 otherwise (POL). Such a location generates 

agglomeration economies that could have an impact on efficiency. The second takes a value 

of 1 for periods starting after 2004, and 0 otherwise (PREFORM). This second dummy 

variable is capturing the effect of a tariff reform that took place in 2004. The resulting new 

water tariff was in place from 2005 on. The tariff reform affects both the structure and the 

level. Before 2005, urban water tariffs consisted of a huge number of fixed and variable 

charges. Fixed charge depended on the metering size (this dimension experienced more 

variability in the case of industrial users) and street category, while variable part depended 

on the level of daily consumption (setting more than 200 different consumption levels and 

134 price levels). Thus, clients bore a different two-part tariff depending on their daily 

consumption, being the variable charge the most complex dimension. In 2004, variable 

charge ranked between 0.23 (consumption of 0.03 m3/day) and 1.75 (consumption of 135.73 

m3/day). Consequently, the result was a complicated structure, which made extremely 

difficult for customers to have perfect information and knowledge about water prices. In 

2005, that complex variable charge was replaced by an increasing two-block structure for 

industrial users. Moreover, from 2005 onwards, water bill displays sanitation and supply 

prices in a separate way, being easier for customers to check both concepts. Compared with 

the previous tariff, this framework was much simpler to retain and understand, adding 

more transparency to the pricing system. Since the reform involved a significant 

simplification of the water tariff structure and price increases for some industrial users7, 

we would expect it affects positively on industrial water use efficiency. Finally, the second-

step equation includes dummy variables for each specific economic activity based on the 

4-digit NACE Rev.2 code, in order to control for heterogeneity within the sector.  

Tables 2 and 3 present the main descriptive statistics. Table 2 includes some 

descriptive statistics of the whole sample, while Table 3 displays information disaggregated 

by sector. On average, industrial water consumption per year (WATER) is particularly 

	
7 The reformed tariff lead to average price increases ranked between 12% and 30% for users 
consuming less than 30 m3/month. Between that level and 300m3/month, average price increases 
were much smaller, and from 400 m3/month, average price experienced decreases between 0.3% 
and 2%. Consequently, big consumers were clearly benefited from the water tariff reform. 
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noteworthy, registering a volume of around 52,300 m3. The dispersion in water use is also 

significant, as clearly shown by the standard deviation and the gap between the minimum 

and maximum. As expected, dispersion is also observed in other variables that characterize 

the production process (L, OPEX, K, NSAL). The average value of the pollution index (F) is 

0.73, indicating that pollution levels are not high. Actually, this value would not be far from 

a typical pattern of raw municipal wastewater with minor contributions of industrial 

wastewater (Henze and Comeau, 2008). Finally, 75% of the firms are located in an 

industrial estate, and around 27% of industrial water comes from wells. 

[TABLE 2] 

 

When looking at specific sectors, we detect some notable differences. As expected, 

Sector 1 registers the highest levels of water consumption and pollution. By contrast, Sector 

2 reports the lowest levels of water use and emissions, with this sector drawing a higher 

proportion of its water from underground sources. Meanwhile, Sector 3 can be seen as an 

intensive sector in the use of other inputs (labour, capital, other operational expenses). 

Regarding the percentage of firms located in industrial estates by sector, no broad gaps are 

observed between sectors. The highest proportion is found in Sector 3, where 80% of the 

firms are based in industrial parks.  

 

[TABLE 3] 

 

 

5.- Results 

Efficiency indices have been computed using R software, through the DJL 

package (Lim, 2018). This package includes various decision support tools based on 

directional distance functions and DEA (among other techniques). Second-step 

regression has been carried out using Stata software, through the command simarwilson 

(Badunenko and Tauchmann, 2018). This command applies the procedure proposed by 

Simar and Wilson (2007) for regression analysis of DEA efficiency scores.  

Results are presented in Tables 4 to 6 and Figure 2. Table 4 shows the main 

efficiency score results by sector. Sector 1 registers the lowest global technical efficiency 

scores on average, with Sector 3 holding the top position in the ranking.  

[TABLE 4] 
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Metatechnology ratios indicate that Sector 1 has the least environmentally friendly 

technology in terms of water use. However, after controlling for technological constraints, 

Sector 1 shows potential reductions in average water use and pollution of around 19%. 

