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The plasma refraction index can be calculated by different methods. In this paper, a physical approach is presented and applied to non-linear situations. We have particularly focused on the case where the mass of the electrons subjected to the wave becomes relativistic. In the case of a circularly polarized high intensity wave, ionization is considered.

Introduction

We are interested in the propagation of laser radiation in the atmosphere in order to study it at very large distances. The long wavelengths (λ = 10.6 μm) are of great interest although they require very high powers [1,[START_REF] Tochitsky | CLEO: QELS_Fundamental Science[END_REF]. To date, research in the wavelength range of 0.8-1 μm has shown a fundamental limitation of guided energy to a few mJ in a single 100 μm channel. With a wavelength of 10.6 μm, we expect to propagate very large energies in filaments, we want to go from mJ (GW) to some Joules (TW = 10 12 W) [START_REF] Tochitsky | CLEO: QELS_Fundamental Science[END_REF]. We know the essential role played by the index of refraction in the propagation of the wave. It is the result of a balance between the Kerr effect and the diffraction that can only be achieved when the power of the laser is above a certain threshold. According to the transverse direction of the gradient of the index, the light is either diffracted or focused in the propagation. Long wavelengths make the threshold power very high and require, for a CO 2 laser to be of the order of one terawatt. At these powers the ionized electrons can become relativistic. Even if for this wavelength we only meet weakly relativistic situations, taking these effects into account allows us to envisage more frankly relativistic situations that we could encounter with longer wavelengths generated for example by using of a free electron laser. This work is part of a wider field of research on wave propagation properties, an area in which the knowledge of the refractive index can be a major issue. In this area studied for many years, very innovative works have been published recently [START_REF] Wu | [END_REF]4].

The refraction index concept seems to be a trivial subject introduced by Snell's law we learned in our elementary optics courses. Beyond this apparent simplicity, this work aims to better understand its physical origin. Among the index calculations that can be presented, we have emphasized on a physical approach described in the courses of R. P. Feynman [START_REF] Feynman | Lectures on Physics[END_REF] that we have extended to complex non-linear situations. This method has been validated by comparing the result obtained with those obtained by other approaches. The originality of one of these methods lies in the fact that the impulse and the energy of an electron can under certain conditions become a 4-potential vector. This greatly simplifies the disturbance calculation which allows to find the dispersion relation of the wave and therefore the index of the medium. We thus extend the scope of the "Feynman method" and confirm a result already found in another way [START_REF] Max | [END_REF]. Thus, we draw the expression of the index when the electron dynamics becomes relativistic. We show that the plane wave approximation remains valid for laser pulses of a few wavelengths in length. The effect of ionization is also studied. Situations where the Keldysh factor [7] is less than unity have been considered, tunneling ionization has been preferred. In the case where the wave is circularly polarized the current associated with the ionization of the air is important and cannot be neglected. It is supposed that this ionization is instantaneous and that the free electron density is constant. We consider electrons have a constant drift velocity as they have zero velocity when they leave the tunnel [8][9][10]. This drift velocity is assumed to be in one direction only. Thus, we simplify physics in order to be able to achieve a simple analytical calculation using "Feynman's method" conveniently to start roughing the problem. We introduce a Lorentz transformation that eliminates the electron drift due to ionization. Then, the field produced by the plasma electrons can be calculated simply. The index is calculated in the laboratory frame. A relativistic correction to the index of refraction is found in the direction of the ionization current which shows that ionization affects the index.

Light propagates slightly more slowly in air than in vacuum. This effect is described by the index of refraction n. In a material, the phase velocity of a wave is expressed as c/n. The index of refraction when plasma effects are neglected can be expressed as [11][START_REF] Boyd | Nonlinear optics[END_REF][13] = + + n n n I ..., 0 2

(1)

where n 0 is the usual weak field refractive index, n 2 the second order index associated to bound electrons and I the intensity of the optical field. A filament is created when spreading by diffraction does not occur, that is to say when P the total beam power satisfies

= P P n n 2 , cr 2 0 2 (2)
where λ is the light wavelength. In the case when = µm 10.6 , we set × n m W 1.08 10 for air [1], then P TW 1.65 cr . The filament exists if P P cr . Considering a 1 cm diameter filament first [START_REF] Tochitsky | CLEO: QELS_Fundamental Science[END_REF], the intensity must be greater than

× I W cm 2. 10 cr 12
2 . The relevance of considering the relativistic mass of one electron in the wave is expressed by solving the following simple non-relativistic equation

= m d x dt eE cos t, 2 2 0 ( 3 
)
where x is the electron position, m its mass, ω the frequency of the wave and -e the charge of the electron. The average normalized square of the electron velocity is given by

