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Abstract: PM2.5 severely affects human health. Remotely sensed (RS) data can be used to estimate PM2.5

concentrations and population exposure, and therefore to explain acute respiratory disorders. However,
available global PM2.5 concentration forecast products derived from models assimilating RS data have
not yet been exploited to generate early alerts for respiratory problems in Brazil. We investigated the
feasibility of building such an early warning system. For this, PM2.5 concentrations on a 4-day horizon
forecast were provided by the Copernicus Atmosphere Monitoring Service (CAMS) and compared with
the number of severe acute respiratory disease (SARD) cases. Confounding effects of the meteorological
conditions were considered by selecting the best linear regression models in terms of Akaike Information
Criterion (AIC), with meteorological features and their two-way interactions as explanatory variables and
PM2.5 concentrations and SARD cases, taken separately, as response variables. Pearson and Spearman
correlation coefficients were then computed between the residuals of the models for PM2.5 concentration
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and SARD cases. The results show a clear tendency to positive correlations between PM2.5 and SARD in
all regions of Brazil but the South one, with Spearman’s correlation coefficient reaching 0.52 (p < 0.01).
Positive significant correlations were also found in the South region by previously correcting the
effects of viral infections on the SARD case dynamics. The possibility of using CAMS global PM2.5

concentration forecast products to build an early warning system for pollution-related effects on human
health in Brazil was therefore established. Further investigations should be performed to determine
alert threshold(s) and possibly build combined risk indicators involving other risk factors for human
respiratory diseases. This is of particular interest in Brazil, where the COVID-19 pandemic and biomass
burning are occurring concomitantly, to help minimize the effects of PM emissions and implement
mitigation actions within populations.

Keywords: particulate matter forecasts; severe acute respiratory diseases; Brazil; early warning
system; remotely sensed observation assimilation

1. Introduction

Solid and liquid particles in the air come from a variety of sources: transport, residential heating,
agriculture, biomass burning (including forest fires), etc. Both long- and short-term exposures to
particulate matter (PM) of diameter less than 10 µm (PM10) and 2.5 µm (PM2.5) affect human health.

Based on the converging results of a large body of epidemiological and laboratory studies,
PM (PM10 and PM2.5) from outdoor air pollution was classified by the International Agency for
Research on Cancer (IARC) as carcinogenic to humans (IARC Group 1) [1]. Among the PM, PM2.5 is
considered to be the most dangerous due to its capacity to penetrate deeper into the pulmonary
alveoli and the blood. In 2017, long-term exposure to ambient PM2.5 was estimated to contribute to
2.9 million deaths (deaths that likely occurred earlier than would be expected in the absence of PM2.5

pollution) and to a loss of 83 million disability-adjusted life-years (DALYs, defined as the sum of the
years of life lost from early deaths plus the years lived with a disability) worldwide, making PM2.5

responsible for 5.2% of all deaths and 3.3% of all DALYs in the world [2]. For this estimation,
the study considered ischemic heart disease, cerebrovascular disease (ischemic stroke and hemorrhagic
stroke), lung cancer, chronic obstructive pulmonary disease (COPD), and lower-respiratory infections
(in particular, pneumonia) and included type 2 diabetes for the first time [3].

In Brazil, 99.8 million people live in metropolitan regions (Regiões Metropolitanas), Integrated
economic development regions (Regiões integradas de desenvolvimento econômico), or urban
agglomerations with more than 1 million people [4]. This population is potentially exposed to
urban pollutants emitted notably by vehicles—vehicular emission is the main contributor to urban
air pollution [5]—and industry, and to emissions due to biomass burning, which can be transported
to the urban areas [5,6]. Andreão et al. [5] studied four metropolitan areas (MAs) of the Southeast
region of Brazil (São Paulo, Rio de Janeiro, Belo Horizonte, and Vitória), corresponding to 102 cities.
They estimated the daily PM concentration levels and the number of deaths that would be avoided by
satisfying the World Health Organization (WHO) Air Quality Guidelines (AQGs) [7]. Among these
102 cities, 67 presented mean annual PM2.5 concentrations above the WHO guideline (10 µg m−3).
The total number of all-cause avoidable premature deaths was estimated as 32,000 ± 5300 for the
four MAs, representing 6.5% of all-cause deaths. Regarding the consequences of short-term exposure
to PM2.5, 3436 ± 2340 hospitalizations of children from one to nine years were attributable to daily
mean PM2.5 concentrations exceeding the WHO AQG (25 µg m−3 daily mean). For circulatory system
diseases in the elderly, this number reached 9850 ± 3950 for the four MAs.

