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Abstract. TROPOMI (the TROPOspheric Monitoring In-
strument), on board the Sentinel-5 Precursor (S5P) satel-
lite, has been monitoring the Earth’s atmosphere since Oc-
tober 2017 with an unprecedented horizontal resolution (ini-
tially 7 km2

×3.5 km2, upgraded to 5.5 km2
×3.5 km2 in Au-

gust 2019). Monitoring air quality is one of the main objec-
tives of TROPOMI; it obtains measurements of important
pollutants such as nitrogen dioxide, carbon monoxide, and

formaldehyde (HCHO). In this paper we assess the quality of
the latest HCHO TROPOMI products versions 1.1.(5-7), us-
ing ground-based solar-absorption FTIR (Fourier-transform
infrared) measurements of HCHO from 25 stations around
the world, including high-, mid-, and low-latitude sites. Most
of these stations are part of the Network for the Detection of
Atmospheric Composition Change (NDACC), and they pro-
vide a wide range of observation conditions, from very clean
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remote sites to those with high HCHO levels from anthro-
pogenic or biogenic emissions. The ground-based HCHO re-
trieval settings have been optimized and harmonized at all
the stations, ensuring a consistent validation among the sites.

In this validation work, we first assess the accuracy of
TROPOMI HCHO tropospheric columns using the median
of the relative differences between TROPOMI and FTIR
ground-based data (BIAS). The pre-launch accuracy require-
ments of TROPOMI HCHO are 40 %–80 %. We observe
that these requirements are well reached, with the BIAS
found below 80 % at all the sites and below 40 % at 20
of the 25 sites. The provided TROPOMI systematic un-
certainties are well in agreement with the observed biases
at most of the stations except for the highest-HCHO-level
site, where it is found to be underestimated. We find that
while the BIAS has no latitudinal dependence, it is de-
pendent on the HCHO concentration levels: an overestima-
tion (+26± 5 %) of TROPOMI is observed for very low
HCHO levels (< 2.5× 1015 molec. cm−2), while an under-
estimation (−30.8 %± 1.4 %) is found for high HCHO lev-
els (> 8.0× 1015 molec. cm−2). This demonstrates the great
value of such a harmonized network covering a wide range
of concentration levels, the sites with high HCHO concen-
trations being crucial for the determination of the satellite
bias in the regions of emissions and the clean sites allow-
ing a small TROPOMI offset to be determined. The wide
range of sampled HCHO levels within the network allows the
robust determination of the significant constant and propor-
tional TROPOMI HCHO biases (TROPOMI=+1.10±0.05
×1015

+ 0.64± 0.03 × FTIR; in molecules per square cen-
timetre).

Second, the precision of TROPOMI HCHO data is es-
timated by the median absolute deviation (MAD) of the
relative differences between TROPOMI and FTIR ground-
based data. The clean sites are especially useful for mini-
mizing a possible additional collocation error. The precision
requirement of 1.2× 1016 molec. cm−2 for a single pixel is
reached at most of the clean sites, where it is found that
the TROPOMI precision can even be 2 times better (0.5–
0.8×1015 molec. cm−2 for a single pixel). However, we find
that the provided TROPOMI random uncertainties may be
underestimated by a factor of 1.6 (for clean sites) to 2.3
(for high HCHO levels). The correlation is very good be-
tween TROPOMI and FTIR data (R = 0.88 for 3 h mean co-
incidences; R = 0.91 for monthly means coincidences). Us-
ing about 17 months of data (from May 2018 to Septem-
ber 2019), we show that the TROPOMI seasonal variability
is in very good agreement at all of the FTIR sites.

The FTIR network demonstrates the very good quality of
the TROPOMI HCHO products, which is well within the pre-
launch requirements for both accuracy and precision. This
paper makes suggestions for the refinement of the TROPOMI
random uncertainty budget and TROPOMI quality assurance
values for a better filtering of the remaining outliers.

1 Introduction

TROPOMI (the TROPOspheric Monitoring Instrument), on
board the Sentinel-5 Precursor (S5P) satellite, has been mon-
itoring the column amounts of atmospheric constituents since
October 2017 at the unprecedented horizontal resolution of
7 km2

× 3.5 km2, which was upgraded to 5.5 km2
× 3.5 km2

in August 2019. This huge number of data, delivered to the
public and the scientific community, represents a big step to-
wards improving our knowledge of chemical and dynamical
processes in the atmosphere. It is crucial to validate the qual-
ity of these new satellite data to trust and benefit from their
scientific exploitation. This paper focuses on the first quality
assessment of the latest publicly available TROPOMI HCHO
data products (v.1.1.[5-7]).

In the past, the HCHO satellite products have been vali-
dated at a few locations only, mainly using aircraft in situ
measurements (Martin et al., 2004; Zhu et al., 2016, 2020),
MAX-DOAS (multi-axis differential optical absorption spec-
troscopy) measurements over land (Wittrock et al., 2006; De
Smedt et al., 2015), or ship-based (Peters et al., 2012; Tan
et al., 2018) and FTIR (Fourier-transform infrared) measure-
ments (Jones et al., 2009; Vigouroux et al., 2009; De Smedt
et al., 2015). However, given the high spatial heterogene-
ity of HCHO concentrations due to its short lifetime (a few
hours), there is a crucial need for a more extended world cov-
erage to unambiguously assess the satellites’ achieved accu-
racy and precision. Furthermore, increasing the number of
ground-based locations is not sufficient; it is also important
to harmonize the reference data obtained at all the stations
in order to facilitate the interpretation of the satellite valida-
tion by minimizing the site-to-site biases. In this view and in
particular in the framework of the TROPOMI calibration and
validation (Cal/Val) activities, we have developed HCHO re-
trieval settings that are suitable for any ground-based FTIR
site and have been consistently applied in Vigouroux et al.
(2018) at 21 FTIR stations, most of them affiliated with the
NDACC (Network for the Detection of Atmospheric Com-
position Change). Vigouroux et al. (2018) described in de-
tail the retrieval settings and the harmonized HCHO time se-
ries obtained at these stations, which cover a large range of
HCHO concentrations, from very clean Arctic and oceanic
sites to high-HCHO-level sites, such as polluted cities (e.g.
Paris or Mexico City) and sites close to large biogenic emis-
sions, like the Amazon basin (Porto Velho).

This paper presents the validation of the TROPOMI
HCHO product (v.1.1.[5-7]) using an updated network of
25 ground-based FTIR stations. In the first section, the
TROPOMI HCHO data are introduced with their uncertainty
budget and their quality flag criteria. The second section de-
scribes the ground-based FTIR HCHO network and the char-
acterization of these reference data (uncertainties and aver-
aging kernels). Then, the validation procedure (collocation
criteria, smoothing technique, definition of the quantities to
be used in the quality assessment) is explained in Sect. 4. Fi-
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nally, Sect. 5 shows the validation results using comparisons
between TROPOMI and FTIR ground-based network data,
leading to an assessment of the TROPOMI HCHO accuracy
and precision and the observed TROPOMI bias.

2 TROPOMI HCHO data

TROPOMI, on the S5P platform, is in a low-Earth after-
noon polar orbit with a swath of 2600 km, resulting in daily
global coverage (Veefkind et al., 2012). Operational Level
2 (L2) products include vertical columns of O3, SO2, NO2,
HCHO, CO, and CH4 as well as O3 profile, aerosol layer
height, cloud information and aerosol index. The spatial
resolution of originally 3.5 km2

× 7 km2 was increased to
3.5 km2

× 5.5 km2 on 6 August 2019.
The prototype algorithm of the formaldehyde product is

being developed at the Royal Belgian Institute for Space
Aeronomy (BIRA-IASB), and the corresponding operational
processor is being developed at the Remote Sensing Technol-
ogy Institute (IMF) of the German Aerospace Center (DLR).
The product has been declared operational and was released
to the public at the end of 2018. At the time of writing this
paper, the latest product versions 1.1.(5-7) provided a con-
sistent time series of reprocessed+ offline (RPRO+OFFL)
data, covering the period between May 2018 and (at least)
December 2019 (last access). The detailed validation results
shown in Sect. 5 are obtained using this consistent time series
(RPRO+OFFL, from 14 May 2018 to 31 December 2019).
The version numbers and their dates of change are given in
Table 1, and further details are given in the Readme file.1 The
near-real-time (NRTI) product for the same versions 1.1.(5-
7) spanned from December 2018 up to December 2019 (last
access). This product has also been validated, but because the
results are very similar to the RPRO+OFFL validation, we do
not show them in detail in this paper.

The S5P HCHO retrieval algorithm is based on
the DOAS method and is directly inherited from
the OMI QA4ECV product retrieval algorithm
(https://doi.org/10.18758/71021031, De Smedt et al.,
2017). It consists of a three-step method (slant column
retrieval, air mass factor calculation, and conversion to
tropospheric column), which is fully described in De Smedt
et al. (2018). The retrieval of the slant columns (Ns) is
performed in the UV part of the spectra (in TROPOMI
channel 3) in a fitting interval of 328.5–359 nm. The HCHO
cross section is from Meller and Moortgat (2000). Together
with the HCHO cross section, the absorptions of NO2,
BrO, O3 (at two temperatures), and O4 are fitted. A Ring
cross section and two pseudo-cross sections to account
for non-linear O3 absorption effects are also included in
the fit. References are given in De Smedt et al. (2018).