= = = v c e E m c 2 2 2 , 2 2 0 2 2 0 2 2 2 2 (4) 
where parameter = 0 2 measures the importance of relativistic effects. It can be easily shown that = × I W cm µm 7.4

. For I = I cr, we have × 1.7 10 4 which means that relativistic effects can be neglected. If we consider a 1 mm diameter and that = × P P 10 cr , then × 4. 10 0 1 . Considering the same power and a 1 cm diameter filament we found × 4. 10 0 2 . Then, in a very large number of cases the relativistic mass of electron can play an important role. For very short pulses the motion of the electrons might be quite relativistic, as a consequence it is necessary to explore relativistic effects for wavelengths close to 10 μm.

In order to calculate the correction for the index of refraction due to free electrons, in every situation, a source called the external source(S) is assumed to be at a large distance from a thin plate of plasma [START_REF] Feynman | Lectures on Physics[END_REF] (Fig. 1).

The spherical wave is emitted by the source becomes a plane wave when reaching the plate. The total electric field in any physical circumstance can always be represented by the sum of the fields from all the charges in the universe

= + E E E . S allothercharge eachcharge s (5)
The effect of all the charges is assumed to be very small compared to the one of the source, the different charges are only driven by the source. This means that .

After the plate, the field becomes the field from the source plus a field ΔE produced by the oscillating electrons of the plate. This field variation is also calculated by considering that the wave appears to propagate at the speed c/n in the plate. Comparing these two approaches allows to determine the index of refraction n.

Calculation of the field created by a moving electron far away from the plasma plate

The field produced at P at large distance from a moving electron is given by [START_REF] Feynman | Lectures on Physics[END_REF][START_REF] Jackson | Classical electrodynamics[END_REF] 

= E e e c d dt 4 , r 0 2 2 2 (6) 
where e r is a unit vector in the apparent direction of the charge which stands at the retarded distance r x y z ( , , ) (Fig. 2). We have

= = + + e PM i j k r x r y r z z r , r P (7)
where z p is the z-component of point P. Further, calculating the field created by a small width plasma ring (Fig. 3), the charge will be supposed to move on a small distance compared to the distance r′ between the electron and P. The time delay, that is to say the time it takes to go, at speed c, from the electron to P is r c where r′ is the retarded distance. Assuming r′ is very large and neglecting terms in r 

Then, the electric field produced by the electron reads

= E e e c a t r c r ( 4 )[ ( ) ] xx 0 2 , with = v r a t r c a t rc r c ( ) [ (1 . 
) ] where v′ is the electron velocity. Far away from the plane, the relativistic correction v r rc . can be neglected. We can replace r′ by r which is a constant average distance in the denominator. In the numerator of the expression of the field relativistic effects can be ignored. Thus, the electron acceleration is just a function of the retarded time tr/c. Consequently, the electric field created by an electron oscillating on a short distance is

= ( ) E e e c a t r 4 , r c x 0 2 (12) 
where e x is a unit vector along the x-axis and a the acceleration of the electron along this axis. This expression for the electric field produced by an electron when standing far away is derived in another way in Appendix A.

Motion of an electron in the plasma plate when submitted to a linearly polarized external source

Let us derive the equation of one electron motion in the plasma sheet. When the external source is very intense, the electron relativistic mass will be considered by performing expansions and neglecting terms in 0 3 . The plasma sheet is such as

z , ( 13 
)
where λ is the wavelength of the external source. The electromagnetic field is defined through the following 4-potential

= V A E sin t kz e ( , ) 0, ( ) . 
x 0 [START_REF] Jackson | Classical electrodynamics[END_REF] It is assumed that the external source can be very intense, the relativistic electron mass can be significant. Thus, the following relativistic Hamiltonian for a free electron in the wave is taken

= + + + H P eE sin t kz c P c P c m c ( ) . x y z 0 2 2 2 2 2 2 2 4 (15) 
Three constants of motion allow to integrate the system: P x , P y , and

= C H k P ( ) z .
It is assumed that = = P P 0

x y

. We choose = P 0 z when = t kz 0, then = C mc 2 . The mechanical momentum along the x-axis is

= = p m v eE sin t kz ( ) ( ) x x 0
where γ is the Lorentz factor. Then, the equation of motion along this axis is

= + = + dp dt m v m a eE cos t kz eE k zcos t kz ( ) ( ), x x . 0 0 ( 16 
)
where a is the acceleration of the charged particle. The last term of this equation comes from the Lorentz force.