More than 10 million people are directly exposed to high levels of pollutants resulting from
deforestation and agricultural fires over the Brazilian Amazon [8]. During the biomass burning
season, high concentrations of PM10 (PM10 including PM2.5) have been measured (ranging from 400 to
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600 µg m−3) [9], exceeding the WHO AQG by 8 to 12 times [7,8]. Alves et al. [8] demonstrated that
exposure to such emissions causes toxic effects at the molecular and cellular levels in human lung
cells, especially through the transportation of retene. However, exposure to PM produced by fires
in the Amazon also induces acute health disorders: a 10 µg m−3 increase in the exposure levels to
PM2.5 was associated to 2.9% and 2.6% increases in the number of ambulatory receptions of children
for respiratory diseases on the sixth and seventh days following the exposure, respectively [10].

In the municipality of Alta Floresta, Mato Grosso State, Brazil, the effects of the short-term
exposure to PM2.5 on the lung function of 309 school children between 6 to 15 years were studied during
a 4-month period [11]. The mean 24-h PM2.5 concentration ranged from 6.39 to 99.91 µg m−3 (overall
mean: 24.35 µg m−3). A statistically significant reduction in peak expiratory flow (PEF) measures,
ranging from 0.26 L min−1 (95% CI: 0.49, 0.04) to 0.38 L min−1 (95% CI: 0.71, 0.04), was observed with
an increase in the PM2.5 concentration of 10 µg m−3.

In May 2020, the Brazilian space agency (Instituto Nacional de Pesquisa Espacial (INPE)) warned
of a forest fire season in 2020 in Brazil (which occurs between August and November, with interannual
variations between June and December and with a peak in September [12]) that could overcome that
of 2019 in terms of burned surface due to high deforestation rates, dry climate conditions, and the
weakening of the control of illegal activities, especially by the Brazilian institute of the environment and
renewable natural resources (Instituto Brasileiro do meio ambiente e dos recursos naturais renováveis,
IBAMA) [13]. In such context, several Brazilian scientific institutions alerted to the impact of the
concomitant biomass burning and the COVID-19 epidemic on population health and health service
overcrowding [13,14]. Such a potential disastrous situation is also reported in the United States [15].

Particular matter acts on viral infections in different ways: it is associated with the aggravation
or acute events of existing pathologies, especially in children and the elderly; it increases patient
susceptibility and immune response to virus infection; and it may enhance exposure, acting as a virus
carrier [16,17]. Specific relationships between the exposure to atmospheric PM and COVID-19 have
already been noted [18–22]. Andrée et al. [21] considered various confounding factors: population
density, health preconditions, and spatial distribution of cases to account for the spread of the disease.
They concluded that PM2.5 is a strong predictor of the number of confirmed COVID-19 cases in the
Netherlands, and that an increase in PM2.5 concentration from 10 to 12 µg m−3 resulted in a 100%
increase in the COVID-19 case number during the study period. By adjusting for 20 county-level
covariates in the United States, Wu et al. [22] established that an increase of 1 µg.m−3 in the 17-year
long-term average PM2.5 was significantly associated with a 11% (95% CI, 6 to 17%) increase in the
COVID-19 mortality.

The above-mentioned effects of PM on health, as well as the current situation with the COVID-19
pandemic and biomass burning in Brazil, necessitate the creation of an early alert system for the
Brazilian population about exposure to PM, to implement urgent actions to reduce emissions, and to
mitigate the effects of pollution on health.

The WHO defined AQGs for PM2.5 and PM10 concentrations that “reflect the concentrations at
which increased mortality responses due to PM air pollution are expected based on current scientific
findings” [7]: daily average exposure of 25 and 50 µg m−3 and annual mean exposure of 10 and
20 µg m−3 for PM2.5 and PM10, respectively. The WHO AQG for long-term PM2.5 concentration
exposure (10 µg m−3) was chosen here as it corresponds to the lower end of the range over which
significant effects on mortality due to cardiopulmonary diseases and lung cancer (considering 95%
confidence interval) were observed, making use of American Cancer Society’s data [7,23]. The AQG
for daily PM2.5 concentration exposure (25 µg m−3) is related to the annual mean value of 10 µg m−3,
considering the observed relationship between the 99th percentile of the distribution of the daily mean
levels and the annual mean [7]. Eventually, AQGs for PM10 were defined by considering a PM2.5/PM10

ratio of 0.5, reflecting both the typical and lower values observed for urban areas in developing and
developed countries, respectively [7].
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However, according to the WHO, given that no evidence exists of a safe level of exposure to
PM [24] and that significant interindividual variability can be observed in responses to PM exposure,
“the standard-setting process needs to aim at achieving the lowest concentrations possible in the context
of local constraints, capabilities and public health priorities” [7]. Thus, countries define their own
standards, sometimes supposed to evolve toward increasingly stringent regulations, according to the
concentration level observed in their territory and their measurement and control capacities. In Brazil,
resolution CONAMA 491/2018, which states the air quality standards, was approved by the National
Environmental Council (Conselho Nacional de Meio Ambiente, CONAMA) in 2018. The resolution
plans to adopt the WHO air quality reference values in four stages. For PM2.5, the intermediate
reference values for the daily average concentration will thus be 60 (currently in application), 50,
and 37 µg m−3, before reaching the final reference value of 25 µg m−3. For the annual average
concentration, these values are 20, 17, 15, and 10 µg m−3 [25]. However, no timetable has been defined
for the adoption of the next reference values [25,26]. In addition, countries can define alert thresholds.
They relate to high concentration levels over short periods of time and are normally associated with
actions to reduce the main emissions to protect the health of the population (restriction of the movement
of certain vehicles and/or of certain industrial activities, etc.). In Brazil, levels of attention, alert,
and emergency are defined as follows for PM2.5: 125, 210, and 250 µg m−3, respectively. The technical
evaluation of the CONAMA 491/2018 resolution by the Brazilian Health and Sustainability Institute
(Instituto Saúde e Sustentabilidade, ISS) reported that these values are very high (among the highest
worldwide) and will rarely be reached to force immediate measures to protect the population [25].