1http://www.tropomi.eu/sites/default/files/files/
publicSentinel-5P-Formaldehyde-Readme_20191213.pdf (last
access: 7 July 2020)

All cross sections have been pre-convolved for every row
separately, with an instrumental slit function adjusted just
after launch. The DOAS reference spectrum is updated daily
with an average of Earth radiances selected in the Equatorial
Pacific region on the previous day. The result of the fit is
therefore a differential slant column showing increases over
continental sources compared to the remote background.
The conversion from slant to tropospheric columns (Nv) is
performed using a lookup table of vertically resolved air
mass factors (M) calculated at 340 nm with the radiative
transfer model VLIDORT v2.6 (Spurr, 2008). Parameters
for each ground pixel are the observation geometry; the
surface elevation and reflectivity, including the clouds (that
are treated as reflecting surfaces); and a priori tropospheric
profiles. The surface albedo is taken from the monthly
OMI albedo climatology (minimum Lambertian equivalent
reflectivity; Kleipool et al., 2008) at the spatial resolution
of 1◦× 1◦. A priori vertical profiles are specified using
the TM5-MP daily forecast at the same spatial resolution
(Williams et al., 2017). Cloud properties are provided by the
S5P operational product in its cloud as reflecting boundary
(CRB) mode (Loyola et al., 2018). A cloud correction based
on the independent pixel approximation (Boersma et al.,
2004) is applied for cloud fractions larger than 0.1. In order
to correct for any remaining global offset and stripes, a
background correction is applied based on HCHO slant
columns from the 5 previous days in the Pacific Ocean
(N(s,0)), as described in De Smedt et al. (2018). Finally,
the background vertical column of HCHO due to methane
oxidation is taken from the TM5 model in the reference
region (NCTM

(v,0) ). The equation of the tropospheric HCHO
vertical column can be written as follows:

Nv =
(Ns−N(s,0))

M
+
M0

M
·NCTM

(v,0) , (1)

with M0 being the average of the air mass factors M

of the slant columns selected in the reference sec-
tor, the Pacific Ocean (N(s,0)). Intermediate quan-
tities and auxiliary data are all provided in the L2
files (http://www.tropomi.eu/sites/default/files/files/
Sentinel-5P-Level-2-Product-User-Manual-Formaldehyde_
v1.01.01_20180716.pdf, last access: 7 July 2020).

Several diagnostic variables are provided together with the
measurements. Quality assurance (QA) values are defined to
perform a quick selection of the observations. QA > 0.5 fil-
ters out most observations presenting an error flag or a solar
zenith angle (SZA) larger than 70◦, a cloud radiance fraction
larger than 0.6 at 340 nm, or an air mass factor smaller than
0.1. The product Readme file reports that, in the current ver-
sion, the QA values are not always correctly set over snow
and ice regions or above an SZA of 75◦. They also need to
be further checked over cloudy scenes. In the forthcoming
S5P version 2, QA values will be refined and will exclude
data with a surface albedo larger than 0.2 and a snow or ice
warning as well as remaining SZAs larger than 75◦.
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Table 1. TROPOMI RPRO+OFFL complete time series versions 1.1.(5-7) used in the present work.

Date Processor version Relevant improvements (see Readme file∗).

2018-05-14 to 2018-11-28 RPRO v.1.1.5 Alignment of the configuration for NRTI, OFFL, and RPRO chains
regarding the chemistry

2018-11-28 to 2019-03-28 OFFL v.1.1.5 transport model input, leading to the same product quality

2019-03-28 to 2019-04-23 OFFL v.1.1.6 – Surface classification climatology updated
– Fixed a bug in the interpolation of the surface albedo climatology
– Fixed a problem regarding the retrieved CLOUD product parameters
being too close to the a priori values; this might have affected the calculation
of the HCHO in cloudy cases

2019-04-23 to 2019-12-31 OFFL v.1.1.7 No changes (for HCHO) with respect to previous version

∗ http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-Formaldehyde-Readme_20191213.pdf (last access: 7 July 2020).

Figure 1. Network of ground-based FTIR stations providing HCHO total column data. The background is the September 2018 monthly mean
of TROPOMI HCHO tropospheric columns, averaged on a 0.2◦× 0.2◦ grid using the HARP tool v.1.5 (https://atmospherictoolbox.org, last
access: 7 July 2020).

The tropospheric column uncertainty is divided into ran-
dom (precision) and systematic (accuracy) components and
is provided per pixel. It varies with the observation condi-
tions. Over remote regions at a moderate solar zenith an-
gle, the precision of an individual observation is about 5×
1015 molec. cm−2. This value agrees with the standard devi-
ation of the columns in the same region for a particular day.
The random uncertainty is dominated by the random error
in the slant columns. The tropospheric column accuracy is
the combined systematic uncertainty resulting from the slant
column, the air mass factor, and the background correction
errors. It varies between 30 % and 60 % of the columns. The
column averaging kernel and the a priori profiles are pro-
vided for every observation.

3 Ground-based FTIR HCHO data

We show in Fig. 1 a map of the ground-based FTIR sta-
tions used in this TROPOMI validation. The background
image represents the global TROPOMI monthly mean tro-
pospheric columns for September 2018, illustrating the dif-
ferent HCHO levels sampled by the ground-based net-
work: from clean Arctic and oceanic sites to very-high-
concentration sites such as Porto Velho, in the Amazon basin.

Table 2 lists the ground-based FTIR stations, their coordi-
nates and altitude, the spectrometer type, the retrieval code,
and the team involved in the measurements and/or the re-
trievals of HCHO. For more details on the monitoring of
FTIR solar absorption spectra at these stations, we refer to
Vigouroux et al. (2018) and references therein, and for the
FTIR retrieval principles we refer to e.g. Vigouroux et al.
(2009).

Atmos. Meas. Tech., 13, 3751–3767, 2020 https://doi.org/10.5194/amt-13-3751-2020

http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-Formaldehyde-Readme_20191213.pdf
https://atmospherictoolbox.org


C. Vigouroux et al.: TROPOMI–S5P formaldehyde validation using ground-based FTIR data 3755

The same retrieval settings are used at all the stations to
avoid introducing possible bias in the HCHO total columns
between the stations and inconsistent comparisons with the
satellite. Details are given in Vigouroux et al. (2018). The
main settings that might be responsible for internal biases
within the network are the spectroscopic database and the
fitted spectral windows, the spectroscopic parameters being
the main source of the FTIR HCHO systematic uncertainties.
The HCHO spectral signatures lie in the 3.6 µm region and
belong to the ν1 and ν5 bands (fitted windows are 2763.42–
2764.17, 2765.65–2766.01, 2778.15–2779.1, and 2780.65–
2782.0 cm−1). The spectroscopic database used is the atm16
linelist by Geoffrey Toon (JPL), which can be found at http://
mark4sun.jpl.nasa.gov/toon/linelist/linelist.html (last access:
7 July 2020). This linelist is optimized for the main absorbing
gases in the fitted windows (HDO, CH4, O3, N2O, CO2) and
is based on HITRAN 2012 (Rothman et al., 2013) for HCHO,
which used the work of Jacquemart et al. (2010).

The retrieval codes used in the FTIR NDACC community
are PROFITT9 (Hase et al., 2006) and SFIT4.0.9.4 (updated
from SFIT2; Pougatchev et al., 1995), which are both based
on the optimal estimation method (Rodgers, 2000). A past
comparison exercise has shown a very good agreement be-
tween the retrieved products obtained with these two codes
(Hase et al., 2004). Based on a priori profile information
(from the Whole Atmosphere Community Climate Model,
WACCM; Garcia et al., 2007) and an L1 Tikhonov regular-
ization matrix (Tikhonov, 1963), low-vertical-resolution pro-
files can be retrieved in principle as well as total columns.
However, as described in Vigouroux et al. (2018), the de-
grees of freedom for signal are very low for HCHO (me-
dian value of 1.1 for all FTIR sites), meaning that we es-
sentially have one piece of information. The FTIR total col-
umn averaging kernel shows a decrease in the sensitivity at
the surface, which is quite similar to the TROPOMI sensitiv-
ity. This can be seen in Fig. 2 as an example for the Maïdo
station. We also show in Fig. 2 the FTIR a priori profile at
Maïdo, which is based on a climatology (1980–2020) from
the WACCM model calculated at Maïdo. A single profile is
used for the whole time series at a specific station (Vigouroux
et al., 2018), while TROPOMI uses daily a priori profiles
from TM5 (Sect. 2). An example is shown in Fig. 2 for
18 January 2019.

The FTIR uncertainty budget is calculated following the
formalism of Rodgers (2000) and is described in Vigouroux
et al. (2018). It is separated into random and systematic
components. The random uncertainty is dominated at all
sites by the measurement noise uncertainty, which can vary
from site to site depending on the spectrometer. The un-
certainty in the retrieved FTIR total columns for individ-
ual sites is given in Vigouroux et al. (2018) for the 21
sites involved at that time. We obtain a median random un-
certainty of 2.3× 1014 molec. cm−2, with a large value of
11.1×1014 molec. cm−2 only at Mexico City, where a lower-
resolution instrument is used (Vertex 80). The smoothing

uncertainty in the total column has a non-negligible ran-
dom component (median value of 1.2× 1014 molec. cm−2).
With the inclusion of the smoothing error in the uncer-
tainty budget, the median total random uncertainty is 2.9×
1014 molec. cm−2, which is very close to our empirical un-
certainty estimation of 2.8× 1014 molec. cm−2 based on the
standard deviation of the differences between two individual
subsequent FTIR measurements (within an interval of maxi-
mum 30 min), confirming our theoretical uncertainty calcula-
tion. Since the Vigouroux et al. (2018) paper, five more sites
have joined the HCHO harmonized network. The mean ran-
dom errors of individual FTIR measurements are 1.4×1014,
2.7×1014, 2.2×1014, 5.2×1014, and 5.6×1014 molec. cm−2

for Jungfraujoch, Rikubetsu, Tsukuba, Palau, and Xianghe,
respectively.

The forward-model parameter median systematic uncer-
tainty in the HCHO FTIR total columns is 13 % in the net-
work described by Vigouroux et al. (2018). As already men-
tioned, the dominating systematic uncertainty sources are
the spectroscopic parameters: the line intensities and the
pressure-broadening coefficients of the fitted HCHO absorp-
tion lines. We use 10 % for the three parameters: the line
intensity and the air- and self-broadening coefficients. The
systematic uncertainty can be larger (up to 21 %–26 %) at
the stations using the PROFFIT9 retrieval code due to an as-
sumed uncertainty in the channeling that is not taken into
account yet in the SFIT4 code. However, this channeling un-
certainty can also be negligible at some sites (it depends on
each instrument), and more investigation is needed at each
station to avoid its underestimation or overestimation. The
median smoothing systematic uncertainty is 3.4 %. For the
five added sites, the median total systematic uncertainty is
13 % (Jungfraujoch, Tsukuba, Palau) or 14 % (Rikubetsu, Xi-
anghe), commensurate with the other sites.