Let us make a number of reminders

= = = z H P P m p m . z z z ( 17 
)
As = C mc 2 , we have

= p mc k ( 1). z 2 (18) 
Keeping terms in ε only, Eqs. ( 17) and (18) imply that

= z c v c c k cos t kz 1 2 4 [1 2( )]. 2 2 2 (19) 
Eq. [START_REF] Landau | The classical theory of fields[END_REF] shows that, in vacuum, the electron has a drift velocity along the z-axis. This drift velocity is not significant in plasma because of Coulomb forces.

As = v c v c a v c a (1 ) ( ) ( ) 2 2 3 2 2 
2 , the first term in the lefthand side of Eq. ( 17)

is m v m v c v a m v v c c a m v c a ( ) [ (1 4 ) ] ( ) . x x . 2 2 3 3 2 2 2
. Thus, the equation of motion along the x-axis is

= + = + dp dt ma v c eE cos t kz eE k zcos t kz 1 3 2 ( ) (
).

x

2 2 0 0 (20) 
The last term in the right hand of Eq. ( 20), . In the non-relativistic approach and, as in the relativistic one (when terms in v c 2 2 are considered), the equation of motion of one electron in the layer will be given by = dp dt eE cos t.

k z z c v c ( ) ( 1 
x 0

Calculation of the index of refraction for a plane wave propagating in plasma when the relativistic mass of electrons is neglected

The wave is a pure plane wave Only the "Feynman method" is applied in this preliminary part.

If the plate had no effect the field of the wave travelling to its right would be [START_REF] Feynman | Lectures on Physics[END_REF] 

= E E cos t z c , S 0 (22) 
The wave takes an additional time when travelling in the plate. Without the plate, the wave would travel the distance Δz with time of Δz/c. As the wave travels at the speed of c/n in the plane, it takes the time n Δz/c. So, an additional time

= t n z c ( 1)
has to be considered. The extra delay in going through the plate is taken into account by replacing t by t -Δt in Eq. ( 22) 

= = + = + E E cos t n z c z c E cos t z c E sin t z c E cos t z c E [ ( 1) ], ( ) ( ), ( ) . 
with

= E n z c E sin t z c ( 1) . a 0 (24) 
The field E a which is added to the source field can be calculated in another way by calculating the field created by the electrons oscillating in the plate. There is no electron drift velocity acquired in ionization when considering linear polarization [8]. The Lorentz force can be neglected as we study a non-relativistic situation. Then, in the plasma sheet, at z = 0, the equation of motion of one electron is

= = a dv dt eE m cos t, 0 (25) 
as a consequence, the field generated by one electron is

= E e e E mc r cos t r c 4 , x 2 0 0 2 (26) 
The field created by a ring, that is to say the field produced by all the charges of the ring (Fig. 3), is obtained by adding the fields created by the infinitesimal bits of charge in surfaces

S 2 = E Ne c E mr cos t r c 4 ( ), 2 2 0 2 0 (27) with = N S 2
where is the number of electrons per unit area. Then, the total field generated by the layer is obtained by integrating over all the rings

= = E E d e c E m cos t r c r d 2 4 ( ) 2 , b 2 0 2 0 0 (28) as = + r z 2 2
2 and as z is independent of ρ we have

= rdr d 2 2
. Then, integrating over the r -interval [r = z, = r ] and neglecting the charge density when r goes to infinity, we get [START_REF] Feynman | Lectures on Physics[END_REF] 

= E e c E m sin t z c 2 ( ). b 2 0 0 (29) 
Eq. ( 29) represents the part of the field which is not present in the original incoming one but produced through the mediation of the current in the plasma sheet.

Considering that = N z where N is the electron density and that plasma frequency is = e N m p 2 0

, comparing the two values of E given by Eqs. ( 24), (29) and imposing their equality:

= E E a b , we obtain = n 1 1 2 . p 2 2 (30a)
Laser pulses travel at the group velocity v G which is the speed of light is divided by n G the group index. We can deduce the group index n G from the relation n G n = 1 [START_REF] Quémada | Ondes dans les plasmas[END_REF]. Thus, in plasma, one has

= + n 1 1 2 . G p 2 2 (30b)
These results (Eqs. (30a) and (30b)) are well known [START_REF] Quémada | Ondes dans les plasmas[END_REF][START_REF] Chen | Introduction to Plasma Physics[END_REF]. They can be derived in a different way by considering that the point of observation P is close to the electron and the mother ion [8] (Appendix B). Then, we focus on the static dipole field. These results could have also been obtained easily by introducing conductivity and using Maxwell equations, but we would have lost the insight into the origin of the fields.