Monitoring PM in Brazil would require a sufficiently dense and distributed network of PM
measurements over the whole territory. However, in 2017, “only 24 Brazilian cities (0.43% of all
cities) monitored fine particles with 50 monitoring stations, all located in the southeastern region” [5].
An inventory of the capabilities of air quality monitoring performed in 2018 [25] showed that air
pollution was monitored in only 7 of 27 Brazilian states (26%). Among the 319 measurement stations
in operation in the country, 298 (93.4%) were present in the Southeast region, 13 (4.1%) in the South,
and 4 (1.3%) in the Center West and Northeast regions [25]. Only 186 (58.3%) and 65 (20.4%) stations
were able to measure PM10 and PM2.5 concentrations, respectively. No station appeared to be present
in the North region (Amazon), which is the region among those most affected by forest fires over the
last few years [27].

Satellite-derived PM2.5 concentration and composition estimates were proven to be related to
respiratory disorders (children’s lung function) [28]. This demonstrates the possibility of overcoming
the limits due to the discontinuity of the information provided by ground stations, both in space
and time, using remotely sensed products. However, in South America, this data source “is still
not much employed in scientific research, and for air quality decision-makers, probably because
of access, processing, validation, and interpreting difficulties” [29]. Andreão et al. [5] estimated
daily PM concentrations at a 5 km spatial resolution using the weather research and forecasting
model coupled with chemistry (WRF-Chem) and remotely sensed data including land use/cover
and fire detection. Wu et al. [22] estimated PM2.5 concentrations across the United States on a
0.01 × 0.01-degree grid, using a model taking into account remotely sensed aerosol optical depth
(AOD), model-based information, and ground-based observations. However, to the best of our
knowledge, already available and easily accessible global PM concentration forecast products have
not been associated with respiratory disorders to develop an early warning system. PM concentration
forecasts provided on regional or global scales by models are of particular interest. Several products
already exist, like those provided by the United States National Aeronautics and Space Administration
(NASA) Global Monitoring and Assimilation Service (GMAO), the Copernicus Atmosphere Monitoring
Service (CAMS) in Europe, or the INPE in Brazil.

In this context, we aimed to evaluate the feasibility of using available global PM2.5 concentration
forecast data to construct an early warning system for PM2.5 exposure and its health consequences
in Brazil.
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2. Materials and Methods

2.1. Data

2.1.1. Cases of Severe Acute Respiratory Diseases (SARD)

Retrospective data on hospitalizations due to acute respiratory disorders were provided by the
InfoGripe surveillance system developed by the Group of Analytical Methods in Epidemiological
Surveillance (MAVE, Scientific computation program of the Oswaldo Cruz Foundation, PROCC/Fiocruz,
School of Applied Mathematics of the Getúlio Vargas Foundation, EMAp/FGV) and the Influenza Working
Group of the Health Surveillance Secretariat of the Ministry of Health (GT-Influenza, SVS, MS) [30]
(see Appendix A for all data sources and main features). The InfoGripe system aims to monitor
and generate alerts regarding hospitalizations using the Brazilian Notifiable Diseases Information
System (Sistema de Informação de Agravos de Notificação, SINAN). It strictly includes severe acute
respiratory syndromes (SARS), i.e., viral respiratory diseases caused by coronaviruses, as well as
other viral infection types such as seasonal influenza. It also gathers cases satisfying a less restrictive
definition: all hospitalization or death cases due to respiratory disorders, without necessarily including
the presence of fever or other symptoms related to a viral infection. This broadest definition of the
cases in the InfoGripe system was considered in this study and is referred to as severe acute respiratory
diseases (SARD) hereafter.

The InfoGripe system provides data by epidemiological week, Brazilian state, age groups, and sex.
The total number of positive and negative tests for viral infections are also provided, as well as test
results for the main viruses (influenza A, influenza B, SARS-CoV-2, respiratory syncytial virus (RSV),
parainfluenza 1, parainfluenza 2, parainfluenza 3, and adenovirus).

Data for the 2015–2019 period were downloaded from the InfoGripe online repository [31].
As the COVID-19 pandemic is considerably affecting the Brazilian health system as a whole and
SARD surveillance in particular [14], cases for 2020 were excluded from the study to avoid biases in
the analysis.