4 Validation method

4.1 Collocation criteria

The precision of a single pixel of the TROPOMI HCHO
measurement is expected to be below 1.2×1016 molec. cm−2

(pre-launch requirements) or even better, reaching 5×
1015 molec. cm−2 for remote areas (after-launch uncertainty
analysis; see Sect. 2). These values are quite large com-
pared to the measured levels of HCHO (around 1.5×
1015 molec. cm−2 for very clean sites to around 9×
1015 molec. cm−2 for a city such as Paris). It is therefore nec-
essary to average several pixels in order to reduce the random
uncertainty of the TROPOMI mean HCHO data, improve
the detection level, and increase the TROPOMI sensitivity
to day-to-day variability. For this reason, we choose to aver-
age the TROPOMI pixels located within 20 km of the FTIR
station. Once we filter out the TROPOMI pixels that do not
reach the recommended quality criteria (QA flag > 0.5; see
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Table 2. FTIR stations that contribute to the present work: location, altitude (in kilometres above sea level), instrument type, retrieval code,
and team.

Station Latitude Longitude Altitude Instrument Code Team

Eureka 80.05◦ N 86.42◦W 0.61 Bruker 125 HR SFIT4 U. of Toronto
Ny-Ålesund 78.92◦ N 11.92◦ E 0.02 Bruker 120 HR SFIT4 U. of Bremen
Thule 76.52◦ N 68.77◦W 0.22 Bruker 125 HR SFIT4 NCAR
Kiruna 67.84◦ N 20.40◦ E 0.42 Bruker 120/5 HR PROFFIT KIT–ASF; IRF Kiruna
Sodankylä 67.37◦ N 26.63◦ E 0.19 Bruker 125 HR SFIT4 FMI; BIRA
St. Petersburg 59.88◦ N 29.83◦ E 0.02 Bruker 125 HR SFIT4 SPbU
Bremen 53.10◦ N 8.85◦ E 0.03 Bruker 125 HR SFIT4 U. of Bremen
Paris 48.97◦ N 2.37◦ E 0.06 Bruker 125 HR PROFFIT Sorbonne U.
Zugspitze 47.42◦ N 10.98◦ E 2.96 Bruker 120/5 HR PROFFIT KIT–IFU
Jungfraujoch 46.55◦ N 7.98◦ E 3.58 Bruker 120 HR SFIT4 U. of Liège
Toronto 43.60◦ N 79.36◦W 0.17 Bomem DA8 SFIT4 U. of Toronto
Rikubetsu 43.46◦ N 143.77◦ E 0.38 Bruker 120/5 HR SFIT4 Nagoya U.; NIES
Boulder 40.04◦ N 105.24◦W 1.61 Bruker 125 HR SFIT4 NCAR
Xianghe 39.75◦ N 116.96◦ E 0.05 Bruker 125 HR SFIT4 CAS; BIRA
Tsukuba 36.05◦ N 140.12◦ E 0.03 Bruker 125 HR SFIT4 NIES; Tohoku U.
Izaña 28.30◦ N 16.48◦W 2.37 Bruker 120/5 HR PROFFIT AEMET; KIT–ASF
Mauna Loa 19.54◦ N 155.57◦W 3.40 Bruker 125 HR SFIT4 NCAR
Mexico City (UNAM) 19.33◦ N 99.18◦W 2.26 Bruker Vertex 80 PROFFIT UNAM
Altzomoni 19.12◦ N 98.66◦W 3.98 Bruker 120/5 HR PROFFIT UNAM
Palau 7.34◦ N 134.47◦ E 0.03 Bruker 120/5 M SFIT4 U. of Bremen
Paramaribo 5.81◦ N 55.21◦W 0.03 Bruker 120/5 M SFIT4 U. of Bremen
Porto Velho 8.77◦ S 63.87◦W 0.09 Bruker 125 M SFIT4 BIRA
Maïdo (LA.REUNION.MAIDO) 21.08◦ S 55.38◦ E 2.16 Bruker 125 HR SFIT4 BIRA
Wollongong 34.41◦ S 150.88◦ E 0.03 Bruker 125 HR SFIT4 U. of Wollongong
Lauder 45.04◦ S 169.68◦ E 0.37 Bruker 120 HR SFIT4 NIWA

Figure 2. (a, b) Typical total column averaging kernel (AK) from FTIR (blue) and TROPOMI (red) measurements at the Maïdo station
(altitude: 2.2 km). (c, d) A priori profile used in the FTIR retrievals for the whole time series at Maïdo (blue), and an example of TROPOMI
a priori profile at Maïdo (the 18 January 2019).

Sect. 2), we obtain a median value of 34 pixels to average. In
cloudy conditions, this number can be smaller. A collocation
pair is kept when at least 10 pixels can be averaged. A higher
number of pixels can be averaged for Arctic stations (around
45–60), which is useful due to the very low HCHO levels to
be detected there. At sub-tropical and tropical stations, the
median number of pixels is around 20–29. The higher num-
ber of pixels in the Arctic is due to the fact that each FTIR
measurement is collocated to all S5P pixels that match the
collocation criteria, even if these pixels originate from differ-
ent orbits with different overpass times.

Before choosing the 20 km collocation criterion, we tested
several distances (10, 20, 30, 40, and 50 km). The 10 km cri-
terion was discarded because of the poor number of remain-
ing coincidences, leading to less robust statistics. The 20 to
50 km criteria give similar biases between TROPOMI and
FTIR. The standard deviations of the comparisons usually
decrease slightly with increasing collocation distance due to
a smaller TROPOMI random uncertainty (more pixels to av-
erage) except at the most polluted sites. However, the ratio
between the standard deviations and the random uncertainty
budgets increases with the collocation distance at all sites,
pointing to an increased random error due to the collocation.
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We therefore choose the 20 km distance to reduce the random
spatial collocation error.

The time coincidence criterion is set to ±3 h. This choice
is a compromise to obtain a significant number of coinci-
dences between TROPOMI and FTIR data, noting that the
median FTIR measurement frequency is five per day (with
a range of 3 to 10 depending on the station). A shorter time
coincidence criterion significantly decreases the numbers of
sampled collocated days and sometimes months, which is a
limitation for checking the TROPOMI seasonality (sampled
months: 267 for 1 h and 305 for 3 h criteria). Note that a 6 h
criterion would provide 20 additional sampled months: the
critical stations are Mauna Loa, Altzomoni, and Paramaribo,
for which we would have coincidences back to May 2018.
The standard deviations of the TROPOMI–FTIR compar-
isons are usually smaller with a longer time coincidence cri-
terion, but this can be explained by the increased number
of pixels (improved TROPOMI precision of the mean) in
the 6 h collocation, mainly at Arctic sites with an increased
number of multiple orbits. Despite the smaller standard de-
viations usually obtained within a 6 h criterion, we finally
choose 3 h to reduce the possible impact of some passing
plumes and of the HCHO diurnal cycle on the comparisons.
The diurnal cycle at most of the FTIR stations can be found
in Vigouroux et al. (2018) and its Supplement. At many sta-
tions no significant diurnal cycle was observed, but in some
cases, mainly polluted sites, we obtained a maximum around
12:00–01:00 p.m. local time, close to the TROPOMI over-
pass time. At the Mexico City station, where the diurnal cy-
cle amplitude is the greatest, the effect of collocation time
(6 h vs 3 h) on the statistical bias is 4 %.

4.2 Building inter-comparable products

Some manipulation of the original data products is needed
before looking at the differences between TROPOMI and
FTIR data. Both measurements provide total columns (for
FTIR) or tropospheric columns (for TROPOMI) that have a
lower sensitivity near the ground (see Fig. 2), and their re-
trievals use a priori profile information that has been cho-
sen differently (TROPOMI: daily a priori profiles from TM5;
FTIR: single a priori profile from climatology of WACCM).
To correct for this, for each S5P individual pixel collo-
cated with each FTIR measurement, we use the comparison
method described in Rodgers and Connor (2003). First, the
a priori substitution is applied using the S5P a priori profile
xS,a as the common a priori profile. For this, the S5P a priori
profile is re-gridded to the FTIR retrieval grid (xS,a/F) using
a mass conservation algorithm (Langerock et al., 2015). In
the rare situation that the satellite pixel elevation is above the
FTIR site, the S5P a priori profile is extended to the FTIR
instrument’s altitude. The re-gridded S5P a priori xS,a/F is
then substituted following Rodgers and Connor (2003), and
we finally use the corrected FTIR-retrieved profile x′F in the

comparisons:

x′F = xF+ (AF− I)(xF,a− xS,a/F), (2)

where xF is the original FTIR-retrieved profile, AF is the
FTIR averaging kernel matrix, I is the unit matrix, and xF,a
is the FTIR a priori profile.

The next step, following Rodgers and Connor (2003), is to
smooth the corrected FTIR profile with the S5P column av-
eraging kernel aS. For that purpose we re-grid the corrected
FTIR profile x′F to the S5P column averaging kernel grid
(x′F/S) and apply the smoothing equation:

csmoo
F = cS,a+ aS(x′F/S− xS,a), (3)

with cS,a being the S5P a priori column derived from the S5P
a priori profile. We obtain a smoothed FTIR column csmoo

F
associated with a collocated TROPOMI pixel. In the case of
mountain sites where the pixel altitude is below the instru-
ment’s height, the re-gridding of the FTIR profile x′F/S is
done such that the FTIR profile is extended with the S5P a
priori profile (such an extension is invariant under the latter
smoothing equation). Note that this FTIR re-gridding to the
satellite grid also has the advantage that only the FTIR pro-
file up to the altitude of the satellite product (which is only a
tropospheric column) remains in the re-gridded column: we
therefore finally compare tropospheric columns in both prod-
ucts.

