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A B S T R A C T   

The plasma refraction index can be calculated by different methods. In this paper, a physical approach is pre
sented and applied to non-linear situations. We have particularly focused on the case where the mass of the 
electrons subjected to the wave becomes relativistic. In the case of a circularly polarized high intensity wave, 
ionization is considered.   

Introduction 

We are interested in the propagation of laser radiation in the at
mosphere in order to study it at very large distances. The long wave
lengths (λ = 10.6 μm) are of great interest although they require very 
high powers [1,2]. To date, research in the wavelength range of 
0.8–1 μm has shown a fundamental limitation of guided energy to a few 
mJ in a single 100 μm channel. With a wavelength of 10.6 μm, we 
expect to propagate very large energies in filaments, we want to go 
from mJ (GW) to some Joules (TW = 1012 W) [2]. We know the es
sential role played by the index of refraction in the propagation of the 
wave. It is the result of a balance between the Kerr effect and the dif
fraction that can only be achieved when the power of the laser is above 
a certain threshold. According to the transverse direction of the gra
dient of the index, the light is either diffracted or focused in the pro
pagation. Long wavelengths make the threshold power very high and 
require, for a CO2 laser to be of the order of one terawatt. At these 
powers the ionized electrons can become relativistic. Even if for this 
wavelength we only meet weakly relativistic situations, taking these 
effects into account allows us to envisage more frankly relativistic si
tuations that we could encounter with longer wavelengths generated 
for example by using of a free electron laser. This work is part of a wider 
field of research on wave propagation properties, an area in which the 
knowledge of the refractive index can be a major issue. In this area 
studied for many years, very innovative works have been published 
recently [3,4]. 

The refraction index concept seems to be a trivial subject introduced 
by Snell’s law we learned in our elementary optics courses. Beyond this 
apparent simplicity, this work aims to better understand its physical 

origin. Among the index calculations that can be presented, we have 
emphasized on a physical approach described in the courses of R. P. 
Feynman [5] that we have extended to complex non-linear situations. 
This method has been validated by comparing the result obtained with 
those obtained by other approaches. The originality of one of these 
methods lies in the fact that the impulse and the energy of an electron 
can under certain conditions become a 4-potential vector. This greatly 
simplifies the disturbance calculation which allows to find the disper
sion relation of the wave and therefore the index of the medium. We 
thus extend the scope of the “Feynman method” and confirm a result 
already found in another way [6]. Thus, we draw the expression of the 
index when the electron dynamics becomes relativistic. We show that 
the plane wave approximation remains valid for laser pulses of a few 
wavelengths in length. The effect of ionization is also studied. Situa
tions where the Keldysh factor [7] is less than unity have been con
sidered, tunneling ionization has been preferred. In the case where the 
wave is circularly polarized the current associated with the ionization 
of the air is important and cannot be neglected. It is supposed that this 
ionization is instantaneous and that the free electron density is con
stant. We consider electrons have a constant drift velocity as they have 
zero velocity when they leave the tunnel [8–10]. This drift velocity is 
assumed to be in one direction only. Thus, we simplify physics in order 
to be able to achieve a simple analytical calculation using “Feynman’s 
method” conveniently to start roughing the problem. We introduce a 
Lorentz transformation that eliminates the electron drift due to ioni
zation. Then, the field produced by the plasma electrons can be cal
culated simply. The index is calculated in the laboratory frame. A re
lativistic correction to the index of refraction is found in the direction of 
the ionization current which shows that ionization affects the index. 
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Light propagates slightly more slowly in air than in vacuum. This 
effect is described by the index of refraction n. In a material, the phase 
velocity of a wave is expressed as c/n. The index of refraction when 
plasma effects are neglected can be expressed as [11–13] 

= + +n n n I ...,0 2 (1) 

where n0 is the usual weak field refractive index, n2 the second order 
index associated to bound electrons and I the intensity of the optical 
field. A filament is created when spreading by diffraction does not 
occur, that is to say when P the total beam power satisfies 

=P P
n n2

,cr
2

0 2 (2) 

where λ is the light wavelength. In the case when = µm10.6 , we set 
×n m W1.08 102

23 2 for air [1], then P TW1.65cr . The filament 
exists if P Pcr . Considering a 1 cm diameter filament first [2], the 
intensity must be greater than ×I W cm2. 10cr

12 2. The relevance of 
considering the relativistic mass of one electron in the wave is ex
pressed by solving the following simple non-relativistic equation 

=m d x
dt

eE cos t,
2

2 0 (3) 

where x is the electron position, m its mass, ω the frequency of the wave 
and –e the charge of the electron. The average normalized square of the 
electron velocity is given by 

= = =v
c

e E m c
2 2

2 ,
2

2
0
2

2
0
2 2 2 2

(4) 

where parameter = 0
2 measures the importance of relativistic effects. 

It can be easily shown that = × I W cm µm7.4 10 ( ) ( )19 2 2 . For I = Icr, 
we have ×1.7 10 4 which means that relativistic effects can be 
neglected. If we consider a 1 mm diameter and that = ×P P10 cr , then 

×4. 100
1. Considering the same power and a 1 cm diameter fila

ment we found ×4. 100
2. Then, in a very large number of cases the 

relativistic mass of electron can play an important role. For very short 
pulses the motion of the electrons might be quite relativistic, as a 
consequence it is necessary to explore relativistic effects for wave
lengths close to 10 μm. 

In order to calculate the correction for the index of refraction due to 
free electrons, in every situation, a source called the external source(S) 
is assumed to be at a large distance from a thin plate of plasma [5] 
(Fig. 1). 

The spherical wave is emitted by the source becomes a plane wave 
when reaching the plate. The total electric field in any physical cir
cumstance can always be represented by the sum of the fields from all 
the charges in the universe 

= +E E E .S
allothercharge

eachcharge
s (5)  

The effect of all the charges is assumed to be very small compared to 
the one of the source, the different charges are only driven by the 

source. This means that . 
After the plate, the field becomes the field from the source plus a 

field ΔE produced by the oscillating electrons of the plate. This field 
variation is also calculated by considering that the wave appears to 
propagate at the speed c/n in the plate. Comparing these two ap
proaches allows to determine the index of refraction n. 