Calculation of the refractive index for a moderately short pulse

The source wave is chosen to be in the more realistic form

= E e E e cos t z c , s x t 0 z c ( 31 
)
where τ is the pulse duration.

As the thickness of the plasma layer is assumed to be very low, the wave phase is assumed to be function of t only inside. The Lorentz force is also neglected in this non-relativistic approximation. Thus, inside the very thin plasma sheet, the wave has the form

= E e E e cos t. s x t 0 | | (32)
The length τ is assumed to be long enough so that no frequency of the Fourier spectrum is close to the plasma frequency. The frequencies of the Fourier spectrum are assumed to verify p . Then, one can ignore nonlinear effects and the fact that the different frequency components move at different phase velocities. We assume that the pulse undergoes no distortion when propagating through the plasma sheet. The Fourier transform of this function is

= = = + + + + + E E e cos te dt E F E , (
) .

s i t 0 0 0 1 1 ( ) 1 1 ( ) t | | 2 2 2 2 (33) 
Fig. 4 shows that the width at half maximum increases when τ decreases

The width at half maximum varies like 1/ τ : ~1 . We must have ± > 1 p . For = µm 10.6

, one has = × s 1.77 10 14 1 , if

= = × T 10
3.53 10 s 13 and the plasma density 10 15 cm -3 , then = × 1.78 10 s p 12 1 . The condition to have no distortion mentioned just above is satisfied. When τ = T, some significant frequencies are close to ω p and distortion might start to take place (Fig. 5).

The acceleration of one electron, in the direction of the electric field, in the plasma layer is

= a e m E e cos t. t 0 | | (34) 
The field produced by one electron of the plane at P is (Fig. 3)

= = E e c a t r c r e mc E e r cos t r c 4 ( ) 4 . 0 2 2 0 2 0 t r c ( 35 
)
The field created by a plasma ring is (Fig. 3)

= E t e S c E mr e cos t r c ( ) 4 . t 2 2 2 0 2 0 r c ( 36 
)
The field created by all the planes is given by 

Assuming t z c 0, one finds

= + + ( ) E e c E m e sin t z c cos t z c 2 1 1 . b t z c 2 0 0 1 2 2 2 (39) 
As far as we focus on a part of the field which has the form of the source, we are interested in the following component of (40)

Let us calculate ΔE by considering the fact that the pulse travels at the group velocity v G which is the speed of light is divided by the group index n G . In the plate, the wave takes the additional time

= t n z c ( 1)

G

. In this case, after the plasma sheet, t has to be replaced by t -Δt in expression of the wave

= + E E e .
after the plate

t n z c z c i t n z c z c 0 ( 1) [ ( 1) ] G G (41)
As a consequence

= E E e n z c cos t z c 1 . cos a G 0 t z c ( 42 
)
The fact that

= E E cos a cos b implies that = + n z c e mc 1 2 1 , G 2 0 2 2 (43) so = + n K 1 1 2 , G p 2 2 (44a) and = n K 1 1 2 . p 2 2 (44b) with = + K 1 . 2 2 2 2
(45)

Note that considering t z c 0 leads to the same result.

In linear physics, this result can be found very simply by using Maxwell equation and introducing conductivity.

When τ becomes very large, the result of the non-relativistic plane wave is found again (Eq. (30b)). When the pulse duration, τ, is 10 laser periods: τ = 10 T, then the correction with respect to the case of the plane wave is K 0.999, the correction is very weak and the plane wave approximation is valid.

Calculation of the index of refraction for a strong linearly polarized relativistic plane wave

One particle approach

We start by developing a one-particle electrostatic model that we will then insert into a plasma approach. The × v B force due to the wave applied to the electrons of the plasma sheet produces a density perturbation δN, having frequency 2ω, δN will be calculated through a plasma approach. Then, the one-electron contribution to the field will be multiplied by δN to obtain the contribution per unit plasma volume. The resulting current created, δNev x , is a source for E and B.

When the external source is very intense, the electron relativistic mass will be considered by performing expansions and neglecting terms in 0 3 .

It is assumed that the electrons in the plasma layer remain at z = 0 and oscillate along the x-axis. The last term in Eq. ( 20), eE k zcos t kz ( ) ( ) 0 , is ignored. In fact, it is considered when coupling this single particle motion to the density perturbation δN. These strong hypotheses will be justified later by comparing the result obtained through this approach to the one obtained with a rigorous plasma approach. Thus, the relativistic motion of one electron in the wave is described by Eq. ( 21)

+ = m v m a eE cos t, x . 0 (46) 
while the plasma is coupled to the incident wave through density oscillations due to the longitudinal Lorentz force ( = × f ev B). Retaining second order terms in v c 2 2 only, the electron acceleration along the x-axis is 

= a v c eE m cos t 1 3 2 , 2 2 
The field created by the slice of plasma due to all the electrons having an oscillating density due to the incoming wave (Fig. 3) can be expressed as

= + E t e c E m sin t z c sin t z c ( ) 2 1 3 8 ( ) 1 8 3 ( ) , b 2 0 0 (49)
where t ( ) oscillates due to the plasma oscillations.