Sector 3 has the technology that is closest to the joint frontier. With respect to managerial 

efficiency, it registers potential savings of around 29%. This result is consistent with those 

obtained in other empirical studies (for example, Zhang et al., 2015 or Wang et al., 2018). 

 

[TABLE 5] 

 

Table 5 displays the results of several tests used to detect statistically significant 

differences between sectors in terms of efficiency levels. In general, the Kruskal-Wallis 

test leads us to reject the hypothesis that the sector samples come from the same 

population. Moreover, when checking differences between pairs, the Wilcoxon test 

reveals that, in the majority of cases (the null hypothesis is not rejected in the case of the 

Sector 2 and 3 pair), the samples do not come from populations with the same 

distribution. Similarly, the Simar-Zelenyuk-Li test (Li, 1996; Simar and Zelenyuk, 2006) 

results lead us to reject the null hypothesis that the samples have the same probability 

distribution function, except when comparing Sectors 2 and 3.  

Figure 2 displays the temporal evolution of efficiency indices (technical and 

managerial) by sectors. Note that, in the case of managerial efficiency, the reference frontier 

is different for each sector. In general, a rising trend is observed over the period 2004-2007. 

Both technical and managerial efficiency of electrical equipment and furniture 

manufacturing activities register the highest increasing rates. Additionally, different 

patterns are detected. On the one hand, a convergence of the three sectors in terms of 

managerial efficiency can be observed. However, a slight opposite trend is observed in the 

case of technical efficiency.  

 

[FIGURE 2] 

 

 Table 6 shows the second-step regression estimates. The dependent variable is managerial 

efficiency, expressed in terms of the potential savings in water use and pollution; the higher 

the values, the lower the efficiency. Heterogeneity is controlled by including subsector 
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dummies (a dummy variable for each specific activity, excluding one activity in each 

group). The impact of the three factors differs according to the sector. In Sector 3, for 

instance, the higher the proportion of water taken from wells, the lower the potential 

savings; consequently, higher efficiency levels are registered. However, no such effect is 

detected in Sector 1 or 2.  

 
[TABLE 6] 

 

In line with previous studies such as Li and Ma (2015), You and An (2016) or Wang 

et al. (2018), among others, price reform has had a positive influence on efficiency in the 

majority of sectors considered. Thus, potential savings are lower from 2005 onwards. The 

simplification of the water tariff structure and the increase in the water price level for the 

majority of users have had a positive impact on managerial efficiency. This result is 

especially valuable when it comes to designing water price structures. Reducing the 

complexity of these structures makes it more likely that users will have perfect information 

about prices and thus helps them to make efficient decisions. 

 

Finally, being located in an industrial area has different impacts depending on the 

sector. In Sector 1, there is an increase in potential savings, while in Sector 3 the inefficiency 

levels are reduced. Moreover, industries located in industrial estates and involved in metal 

manufacturing activities do not experience significant changes in their levels of managerial 

efficiency. These results could be partially explained by differences in water supply and 

wastewater management in each industrial estate (a similar result is obtained in Fan et al., 

2017). According to the Aragon Institute of Development (IAF, 2018) there are 40 industrial 

estates in Zaragoza. Regarding water supply, most of these estates (32) are connected to 

the urban public network. This connection to the public water supply can either be on 

an individual basis (each firm has its own meter installed and pays the public water 

supplier directly) or a collective basis (using a collective meter). Conversely, 6 industrial 

parks are responsible for drawing their own water from underground sources, and 15 

manage their own water tanks8. In terms of wastewater, there are also some differences. 

Wastewater flows are completely discharged to the municipal sewer network in 32 

industrial estates. That wastewater is treated in two municipal treatments plants. 

Additionally, there are 3 industrial parks that manage their own sewage treatment 

plants, where wastewater is treated before dumping it into the Ebro and Gállego rivers. 

	
8 Water stored in these tanks is used for non-productive activities such as cleaning public areas 
or irrigating green spaces.  
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Finally, we observe direct discharges in 5 industrial estates. Those differences may well 

be directly linked to the variety of impacts found in the empirical exercise. In this respect, 

the small size of the database has prevented us from using a more disaggregated variable 

to capture the individual industrial estate effects.   