Next, we need to take into account that, for mountain sta-
tions, the difference between satellite columns and the orig-
inal ground-based columns can be significant. To bring both
satellite and smoothed FTIR column csmoo

F (which is calcu-
lated as a column valid at the satellite’s pixel surface) values
to the scale of the original FTIR columns, we apply a scaling
factor f representative of the fraction of the partial column
between the satellite pixel altitude and the FTIR station alti-
tude. This scaling factor is derived from the satellite a priori
profile and is defined as

f = 1−
c1zS,a

cS,a
, (4)

where c1zS,a denotes the partial column derived from the S5P
a priori profile between the pixel surface and the FTIR sta-
tion. The TROPOMI column cS and its random and system-
atic uncertainties are also scaled with the same factor so that
finally the collocated products are all expressed at the al-
titude of the FTIR site (and not of the pixel surface). For
mountain stations, the scaling factor f , calculated for each
satellite’s pixel, can reach a minimum of 0.5 for stations lo-
cated at about 2 km altitude from the satellite’s pixel surface
(Maïdo, Izaña, or Altzomoni) or even 0.3 at the higher sites
Jungfraujoch and Zugspitze, while at sea-level sites it is of
course close to 1.0. In the rare cases where the satellite pixel
is above the FTIR station, we apply the conversion factor
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f = 1+ c1zS,a/cS,a, where the satellite a priori profile is ex-
trapolated to the station surface in order to calculate the a
priori partial column between both altitudes.

The final step is to average the individual smoothed and
scaled FTIR columns csmoo

F ×f that are taken within 3 h and
the TROPOMI cS×f individual pixel columns that are avail-
able within 20 km (which can belong to different orbits) to
form the collocated pair FTIRi and TROPi used in the next
section.

4.3 Estimation of the TROPOMI accuracy and
precision

In Sect. 5.1, we assess whether the TROPOMI accuracy
is compliant with pre-launch requirements (40 %–80 %, as
reported in the official ESA document S5P-RS-ESA-SY-
164, 2014, Table 3, p. 19). The accuracy of the TROPOMI
HCHO measurements will be estimated by deriving the me-
dian of the relative differences (BIAS) between the collo-
cated TROPi and the reference FTIRi data at each station:

BIAS=med
(
(TROPi −FTIRi)

FTIRi

)
. (5)

We can note that the applied scaling factor f (see previ-
ous section) does not affect the BIAS estimation even at high
mountain stations because it cancels in the division.

For robust statistics, the median is preferred to the mean
due to the presence of outliers (a few remaining TROPOMI
outliers after the QA filter and some very small FTIR values
that give very large relative differences after the division in
Eq. 5). The presence of TROPOMI outliers is minimized by
using the median, but they should ideally be removed by the
QA filter. An improvement of the QA value is foreseen in the
next product version, which should improve, for example, the
filtering at Arctic sites (SZA > 75◦).

In the next section, we also compare the obtained BIAS
with the systematic uncertainty in the difference σsyst to eval-
uate the TROPOMI uncertainty budget:

σ 2
syst = (σS,syst)

2
+ aTS SF,systaS

+ aTS (I−AF)Svar,syst(I−AF)
T aS, (6)

where σS,syst is the systematic uncertainty of TROPOMI
columns, as provided in the public release database (but
scaled for altitude; see Sect. 4.2); aS is the TROPOMI to-
tal column averaging kernel; and SF,syst is the FTIR system-
atic covariance matrix provided in volume mixing ratio units
in the standardized GEOMS format, converted to partial col-
umn units in Eq. 6. The last term is the impact of different
low-vertical-resolution profile measurements (the smoothing
error) on the comparisons (see Eq. 27 in Rodgers and Con-
nor, 2003), where, for the systematic uncertainty part, we ac-
count for possible bias in xS,a by following von Clarmann
(2014):

Svar,syst = (xS,a−< x >)(xS,a−< x > )T .

The xS,a−< x > is not known, and we follow Vigouroux
et al. (2018), with xS,a−< x>=− 50%, −20%, −10%,
+10%, +8%, and +5% for the ground–4, 4–8, 8–13, 13–
25, 25–40, and 40–120 km layers, respectively (expressed in
molecules per square centimetre). The last term of Eq. (6) is
found to be of the order of a few per cent and therefore neg-
ligible in σsyst. In practice, the systematic uncertainty in the
difference σsyst is dominated by the TROPOMI systematic
uncertainty of about 40 %, FTIR having a median system-
atic uncertainty of only 13 % and a maximum of 26 % (see
Sect. 3).

Similarly, the precision of the TROPOMI HCHO products
is estimated in Sect. 5.2 not with the usual standard devia-
tion, which is not robust in the case of outliers, but with the
median absolute deviation (MAD; see Huber, 1981) of the
differences (DIFFi = TROPi-FTIRi):

MAD= k×med(abs(DIFFi −med(DIFFi))), (7)

where k = 1.4826 for a correspondence with the 1σ standard
deviation for normal distribution without outliers.

In Sect. 5.2, we compare the obtained MAD to the ran-
dom uncertainty in the differences σrand, which is calculated
following Rodgers and Connor (2003):

σ 2
rand = (σS,rand)

2
+ aTS SF,randaS

+ aTS (I−AF)Svar,rand(I−AF)
T aS, (8)

where σS,rand is the random uncertainty of TROPOMI
columns, as provided in the public release database (but
scaled for altitude; see Sect. 4.2); SF,rand is the FTIR ran-
dom covariance matrix; and Svar,rand, to take into account
the impact of low vertical resolution on the random part of
the uncertainty, is the natural variability matrix chosen to
be 50 %, 50 %, 40 %, 35 %, 30 %, 30 %, and 10 % for the
ground–4, 4–8, 8–13, 13–25, 25–40 km, and 40–120 km lay-
ers, respectively (expressed in molecules per square centime-
tre). As for the systematic uncertainty part, the random un-
certainty in the difference is dominated by the TROPOMI
random uncertainty (median of about 1.1×1015 molec. cm−2

for TROPi within 20 km), while FTIRi has a median ran-
dom uncertainty of 2.0× 1014 molec. cm−2. The last term
of Eq. (8) is comparable to the FTIR one (median value of
2.4× 1014 molec. cm−2).

We can use MAD as an upper limit of the TROPOMI pre-
cision since collocation in space and time of the sounded air
masses is never perfect. It is compared in the next section to
the pre-launch precision requirement. The MAD estimation
is influenced by the scaling factor f , which is important only
for high-altitude sites (Sect. 4.2). It should be interpreted as
an estimation of the precision of a TROPOMI column that
would be measured at the altitude of the FTIR site. The ran-
dom uncertainty in the differences is also expressed at the al-
titude of the FTIR site so that the comparison between MAD
and σrand is always valid.

Atmos. Meas. Tech., 13, 3751–3767, 2020 https://doi.org/10.5194/amt-13-3751-2020



C. Vigouroux et al.: TROPOMI–S5P formaldehyde validation using ground-based FTIR data 3759

The observed BIAS between TROPOMI and the reference
FTIR data is statistically significant if it exceeds its statistical
error: ERRB = 2×MAD/

√
n (with n being the number of

coincidences).

5 Validation results

In this section, we provide a table and plots for the offline
(RPRO+OFFL) HCHO TROPOMI product. We do not show
detailed results for the near-real-time (NRTI) product ver-
sions 1.1.(5-7) because they are very similar to the offline
version. Numbers for the main conclusions will be given in
the text for this NRTI product.

5.1 TROPOMI observed BIAS and accuracy

In Table 3, we provide, at each individual FTIR station, the
mean of the FTIR HCHO total columns (mean FTIR), the ob-
tained median of the relative differences (BIAS; in per cent
to compare with the pre-launch TROPOMI accuracy require-
ments of 40 %–80 %; Eq. 5), the error in the BIAS (ERRB),
and the number of collocated pairs n. The systematic uncer-
tainty in a single difference is also given (in per cent; calcu-
lated from Eq. 6, where each term has been expressed in per
cent; dividing by each individual instrument HCHO column).

We have ordered the stations not according to decreasing
latitude as in Table 2 but to increasing mean HCHO FTIR
column. The reason is that we observe a tendency of the
BIAS between TROPOMI and FTIR: while the BIAS is al-
ways (with the exception of Eureka) positive or not signif-
icant (if BIAS < ERRB) for very clean to clean sites (with
mean HCHO levels lower than 6.5× 1015 molec. cm−2), it
is negative and very consistent for the stations with higher
HCHO levels ranging from 8.7 to 28.6× 1015 molec. cm−2

(−29 % to −36%), with a small error in the bias (2 % to
6 %). Note that the BIAS is also consistent at Paramaribo
(−26%) but with a larger error (14 %) due to a small num-
ber of collocations. This dependence of the TROPOMI bias
on the HCHO concentration levels is visualized in Fig. 3,
where the BIAS at each station is plotted as a function
of the mean FTIR columns. It is therefore not appropri-
ate to use the median bias obtained using the data from
all stations together (−10%) if one wants to correct the
TROPOMI HCHO data in model inversion studies. If we
calculate the median of the differences for HCHO FTIR
columns > 8.0× 1015 molec. cm−2, we obtain a significant
negative bias of −30.8± 1.4 %. The detection of this bias
is especially important for modelling studies that use satel-
lite data to optimize the volatile organic compound emission
sources, as done in e.g. Fortems-Cheiney et al. (2012) and
Stavrakou et al. (2015) with OMI and GOME-2. The bias
for clean HCHO levels (< 2.5×1015 molec. cm−2) is signif-
icantly positive (+26± 5 %).

The validation results for the NRTI TROPOMI products
give very similar results: a negative BIAS (−31.7± 1.8 %)
for the high HCHO levels (> 8.0× 1015 molec. cm−2) and
a positive one (+22± 7 %) for low HCHO levels (< 2.5×
1015 molec. cm−2). The small differences are mainly due to
the different sampling of the comparisons (NRTI data have
been retrieved since December 2018, while the OFFL data
have been retrieved since May 2018).

The different TROPOMI BIAS at different HCHO levels
points to the presence of two kinds of bias: a constant one
and a proportional one. They can be obtained by using the
scatter plot of the two instruments shown in Fig. 4: the con-
stant bias is the intercept of the linear relationship between
TROPOMI and FTIR, while the proportional bias is given by
its slope. But this has to be done carefully: a usual linear re-
gression by ordinary least squares (OLS) is not statistically
robust and can give spurious results in the presence of out-
liers and/or heteroscedasticity. We are confronted with both
problems in our scatter plot: we do have outliers, and the un-
certainty increases with HCHO levels. Therefore, we use the
robust Theil–Sen estimator (Sen, 1968), where the slope s of
the scatter plot is the median of the slopes of the lines through
all pairs of data points (TROPj – TROPi)/(FTIRj – FTIRi),
with FTIRj 6= FTIRi . The intercept b is then the median of
TROPi − s×FTIRi . Using this robust estimator, we obtain
the relation TROP= 0.64× FTIR+1.10×1015 molec. cm−2.
We have calculated the uncertainties in s and b using 2×
MAD/

√
n, with MAD being the median absolute deviation

of the slopes and intercepts of the pairs of data points and n
being the number of pairs. We obtain an uncertainty of 0.03
and 0.05×1015 molec. cm−2 for s and b, respectively. There-
fore, both the constant (1.10±0.05×1015 molec. cm−2) and
proportional (0.64± 0.03 %) biases are significant.