Calculation of the index by considering plasma density oscillations

Let us determine t ( ) through a plasma approach by solving Maxwell and Lorentz equation [START_REF] Fortin | [END_REF]18].

The electromagnetic field can be given by 

= + = A A r r f t f t t grad ( , ), ( , 
)
where f is some function depending on r and t only [START_REF] Landau | The classical theory of fields[END_REF]. We assume that the electric and magnetic fields of the wave are associated with the four-potential A ( , ), the four-vector potential p cp e e ( , )

0 can be allowed with to such a function. The initial position being r 0 , the Jacobi action r r S t ( , , ) 0 can be introduced by calculating the action of one electron on two adjacent very close actual trajectories [START_REF] Rax | Physique des Plasmas[END_REF].

We have

= = P r r r P r r r S t S t ( , , ) , ( , , ) 0 0 0 
0 where P and P 0 are respectively the canonical momenta at some position r and at the initial po- sition r 0 of the electron. We have Let us point out that Lorentz equation and Faraday's law are automatically satisfied by Eqs. (50) [START_REF] Fortin | [END_REF]. So, we only have to find a solution which verifies the two following equations in order to derive the wave equation

= + p e A
× = B E v c t µ Ne 1 , 2 0 (51) = e N N . E ( ), 0 0 ( 52 
)
where N is the free electron density and N 0 is the density of ionized atoms which are assumed to be a uniform background. where N 0 is the ion density which is assumed to be at rest. The electron momentum is assumed to be in the form

= = = = = + + + p p i x z t kz p p p ( ), , , , ...... i n i n n i n i n i i i ( ) ( ) ( ) (0) (1) (2) 
(54)

Each successive term of this sum is assumed to be an order of magnitude smaller than the preceding term.

The following initial conditions were chosen

= = = = p p dp d dp d eE 0, , x z z x x 0 (55) 
when = 0

The Lindstedt-Poincaré method is applied, in addition to (55), it is assumed that [START_REF] Tabor | Chaos and Integrability in Nonlinear Dynamics[END_REF] 

= + + ......, 2 (0)2 (2) 
(56)

where [START_REF] Tochitsky | CLEO: QELS_Fundamental Science[END_REF] is relatively small (in v c 2 2 ). To zero order (v/c = 0)

+ = + = p p p 0, 0. c p t z x x c p t z 1 (0) 1 (0) x p z p 2 2 (0) 2 2 2 2 2 2 2 (0) 2 2 2 (57) 
We seek a solution in the form

= = p p , . x x z z (0) (0) (0) (0) (58) 
The initial conditions imply = z (0) and = eE x x (0) 0

. Then, Eq. ( 50) give

= = E E cos E , 0. x x z 0 (59) 
Ignoring the term c p ( ) x (2) 2 (0) from Eq. ( 57), the following dispersion relation is obtained

= = + c . p 2 (0)2 2 2 2 (60) 
Let us go to first order in v/c now to calculate the density oscillation of the plasma sheet. In this approximation, the wave equation is , this set of equations leads to . The dispersion law is

+ = + = = p p p p E cos 0, ( ) 2 . c p t z x x c p t z mc z t x ek c x 1 (1) (1) 1 (1) 1 2 
= = + c p 2 (0)2 2 2 2
(65)

The plasma density is given by Poisson's equation

= N N e E ( ) , z 0 0 (66) 
that is to say

= + N N e k c E cos cos 4 [ ]. L L x L 0 0 2 2 2 0 0 (67) 
In order to calculate the refractive index, we follow the form of the source field and focus on the ω-component of ΔE. As = N z, the E created by the plasma is

= + E z E c k c sin t z c 2 1 3 8 2 1 4 , b x p L 0 2 2 2 2 2
(68) as = E E x 0 0 . Comparing this value of E to the one given by (24), we obtain (69)

= n 1 1 2 1 3 8 2(4 ) .