 

6.- Conclusions 

The aim of this paper is to analyse the environmental efficiency of water use, 

using a sample of manufacturing industries located in the urban area of Zaragoza 

(Spain). To this end, a DEA framework based on directional distance functions is 

applied. In terms of technical efficiency scores, Sector 1 registers the highest inefficiency 

levels, while Sector 3 presents the shortest distance to the metafrontier. Those figures 

could be easily linked to differences in the technology and production process. As we 

mentioned previously, Sector 2 (metal manufacturing activities) and 3 use water mainly 

for cleaning or cooling. The margin to reduce water is higher in these sectors, since it is 

easier to introduce low-consumption technologies. However, Sector 1 comprises 

activities where water is a key component of their products, while the kind of product 

conditions the amount of water. Differences in pollution levels are also contributing to 

increase the gap. 

By contrast, when assessing the performance within each technological sector, 

this gap narrows, with managerial efficiency scores ranging from 0.81 (Sectors 1 and 2) 

to 0.71 (Sector 3). These results show that the technology in Sector 1 (high levels of water 

pollution and consumption) is not close to the metafrontier. The metatechnology ratios 

indicate that the technology in Sector 1 is poor in terms of water management, while the 

technology in Sector 3 is the closest to the joint frontier. Sector 2 lies in an intermediate 

position. 

Analysing the impact of several factors on managerial efficiency, we also observe 

significant differences among sectors. First of all, the higher the share of water drawn 

from wells, the higher the managerial efficiency levels. This effect is exclusively 

observed in the electrical equipment and furniture manufacturing sector, with no 

significant impacts detected in the other sectors.  Second, water price reform has had a 

positive and significant effect on managerial efficiency. Reducing the complexity of 

water price structure and adding more transparency to the billing system have led to 

improve efficiency in the majority of manufacturing sectors. Third, no clear findings can 

be drawn about whether or not the firms are located in an industrial park. Being located 
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in an industrial state is not per se a guarantee of higher efficiency levels in the use of 

water. The heterogeneity related to water supply and wastewater management in each 

industrial area could be behind the differences in water efficiency levels. However, due 

to the limited size of our database, we have not been able to test this hypothesis. In 

conclusion, the relative influence of the analysed variables on water use efficiency varies 

notably among sectors.  

In the light of the results, it strongly recommended designing a simple water 

pricing/taxation framework that allows reducing water industrial consumption and 

internalizing the negative externality caused by polluting water. However, and closely 

related to this, it is worth noting that not all the pollutant substances demand the same 

cleaning efforts. Several substances such as heavy metals are extremely dangerous for 

health and environment, requiring more intensive and expensive treatments. Some 

industrial activities are characterized by high-level emissions of those dangerous 

substances, and could generate stronger environmental damages. Public policies should 

be modulated accordingly.  

It is worth noting two limitations of this study that should be addressed in future 

research. On the one hand, the empirical analysis has been carried out by splitting the 

sample into three groups. However, a higher level of disaggregation may be desirable 

when it comes to designing public policies. Thus, an interesting future extension of this 

research could involve the use of broader micro-data bases. Additionally, extended 

databases would allow considering other clustering schemes (i.e.: based on the industrial 

state). On the other hand, this study is focused on a specific city (Zaragoza), and it may 

well be the case that our findings do not apply to other areas. 

Nevertheless, and despite criticism, some of the conclusions linked to the idea of 

simplicity and transparency as highly desirable features of water prices (OECD, 1987) 

could be extended to other contexts. In this respect, simpler structures are connected to 

higher awareness and knowledge level on water tariffs by users, and consequently to 

higher probability of efficient reactions when price changes. Moreover, more 

transparency through the price breakdown (supply and sanitation concepts) in the water 

bill contributes to enrich the information that final users received. Finally, higher 

transparency and administrative simplicity leads to improve water governance (Silva-

Pinto and Cunha-Marques, 2017) and, hence, the efficiency in the water sector. 
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Appendix A: DEA programs 
 
Let us assume the following partition:  

zk = �k + �k                                               (A1) 

where zk denotes the intensity weight of firm k, for obtaining convex combinations of 

observed firms. The VRS hypothesis implies that intensity weights z must add up to 1. 