Using the scatter plot to derive the constant and propor-
tional biases is very sensitive to the range of observed val-
ues. As an example, if one would only use HCHO FTIR
data > 8.5× 1015 molec. cm−2, one would obtain a slope of
0.51 and an intercept of 3.2×1015 molec. cm−2, which would
point to a strong overestimation and underestimation of the
constant and proportional biases, respectively. This would
lead to erroneous prediction of overall TROPOMI bias out-
side the range of observed values. This demonstrates why
such a ground-based network covering very clean sites to
high-HCHO-level sites is crucial to providing a good esti-
mate of both constant and proportional biases of TROPOMI.

The BIAS values given in Table 3 are a combination of
the constant and proportional biases and can be used to sta-
tistically assess the TROPOMI HCHO overall accuracy. We
can easily see from Table 3 that all BIAS values are within
the upper limit of the pre-launch requirement of 80 %, and
they are within the 40 % lower limit for 20 of the 25 stations.
The five stations exceeding a 40 % BIAS are clean (Arc-
tic or mountains) sites, with mean HCHO columns below
2.5× 1015 molec. cm−2. But these are sites where the sys-
tematic uncertainty in the differences (see Table 3 and Eq. 6)
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Table 3. Validation of TROPOMI RPRO+OFFL. Please note that the ordering of the sites is by increasing mean HCHO column. For
each station: mean of the HCHO FTIR total columns (in molecules per square centimetre); median of the relative differences, BIAS =med
((TROPi -FTIRi )/FTIRi ) and its error ERRB (in per cent; see text); number of collocated pairs n; systematic uncertainty in a single difference
σsyst (in per cent; Eq. 6); median absolute deviation (MAD; in molecules per square centimetre; Eq. 7); random uncertainty in a single
difference σrand (in molecules per square centimetre; Eq. 8); and pre-launch TROPOMI precision requirements associated with the choice
of 20 km around the station Requ = 1.2× 1016/

√
npix molec. cm−2, with npix being the mean number of pixels averaged in the collocated

TROPOMI data. The Pearson correlation coefficient R is given for individual coincidences (±3 h) and for monthly means of coincident data.

Station Mean FTIR BIAS n σsyst MAD σrand Requ. npix R R

(molec. cm−2) (± ERRB %) (%) (molec. cm−2) (molec. cm−2) (molec. cm−2) (indiv.) (monthly)

Jungfraujoch 1.24E+15 19± 15 87 58 9.0E14 5.6E14 2.5E15 24 0.61 0.70
Zugspitze 1.36E+15 52± 10 184 59 7.8E14 5.0E14 2.1E15 33 0.71 0.86
Mauna Loa 1.60E+15 52± 22 52 54 1.3E15 8.8E14 2.5E15 23 −0.09 −0.05
Eureka 1.65E+15 −40± 11 114 97 1.1E15 5.3E14 1.8E15 45 0.22 0.43
Maïdo 1.86E+15 5± 9 155 43 1.0E15 7.1E14 3.0E15 16 0.45 0.53
Ny-Ålesund 1.90E+15 43± 20 47 41 1.2E15 4.9E14 1.7E15 52 0.35 0.38
Thule 2.06E+15 −3± 5 346 57 9.6E14 4.8E14 1.6E15 60 0.56 0.82
Izaña 2.07E+15 13± 10 97 83 8.9E14 6.4E14 2.5E15 24 0.47 0.79
Altzomoni 2.44E+15 66± 18 67 42 1.6E15 8.9E14 2.6E15 22 0.50 0.86
Kiruna 2.44E+15 50± 12 146 67 1.5E15 8.8E14 1.7E15 60 0.64 0.72

Lauder 2.54E+15 −11± 14 225 78 2.6E15 1.3E15 2.1E15 33 0.38 0.65
Rikubetsu 3.16E+15 26± 40 16 50 2.8E15 1.0E15 1.9E15 41 0.45 0.60
Palau 3.80E+15 0± 15 10 36 9.8E14 8.2E14 2.7E15 20 0.15 0.33
Sodankyla 4.15E+15 8± 7 307 51 2.5E15 1.2E15 1.7E15 48 0.51 0.69
Boulder 5.91E+15 −1± 9 103 50 2.2E15 1.3E15 2.2E15 31 0.79 0.90
St. Petersburg 6.21E+15 −4± 8 158 44 3.0E15 1.2E15 1.9E15 42 0.68 0.78
Wollongong 6.36E+15 9± 8 322 54 3.3E15 1.9E15 2.3E15 27 0.78 0.94
Tsukuba 7.05E+15 −23± 12 34 44 3.1E15 1.2E15 2.2E15 31 0.68 0.51
Bremen 7.77E+15 −5± 12 46 39 3.2E15 1.4E15 1.8E15 43 0.63 0.68

Paramaribo 8.43E+15 −26± 14 15 36 3.3E15 1.3E15 2.5E15 23 0.12 0.14
Paris 8.72E+15 −29± 6 128 44 3.1E15 1.2E15 1.9E15 41 0.76 0.79
Toronto 1.06E+16 −34± 4 251 38 3.7E15 1.6E15 2.3E15 29 0.73 0.95
Xianghe 1.43E+16 −33± 2 384 38 5.5E15 2.1E15 2.0E15 36 0.86 0.97
Mexico City (UNAM) 1.92E+16 −27± 4 154 32 5.9E15 2.6E15 2.5E15 25 0.34 0.27
Porto Velho 2.86E+16 −36± 3 81 31 8.3E15 3.6E15 2.2E15 29 0.81 1.00

All stations BIAS 6.60E+15 −10± 2 3529 48 2.4E15 1.2E15 2.1E15 34 0.87 0.91

Low HCHO BIAS 1.64E+15 +26± 5 1321 52 1.3E15 7.7E14 2.2E15 31 0.40
FTIR < 2.5× 1015

High HCHO BIAS 1.57E+16 −30.8± 1.4 952 46 4.8E15 2.1E15 2.1E15 33 0.88
FTIR > 8.0× 1015

is usually also the largest, leading to a good correspondence
between observed higher BIAS and higher calculated uncer-
tainty for three of these five stations (Zugspitze, Mauna Loa,
and Kiruna).

Therefore, we can conclude that the TROPOMI HCHO ac-
curacy satisfies the pre-launch requirements and that the sys-
tematic uncertainty budget is in very good agreement with
observed bias except at very few stations (Ny-Ålesund: 43>
41%; Altzomoni: 71> 42%; and Porto Velho: 36> 31%).
At most of the other stations, the reported systematic uncer-
tainty tends to be larger than the BIAS. We find the same
conclusions with TROPOMI accuracy when making compar-
isons with the NRTI products.

The systematic uncertainties leading to the observed con-
stant and proportional biases of our study have been calcu-
lated as described in Sect. 3 of De Smedt et al. (2018). From
the error propagation of the HCHO TROPOMI tropospheric

columns (see Eq. 1), it can be found that the proportional bias
is more likely due to air mass factor (M) uncertainties σM ,
while the constant bias is more likely due to the uncertainties
of the slant column uncertainties σN,S and to the uncertainty
of the background correction of the slant columns. This can
be seen in Eq. (13) of De Smedt et al. (2018), where σM is
proportional to Ns−N(s,0). We can list some known difficul-
ties of the satellite product:

– The negative bias over high-HCHO-level sites (biomass
burning or megacities) could be due to aerosol effects.
There is no plan to include a correction for aerosols in
the operational product, but specific studies are foreseen
to check its impact in a scientific product.

– The positive bias over clean polar sites could be due
to the solar zenith angle (SZA) dependency of the slant
column fit results (because of spectral interferences with
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Figure 3. BIAS at each station (in per cent) as a function of the mean FTIR total columns (molec. cm−2). The grey bars are the systematic
uncertainty of the differences σsyst, and the coloured error bars are the 2σ error in the bias ERRB. Black markers are for mountain stations;
blue markers are for Arctic stations; cyan markers are for Oceania, Australia, and New Zealand; magenta markers are for China and Japan;
red markers are for mid-latitude Europe and North America; and green markers are for Central and South America.

Figure 4. Scatter plots of TROPOMI versus FTIR data for individual collocated pairs (±3 h; a), and for the monthly means of collocated
data (b). The non-robust OLS fit of the data is given in the legend and plotted as a black line, while the slope and intercept obtained with the
robust Theil–Sen estimator are given by the red line and text.

ozone and BrO). As explained in Sect. 2, the QA values
need to be improved at large SZAs, which is foreseen in
the next version.

– The current albedo climatology is too coarse for
TROPOMI, which could especially be a problem for po-
lar, mountain, or coastal sites. A climatology based on
TROPOMI measurements is under development.

– It is also foreseen to test a regional model at higher spa-
tial resolution for an improvement of the a priori HCHO
profiles. This should improve the TROPOMI-retrieved
product, especially at polluted sites. However, the vali-
dation presented here already takes the a priori informa-
tion and averaging kernels into account. We therefore do
not expect an important effect of the improved a priori
profiles on the validation results.
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Figure 5.