Calculation of the field created by a moving electron far away from 
the plasma plate 

The field produced at P at large distance from a moving electron is 
given by [5,14] 

=E ee
c

d
dt4

,r

0
2

2

2 (6) 

where er is a unit vector in the apparent direction of the charge which 
stands at the retarded distance r x y z( , , ) (Fig. 2). We have 

= = + +e PM i j k
r

x
r

y
r

z z
r

,r
P

(7) 

where zp is the z-component of point P. 
Further, calculating the field created by a small width plasma ring 

(Fig. 3), the charge will be supposed to move on a small distance 
compared to the distance r′ between the electron and P. The time delay, 
that is to say the time it takes to go, at speed c, from the electron to P is 
r c where r′ is the retarded distance. Assuming r′ is very large and 
neglecting terms in r1 2, we have 

=d
dt

x
r

x
r

r x
r

x
r

. .

2

.

(8)  

Fig. 1. Thin plasma layer.  

Fig. 2. The path of a moving charge.  

Fig. 3. Radiation produced by the plasma sheet.  
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=d
dt

z z
r

z
r

r z z
r

( )
,p p

. .

2 (9) 

where =f df dt . As +r r z0 , we have 

= +
+d

dt
z z

r
z
r

z
r

z r z
r

( )
0.p p

. . .
0

2 (10)  

We also have 

=d
dt

x
r

d
dt

x
r

x
r

r x
r

x
r

.
2

2

. .. .

2

..

(11)  

Then, the electric field produced by the electron reads 
=E ee c a t r c r( 4 )[ ( ) ] xx0

2 , with = v ra t r c a t rc r c( ) [ (1 . ) ]
where v′ is the electron velocity. Far away from the plane, the re
lativistic correction v r rc. can be neglected. We can replace r′ by r 
which is a constant average distance in the denominator. In the nu
merator of the expression of the field relativistic effects can be ignored. 
Thus, the electron acceleration is just a function of the retarded time t – 
r/c. Consequently, the electric field created by an electron oscillating on 
a short distance is 

=
( )

E ee
c

a t

r4
,

r
c

x
0

2 (12) 

where exis a unit vector along the x-axis and a the acceleration of the 
electron along this axis. This expression for the electric field produced 
by an electron when standing far away is derived in another way in  
Appendix A. 

Motion of an electron in the plasma plate when submitted to a 
linearly polarized external source 

Let us derive the equation of one electron motion in the plasma 
sheet. When the external source is very intense, the electron relativistic 
mass will be considered by performing expansions and neglecting terms 
in 0

3. The plasma sheet is such as 

z , (13) 

where λ is the wavelength of the external source. 
The electromagnetic field is defined through the following 4-po

tential 

=V A E sin t kz e( , ) 0, ( ) .x
0

(14)  

It is assumed that the external source can be very intense, the re
lativistic electron mass can be significant. Thus, the following re
lativistic Hamiltonian for a free electron in the wave is taken 

= + + +H P eE sin t kz c P c P c m c( ) .x y z
0

2
2 2 2 2 2 2 4

(15)  

Three constants of motion allow to integrate the system: Px , Py, and 
=C H k P( ) z. It is assumed that = =P P 0x y . We choose =P 0z when 

=t kz 0, then =C mc2. 
The mechanical momentum along the x-axis is 

= =p m v eE sin t kz( ) ( )x x 0 where γ is the Lorentz factor. Then, 
the equation of motion along this axis is 

= + = +
dp
dt

m v m a eE cos t kz eE k zcos t kz( ) ( ),x
x

.
0 0 (16) 

where a is the acceleration of the charged particle. The last term of this 
equation comes from the Lorentz force. 

Let us make a number of reminders 

= = =z H P P
m

p
m

.z
z z

(17)  

As =C mc2, we have 

=p mc k ( 1).z
2

(18)  

Keeping terms in ε only, Eqs. (17) and (18) imply that 

=z c v
c

c k cos t kz1
2 4

[1 2( )].
2

2
2

(19)  

Eq. (19) shows that, in vacuum, the electron has a drift velocity 
along the z-axis. This drift velocity is not significant in plasma because 
of Coulomb forces. 

As = v c v c a v c a(1 ) ( ) ( )2 2 3 2 2 2 , the first term in the left- 
hand side of Eq. (17) is m v m v c v a m v v c c a m v c a( ) [ (1 4 ) ] ( ) .x x

. 2 2 3 3 2 2 2 . 
Thus, the equation of motion along the x-axis is 

= + = +
dp
dt

ma v
c

eE cos t kz eE k zcos t kz1 3
2

( ) ( ).x
2

2 0 0

(20)  

The last term in the right hand of Eq. (20), k z z c v c( ) (1 2) 2 2

can be neglected in a non-relativistic approach, that is to say when 
terms in v c2 2 are neglected 

Moreover, condition (13) allows to consider =E eE sin t( ) x0 . In the 
non-relativistic approach and, as in the relativistic one (when terms in 
v c2 2 are considered), the equation of motion of one electron in the 
layer will be given by 

=
dp
dt

eE cos t.x
0 (21)  

Calculation of the index of refraction for a plane wave propagating 
in plasma when the relativistic mass of electrons is neglected 

The wave is a pure plane wave 

Only the “Feynman method” is applied in this preliminary part. 
If the plate had no effect the field of the wave travelling to its right 

would be [5] 

=E E cos t z
c

,S 0 (22)  

The wave takes an additional time when travelling in the plate. 
Without the plate, the wave would travel the distance Δz with time of 
Δz/c. As the wave travels at the speed of c/n in the plane, it takes the 
time n Δz/c. So, an additional time =t n z c( 1) has to be con
sidered. The extra delay in going through the plate is taken into account 
by replacing t by t -Δt in Eq. (22) 