Fully plasma approach

The index has also been calculated through a purely plasma approach keeping terms in v 2 /c 2 . To second order in ν 0 , taking into consideration the term c p ( ) x (2) 2 (0) which was neglected in the non-relativistic approximation, the wave Eq. ( 53 (70a)

+ = c p t c p 1 0. z p z 2 2 (2) 2 2 2 (2) (70b) 
In order not to have a secular term, (2) is set to eliminate the term in sin in the right-hand side of Eq. (70a). We have

= + + c k c k 2 4 3 8 2 . L p (2) 2 2 2 2 2 2
(71)

As the dispersion law is

= + = + + k c p 2 (0)2 (2) 2 2 2 
(2) ;

= + k c 1 3 8 1 2( 4 . p p p 2 2 2 2 2 2 2 (72) 
Then,

= = n ck 1 1 2 1 3 8 2(4 ) , p p p 2 2 2 2 2 2
(73) which is the same result as the one given by equation ( 69), in the low plasma density limit. It is also the same result as the one previously derived by C.E. Max and J. Arons [START_REF] Max | [END_REF].

The momentum and the electric field have also been calculated (Appendix C).

Calculation of the index of refraction in the case of a circularly polarized plane wave propagating in plasma

The wave propagates in a gas which has pre-ionized takes place during the propagation of the wave, it is ignored in this part. The optical field is given by (76)

= + = + E E t
where P x and P y are two constants of motion. It is assumed, in this paragraph, that = = P P 0

x y , as γ is a constant. The electron is at rest on average in the (x, y) plane. The electron density fluctuations will not be considered as there is no longitudinal component of the electron motion when the wave propagates in plasma.

The relativistic case is approached first. The wave is still assumed to be passing through a thin layer of plasma. E a , which is the field added to the source caused by the oscillating electrons, can be calculated considering the wave form (74) and the additional time necessary to travel the distance Δz in the plasma. We find for the two components of E a = = ( ) ( )

E E sin t E E cos t , . x a z c z c y a n z c z c 1) 0 ( 1) 0 (77) 
Let us calculate now E b , with E by using "Feynman's method". The equations of motion of one electron in the plasma layer are 

Far enough away from the moving charge, the field is given by [START_REF] Feynman | Lectures on Physics[END_REF] The field created by all the electrons of a ring are considered first (Fig. 3), then, an integration leads to the total field created by all the electron of the plasma layer We must have

= = = = + + ( ) ( ) ( ) ( ) t E in t cos ,
= = = + E E d cos t r c d E t r c 2 ( ) , 2 
= E E , consequently = + n 1 1 2 1 . 2 2 ( 83 
)
This result is in good agreement with the result previously found by A. I. Akhiezer and B.V. Polovin [START_REF] Akhiezer | [END_REF], by P. K. Kaw and J. Dawson [23] and by N.L. Tsintsadze and D.D. Tskhakaya [24] as part of a plasma approach. Thus, we have highlighted the simplicity of our method when we compare it to the different plasma approaches.

Let us point out that this expression of n is an exact solution that is accurate for high values of ε. The plasma effect is canceled at high intensity. In the non-relativistic limit, we find the same result as in the linear polarization case (Eq. (30a)). . As a consequence, tunneling ionization is prevailing.

Ionization which takes place

The terms due to the relativistic mass of the electrons are considered. Feynman's method is used to estimate roughly the effect of ionization on the index of refraction. It is assumed that ionization is achieved instantaneously, and tunneled electrons have one average direction only. Ionization takes place in a very thin air layer before the optical wave is diffracted by the plasma. It starts at t = 0 and z = 0 and propagates with the plane wave. It is assumed here that, in the Δz thick layer, the electron density is constant in the part traversed by the wave. These not very realistic assumptions are used to make a simple calculation and start exploring the effect of ionization on the index.

At the moment of ionization, the tunneled electron has zero velocity [8][9][10], The optical field is assumed to be given by Eq. ( 74). The Hamiltonian of one electron in the wave is given by (85)

Assuming that = P 0

x , the constant P y is set to eE 0 so that the electron may have zero velocity at the moment of ionization. Thus, the momentum of this electron is given by 

= = + = p sin
The equations of motion in the (x, y) plane are An electron trajectory is shown in Fig. 6. Fig. 7 shows a laser pulse whose is symmetrical with respect to its of propagation. Electrons are ionized and they acquire an average velocity parallel to the y-axis.