2.1.2. PM2.5 Concentrations

Data on PM2.5 concentrations were all provided by the Copernicus Atmosphere Monitoring
Service (CAMS). CAMS forecasting is based on the Integrated Forecasting System (IFS) developed
by the European Centre for Medium-Range Weather Forecasts (ECMWF). Predictions of atmosphere
composition (including PM2.5) are derived from an ensemble modeling approach, which assimilates
satellite observations. In particular, the Moderate Resolution Imaging Radiospectrometer (MODIS)
instrument aboard the Terra and Aqua satellites (NASA) and the Polar Multi-sensor Aerosol
product (PMAp) provided by the MetOp satellites (European Organisation for the Exploitation of
Meteorological Satellites, EUMETSAT, and European Space Agency (ESA)) are used to estimate the
AOD (https://atmosphere.copernicus.eu/satellite-observations) [32]. MODIS active fire products are
also assimilated in the IFS via the Global Fire Assimilation System (GFAS), which estimates emissions
from biomass burning [32]. In this study, three different products were used: CAMS reanalysis data,
archived CAMS near real-time (NRT) forecast data, and current CAMS NRT forecast data. As detailed
below, each product was associated with a specific question.

The CAMS reanalysis data, provided on an ∼80 km spatial resolution regular grid, were used
to describe and discuss the surface PM2.5 concentration distributions from 2015 to 2019 in Brazil.
The CAMS reanalysis system retrospectively applies the last improvements in the models and
observations to provide reference and homogeneous data on atmosphere composition over a long
past period [33], whereas NRT forecasts are impacted at each IFS upgrade implementation (Figure 1).
Reanalysis data were accessed using the Copernicus Atmosphere Data Store.

For the retrospective analysis intended to demonstrate the feasibility of an early warning system,
by comparing PM2.5 concentration forecasts with SARD cases, the archived surface forecasts of PM2.5

concentrations were considered (archived CAMS NRT). For each day, the CAMS NRT dataset consists

https://atmosphere.copernicus.eu/satellite-observations
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of a 0.4 degree (∼40 km) spatial resolution forecast on a regular grid every 3 h from 00:00 UTC on
the current day to 24:00 UTC on the fifth day after. Time steps are coded 0, 3, 6, ..., 120 in the data
repository. To study the feasibility of an early warning system development, the maximum prediction
horizon of the daily mean PM concentrations in Brazil was considered. In other words, the PM2.5

concentration values considered for day d were those provided by CAMS NRT on the fourth previous
day (d − 4) at the horizon d + 4. In practice, the average of the forecasts from time steps 75 to 96 of
the prediction performed four days before was computed (these time steps correspond to the 00:00
UTC–3 to 24:00 UTC–3 interval) to obtain the daily mean PM2.5 concentrations in accordance with
the main Brazilian time zone (UTC–3). Daily values were then averaged by epidemiological week for
comparison with the weekly SARD data.

The successive IFS upgrades significantly impacted the CAMS NRT forecast results and had
to be considered to define the study period. This was particularly visible after the implementation
of the 43R1 and 46R1 IFS versions on 24 January (4th epidemiological week), 2017, and on 9 July
(28th epidemiological week), 2019, respectively (Figure 1). These two dates correspond to significant
drops in PM2.5 concentration forecast amplitudes in Brazil, especially for the Center West, Southeast,
and South regions. During the period between the 5th epidemiological week of 2017 (29 January 2017)
and the 27th epidemiological week of 2019 (6 July 2019) (represented by the grey background
in Figure 1), CAMS NRT time-series predictions were stationary for all regions: an augmented
Dickey–Fuller stationarity test resulted in p-values ≤ 0.01 for all the regions but the Southeast one
(p-value = 0.013). During this period, the dynamics of the PM2.5 concentrations provided by CAMS
NRT and CAMS reanalysis appeared similar. Given that, and despite the CAMS NRT predictions
seeming to overestimate the PM2.5 concentrations in comparison with the CAMS reanalysis and
the newest version of the IFS, this period (from 29 January 2017 to 6 July 2019, i.e., from the 5th
epidemiological week of 2017 to the 27th epidemiological week of 2019) was considered in the following
to investigate the feasibility of an early warning system.

From the perspective of early warning system development, the forecasts (4-day horizon) of the
last IFS cycle (46R1) were considered for one entire year from 10 July 2019 to 9 July 2020. This allowed
us to simulate and discuss the effects of the different warning thresholds determined by the CONAMA
491/2018 resolution, considering the IFS version currently in use.