5.2 Observed TROPOMI precision

For discussing the observed TROPOMI precision, we pro-
vide in Table 3 the MAD for each station (in absolute
value to compare with the pre-launch precision require-
ment of 1.2× 1016 molec. cm−2 for a single pixel; Eq. 7).
Indeed, for each site, the MAD is an upper limit for the
TROPOMI precision as determined by our validation (see
Sect. 4.3), while the σrand given in Table 3 is an approx-
imation of the precision as provided in the satellite prod-
uct (because the FTIR random uncertainty is much smaller
than that of the TROPOMI). The detection limit, usually de-
fined as being 3 times the precision, can then be obtained
at each station for an average of TROPOMI pixels within
20 km by multiplying either the σrand (theoretical estima-
tion by TROPOMI data providers, which is probably un-
derestimated, as seen below) or the MAD (upper limit de-
termined by the validation), both given in Table 3, by 3.
The precision pre-launch requirement is provided at each
site, taking into account the mean number of pixels npix

involved in the collocated TROPOMI data (Requ. = 1.2×
1016 molec. cm−2/

√
npix). We see that for all the cleanest

sites (< 2.5× 1015 molec. cm−2), where an additional col-
location uncertainty is expected to be small, the MAD is
well within the pre-launch requirements. The MAD for these
cleanest sites has a median of 1.3× 1015 molec. cm−2 and a
minimum of 0.9×1015 molec. cm−2. This is a good estimate
of the precision that TROPOMI can reach in remote condi-
tions. For a single pixel, the best TROPOMI precision under
remote conditions is therefore 5–8× 1015 molec. cm−2.

It must be noted that the pre-launch HCHO precision re-
quirements were chosen based on pre-launch requirements
for the instrument signal-to-noise ratio (equivalent to OMI).
The actual signal-to-noise ratio of the measurements appears
to be better than the requirements, especially in the HCHO
wavelength fitting range. Furthermore, the good quality of
the recorded spectra allowed for an increase in the size of the
TROPOMI HCHO fitting spectral interval just after launch,
further improving the precision of the slant columns. Indeed,
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Figure 5. Monthly mean time series of FTIR raw data (black), FTIR data smoothed with the TROPOMI column averaging kernel (blue),
and TROPOMI (red) at each site. Only data in coincidence are included in the monthly mean to avoid sampling bias. When the number of
coincidences within 1 month is smaller than 10, it is written below the monthly mean.

as seen in Table 3, only at the three highest-HCHO-level
sites (Xianghe, Mexico City, and Porto Velho) are the pro-
vided random uncertainties as high as the pre-launch require-
ments. The actual provided random uncertainty is smaller,
and we can see that even for clean sites the observed MAD
is larger than the random uncertainty in the differences by a
factor of 1.6. This factor increases up to 1.8 if we take into
account all the stations, but this is expected due to a col-
location uncertainty that should have more impact at high-
level sites (the factor rises up to 2.3 for high HCHO levels
> 8.0×1015 molec. cm−2). Our comparisons suggest that the
TROPOMI random uncertainty is underestimated by at least
a factor of 1.6 and up to a maximum of 2.3 (if one were
to assume the collocation uncertainty to be smaller than the
TROPOMI uncertainty). This underestimation could be due
to the fact that the uncertainties associated with the air mass
factor calculation and with the background correction step
are currently assumed to be fully systematic. The discrimi-
nation between the random and systematic part of the uncer-
tainties might be refined in the future based on such valida-
tion results.

5.3 Observed TROPOMI monthly variability

The Pearson correlation coefficient is very good for the collo-
cated monthly means of TROPOMI and FTIR data (0.91; see

Table 3 and Fig. 4) and is usually good for individual sites.
However, Pearson correlation is not robust and can give a
wrong conclusion when only few data are coincident, espe-
cially when outliers are present. We have 17 months of coin-
cident TROPOMI and FTIR measurements in the best cases,
while there are only 4 for the newest stations Palau and Porto
Velho. We therefore verify that the TROPOMI precision al-
lows the seasonal variability to be well captured even at very
clean sites, which can be at the limit of the satellite detection,
by plotting the individual monthly mean time series in Fig. 5.

The seasonal variability, with a maximum in July–August,
is well observed at all the Arctic sites (Eureka, Ny-Ålesund,
Thule, Kiruna, and Sodankylä). The monthly mean correla-
tion is better than 0.69 except at Eureka and Ny-Ålesund. It
can be seen in Fig. 5 that September 2019 is very high in
TROPOMI data at Ny-Ålesund, and only one coincidence
is found for this month. Removing this last outlier gives
a 0.76 correlation coefficient at this station. The northern
mid-latitude clean sites (mountains: Jungfraujoch, Zugspitze,
Izaña) also display a seasonal variability in very good
agreement, with correlation coefficients higher than 0.70.
The clean Japanese site Rikubetsu shows poorer correlation
(0.60), but only few data are in coincidence. The stations
where we find the poorer correlations are the oceanic sites.
The poorest one is Mauna Loa, but this is expected due to the
very small seasonal variability there and the small number
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of coincidences. A similar situation is observed at the other
recent oceanic site Palau, where only 4 months of data are
available. At the oceanic site Maïdo, we find a good agree-
ment in most of the months but not in October–December,
which are the predominant biomass-burning months in the
region, so the collocation of the plumes might play a role
there. Finally, at Lauder, TROPOMI shows many negative
values in the beginning of the period (May–September 2018),
which is responsible for a lower correlation (0.65) and for
the negative bias there (although not significant), while other
clean sites usually show positive ones (see Table 3).

The higher-HCHO-level sites show a TROPOMI seasonal
variability in very good agreement with FTIR, with corre-
lation larger than 0.90 for Boulder, Wollongong, Toronto,
Xianghe, and Porto Velho. At Tsukuba, removing the out-
lier of one coincidence in November 2018 increases the cor-
relation to 0.93. The poorest correlation (0.14) is found at
the coastal site Paramaribo, where usually only one coinci-
dence per month is found. Looking at the highest-HCHO-
level sites, these monthly mean time series also confirm that
TROPOMI has more difficulty reproducing the months with
the highest enhancements, which is responsible for the sig-
nificant negative bias (−31%) found in the previous section
for high HCHO levels (> 8.0× 1015 molec. cm−2).

6 Conclusions

We have used a network of 25 FTIR stations, most of them
affiliated with the NDACC, to validate the latest TROPOMI
HCHO tropospheric columns (v.1.1.[5-7]). This network
covers a wide range of concentrations, from very clean Arc-
tic, oceanic, and mountain sites with columns that can be
lower than 1014 molec. cm−2 to high-HCHO-level sites such
as Mexico City or Porto Velho, near the Amazon rainfor-
est, where columns up to 7× 1016 molec. cm−2 have been
observed.

We found an overestimation (+26± 5 %) of TROPOMI
OFFL products for very small HCHO columns (< 2.5×
1015 molec. cm−2) and an underestimation of TROPOMI of
about −30.8% (±1.4 %) for high HCHO columns (> 8.0×
1015 molec. cm−2), which can be used, for example, to cor-
rect TROPOMI data near emission sources. The results are
very similar for NRTI products (+22± 7 % and −31.7±
1.8 % for small and high columns, respectively), and the dif-
ferences are mainly due to the different period of available
TROPOMI v.1.1.(5-7) products. Our wide range of HCHO
levels and the use of the Theil–Sen method allow us to de-
rive robust and significant constant (intercept) and propor-
tional (slope) biases of TROPOMI (TROP =+1.10± 0.05
×1015

+ 0.64± 0.03 × FTIR; in molecules per square cen-
timetre). Such different BIAS values for low and high tar-
get species concentration levels due to the presence of both
constant and proportional biases were also recently observed
(although with fewer FTIR sites involved) in another nadir

satellite product, the formic acid observed by the Infrared At-
mospheric Sounding Interferometer (IASI; Supporting Infor-
mation in Franco et al., 2020). The NDACC FTIR network,
which covers a large number of atmospheric species at wide
ranges of concentrations, is a powerful source of reference
data to detect such nadir satellites’ biases.

Although significant, the observed overestimation and un-
derestimation of TROPOMI are within the lower limits of
the pre-launch requirements (±40 %), as are the biases at in-
dividual sites for 20 of the 25 stations. The TROPOMI sys-
tematic uncertainty budget is in very good agreement with
the observed bias, larger uncertainties being reported at sta-
tions where the bias exceeds the 40 % requirements. Possible
improvements in the TROPOMI biases could be achieved by
taking into account aerosol effects over polluted sites, im-
proving the QA values at high SZAs, and using an albedo
climatology and a priori HCHO profiles at the TROPOMI
spatial resolution. Except for the former, these improvements
are foreseen in the next versions of operational TROPOMI
data.

The precision of TROPOMI OFFL products is estimated
by the median absolute deviation (MAD) at the clean sites,
where the collocation effect is expected to be small. For
FTIR HCHO levels lower than 2.5× 1015 molec. cm−2, the
MAD is 1.3× 1015 molec. cm−2, corresponding to a single-
pixel precision of 7× 1015 molec. cm−2 (5 to 8× 1015 at in-
dividual sites), which is well below the pre-launch precision
requirements of 1.2× 1016 molec. cm−2. However, the pro-
vided TROPOMI random uncertainties (after launch) were
indeed found to be better than the pre-launch requirements,
but they are too small by a factor of 1.6 compared to the
MAD at the clean sites. There is a difference by a factor of
2.3 between MAD and the random uncertainty in the com-
parisons (dominated by TROPOMI random uncertainty) at
the high-level sites, where an additional effect of colloca-
tion might play a role as well. The underestimation of the
TROPOMI random uncertainty could be due to a random
effect of the uncertainty associated with the air mass factor
calculation that is not currently included in the budget. This
would also explain a larger underestimation of random error
at high-level sites (factor of 2.3 vs 1.6 at clean sites). Further-
more, a systematic uncertainty component over a short term
(so not included in the TROPOMI random uncertainty) can
have a random effect on our longer-term comparisons.

We have shown that the TROPOMI data capture the
HCHO seasonal variability very well, even at very clean
sites. The Pearson correlation coefficient for monthly mean
coincident data is 0.91. Although we have found room for a
refinement of the TROPOMI random uncertainty estimation
and for an improvement of the QA values for a better filtering
of the remaining few outliers and negative columns (exceed-
ing the expected statistical distribution), this validation work
has demonstrated the very good quality of the TROPOMI
HCHO product, which is well within the pre-launch require-
ments for both accuracy and precision. This work has also
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shown the high value of the FTIR HCHO network, pro-
viding harmonized and well-characterized data covering a
wide range of HCHO columns. These ground-based FTIR
data are continuously extended by new measurements and
will be used in the coming years for the routine S5P val-
idation within the ESA-dedicated validation server (https:
//mpc-vdaf-server.tropomi.eu/, last access: 7 July 2020). The
FTIR network will also be used in the near future for the vali-
dation of previous satellite missions such as OMI or GOME-
2. New FTIR measurements are continuously performed and
can be used in the coming years for the validation of new
satellite generations, such as TEMPO, GEMS, Sentinel 5P,
or Sentinel 4.