=

= +
= +

E E cos t n z c z c

E cos t z c E sin t z c
E cos t z c E

[ ( 1) ],

( ) ( ),
( ) .

after the plate
n z

c
a

0

0
( 1)

0

0 (23)  

with 

=E n z
c

E sin t z
c

( 1) .a
0 (24)  

The field Ea which is added to the source field can be calculated in 
another way by calculating the field created by the electrons oscillating 
in the plate. There is no electron drift velocity acquired in ionization 
when considering linear polarization [8]. The Lorentz force can be 
neglected as we study a non-relativistic situation. Then, in the plasma 
sheet, at z = 0, the equation of motion of one electron is 

= =a dv
dt

eE
m

cos t,0
(25)  

as a consequence, the field generated by one electron is 
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=E ee E
mc r

cos t r
c4

,x
2

0

0
2 (26)  

The field created by a ring, that is to say the field produced by all 
the charges of the ring (Fig. 3), is obtained by adding the fields created 
by the infinitesimal bits of charge in surfaces S2

=E Ne
c

E
mr

cos t r c
4

( ),2
2

0
2

0

(27) 

with =N S2 where is the number of electrons per unit area. Then, 
the total field generated by the layer is obtained by integrating over all 
the rings 

= =E E d e
c

E
m

cos t r c
r

d2
4

( ) 2 ,b
2

0
2

0

0 (28) 

as = +r z2 2 2 and as z is independent of ρ we have =rdr d2 2 . Then, 
integrating over the r – interval [r = z, =r ] and neglecting the 
charge density when r goes to infinity, we get [5] 

=E e
c

E
m

sin t z c
2

( ).b
2

0

0

(29)  

Eq. (29) represents the part of the field which is not present in the 
original incoming one but produced through the mediation of the 
current in the plasma sheet. 

Considering that = N z where N is the electron density and that 
plasma frequency is = e N mp

2
0 , comparing the two values of E

given by Eqs. (24), (29) and imposing their equality: =E Ea b, we 
obtain 

=n 1 1
2

.p
2

2 (30a)  

Laser pulses travel at the group velocity vG which is the speed of 
light is divided by nG the group index. We can deduce the group index 
nG from the relation nGn = 1 [15]. Thus, in plasma, one has 

= +n 1 1
2

.G
p
2

2 (30b)  

These results (Eqs. (30a) and (30b)) are well known [15,16]. They 
can be derived in a different way by considering that the point of ob
servation P is close to the electron and the mother ion [8] (Appendix B). 
Then, we focus on the static dipole field. These results could have also 
been obtained easily by introducing conductivity and using Maxwell 
equations, but we would have lost the insight into the origin of the 
fields. 

Calculation of the refractive index for a moderately short pulse 

The source wave is chosen to be in the more realistic form 

=E e E e cos t z
c

,s x

t

0

z
c

(31) 

where τ is the pulse duration. 
As the thickness of the plasma layer is assumed to be very low, the 

wave phase is assumed to be function of t only inside. The Lorentz 
force is also neglected in this non-relativistic approximation. Thus, in
side the very thin plasma sheet, the wave has the form 

=E e E e cos t.s x
t

0
| |

(32)  

The length τ is assumed to be long enough so that no frequency of 
the Fourier spectrum is close to the plasma frequency. The frequencies 
of the Fourier spectrum are assumed to verify p. Then, one can 
ignore nonlinear effects and the fact that the different frequency com
ponents move at different phase velocities. We assume that the pulse 
undergoes no distortion when propagating through the plasma sheet. 
The Fourier transform of this function is 

=

= = +

+

+ + +

E E e cos te dt

E F E

,

( ) .

s
i t

0

0 0
1

1 ( )
1

1 ( )

t| |

2 2 2 2 (33)  

Fig. 4 shows that the width at half maximum increases when τ de
creases 

The width at half maximum varies like 1/ τ : ~1 . We must have 
± >1 p. For = µm10.6 , one has = × s1.77 1014 1, if 
= = ×T10 3.53 10 s13 and the plasma density 1015 cm−3, then 

= ×1.78 10 sp
12 1. The condition to have no distortion mentioned just 

above is satisfied. When τ = T, some significant frequencies are close to 
ωp and distortion might start to take place (Fig. 5). 

The acceleration of one electron, in the direction of the electric 
field, in the plasma layer is 

=a e
m

E e cos t.t
0

| |

(34)  

The field produced by one electron of the plane at P is (Fig. 3) 

= =E e
c

a t r c
r

e
mc

E e
r

cos t r
c4

( )
4

.
0

2

2

0
2 0

t r
c

(35)  

The field created by a plasma ring is (Fig. 3) 

=E t e S
c

E
mr

e cos t r
c

( )
4

.
t

2
2 2

0
2

0
r
c

(36)  

The field created by all the planes is given by 

Fig. 4. Fourier spectrum of the laser pulse. = × s1.77 1014 1. τ = 10 T : solid line, τ = 3 T : dashed line.  
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= =E E d e
c

E
m

e cos t r
c r

d2
4

2 .b
t

2
2

0
2

0

0

r
c

(37)  

Letting = +r z2 2 2 and =u t r c, E becomes 

=
( )

E e
c

E
m

e cos udu
2

.b
t z

c
u2

0

0 | |

(38)  

Assuming t z c 0, one finds 

=
+

+( )E e
c

E
m

e sin t z
c

cos t z
c2 1

1 .b t z
c

2

0

0 1 2

2 2

(39)  

As far as we focus on a part of the field which has the form of the 
source, we are interested in the following component of Eb

=
+

( )E e
c

E
m

e cos t z
c2 1

.cos
b t z

c
2

0

0 1
2 2 (40)  

Let us calculate ΔE by considering the fact that the pulse travels at 
the group velocity vG which is the speed of light is divided by the group 
index nG. In the plate, the wave takes the additional time 

=t n z c( 1)G . In this case, after the plasma sheet, t has to be re
placed by t – Δt in expression of the wave 

= +E E e .after the plate
t n z c z c i t n z c z c

0
( 1) [ ( 1) ]G G (41)  

As a consequence 

=E E e n z
c

cos t z
c

1 .cos
a G

0
t z

c

(42)  

The fact that =E Ecos
a

cos
b implies that 

=
+

n z
c

e
mc

1
2 1

,G
2

0
2 2 (43) 

so 

= +n K1 1
2

,G
p
2

2 (44a) 

and 

=n K1 1
2

.p
2

2 (44b)  

with 

=
+

K
1

.
2 2

2 2 (45)  

Note that considering t z c 0 leads to the same result. 