Eventually, an operational early warning system would be based on the PM2.5 concentration
forecasts for the current and subsequent days. CAMS provides access to such forecasts on a regular
∼40 km spatial resolution grid and for every hour from 03:00 UTM on the present day to 24:00 UTM
on the fifth following day. Datasets are accessible through a File Transfer Protocol (FTP) service.
From such data, daily mean PM2.5 concentrations can be calculated for the four next days from the
present one, considering the main Brazilian time zone (UTC–3). This dataset was not strictly included
in the analysis but was used to provide an example of indicators upon which an early warning system
could be based (Appendix B).
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Figure 1. Weekly mean PM2.5 concentrations as a function of the Brazilian regions from 2015 to 2019,
provided by the near real time (NRT) forecast archive (4-day forecast horizon) of the Copernicus
Atmosphere Monitoring Service (CAMS) (top) and by the CAMS reanalysis database (bottom). Dates of
the implementation and the names of successive Integrated Forecasting System (IFS) versions are
represented by the vertical red dashed lines. The 41R1 cycle was maintained on 21 June 2016 but with a
horizontal resolution change, from ∼80 to ∼40 km. The grey background corresponds to the period
considered in this study for investigating the feasibility of an early warning system.

2.1.3. Meteorological Data

Particulate matter concentrations are partly related to meteorological conditions. Notably,
precipitation tends to leach suspended particles from the atmosphere; temperature impacts both
the emissions of PM and chemical processes in the atmosphere. CAMS includes a meteorological
forecasting model to predict the atmosphere composition. On the other hand, extremely low or high
air humidity and/or temperature can directly and indirectly induce respiratory problems. For instance,
low air humidity can induce respiratory tract irritations and thus increase susceptibility to viral
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infections; low temperatures tend to increase virus lifetime. As such, meteorological conditions
need be considered as possible confounding factors when studying the relationships between PM2.5

concentrations and SARD cases.
Precipitation, temperature, and relative humidity were considered in this study. Measurements

recorded by the automatic meteorological stations of the National meteorological institute of Brazil
(INMET) were downloaded from the Institute’s website. They included minimum and maximum
hourly temperature and relative humidity, as well as hourly rainfall. The daily minimum (maximum)
was computed for the minimum (maximum) temperature and relative humidity, as well as the daily
accumulated rainfall. Then, mean weekly values were computed for each meteorological variable for
inclusion in the analysis with the SARD and PM2.5 data.

2.2. Data Analysis

2.2.1. Population Exposure to Environmental Factors

The InfoGripe system provides SARD cases by state (the variable is referred here to as SARD),
considering the notification health center (and not the patients’ residence) as the case location.
As hospitals do not necessarily admit patients who reside in the same state, the putative exposure
areas of the patients were defined by considering the recruiting zones of the hospitals (and not the state
boundaries). The Brazilian Institute of Geography and Statistics (IBGE) defines the regions of influence
of Brazilian cities (REGIC) by considering the patient movements to seek hospitals providing high
complexity healthcare, i.e., healthcare that requires a set of procedures that involve high technology
and high cost, as is the case for the events gathered by the InfoGripe database. In this study, REGIC
were considered to delimit the areas within which the environmental factors possibly impacted SARD
case occurrence. Such areas were defined by aggregating the REGIC of the cities that belong to the
same state, providing areas that are referred to as statewide REGIC (SREGIC) hereafter.

Weekly mean concentrations of PM2.5 were averaged by SREGIC (variable referred to as PM)
(Appendices C and D). Meteorological variable means within the SREGIC were also computed.
However, not all the ∼600 automatic meteorological stations of the INMET network were functioning
at the same time; even when a station was in operation, missing data produced gaps in the time series.
Selecting only stations with complete time-series would have led to too-restrictive data selection and
to SREGIC without data. Consequently, a compromise was achieved by selecting, for each SREGIC,
the maximum number of stations that simultaneously provided data for at least 80% of the study
period (i.e., 29 January 2017 to 6 July 2019). This allowed: (1) maximizing the number of selected
stations (to provide an accurate estimation of the mean meteorological conditions within the SREGIC)
and (2) minimizing the amount of missing values (up to 20%) for the meteorological variable time
series (Appendices E–G).

2.2.2. Correlation between PM2.5 Concentrations and SARD Cases

To consider the confounding effects of the meteorological conditions, the part of the variance
(information) of the PM and SARD variables that was explained by meteorological conditions was
previously removed from the two variables. The PM and SARD variables were considered separately,
and for each SREGIC, the best multivariate linear regression model, in terms of the minimum Akaike
information criterion (AIC), was selected by considering all combinations of 1 to 6 explanatory variables.
The set of explanatory variables was composed of the 5 meteorological variables and their 10 possible
two-way interactions (which corresponds to ∑10

i=1 C10
i = 9948 models tested for each SREGIC). Then,

for each SREGIC, the Pearson and Spearman correlation coefficients, to account for linear (Pearson
correlation) and nonlinear (rank-based association detected by Spearman correlation) relationships,
were computed between the residuals of the best models found for the PM and SARD variables,
referred to as uPM and uSARD, respectively. The procedure is schematically presented Figure 2.
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Figure 2. Method used to consider the confounding effects of the meteorological variables in the
computation of the correlation coefficients between PM and SARD. PREC: precipitation; TN: minimum
temperature; TX: maximum temperature; HN: minimum relative humidity; HX: maximum
relative humidity; SARD: Severe Acute Respiratory Disease case number; PM: particulate matter
(PM2.5) concentration.