An extension of this TROPOMI HCHO validation with
ground-based MAX-DOAS and Pandora instruments, espe-
cially at sites where both FTIR and UV–visible techniques
are available (e.g. Xianghe, Maïdo, and Lauder) or in un-
covered regions (Africa), would bring additional knowledge.
However, there is first a need for data product harmonization
within the MAX-DOAS network as was done with the FTIR
network used here. This work is ongoing as part of the ESA
FRM4DOAS and Pandonia projects.

Data availability. The TROPOMI HCHO data are publicly avail-
able at the Copernicus Open Access Hub (https://scihub.copernicus.
eu, last access: 7 July 2020). The access and use of any
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quested from the individual principal investigators.

Author contributions. CV and BL performed the validation using
HCHO TROPOMI and FTIR data at all sites. They are also in-
volved in the FTIR measurements at Maïdo and Porto Velho. CV an-
alyzed the Maïdo, Porto Velho, Sodankylä, and Xiangue data. IDS
is the TROPOMI HCHO product lead and participated in the paper
(Sect. 2 and discussions). ZC is the TROPOMI HCHO processor
lead. MvR and DL have a joint responsibility for the TROPOMI
HCHO prototype algorithm and operational processor, respectively.
GP was involved in the validation method section through her ex-
pertise in validation using UV–visible techniques, which is part of
the projects TROVA and TROVA-2 that funded this work. All other
co-authors provided the FTIR HCHO data for the station(s) they are
responsible for.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special is-
sue “TROPOMI on Sentinel-5 Precursor: first year in operation
(AMT/ACP inter-journal SI)”. It is not associated with a confer-
ence.

Acknowledgements. The authors would like to thank all the peo-
ple responsible for the FTIR measurements and/or data analysis at
the different sites: Christian Hermans, Nicolas Kumps, and Min-
qiang Zhou from BIRA-IASB; Luciana Gatti from INPE; Uwe Raf-
falski from IRF Kiruna; Omaira García and Eliezer Sepulveda from
AEMet; Cornelis Becker from SAHO; John Robinson from NIWA;
Anatoly Poberovskii, Hamud Imkhasin, and Sergey Osipov from
SPbU; Alejandro Bezanilla and César Guarín from UNAM; Pas-
cal Jeseck from Sorbonne Université; Markus Rettinger from IMK-
IFU; Hideaki Nakajima from NIES; and Christian Servais from
Université de Liège.

Financial support. This study has been supported by the ESA
PRODEX projects TROVA and TROVA-E2, funded by the Belgian
Science Policy Office (Belspo). The measurements at Reunion Is-
land have also been supported by the Université de La Réunion
and CNRS (LACy-UMR8105 and UMS3365) as well as at Porto
Velho by the BRAIN-be pioneer project IKARE, funded by Belspo,
with the collaboration of the Instituto Federal de Educaçao, Ciên-
cia e Tecnologia de Rondônia (IFRO). The measurements at Re-
union Island have been supported by BIRA-IASB and the Univer-
sité de La Réunion and CNRS (LACy-UMR8105 and UMS3365).
The measurements at Porto Velho were funded by the BRAIN-
be pioneer project IKARE (Belspo), with the collaboration of the
Instituto Federal de Educaçao, Ciência e Tecnologia de Rondônia
(IFRO). The SPbU FTIR team has been supported by the Russian
Foundation for Basic Research project no. 18-05-00011. St. Peters-
burg FTIR measurements were carried out by the instrumentation
of the GEOMODEL resource centre of SPbU. The NDACC sta-
tions Bremen, Izaña, Ny-Ålesund, and Paramaribo have been sup-
ported by the German Bundesministerium für Wirtschaft und En-
ergie (BMWi) via DLR under grants 50EE1711A, B, and D. We
thank the EU project STRATOCLIM for financial support to U. of
Bremen. Measurements made at Lauder by NIWA are funded by
New Zealand’s Ministry of Business, Innovation and Employment
through the Strategic Science Investment Fund. We thank the AWI
Bremerhaven for logistical support and the station personnel in Ny-
Ålesund. On-site support in Paramaribo, Suriname, was provided
by the Meterologische Dienst van Suriname. Logistical and on-site
support in Koror, Palau, was provided by the AWI Potsdam and
the Coral Reef Foundation. ULiège has received support from the
F.R.S. – FNRS, from the Fédération Wallonie-Bruxelles, and from
the GAW-CH programme of MeteoSwiss. The International Foun-
dation High Altitude Research Stations Jungfraujoch and Gorner-
grat (HFSJG, Bern) provided support to the facilities needed to per-
form the Jungfraujoch observations. Emmanuel Mahieu is research
associate with the F.R.S. – FNRS. The National Center for Atmo-
spheric Research is sponsored by the National Science Foundation.

https://doi.org/10.5194/amt-13-3751-2020 Atmos. Meas. Tech., 13, 3751–3767, 2020

https://mpc-vdaf-server.tropomi.eu/
https://mpc-vdaf-server.tropomi.eu/
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice
https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice
ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/


3766 C. Vigouroux et al.: TROPOMI–S5P formaldehyde validation using ground-based FTIR data

The NCAR FTS observation programmes at Thule, GR; Boulder,
CO; and Mauna Loa, HI, are supported under contract by the Na-
tional Aeronautics and Space Administration (NASA). The Thule
work is also supported by the NSF Office of Polar Programs (OPP).
We wish to thank the Danish Meteorological Institute for support
at the Thule site and the NOAA for support at the Mauna Loa site.
Financial support was also provided by DGAPA-UNAM (grant nos.
07417 and 111418) and CONACYT (grant no. 290589). We thank
the University Network of Atmospheric Observatories (RUOA) for
the maintenance and operation of the Mexican stations. The Paris
TCCON site has received funding from Sorbonne Université, the
French research centre CNRS, the French space agency CNES, and
Région Île-de-France. Eureka measurements were made at the Po-
lar Environment Atmospheric Research Laboratory (PEARL) under
the CANDAC and PAHA projects led by James R. Drummond and
in part by the Canadian Arctic ACE/OSIRIS Validation Campaigns
led by Kaley A. Walker. Funding was provided by AIF/NSRIT, CFI,
CFCAS, CSA, ECCC, GOC-IPY, NSERC, NSTP, OIT, PCSP, and
ORF. Logistical and operational support was provided by PEARL
site manager Pierre Fogal, the CANDAC operators, and the ECCC
weather station. Toronto measurements were made at the University
of Toronto Atmospheric Observatory, supported by CFCAS, ABB
Bomem, CFI, CSA, ECCC, NSERC, ORDCF, PREA, and the Uni-
versity of Toronto. FTIR operations of the Rikubetsu and Tsukuba
sites are financially supported in part by the GOSAT series project.

Review statement. This paper was edited by Hartmut Boesch and
reviewed by two anonymous referees.

References

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for
tropospheric NO2 retrieval from space, J. Geophys. Res., 109,
D04311, https://doi.org/10.1029/2003JD003962, 2004.

De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlem-
mix, T., Pinardi, G., Theys, N., Lerot, C., Gielen, C., Vigouroux,
C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., and Van
Roozendael, M.: Diurnal, seasonal and long-term variations of
global formaldehyde columns inferred from combined OMI and
GOME-2 observations, Atmos. Chem. Phys., 15, 12519–12545,
https://doi.org/10.5194/acp-15-12519-2015, 2015.

De Smedt, I., Yu, H., Richter, A., Beirle, S., Eskes, H., Boersma,
K.F., Van Roozendael, M., Van Geffen, J., Lorente, A., and Pe-
ters, E.: QA4ECV HCHO tropospheric column data from OMI
(Version 1.1) [Data set], Royal Belgian Institute for Space Aeron-
omy, https://doi.org/10.18758/71021031, 2017.

De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Comper-
nolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters,
E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H.,
van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theo-
retical baseline for formaldehyde retrievals from S5P TROPOMI
and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–
2426, https://doi.org/10.5194/amt-11-2395-2018, 2018.

Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Saunois,
M., Szopa, S., Cressot, C., Kurosu, T. P., Chance, K., and
Fried, A.: The formaldehyde budget as seen by a global-
scale multi-constraint and multi-species inversion system, At-

mos. Chem. Phys., 12, 6699–6721, https://doi.org/10.5194/acp-
12-6699-2012, 2012.

Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., Taraborrelli,
D., Hadji-Lazaro, J., Hannigan, J. W., Hase, F., Hurtmans, D.,
Jones, N., Lutsch, E., Mahieu, E., Ortega, I., Schneider, M.,
Strong, K., Vigouroux, C., Clerbaux, C., and Coheur, P.-F.:
Spaceborne Measurements of Formic and Acetic Acid: A Global
View of the Regional Sources, Geophys. Res. Lett., 47, e60094,
https://doi.org/10.1029/2019GL086239, 2020.

Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A.,
and Sassi, F.: Simulation of secular trends in the mid-
dle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301,
https://doi.org/10.1029/2006JD007485, 2007.

Hase, F., Hannigan, J. W., Coffey, M. T., Goldman, A., Höpfner,
M., Jones, N. B., Rinsland, C. P., and Wood, S. W.: Intercompar-
ison of retrieval codes used for the analysis of high-resolution,
ground-based FTIR measurements, J. Quant. Spectros. Ra., 87,
25–52, 2004.

Hase, F., Demoulin, P., Sauval, A. J., Toon, G. C., Bernath, P. F.,
Goldman, A., Hannigan, J. W., and Rinsland, C. P.: An empirical
line-by-line model for the infrared solar transmittance spectrum
from 700 to 5000 cm−1, J. Quant. Spectros. Ra., 102, 450–463,
2006.

Huber, P. J.: Robust Statistics, Wiley, New York, 1981.
Jacquemart, D., Laraia, A., Kwabia Tchana, F., Gamache, R. R.,

Perrin, A., and Lacome, N: Formaldehyde around 3.5 and 5.7
µm: measurement and calculation of broadening coefficients, J.
Quant. Spectrosc. Ra., 111, 1209–1222, 2010.