= + = + = + = + m v m a eE t kz eE v cos t kz m v m a eE sin t kz eE v sin t kz ( ) ( ), ) ( ).
We consider the average velocity along the y -axis, = V v , then = V c

. We consider a Galilean frame L ( ) propagating in this di- rection with this velocity. In order to cancel this drift motion, a Lorentz transformation is achieved. Indeed, in the frame in translation, the drift velocity V is transformed V′ = 0 according to relativistic law transformation of velocity:

= v v V vV c ( ) (1 
) 2 where v′ is the result of the Lorentz transformation on (everywhere in this paragraph where g′ is g after the Lorentz transformation). In L ( ) can still be considered to be locked in a ring. They move a small distance only and the delay time can be assumed to be almost constant. Far away from the ring one has r r ret the subscript ret means that the quantity is evaluated at the retarded time. In this part, we avoid the premium symbol for these quantities so as not to confuse them with the quantities having undergone a transformation of Lorentz. Then, r can be taken out the second derivative in the expression of the transverse electric field created by one electron [START_REF] Feynman | Lectures on Physics[END_REF] (88)

= = = = ( ) ( ) E E , .
As = + t kz t V c y kz ( ) ] 2
, the Lorentz transformations for the components of the optical field are 

= + = = = = = = = = = = + = ( ) ( ) E E VB t k y kz E E E t k y kz E E VB E t k y kz B B E t k y kz B B t k y kz B B E t k y kz ( ) cos( ), sin( ), ( ) sin( ), sin( ), cos( ), cos( ), 
where are neglected. The transverse acceleration of the electron reads (Fig. 8) 

= = V c ( 1 ) ( 1 ) 
= = + a t k cos a t k cos cos[ ], sin( ). 
An infinitesimal surface

= S d d 2
) in L ( ) which is part of a plasma ring (Fig. 8)

The transverse field created by this surface S 2 , far away from the plasma sheet is 

= = = + + + = = = + + = = = = + + = = = = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
E t k cos d d J k n t J sinn t d d E t k cos d d J k n t J k sinn t d d cos ( ) cos cos ( ) sin ] , ( cos sin ( ) cos ] 
where the J n are first kind Bessel functions. The field created by a ring is obtained by integrating according to φ′ 

= = + ( ) ( ) J k t d E t d ( ) cos , sin .
In order to obtain the total field from all the charges of the plasma sheet we integrate these values over all r′ using again the relation

= + r z 2 2
. To do this, both integrations were performed in an approximate way by assuming that J X X ( ) 1 4 Then, in the laboratory frame 

= = = = ( ) ( ) E E V B E E ( ) sin , (1 ) cos . 
In the x-direction we have

= E n z c E sin t z c ( 1)( ) ( ) x a x 0
and we must satisfy

= E E x a x b . It implies = n 1 1 2 . p 2 2 (97) 
In the y-direction we have . We obtain

= E n z c E cos t z c ( 1)( ) ( ) 
= n 1 1 2 (1 ) 
.

y p 2 2 0 2 (98) 
Given the very strong hypothesis we made on the direction of the ionization current, only the refractive index, n y , has a physical meaning. The relativistic correction due to ionization is in the y -direction, it is different from the one we have when the plasma is assumed to be preionized (Eq. ( 83)). As the average velocity of the ionized electrons is in fact in all the directions of the (x, y) plane, we can conjecture that the index is isotropic and has a relativistic correction.

Conclusions

The key role played by the index of refraction in the propagation of waves is well known. For instance, a good knowledge of the analytical form of the index is necessary when the propagation of a wave in the atmosphere is studied by using numerical codes. The fact that we are interested in long wavelengths makes the threshold power very high. At these powers, the ionized electrons of the atmospheres can become relativistic. Special attention is given to this kind of non-linear situation by applying a very intuitive method.

In this article, the refraction index is calculated mainly by enforcing the physical approach described in the courses of R. P. Feynman. This method gives insight to the characteristics origin fields which added to the external source shifts its phase. The originality of this work lies in applying this method to non-linear situations by comparing the result obtained to the one obtained by plasma approaches before applying it to a not yet studied problem. We insist on the simplicity of the method although we show how to simplify the perturbation calculation in a plasma model. The method was applied to the situation where the electrons are relativistic due to the high intensity of the optical field. First, when the electromagnetic field which propagates in the atmosphere is linearly polarized, ionization is not considered. When the relativistic electron mass is considered two approaches are implemented. The first one consists in coupling the "Feynman's method" to a plasma approach, the second is a fully plasma approach. The good agreement between the two results confirms our interest of the first method which is much simpler to implement.

Then, the method is applied to the case of a circularly polarized optical wave while ionization and relativistic effects are considered. Situations corresponding to a Keldysh parameter lower than unity are considered. As a consequence, tunneling ionization dominates. In order to apply "Feynman's method" conveniently, it was assumed that ionized electrons are ejected in one specific direction. Simplifying physics by making a not very realistic assumption, a simple calculation allowed us to start exploring the effect of ionization on the index.
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Appendix A

Electric field created by an oscillating charge derived by using the lienard and Wiechert solution

The wave electric field emitted by a moving electron along the x-axis at an observation point P (Fig. A1) is calculated.