3. Results

3.1. Characterization of the Exposure to Environmental Factors

The regions of exposure (SREGIC) differed from the state limits, as shown in Figure 3.
We selected 176, 202, and 229 meteorological stations to compute the mean weekly precipitation,

relative humidity, and temperature in the SREGIC, respectively (Figure 4).
Distribution of these stations is highly heterogeneous, with 1 to 8 stations in the SREGIC of the

North region, 2 to 17 in the Northeast, 6 to 10 in the Center West, 6 to 30 in the Southeast, and 10 to
20 in the South. Only one station was considered in Amapá and Roraima (both in the North region),
whereas 30 were selected in Minas Gerais and 16 in the relatively small SREGIC of Rio de Janeiro.
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Figure 3. (a) Brazil states and regions; (b) regions of Influence of cities (REGIC, source: Brazilian
Institute of Geography and Statistics (IBGE)) aggregated per state (statewide REGIC (SREGIC)).
AC: Acre; AP: Amapá; AM: Amazonas; PA: Pará; RO: Rondônia; RR: Roraima; TO: Tocantins;
AL: Alagoas; BA: Bahia; CE: Ceará; MA: Maranhão; PB: Paraíba; PE: Pernambuco; PI: Piauí; RN: Rio
Grande do Norte; SE: Sergipe; DF: Distrito Federal; GO: Goiás; MT: Mato Grosso; MS: Mato Grosso
do Sul; ES: Espírito Santo; MG: Minas Gerais; RJ: Rio de Janeiro; SP: São Paulo; PR: Paraná; RS: Rio
Grande do Sul; SC: Santa Catarina.

Figure 4. Distribution of the selected meteorological stations as a function of the meteorological variables.
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3.2. Spatial Distribution of SARD Cases

The South region was the one the most affected by SARD during the period 2015–2019,
with relatively high annual incidence rates (Figure 5).

Acre was the only state of the North region that exhibited a high incidence for the whole period,
whereas the incidence tended to increase for the Amazonas state. In the Northeast region, Pernambouco
was the only state with a high incidence in 2015, but from 2016, almost all states of the region exhibited
relatively high incidences. The distributions of the incidence rates appeared similar in 2018 and 2019,
except for the Amazonas state, which experienced an important increase in the SARD case number
between 2018 and 2019 from 227 to 1911 cases.

A diagonal constituted of the states of Mato Grosso, Pará, Maranhão, and Amapá seemed less
affected by SARD.

Figure 5. Severe Acute Respiratory Disease (SARD) annual incidence rate (for 100,000 inhabitants) from
2015 to 2019. For incidence rate computation, 2019 population estimates were used (source: Brazilian
Institute of Geography and Statistics (IBGE)).

3.3. SpatialPM2.5 Distribution

Mapping PM2.5 concentrations provided by the CAMS reanalysis dataset shows that more than
half of the country was exposed to annual mean concentrations of PM2.5 that exceeded the WHO
AQG (10 µg m−3 (Figure 6, left column). High PM2.5 concentrations were predicted all year long and
for all the considered years in a strip located in the South of the Amazonas state at the border with
Acre. In this region, concentrations significantly exceeded 50 µg m−3 in some places (five times the
WHO AQG). A region associated with high concentrations was also observed in a west–east-oriented
strip crossing the Center West and Southeast regions. The states of Amapá, Pará (to the north),
Maranhão, Rondônia, Mato Grosso (central), and Bahia (west part) seemed to be the least exposed
to high annual mean concentrations, whereas very large states like Amazonas, Pará, Mato Grosso,
and Bahia were exposed to heterogeneous levels of PM2.5 concentrations in space.

By studying the maximum daily concentrations observed over the year (middle column in
Figure 6), it appears that a main part of the country was punctually exposed to extremely high PM2.5
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concentrations, especially in comparison with the daily mean concentration reference value defined by
the WHO (25 µg m−3). The results showed that the southern region experienced very high maximum
concentrations, despite mean annual concentration values being relatively low.

Figure 6. Annual mean (left column) and maximum (middle column) of the daily PM2.5 concentrations
and number of days (as percentage of the year) for which the daily mean exceeded the World Health
Organization (WHO) Air Quality Guideline (AQG) of 25 µg m−3/24 h (right column).
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3.4. PM2.5 Concentration and SARD Case Correlations