In linear physics, this result can be found very simply by using 
Maxwell equation and introducing conductivity. 

When τ becomes very large, the result of the non-relativistic plane 
wave is found again (Eq. (30b)). When the pulse duration, τ, is 10 laser 
periods: τ = 10 T, then the correction with respect to the case of the 
plane wave is K 0.999, the correction is very weak and the plane wave 
approximation is valid. 

Calculation of the index of refraction for a strong linearly 
polarized relativistic plane wave 

One particle approach 

We start by developing a one-particle electrostatic model that we 
will then insert into a plasma approach. The ×v B force due to the 
wave applied to the electrons of the plasma sheet produces a density 
perturbation δN, having frequency 2ω, δN will be calculated through a 
plasma approach. Then, the one-electron contribution to the field will 
be multiplied by δN to obtain the contribution per unit plasma volume. 
The resulting current created, δNevx, is a source for E and B. 

When the external source is very intense, the electron relativistic 
mass will be considered by performing expansions and neglecting terms 
in 0

3. 
It is assumed that the electrons in the plasma layer remain at z = 0 

and oscillate along the x- axis. The last term in Eq. (20), 
eE k zcos t kz( ) ( )0 , is ignored. In fact, it is considered when cou
pling this single particle motion to the density perturbation δN. These 
strong hypotheses will be justified later by comparing the result ob
tained through this approach to the one obtained with a rigorous 
plasma approach. Thus, the relativistic motion of one electron in the 
wave is described by Eq. (21) 

+ =m v m a eE cos t,x
.

0 (46) 

while the plasma is coupled to the incident wave through density os
cillations due to the longitudinal Lorentz force ( = ×f ev B). 

Retaining second order terms in v c2 2 only, the electron acceleration 
along the x-axis is 

=a v
c

eE
m

cos t1 3
2

,
2

2
0

(47)  

Considering v is the zero-order velocity =v eE m sin t( )0 0 , the 
acceleration formulation a becomes 

= +a eE
m

cos t cos t1 3
8

3
8

3 .0

(48)  

The field created by the slice of plasma due to all the electrons 
having an oscillating density due 

Fig. 5. Fourier spectrum of the laser pulse. = × s1.77 1014 1, τ = T.  
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to the incoming wave (Fig. 3) can be expressed as 

= +E t e
c

E
m

sin t z c sin t z c( )
2

1 3
8

( ) 1
8

3 ( ) ,b
2

0

0

(49) 

where t( ) oscillates due to the plasma oscillations. 

Calculation of the index by considering plasma density oscillations 

Let us determine t( ) through a plasma approach by solving 
Maxwell and Lorentz equation [17,18]. 

The electromagnetic field can be given by 

=
=

E grad
B rotp

e cp
e

,
,

p
t 0

(50) 

where p is the fluid mechanical momentum of the free electrons and 
where = +p p m c( )0

2 2 2 1 2 is their energy. It means that, in some cases, 
pcp e e( , )0 is a four-vector potential. It is known that two four vectors 

potential A( , ) and A( , ) give the same electromagnetic field when 
= + =A A r rf t f t tgrad ( , ), ( , ) where f is some function 

depending on r and t only [19]. We assume that the electric and 
magnetic fields of the wave are associated with the four-potential 

A( , ), the four-vector potential pcp e e( , )0 can be allowed with to such 
a function. The initial position being r0, the Jacobi action r rS t( , , )0 can 
be introduced by calculating the action of one electron on two adjacent 
very close actual trajectories [20]. We have 

= =P r r r P r r rS t S t( , , ) , ( , , )0 0 0 0 where P and P0 are respec
tively the canonical momenta at some position r and at the initial po
sition r0 of the electron. We have = +p e A r S e( ) and 

=cp e t S e( )0 . Consequently S e is a function f if S does not 
depend on r0. Then, Eq. (57) can be used when 

= =p A r r re S t( , , ) 00 0 0 0 which means that p is a vector field. 
For a constant magnetic field, if = ×A B r(1 2) 0 , this condition is not 
satisfied and Eqs. (50) cannot operate. 

Let us point out that Lorentz equation and Faraday’s law are auto
matically satisfied by Eqs. (50) [17]. So, we only have to find a solution 
which verifies the two following equations in order to derive the wave 
equation 

× =B E v
c t

µ Ne1 ,2 0 (51)  

= e N N. E ( ),
0

0 (52)  

where N is the free electron density and N0 is the density of ionized 
atoms which are assumed to be a uniform background. 

Considering =v c p p p mc~0 and neglecting terms in p mc( )3, Eqs.  
(50)–(52) give the following wave equation 

+ +

= +p p p p p p

c
p

t
p p

c
p

mc t mc t z
p

c m c m c z

1 ( . )

1
2 2 2

,

p

z
p

2

2

2

2

2

2
2

2

2

2

2

2 2 2 2

2

2
2

(53) 

with = e N mp
2 2

0 0 where N0 is the ion density which is assumed to be 
at rest. The order of magnitude of the terms are 

k c k c kc p
mc

kc p
mc

p
mc

k c p
mc

1; ; ; ; 2 ; ;
2

; 2p p2 2

2

2 2

2

2

2

2

2

2 2 2

2

2

The electron momentum is assumed to be in the form 

= = = =

= + + +

p p f i x z t kz

p p p

( ), , , ,

......

i
n

i
n

n
i

n
i

n

i i i

( ) ( ) ( )

(0) (1) (2)
(54)  

Each successive term of this sum is assumed to be an order of 

magnitude smaller than the preceding term. 
The following initial conditions were chosen 

= = = =p p
dp
d

dp
d

eE0, ,x z
z x x0

(55) 

when = 0
The Lindstedt-Poincaré method is applied, in addition to (55), it is 

assumed that [21] 

= + + ......,2 (0)2 (2) (56) 

where (2) is relatively small (in v c2 2). 
To zero order (v/c = 0) 

+ =

+ =

p p

p

0,

0.

c
p
t z x c x

c
p
t c z

1 (0) (0)

1 (0)

x p

z p

2

2 (0)

2
2
2

2

2

2

2 (0)

2

2

2 (57)  

We seek a solution in the form 

=
=

p sin
p sin

,
.

x x

z z

(0) (0)

(0) (0)
(58)  

The initial conditions imply = 0z
(0) and = eEx x

(0)
0 . Then, Eq.  