In expression (A1), �k denotes the proportion of firm k’s output that is decreased by 

scaling down its activity level (scale effect), while �k represents the remaining output 

(efficiency effect). Under this assumption, the technology set P(x) is represented as 

follows (Kousmanen, 2005): 

																																]̂(&) = _
((, )): ∑ bXc

Xde (f
X ≥ (f,h = 1,… ,"	

	
                             

																																																		∑ bX)j
X
= )j

c
Xde , k = 1,… , l                                                        (A2) 

																																																		∑ ,bX +	mX2&n
X ≤ &n

c
Xde , R = 1,… ,p  

																																																		∑ ,bX +	mX2 = 1c
Xde   

			

																																																							bX, mX ≥ 0, q = 1,… , r

	
s 

 Outputs are weighted by �k, whereas inputs are weighted by zk (which includes 

the two components, �k and �k).  Based on the previous technology, it is possible to 

calculate the efficiency of firm 1 in terms of water use. Under the metatechnology 

scenario, the solution of the following optimization program yields the potential savings 

parameter for the whole industry (8DX): 

   															"T&ShStO
8D
XbXmX

		{	"#D =	8D
X 	 

																																									∑ bX	c
Xde (f

X ≥ (f,h = 1,… ,"  

																																										∑ bX)j
X
= ,1 − 8D

X2c
Xde )j

e
, k = 1,… , l                                               (A3)            
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 A similar formulation is proposed to calculate the potential savings in each sector 

h (KDX ): 

                  "T&ShStO
KD
XbXmX

		{4#D
	 =	KD

X  

																																												∑ bX	y
Xde (f

X ≥ (f,h = 1,… ,"  

																																												∑ bX)j
X
= ,1 − KD

X2y
Xde )j

e
, k = 1,… , l                                            (A4)           

																																												∑ ,bX +	mX2&n
X ≤ (1 − KD

X)&n
ey

Xde , R = v  

																																												∑ ,bX +	mX2&n
X ≤ &n

ey
Xde , ∀R ≠ v  

																																												∑ ,bX +	mX2 = 1y
Xde   

			

																																													bX, mX ≥ 0, q = 1,… ,z

	
s 

 The above program should be solved for each sector to obtain the managerial 

efficiency indices.  
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Appendix B. Wastewater pollutants concentrations in Zaragoza area 

Table B1.- Detected and authorized wastewater pollutants concentration in Zaragoza 
area 

Pollutant Maximum instant 
concentration 

detected (mg/l) 
(*) 

Maximum instant 
concentration 
limits (mg/l) 

(**) 
Nitrogen (N)  Ammonium (NH4)+    0.4200 85.0000 
 Nitrate (NO3)-  34.9400 65.0000 

Cyanide (CN)-    0.0100 2.0000 
Total Phosphorus (P)     0.3400 30.0000 
Mercury (Hg)    0.0002 0.1000 
Arsenic (As)    0.0024 1.0000 
Cadmium (Cd)    0.0009 0.4000 
Copper (Cu)    0.0110 3.0000 
Chromium (Cr)    0.1040 5.0000 
Zinc (Zn)    0.0700 10.0000 
Fluoride (F-)    0.3900 15.0000 
Nickel (Ni)     Not detected 5.0000 
Sulphate (SO4)2- 510.0000 1,000.0000 
Manganese (Mn)    0.0480 10.0000 
Iron (Fe)    0.2680 10.0000 
Lead (Pb)    0.0045 1.0000 
Tin (Sn)   Not detected 5.0000 
Selenium (Se)   0.0003 1.0000 
Boron (B)   0.1030 3.0000 
Barium (Ba)   0.0434 20.0000 
Aluminium  Not detected 20.0000 

Source: Ebro River Basin Authority (http://www.chebro.es/)  

Companies are obliged to comply with the limits reported in the previous table. Controls are carried out in 
the river, downstream of the main industrial areas. Moreover, the checkpoint is located just before arriving 
the municipal treatment plant. 