Particulate matter concentrations and SARD cases corrected for the confounding effects of the
meteorological conditions, i.e., uPM and uSARD, respectively, were positively correlated in all SREGICs
of the Center West, Northeast, and North regions, with the exception of the SREGIC of Rio Grande do
Norte, which exhibited a nonsignificant negative correlation (Figures 7 and 8; to visualize corrected
variables for each SREGIC, see Appendices H and I). Significant (p-value < 0.05) positive correlations
were obtained for the SREGICs of Amapá, Alagoas, Bahia, Maranhão, Pernambouco, and Mato Grosso,
with correlation coefficients varying from 0.24 (Mato Grosso) to 0.35 (Maranhão) considering the
maximum of the Pearson and Spearman coefficients (Figures 7 and 8). Correlations were improved by
first smoothing the uPM and uSARD variables with a three-week centered moving average. Half of the
SREGICs belonging to the previously mentioned regions were associated with a significant correlation
coefficient (reaching 0.52 for Maranhão, p-value < 0.01), the others being associated with positive but
nonsignificant positive correlations, except for the SREGIC of Rio Grande do Norte, which was still
associated with a nonsignificant negative correlation. The majority of the SREGICs that presented
significant correlations were situated in a west–east-oriented strip from Mato Grosso to the south of
the Northeast region, which coincides with exposures to relatively high PM2.5 concentrations (Figure 6)
and with high SARD incidences (Figure 5).

Negative correlations were found for the SREGICs of the Southeast and South regions,
with significant values for Espirito Santo (considering the previously smoothed residuals) and for Rio
Grande do Sul and Santa Catarina, the two southernmost SREGICs of the country (Figures 7 and 8).

In the SREGICs of Rio Grande do Sul and Santa Catarina, PM2.5 concentrations and SARD
cases presented a strong seasonality and a clearly opposite dynamic (Figure 9). However, a clear
association was observed between the PM2.5 concentrations and the negative test proportion in these
two SREGICs (Figure 9).

Figure 7. Pearson and Spearman correlation coefficients between weekly corrected time series of SARD
cases and mean PM2.5 concentrations: uSARD and uPM. Green and blue colors correspond to positive
and negative correlations, respectively, and red corresponds to the test significance level.
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Figure 8. Cartographic representation of the correlations between (a) uPM and uSARD and
(b) smoothed uPM and uSARD using a 3-week centered moving average.

Figure 9. PM2.5 concentration forecasts (archived CAMS NRT) provided 4 days before the current date
and averaged per epidemiological week (black line) and weekly case number of SARD as a function
of the exam status: cases with laboratory test positive to viral infection in red; cases with negative
viral infection laboratory test in orange; cases awaiting test results in yellow; cases without laboratory
information in blue; cases without test in light blue; others in grey. Data are presented for Rio Grande
do Sul and Santa Catarina from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week
of 2017 to the 27th epidemiological week of 2019. For a representation of the results for all SREGICs,
see Appendices C and D.
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This observation led us to consider the negative test rate in place of the total number of cases in
the analysis. This negative test rate is defined as follows:

NR =
Neg

(Neg + Pos)
(1)

where Neg and Pos are the number of negative and positive tests for viral infection by epidemiological
week, respectively. By applying the same procedure to remove the information attributable to
meteorological conditions, uNR and the correlation coefficients between uNR and uPM were computed.
The results showed a tendency to positive correlations for the SREGICs of the South and Southeast
regions (Figure 10). Correlations were very significant for three SREGICs: Rio de Janeiro, Rio Grande
do Sul, and Santa Catarina.

Figure 10. Pearson and Spearman correlation coefficients between the corrected negative test rate
and mean PM2.5 concentrations: uNR and uPM. Green and blue correspond to positive and negative
correlations, respectively, and red corresponds to the test significance level.

3.5. An Early Warning System

By considering the archived CAMS NRT forecasts on a four-day horizon from 10 September 2019
to 9 September 2020, i.e., for an entire year associated with the latest IFS version (46R1), we found that
the daily mean PM2.5 concentrations per municipality exceeded the WHO AQG of 25 µg m−3 at least
one day over the entire year for 2071 municipalities (37%; Figure 11). Two municipalities (Eirunepé
and Itamarati), situated in the south of the Amazonas state, were exposed to concentrations exceeding
25 µg m−3 for more than 120 days (∼4 months) in the year. The eight municipalities exposed to
concentrations above 25 µg m−3 for more than 60 days (∼2 months) were all situated in the Amazonas
state, except for the municipality of Serra do Ramalho in the state of Bahia.

A total of 309, 450 and 905 municipalities had mean PM2.5 concentrations exceeding, at least one
day during the considered period, the intermediate reference values (established by the CONAMA
491/2018 resolution) of 60, 50, and 37 µg m−3, respectively. A low number of municipalities exceeded,
at least one day during the considered period, the alert thresholds established by the CONAMA
491/2018 resolution: 40, 8, and 2 municipalities for the attention, alert, and emergency levels,
respectively (Figure 11).
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Figure 11. Number of days from 10 July 2019 to 9 July 2020 (one year) that the municipalities of Brazil
exceeded the different alert and intermediate reference values (IRVs) established by the CONAMA
491/2018 resolution for daily mean PM2.5 concentration. Numbers in square brackets correspond to
the numbers of municipalities.