(50) give 

=
=

E E cos
E

,
0.

x x

z

0

(59)  

Ignoring the term c p( ) x
(2) 2 (0) from Eq. (57), the following disper

sion relation is obtained 

= = + k c .p
2 (0)2 2 2 2 (60)  

Let us go to first order in v/c now to calculate the density oscillation 
of the plasma sheet. In this approximation, the wave equation is 

+ =

+ = +

p p p

p p p p

,

( ).

c
p
t z x c x

p
mc z t z

c
p
t c z

p
mc t z z mc z t x z

1

1 1
2

2 2

x p x

z p z

2

2

2
2
2

2

2 2
2

2

2

2

2

2 2 2
2

(61)  

As = 0z
(0) , this set of equations leads to 

+ =

+ = =

p p

p p E cos

0,

( ) 2 .

c
p
t z x c x

c
p
t c z mc z t x

ek
c x

1 (1) (1)

1 (1) 1
2

(0) 2
0 0

x p

z p

2

2 (1)

2
2
2

2

2

2

2 (1)

2

2

2 2
2

(62)  

The solution is 

=

=

p

p ck cos cos

0,

2 .
x

z
eE

(1)

(1)
0 4

x

p

p0
2

2
2 2 (63)  

As a consequence (Eq. (50)), the electric field of the wave is 

=

=

E E cos

E E

,

,

x x

z
kc

x
sin sin

0

4 0 0
2

2
L

L

L
L

2

2 (64) 

where =L p . The dispersion law is 

= = + k cp
2 (0)2 2 2 2 (65)  

The plasma density is given by Poisson’s equation 

=N N e E
z

( ) ,z
0 0 (66) 

that is to say 

= +N N
e

k c E cos cos
4

[ 2 ].L

L
x L0

0
2 2

2 0 0
(67)  

In order to calculate the refractive index, we follow the form of the 
source field and focus on the ω-component of ΔE. As = N z, the E
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created by the plasma is 

= +E z E
c

k c sin t z
c2

1 3
8 2

1
4

,b x
p

L

0 2
2 2

2 2
(68)  

as =E E x0 0 . 
Comparing this value of E to the one given by (24), we obtain 

=n 1 1
2

1 3
8 2(4 )

.p p

p

2

2

2 2

2 2
(69)  

Fully plasma approach 

The index has also been calculated through a purely plasma ap
proach keeping terms in v2/c2. To second order in ν0, taking into con
sideration the term c p( ) x

(2) 2 (0) which was neglected in the non-re
lativistic approximation, the wave Eq. (53) becomes 

+ = +

+

= + +

+ +

+ +

+

p p p p

p p

sin

sin

( )

3

[sin(1 )
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m c
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2
2
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2

2
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2
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2
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2
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2
2
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2
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(70a)  

+ =
c

p
t c

p1 0.z p
z2

2 (2)

2

2

2
(2)

(70b)  

In order not to have a secular term, (2) is set to eliminate the term 
in sin in the right-hand side of Eq. (70a). We have 

= + +c k c k2
4

3
8 2

.
L

p(2)
2 2

2

2 2 2

(71)  

As the dispersion law is = + = + +k cp
2 (0)2 (2) 2 2 2 (2) ; 

= + k c1 3
8

1
2( 4 )

.p
p

p

2 2 2 2
2

2 2
(72)  

Then, 

= =n ck 1 1
2

1 3
8 2(4 )

,p p

p

2

2

2 2

2 2
(73)  

which is the same result as the one given by equation (69), in the 
low plasma density limit. It is also the same result as the one previously 
derived by C.E. Max and J. Arons [6]. 

The momentum and the electric field have also been calculated 
(Appendix C). 

Calculation of the index of refraction in the case of a circularly 
polarized plane wave propagating in plasma 

The wave propagates in a gas which has been pre-ionized 

Ionization takes place during the propagation of the wave, it is ig
nored in this part. The optical field is given by 

= +

= +

E E t kz e t kz e

B t kz e t kz e

[cos( ) sin( ) ],

[ sin( ) cos( ) ].
x y

kE
x y

0

0
(74)  

Considering the scalar potential is zero, the corresponding wave 

vector is 

=A e eE t kz t kz[sin( ) cos( ) ].x y
0

(75)  

In this case pz = 0. As Az = 0, we have Pz = 0. 
The Hamiltonian of one electron in this wave reads 

= + + +H P eE sin t kz c P eE t kz c m c( ) cos( ) ,x y
0

2
2 0

2
2 2 4

(76) 

where Px and Py are two constants of motion. It is assumed, in this 
paragraph, that = =P P 0x y , as γ is a constant. The electron is at rest on 
average in the (x, y) plane. The electron density fluctuations will not be 
considered as there is no longitudinal component of the electron motion 
when the wave propagates in plasma. 