Legend: (*) Maximum instant concentration of pollutants detected throughout the period 2004-2007; (**) 
Maximum instant concentration of pollutants authorized in the region where Zaragoza is located (Act 
38/2004 and Act 176/2018, Aragon regional government). 
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Source: own elaboration 

FIGURE 1. Integrated water efficiency measurement 
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Source: own elaboration 

FIGURE 2. Temporal evolution of efficiency indices: 2004-2007 
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TABLE 1.- Indicators of industrial activity: large Spanish cities, 2015  

 
Number of firms Employment (%) 

Barcelona 5,898 4.94 

Bilbao 10,623 7.04 

Madrid 1,408 3.76 

Málaga 1,836 5.03 

Sevilla 2,270 4.67 

Valencia 1,192 2.64 

Zaragoza 2,040 10.89 

      Source: INE (2017a) and INE (2017b) 
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TABLE 2. Main descriptive statistics 
 

UNITS MEAN STD. DEV. MIN. MAX. 
WATER  1000 m3 52.31 137.51 0.30 1,216.46 
L number 147.19 219.20 3.00 1,409.00 
OPEX 1,000 € 14,559.07     18,517.48    10.44 85,578.23 
K 1,000 € 6,190.12 10,391.89       5.89 115,355.00 
NSAL 1,000 €    27,049.59     34,500.14     349.48   173,821.50 

F number 0.73 0.42 0.28 2.38 
PWELL % 0.27 0.36 0 1 
POL Dummy  0.75 0.43 0 1 

Source: own elaboration 
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TABLE 3. Descriptive statistics by sector 
 

SEC1 SEC2 SEC3 
 

MEAN STD. 
DEV. 

MEAN STD. 
DEV. 

MEAN STD. 
DEV. 

WATER  104.00 207.75 16.76 46.17 28.07 46.49 
L 108.00 137.83  84.30  99.40  285.88 338.36 
OPEX 9,312.40     11,585.07  9,482.14    17,811.62 28,648.97  20,116.42 
K 5,664.16 6,942.56  4,996.23 14,409.41 8,519.70 7,305.29 
NSAL 19,705.61 24,269.40 16,466.87 29,486.29 51,426.56 40,855.30 
F 0.97 0.45 0.55 0.33 0.65 0.34 
PWELL 0.21 0.31 0.36 0.41 0.22 0.34 
POL 0.74 0.44 0.74 0.44 0.80 0.41 

Source: own elaboration 
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TABLE 4. Efficiency scores by sectors 

 
SEC1 SEC2 SEC3 

 
MEAN STD. 

DEV. 
MEAN STD. 

DEV. 
MEAN STD. 

DEV. 
TECHN EFF 0.308 0.282 0.614 0.356 0.692 0.318 
MANAG EFF 0.810 0.253 0.806 0.258 0.707 0.312 

METATECH 
RATIO 

0.348 0.263 0.721 0.289 0.968 0.066 

Source: own elaboration 
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  TABLE 5. Testing score differences among sectors  
Kruskall-

Wallis 
 test 
Χ2(2) 

 
Wilcoxon 

test 
/z/ 

   Simar-
Zelenyuk-

Li test  
/z/ 

 

  SEC1-
SEC2 

SEC1-
SEC3 

SEC2-
SEC3 

 SEC1-
SEC2 

SEC1-
SEC3 

SEC2-
SEC3 

TECHN EFF  50.69 *** -6.430*** -5.584*** 1.227  11.785*** 15.496*** 0.115 
METATECH 
RATIO 

 99.81*** -8.763*** -7.422*** 4.141***  23.002*** 16.869*** 3.311*** 

Note: Managerial efficiency scores are not included in the table. This is because they are not directly 
comparable to each other as they were estimated with respect to different technological frontiers. 
Legend: *,**,*** indicate statistical significance at the 10%, 5%, and 1% significance level, respectively. 
Source: own elaboration 
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TABLE 6. Second-step regression  
SEC1 SEC2 SEC3 

PWELL -0.040  0.096 -0.382*** 

POL  0.463*** -0.088 -3.482*** 

PREFORM -0.061** -0.032 -0.148** 

const.  0.514**  0.803***  3.770*** 

Wald   �2(10) 295.261*** 29.533***  72.518*** 

Number of bootstr. reps     5,000  

          Legend: *,**,*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.    
          Source: own elaboration. 
 