The 4-potential produced by a moving electron (Fig. A1) is given by the Liénard and Wiechert solution [START_REF] Jackson | Classical electrodynamics[END_REF]25] Thus the field is

= + = + ( ) ( ) ( ) ( ) A 1 , 1 ,
= = + + + + { } ( ) ( ) v v t E , A 1 1 . 
. The electrostatic term in (A4) can be neglected for large values of r. Thus, the electric field expression given by Eq. ( 12) is found again. This confirms that, if the observation position is far from the plate, the field expression given by Eq. ( 12) constitutes a good approximation

Appendix B

Electric field created by an oscillating dipole close to the charges

The ionized electron and its parent ion are considered here. The electron driven by optical field oscillates around the ion which remains at rest. We consider the field created by an oscillating dipole [8,25] (Fig. B1).

The 4-potential produced by the moving charge B1) is given by the Liénard and Wiechert solution [START_REF] Jackson | Classical electrodynamics[END_REF]25] = where the subscript "ret" is defined in Appendix A and = r r ~ret ret ret . We have considered that the term v c ( .

+ = + ( ) ( ) ( ) ( ) A 1 , 1 
) ret is a small relativistic correction. Relativistic terms will be ignored further. The point of observation P is assumed to be very close to the dipole, then r r ret as r/c can be neglected. Thus, the field in P is r r ~ret ret . The approximations which have just been described lead to the following electric field expression due to the dipole in P. . When P is on the x -axis, the x -component of the electric field is given by

E e p r 1 2 , dip x 0 3 (B4)
where e x is a unit vector in the direction of the x-axis and p is the dipole moment: p = -ed. This electric field adds to the incoming optical field. The dipole moment per volume unit of the plasma P is given by = = P p ed N N [25,[START_REF] Budden | The propagation of Radio Waves[END_REF] and is proportional to where n is the plasma index and E 0 the amplitude of the source. The following equality:

E dip = = =
= P E 3 dip 0 satisfied. Consequently, we have = n 1 , p 2 2 2 (B7)
or in the case of low-density plasma

= n 1 1 2 . p 2 2 (B8)
Finally, Eq. (30a) is found again by using a different approach.

Appendix C

Relativistic solution for the momentum and the field

In order to calculate the momentum, we let ) ].

= + + + + + p A sin A sin A sin A sin 3 [(1 ) ] [ (1 
x L L (2)

(2) 3

(2) (1 )

(2) (1 ) 
(2)

L L (C1)
As (2) (Eq. ( 56)) is set to eliminate the sin force term in the right-hand side of Eq. (70a). The amplitude A 3 (2) must satisfy 

+ + = + + c t k c A
(2) ( ) (2) .

The solution for p becomes In Eq. (D1), we integrate from z to z f , where z f is the value of r for which the Bessel function is zero. The integration from z f to infinity is ignored as we focus on ( ) In the same way, E y cos was calculated from the second equation giving E y . 
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 2 where p is the fluid mechanical momentum of the free electrons and where = is their energy. It means that, in some cases, -vector potential. It is known that two four vectors potential A ( , ) and A ( , ) give the same electromagnetic field when

  during the propagation of the wave in the atmosphere is considered Two channels of field ionization exist: multiphoton and tunneling. They are distinguished by the Keldysh parameter[7] where I p is the ionization potential and U p is the ponderomotive energy. We chose I p = 12 eV for air. As =

Fig. 6 .Fig. 7 .

 67 Fig. 6. Trajectory of one electron calculated ignoring the motion in the direction of propagation of the wave.=0
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 8 Fig. 8. Radiation field of a sheet of oscillating charges in (L*).

  subscript "ret" means that the quantity in the brackets is evaluated at a retarded time and = r r ( ) ret ret a unit vector along the r ret direction. As the electron travels a short distance, then r r ret . The term v c ( . ) ret is assumed to be small as its trajectory remains far from P, the velocity becomes perpendicular to r.
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 3 a constant coefficient which is set at = 1 3[START_REF] Budden | The propagation of Radio Waves[END_REF][START_REF] Ginzburg | The propagation of electromagnetic waves in Plasmas[END_REF]. Eq. (B5) is satisfied when = r The displacement of the charge is calculated from the equation of motion:
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  r is in the range [z -z f ]. Thus z and r remain very close to each other in the integration
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  In this case p z = 0. As A z = 0, we have P z = 0. The Hamiltonian of one electron in this wave reads

												vector is	
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		Considering the scalar potential is zero, the corresponding wave