The relativistic case is approached first. The wave is still assumed to 
be passing through a thin layer of plasma. Ea, which is the field added 
to the source caused by the oscillating electrons, can be calculated 
considering the wave form (74) and the additional time necessary to 
travel the distance Δz in the plasma. We find for the two components 
of Ea

=

=

( )
( )

E E sin t

E E cos t

,

.

x
a n z

c
z
c

y
a n z

c
z
c

( 1)
0

( 1)
0 (77)  

Let us calculate now Eb, with E calculated by using “Feynman’s 
method”. The equations of motion of one electron in the plasma layer 
are 

= + =

= + =

=

m v m a eE cos t

m v m a eE sin t

,

,

0.

dp
dt x x

dp
dt y y

dp
dt

.
0

.
0

x

y

z
(78)  

One has =p vm and =v p m2 2 2 2 as a consequence 
= + = +p m c1 12 2 2

0
2 and = 0. Then 

=

=

+

+

a cos t

a sin t

,

.

x
eE

m

y
eE

m

1

1

0

0
2

0

0
2 (79)  

Far enough away from the moving charge, the field is given by [5] 

= =

= =

+

+

( )
( )

( )

( )
E t

E in t

cos ,

.

x
e

c

a t
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e
c m

E
r

r
c
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r
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1
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2
4 4

1
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x
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0 2 0 2
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2

0

0 2 0 2
0
2

0

(80)  

The field created by all the electrons of a ring are considered first 
(Fig. 3), then, an integration leads to the total field created by all the 
electron of the plasma layer 

= =

= =

+

+

E E d cos t r c d

E E d t r c d

2 ( ) ,

2 sin ( ) .

x
b e

c
E
m r

y
b e

c
E
m r

4
1

1 0

2

4
1

1 0

2

2

0 2
0

0
2

2

0 2
0

0
2 (81)  

The components of the resulting field are 

=

=

+

+

E sin t z c

E cos t z c

( ),

( ).

x
b e

c
E

m

y
b e

c
E

m

2
1

1

2
1

1

2

0
0

0
2

2

0
0

0
2 (82)  

We must have =E Ea b, consequently 

=
+

n 1 1
2 1

.p
2

2 (83) 

A. Bourdier, et al.   Results in Physics 18 (2020) 103250

7



This result is in good agreement with the result previously found by 
A. I. Akhiezer and B.V. Polovin [22], by P. K. Kaw and J. Dawson [23] 
and by N.L. Tsintsadze and D.D. Tskhakaya [24] as part of a plasma 
approach. Thus, we have highlighted the simplicity of our method when 
we compare it to the different plasma approaches. 

Let us point out that this expression of n is an exact solution that is 
accurate for high values of ε. The plasma effect is canceled at high in
tensity. In the non-relativistic limit, we find the same result as in the 
linear polarization case (Eq. (30a)). 

Ionization which takes place during the propagation of the wave 
in the atmosphere is considered 

Two channels of field ionization exist: multiphoton and tunneling. 
They are distinguished by the Keldysh parameter [7] 

=g
I
U2

,p

p (84) 

where Ip is the ionization potential and Up is the ponderomotive energy. 
We chose Ip = 12 eV for air. As = ×U eV I W cm µm( ) 9.33 10 ( ) ( )p

14 2 2 , 
for = µ10.6 m and ×I W cm5.2 1011 2, we have: g 1. If 

×I W cm6. 1012 2, then <g 0.3 1. When ×I W cm1. 1014 2, Eq. (84) 
yields × <g 7. 10 12 . As a consequence, tunneling ionization is pre
vailing. 

The terms due to the relativistic mass of the electrons are con
sidered. Feynman’s method is used to estimate roughly the effect of 
ionization on the index of refraction. It is assumed that ionization is 
achieved instantaneously, and tunneled electrons have one average 
direction only. Ionization takes place in a very thin air layer before the 
optical wave is diffracted by the plasma. It starts at t = 0 and z = 0 and 
propagates with the plane wave. It is assumed here that, in the Δz thick 
layer, the electron density is constant in the part traversed by the wave. 
These not very realistic assumptions are used to make a simple calcu
lation and start exploring the effect of ionization on the index. 

At the moment of ionization, the tunneled electron has zero velocity  
[8–10], The optical field is assumed to be given by Eq. (74). The Ha
miltonian of one electron in the wave is given by 

= + + + +H P eE sin t kz c P eE t kz c P c m c( ) cos( ) .x y z
0

2
2 0

2
2 2 2 2 4

(85)  

Assuming that =P 0x , the constant Py is set to eE0 so that the 
electron may have zero velocity at the moment of ionization. Thus, the 
momentum of this electron is given by 

=

= + =

p sin t kz

p cos t kz P cos t kz

( ),

( ) ( ) ,
x

eE

y
eE

y
eE eE

0

0 0 0
(86)  

The equations of motion in the (x, y) plane are 

= + = +

= + = +

m v m a eE cos t kz eE v cos t kz

m v m a eE sin t kz eE v sin t kz

( ) ( ),

( ) ( ).

dp
dt x x

k
z

dp
dt y y

k
z

.
0 0

.
0 0

x

y
(87)  

An electron trajectory is shown in Fig. 6. 
Fig. 7 shows a laser pulse whose envelope is symmetrical with re

spect to its direction of propagation. Electrons are ionized and they 
acquire an average velocity parallel to the y-axis. 

We consider the average velocity along the y – axis, =V vy, then 
=V c 0. We consider a Galilean frame L( ) propagating in this di

rection with this velocity. In order to cancel this drift motion, a Lorentz 
transformation is achieved. Indeed, in the frame in translation, the drift 
velocity V is transformed into V′ = 0 according to the relativistic law 
transformation of velocity: =v v V vV c( ) (1 )2 where v′ is the re
sult of the Lorentz transformation on v (everywhere in this paragraph 
where g′ is g after the Lorentz transformation). In L( ) electrons can still 

be considered to be locked in a ring. They move a small distance only 
and the delay time can be assumed to be almost constant. Far away 
from the ring one has r rret the subscript ret means that the quantity 
is evaluated at the retarded time. In this part, we avoid the premium 
symbol for these quantities so as not to confuse them with the quantities 
having undergone a transformation of Lorentz. Then, r can be taken out 
the second derivative in the expression of the transverse electric field 
created by one electron [5] 