Jones, N. B., Riedel, K., Allan, W., Wood, S., Palmer, P. I., Chance,
K., and Notholt, J.: Long-term tropospheric formaldehyde con-
centrations deduced from ground-based fourier transform so-
lar infrared measurements, Atmos. Chem. Phys., 9, 7131–7142,
https://doi.org/10.5194/acp-9-7131-2009, 2009.

Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Lev-
elt, P. F.: Earth surface reflectance climatology from
3 years of OMI data, J. Geophys. Res., 113, D18308,
https://doi.org/10.1029/2008JD010290, 2008.

Langerock, B., De Mazière, M., Hendrick, F., Vigouroux, C.,
Desmet, F., Dils, B., and Niemeijer, S.: Description of algo-
rithms for co-locating and comparing gridded model data with
remote-sensing observations, Geosci. Model Dev., 8, 911–921,
https://doi.org/10.5194/gmd-8-911-2015, 2015.

Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Rom-
ahn, F., Spurr, R. J. D., Pedergnana, M., Doicu, A., Molina Gar-
cía, V., and Schüssler, O.: The operational cloud retrieval algo-
rithms from TROPOMI on board Sentinel-5 Precursor, Atmos.
Meas. Tech., 11, 409–427, https://doi.org/10.5194/amt-11-409-
2018, 2018.

Martin, R. V., Parrish, D. D., Ryerson, T. B., Nicks, D. K. Jr.,
Chance, K., Kurosu, T. P., Jacob, D. J., Sturges, E. D., Fried, A.,
and Wert, B. P.: Evaluation of GOME satellite measurements of
tropospheric NO2 and HCHO using regional data from aircraft
campaigns in the southeastern United States, J. Geophys. Res.,
109, D24307, https://doi.org/10.1029/2004JD004869, 2004.

Meller, R. and Moortgat, G. K.: Temperature dependence of the
absorption cross section of HCHO between 223 and 323 K in
the wavelength range 225–375 nm, J. Geophys. Res., 105, 7089–
7102, https://doi.org/10.1029/1999JD901074, 2000.

Atmos. Meas. Tech., 13, 3751–3767, 2020 https://doi.org/10.5194/amt-13-3751-2020

https://doi.org/10.1029/2003JD003962
https://doi.org/10.5194/acp-15-12519-2015
https://doi.org/10.18758/71021031
https://doi.org/10.5194/amt-11-2395-2018
https://doi.org/10.5194/acp-12-6699-2012
https://doi.org/10.5194/acp-12-6699-2012
https://doi.org/10.1029/2019GL086239
https://doi.org/10.1029/2006JD007485
https://doi.org/10.5194/acp-9-7131-2009
https://doi.org/10.1029/2008JD010290
https://doi.org/10.5194/gmd-8-911-2015
https://doi.org/10.5194/amt-11-409-2018
https://doi.org/10.5194/amt-11-409-2018
https://doi.org/10.1029/2004JD004869
https://doi.org/10.1029/1999JD901074


C. Vigouroux et al.: TROPOMI–S5P formaldehyde validation using ground-based FTIR data 3767

Peters, E., Wittrock, F., Großmann, K., Frieß, U., Richter, A.,
and Burrows, J. P.: Formaldehyde and nitrogen dioxide over
the remote western Pacific Ocean: SCIAMACHY and GOME-2
validation using ship-based MAX-DOAS observations, Atmos.
Chem. Phys., 12, 11179–11197, https://doi.org/10.5194/acp-12-
11179-2012, 2012.

Pougatchev, N. S., Connor, B. J., and Rinsland, C. P.: Infrared mea-
surements of the ozone vertical distribution above Kitt Peak, J.
Geophys. Res., 100, 16689–16697, 1995.

Rodgers, C. D.: Inverse methods for atmospheric sounding: The-
ory and Practice, Series on Atmospheric, Oceanic and Planetary
Physics – Vol. 2, World Scientific Publishing Co., Singapore,
2000.

Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sound-
ing instruments, J. Geophys. Res., 108, 4116–4129, 2003.

Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Ben-
ner, D. C., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon,
V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A.,
Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud,
J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill,
C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J.,
Roy, R. J. L., Li, G., Long, D. A., Lyulin, O. M., Mackie,
C. J., Massie, S. T., Mikhailenk, S., Müller, H. S. P., Nau-
menko, O. V., and Nikitin, A. V.: The HITRAN2012 molecu-
lar spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50,
https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.

Sen, P. K.: Estimates of the regression coefficient based
on Kendall’s tau, J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.2307/2285891, 1968.

Spurr, R. J. D.: LIDORT and VLIDORT: Linearized pseudo-
spherical scalar and vector discrete ordinate radiative trans-
fer models for use in remote sensing retrieval problems, in:
Light Scattering Reviews, edited by: Kokhanovsky, A., 229–271,
Berlin, Springer, 2008.

Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van
Roozendael, M., De Mazière, M., Vigouroux, C., Hendrick,
F., George, M., Clerbaux, C., Coheur, P.-F., and Guenther, A.:
How consistent are top-down hydrocarbon emissions based on
formaldehyde observations from GOME-2 and OMI?, Atmos.
Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-
11861-2015, 2015.

Tan, W., Liu, C., Wang, S., Xing, C., Su, W., Zhang, C., Xia, C.,
Liu, H., Cai, Z., and Liu, J.: Tropospheric NO2, SO2, and HCHO
over the East China Sea, using ship-based MAX-DOAS observa-
tions and comparison with OMI and OMPS satellite data, Atmos.
Chem. Phys., 18, 15387–15402, https://doi.org/10.5194/acp-18-
15387-2018, 2018.

Tikhonov, A.: On the solution of incorrectly stated problems and
a method of regularization, Dokl. Acad. Nauk SSSR, 151, 501–
504, 1963.

Veefkind, J.P., Aben, I., McMullan, K., Förster, H., De Vries,
J., Otter, G., Claas, J., Eskes, H.J., De Haan, J.F., Kleipool,
Q., Van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf,
J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B.,
Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations
of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Vigouroux, C., Hendrick, F., Stavrakou, T., Dils, B., De Smedt, I.,
Hermans, C., Merlaud, A., Scolas, F., Senten, C., Vanhaelewyn,
G., Fally, S., Carleer, M., Metzger, J.-M., Müller, J.-F., Van
Roozendael, M., and De Mazière, M.: Ground-based FTIR and
MAX-DOAS observations of formaldehyde at Réunion Island
and comparisons with satellite and model data, Atmos. Chem.
Phys., 9, 9523–9544, https://doi.org/10.5194/acp-9-9523-2009,
2009.

Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker,
C., Blumenstock, T., De Mazière, M., García, O., Grutter,
M., Guarin, C., Hannigan, J., Hase, F., Jones, N., Kivi, R.,
Koshelev, D., Langerock, B., Lutsch, E., Makarova, M., Met-
zger, J.-M., Müller, J.-F., Notholt, J., Ortega, I., Palm, M.,
Paton-Walsh, C., Poberovskii, A., Rettinger, M., Robinson, J.,
Smale, D., Stavrakou, T., Stremme, W., Strong, K., Sussmann,
R., Té, Y., and Toon, G.: NDACC harmonized formaldehyde
time series from 21 FTIR stations covering a wide range
of column abundances, Atmos. Meas. Tech., 11, 5049–5073,
https://doi.org/10.5194/amt-11-5049-2018, 2018.

von Clarmann, T.: Smoothing error pitfalls, Atmos. Meas. Tech., 7,
3023–3034, https://doi.org/10.5194/amt-7-3023-2014, 2014.

Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.:
The high-resolution version of TM5-MP for optimized satellite
retrievals: description and validation, Geosci. Model Dev., 10,
721–750, https://doi.org/10.5194/gmd-10-721-2017, 2017.

Wittrock, F., Richter, A., Oetjen, H., Burrows, J. P., Kanakidou,
M., Myriokefalitakis, S., Volkamer, R., Beirle, S., Platt, U., and
Wagner, T.: Simultaneous global observations of glyoxal and
formaldehyde from space, Geophys. Res. Lett., 33, L16804,
https://doi.org/10.1029/2006GL026310, 2006.

Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis,
K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De
Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R.,
Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino,
A., Walega, J., Weibring, P., and Wolfe, G. M.: Observing at-
mospheric formaldehyde (HCHO) from space: validation and
intercomparison of six retrievals from four satellites (OMI,
GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observa-
tions over the southeast US, Atmos. Chem. Phys., 16, 13477–
13490, https://doi.org/10.5194/acp-16-13477-2016, 2016.

Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C.,
Chance, K., Apel, E. C., DiGangi, J. P., Fried, A., Hanisco,
T. F., Hornbrook, R. S., Hu, L., Kaiser, J., Keutsch, F. N.,
Permar, W., St. Clair, J. M., and Wolfe, G. M.: Validation
of satellite formaldehyde (HCHO) retrievals using observations
from 12 aircraft campaigns, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2019-1117, in review, 2020.

https://doi.org/10.5194/amt-13-3751-2020 Atmos. Meas. Tech., 13, 3751–3767, 2020

https://doi.org/10.5194/acp-12-11179-2012
https://doi.org/10.5194/acp-12-11179-2012
https://doi.org/10.1016/j.jqsrt.2013.07.002
https://doi.org/10.2307/2285891
https://doi.org/10.5194/acp-15-11861-2015
https://doi.org/10.5194/acp-15-11861-2015
https://doi.org/10.5194/acp-18-15387-2018
https://doi.org/10.5194/acp-18-15387-2018
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.5194/acp-9-9523-2009
https://doi.org/10.5194/amt-11-5049-2018
https://doi.org/10.5194/amt-7-3023-2014
https://doi.org/10.5194/gmd-10-721-2017
https://doi.org/10.1029/2006GL026310
https://doi.org/10.5194/acp-16-13477-2016
https://doi.org/10.5194/acp-2019-1117

	Abstract
	Introduction
	TROPOMI HCHO data
	Ground-based FTIR HCHO data
	Validation method
	Collocation criteria
	Building inter-comparable products
	Estimation of the TROPOMI accuracy and precision

	Validation results
	TROPOMI observed BIAS and accuracy
	Observed TROPOMI precision
	Observed TROPOMI monthly variability

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