= =

= =( )
( )E

E

,
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x
e
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d

dt
x
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e
c r
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dt
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d y

dt

2
4 4

2
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ret
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0 2
2
2 0 2

2
2

0 2
2
2 0 2

2

2 (88)  

As = +t kz t V c y kz[ ( ) ]2 , the Lorentz transformations 
for the components of the optical field are 

= + =

= =
= =

= =

= =

= + =

( )

( )

E E VB t k y kz

E E E t k y kz
E E VB E t k y kz

B B E t k y kz
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B B E t k y kz
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x x z
E

y y

z z x

x x
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c z

E
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y y
E
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z z
V
c x

E
c

1

0

0 0
1

1

0

0

0
2

2
0

0
2

0

2
0

(89) 

where = =V c( 1 ) ( 1 )2 2 1
0
2 1, = = 1 0

2 and 
= =k V c c2

0 . 
In L( ), assuming the particles remain very close to the plane z = 0, 

Fig. 6. Trajectory of one electron calculated ignoring the motion in the direc
tion of propagation of the wave. = 0.010 , = ×1.77 1014s−1. 

Fig. 7. The average ionization current ji created along the y – axis.  
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the transverse equations of motion of one electron are 

= + =

= + =

= + =

m v m a t k y

m v m a eE t k y

m v m a eE t k y

cos( ),

sin( ),

sin( ),

dp
dt x x

eE

dp
dt y y
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x

y

z

0

0
2

(90) 

where =f df dt
.

. Here, = + +p m c1 12 2 2
0
2 as terms in 0

3

are neglected. The transverse acceleration of the electron reads (Fig. 8) 

=

=
+

a t k cos

a t k cos

cos[ ],

sin( ).
x

eE
m

y
eE
m

1
1

0

0

0
2 (91)  

An infinitesimal surface =S d d2 ) in L( ) which is part of a 
plasma ring (Fig. 8) 

The transverse field created by this surface S2 , far away from the 
plasma sheet is 
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(92) 

where the Jn are first kind Bessel functions. The field created by a ring is 
obtained by integrating according to φ′ 

=

=
+

( )
( )

E J k t d

E t d

( ) cos ,

sin .

x
e E

c m
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c r

y
e E

c m
J k r

c r

2 0

2
( )
1

2 0
0 2

2 0
0 2
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2 (93)  

In order to obtain the total field from all the charges of the plasma 
sheet we integrate these values over all r′ using again the relation 

= +r z2 2
2

. To do this, both integrations were performed in an ap
proximate way by assuming that J X X( ) 1 40

2 for low values 
of X (Appendix D). We focused on the term in t z csin[ ( )] and in 

t z ccos[ ( )] when integrating respectively Ex and Ey

=

=
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e E

c m
z

z
r
c

e E
c m

z

z
k r

c

2 0

2 4
2

f

f
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0 2

2 0
0 2

2 2

(94) 

where zf is the value of r for which the Bessel function is zero. 
As the magnetic field is given by = ×B e E cr , the field compo

nents are 

=

= =

=

= =

+

+
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0 2 (95)  

Then, in the laboratory frame 

= =

= =

( )
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E E V B t

E E t
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x z
e E
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In the x-direction we have =E n z c E sin t z c( 1)( ) ( )x
a

x 0
and we must satisfy =E Ex

a
x
b. It implies 

=n 1 1
2

.x
p
2

2 (97)  

In the y-direction we have =E n z c E cos t z c( 1)( ) ( )y
a

y 0 , 
we must verify =E Ey

a
y
b. We obtain 

=n 1 1
2

(1 ).y
p
2

2 0
2

(98)  

Given the very strong hypothesis we made on the direction of the 
ionization current, only the refractive index, ny, has a physical meaning. 
The relativistic correction due to ionization is in the y – direction, it is 
different from the one we have when the plasma is assumed to be pre- 
ionized (Eq. (83)). As the average velocity of the ionized electrons is in 
fact in all the directions of the (x, y) plane, we can conjecture that the 
index is isotropic and has a relativistic correction. 

Conclusions 

The key role played by the index of refraction in the propagation of 
waves is well known. For instance, a good knowledge of the analytical 
form of the index is necessary when the propagation of a wave in the 
atmosphere is studied by using numerical codes. The fact that we are 
interested in long wavelengths makes the threshold power very high. At 
these powers, the ionized electrons of the atmospheres can become 
relativistic. Special attention is given to this kind of non-linear situation 
by applying a very intuitive method. 

In this article, the refraction index is calculated mainly by enforcing 
the physical approach described in the courses of R. P. Feynman. This 
method gives insight to the characteristics origin fields which added to 
the external source shifts its phase. The originality of this work lies in 
applying this method to non-linear situations by comparing the result 
obtained to the one obtained by plasma approaches before applying it 
to a not yet studied problem. We insist on the simplicity of the method 
although we show how to simplify the perturbation calculation in a 
plasma model. The method was applied to the situation where the 
electrons are relativistic due to the high intensity of the optical field. 
First, when the electromagnetic field which propagates in the atmo
sphere is linearly polarized, ionization is not considered. When the 
relativistic electron mass is considered two approaches are im
plemented. The first one consists in coupling the “Feynman’s method” 

Fig. 8. Radiation field of a sheet of oscillating charges in (L*).  
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to a plasma approach, the second is a fully plasma approach. The good 
agreement between the two results confirms our interest of the first 
method which is much simpler to implement. 

Then, the method is applied to the case of a circularly polarized 
optical wave while ionization and relativistic effects are considered. 
Situations corresponding to a Keldysh parameter lower than unity are 
considered. As a consequence, tunneling ionization dominates. In order 
to apply “Feynman’s method” conveniently, it was assumed that ionized 
electrons are ejected in one specific direction. Simplifying physics by 

making a not very realistic assumption, a simple calculation allowed us 
to start exploring the effect of ionization on the index. 
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Appendix A 

Electric field created by an oscillating charge derived by using the lienard and Wiechert solution 

The wave electric field emitted by a moving electron along the x– axis at an observation point P (Fig. A1) is calculated. 

The 4-potential produced by a moving electron (Fig. A1) is given by the Liénard and Wiechert solution [14,25] 

= +

= +

( )
( )

( )

( )

A 1 ,

1 ,

v v v

v

c
e

r

e
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1
4 4
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v r
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ret ret

c ret
ret
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0 2 . 0 2
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(A1) 

where the subscript “ret” means that the quantity in the brackets is evaluated at a retarded time and = r r( )ret ret a unit vector along the rret 
direction. As the electron travels a short distance, then r rret . The term v c( . )ret is assumed to be small as its trajectory remains far from P, the 
velocity becomes perpendicular to r. As =v vt r c r c[ . ( )] ( . ) , r and A t are given by 

= +

= + +

( )
( ) vv

1 ,
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r
v v

A v v

e
r c c r

t
e

c r ret c c ret
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ret ret

0 2 2

0 2 (A2)  

Thus the field is 

=

= + + + +{ }( ) ( )v v

tE , A

1 1 . .v ve
r

v
c

v
c r c r ret c c ret4

1 . . 1 .ret ret ret ret
0 2 2 2 (A3)  

Far away from the plate terms with v .ret can also be neglected. As v a t r c( )ret , the electric field is approximated by 

=
( )

E e
r c r

v e
c

a t

r
e

4
1

4
.ret

r
c

x
0

2 2
0

2 (A4)  

The electrostatic term in (A4) can be neglected for large values of r. Thus, the electric field expression given by Eq. (12) is found again. This 
confirms that, if the observation position is far from the plate, the field expression given by Eq. (12) constitutes a good approximation 

Appendix B 

Electric field created by an oscillating dipole close to the charges 

The ionized electron and its parent ion are considered here. The electron driven by the optical field oscillates around the ion which remains at 
rest. We consider the field created by an oscillating dipole [8,25] (Fig. B1). 

The 4-potential produced by the moving charge q (Fig. B1) is given by the Liénard and Wiechert solution [14,25] 

= +

= +
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(B1)  

where the subscript “ret” is defined in Appendix A and = r r~ ~
ret ret ret . We have considered that the term v c( . )ret is a small relativistic correction. 

Relativistic terms will be ignored further. The point of observation P is assumed to be very close to the dipole, then r rret as r/c can be neglected. 
Thus, the field in P is 

Fig. A1. Finding the electric field created by a moving electron at P.  
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= + + + + +
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with =+ + +r r~ ~
ret ret . The approximations which have just been described lead to the following electric field expression due to the dipole in P. 

+

+E e
r r4 ~ ~ .dip

0
2 2 (B3)  

Considering that the distance d between the two charges is a small quantity and as = + ++r r r x y z~ ~ 2 2 2 , we can write 
= + +r x d y z r xd~ ( 2)2 2 2 2 2 and = + + + ++r x d y z r xd~ ( 2)2 2 2 2 2 . When P is on the x – axis, the x – component of the electric field is 

given by 

E ep
r

1
2

,dip x
0

3 (B4) 

where ex is a unit vector in the direction of the x– axis and p is the dipole moment: p = − ed. This electric field adds to the incoming optical field. 
The dipole moment per volume unit of the plasma P is given by = =P p edN N [25,26] and is proportional to Edip

=

= =e e

E ,

,
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P

dip
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x
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r x

1
2

0

0 0 0 3 (B5) 

where α is a constant coefficient which is set at = 1 3 [26,27]. Eq. (B5) is satisfied when =r N2 33 . The displacement of the charge is calculated 
from the equation of motion: =d eE m t( ) cos0

2 . Then, 

=

=

E E t

E t

cos ,

cos .

dip
e N

m3 0

3 0
p

2

0 2

2

2 (B6)  

We know that =P n E t( 1) cos2
0 0 where n is the plasma index and E0 the amplitude of the source. The following equality: =P E3 dip0 must be 

satisfied. Consequently, we have 

=n 1 ,p2
2

2 (B7)  

or in the case of low-density plasma 

=n 1 1
2

.p
2

2 (B8)  

Finally, Eq. (30a) is found again by using a different approach. 

Appendix C 

Relativistic solution for the momentum and the field 

In order to calculate the momentum, we let 

= + + + ++p A sin A sin A sin A sin3 [(1 ) ] [(1 ) ].x L L
(2) (2)

3
(2)

(1 )
(2)

(1 )
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As (2) (Eq. (56)) is set to eliminate the sin force term in the right-hand side of Eq. (70a). The amplitude A3
(2) must satisfy 
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this implies 

Fig. B1. Finding the electric field created by an oscillating dipole.  
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Furthermore 
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with = +± +A A Aa b a b a b( )
(2)
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The solution for p becomes 
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The initial conditions lead to 
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Eq. (50) give the expression of the wave electric field 
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Appendix D 

Approximations used in integrating Eq. (93) 

Let us justify the very strong approximations from Ex in Eq. (93) in the calculation of 

=E e E
c m

J k r z t r
c

dr
2

( ) cos ,x
z

2
0

0
2 0

2 2

(D1)  

The primes were forgotten here for the sake of simplicity. 
First, let us calculate numerically the quantity =f J k r z( )0

2 2 versus r and let us compare it to its approximate value g k r z1 ( ) 42 2 2 in 
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the case when = ×1.77 10 s14 1 (λ = 10.6 μm) and z = 1 m. We have = ×k 5.9 10 m5 1, assuming = 0.010 , we took = ×k 5.9 10 m3 1. Fig. C1 
shows that g is a pretty good approximation for f. 

In Eq. (D1), we integrate from z to zf , where zf is the value of r for which the Bessel function is zero. The integration from zf to infinity is ignored 
as we focus on ( )tsin z

c or ( )tcos z
c terms. 

It is assumed that: J X X( ) 1 40
2 when r is in the range [z – zf]. Thus 
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As z and r remain very close to each other in the integration 
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Then, we consider the ( )tsin z
c term 

=E e E
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sin .xsin
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0

0
2 (D4)  

In the same way, Ey cos was calculated from the second equation giving Ey.  
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