4. Discussion

4.1. General Approach

We aimed at establishing if the SARD case numbers and the four-day horizon forecasts of PM2.5

concentrations evolve similarly in Brazil to determine the ability to use the PM2.5 forecasts to predict
respiratory disorders in the Brazilian population and consequently the feasibility of building an early
warning system for PM2.5-related health problems. Simple correlation coefficients, accounting for both
linear (Pearson correlation) and nonlinear (Spearman rank-based correlation) relationships between
the SARD cases and the PM2.5 concentrations corrected from the confounding effects of meteorological
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conditions, were found to be sufficient for this purpose. The modeling of such relationships through,
for instance, linear regression, generalized additive models (GAMs), or case-crossover models, was not
considered. In fact, such models could provide additional information but would have been relevant
for the study period only (from the 5th epidemiological week of 2017 to the 27th epidemiological
week of 2019) due to the significant and frequent changes observed in the amplitudes of the PM2.5

concentrations due to the updates of the IFS (Figure 1).

4.2. Early Warning System Feasibility

When analysing data, the application of a three-week centered moving average was justified by
a potential time lag occurring between the PM2.5 and SARD time series, in both directions. A 6- to
7-day lag was observed between exposure to PM and significant increases in ambulatory admissions
of children [10], indicating that one week can separate the peaks of exposure and hospital admission.
On the other hand, PM2.5 concentrations with a four-day forecast horizon are based on the assimilation
of information (AOD and occurrence of events including fire events) observed by satellites four days
before. This could result in a delay of up to four days in the detection of PM2.5 concentration peaks
related to fire events, which could lead, in our study, to a one-week delay between the hospital
admission and the predicted PM2.5 peak.

Negative correlations found in the South region may appear counterintuitive. However, complex
interactions between virus type, climate, and population behavior in this region can explain this result.
A significant part of the SARD case dynamics and magnitude in the South could have been driven more
by viral infections than by outdoor environmental factors, despite the meteorological variables explaining
78% (R2 = 0.78) and 65% of the total variance of the SARD cases in the SREGICs of Rio Grande do Sul and
Santa Catarina, respectively (values ranked first and third among all SREGIC). Respiratory syncytial virus
(RSV) circulates particularly during the winter (July to September) in the South and Southeast regions,
with test positivity being twice to three times higher than in the other regions for children under five
years old [34]. RSV infections were found to be not associated with meteorological factors in Kentucky,
the United States [35]. The authors argued, in particular, that patients were not exposed to particular
outdoor temperature or humidity levels (and we can add particular outdoor PM concentration levels here),
with people living more indoor during the winter season. Even if climate differs between Kentucky and
the southern Brazilian region, comparable population behavior can be assumed, especially among young
children that are the most affected by RSV. This may be the reason why outdoor environmental factors do
not fully explain the SARD seasonality in the South region and, to a lesser extent, in the Southeast region
of Brazil. However, PM2.5 concentration and negative test rate being significantly correlated demonstrated
that PM2.5 tended to explain nonviral infections in these regions, and that PM2.5 is an accurate indicator
of SARD case increase.

The delimitation of the areas of exposure to environmental factors is probably the weakest point
of the study and possibly contributed to reducing the significance of the results. This delimitation
was based on the REGIC, aggregated by state. It was used to consider the recruiting basins of
the hospitals but led to fragmented areas, which, for some states, had different environmental and
socioeconomic contexts and different PM2.5 concentration levels, pollution source types, population
activities, etc., leading to different exposure risks. This was, for instance, the case for the São Paulo
SREGIC, which includes a non-negligible part of the Mato Grosso state (Figure 3). Moreover, large
SREGIC like those associated with Pará and Amazonas exhibited heterogeneous spatial distributions
of PM concentrations. The mean, chosen as the summary value for SREGICs, tended to smoothing
information both in space and time. However, by testing other summary statistics (median, max,
and number of days of the epidemiological week above WHO reference value), the mean appeared the
more robust to extreme values, significantly linked to SARD cases, and easy to interpret. Eventually,
an early warning system would not consider such a high aggregation level (state level). As shown
in the example provided in Appendix B, this system should be based on mean PM concentrations at
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the municipality or autochthonous territory (Terra Indígena) level, or even at the 40 km pixel level,
which would result in a more accurate estimation of exposure.

The different sources of PM, and thus its chemical composition and toxicity, could have been
considered in this study, as Brazil is exposed to different pollution sources and types. The Amazon
region is mostly affected by forest fires, and Central and Southern Brazil are mainly influenced by urban
activities (industry and transportation). More generally, PM2.5 concentration should be considered as
one of the components of air quality indexes, which should also integrate meteorological conditions.
This issue should be investigated in the future.

Nevertheless, we succeeded in demonstrating the possibility of using PM2.5 concentration
forecasts provided by CAMS to predict respiratory disorders in the Brazilian population and,
consequently, of developing an early warning system in Brazil based on this product.

4.3. Alert Thresholds

When building an early warning system, alert threshold(s) associated with PM2.5 concentrations
must be defined. This definition was outside the scope of our initial objectives and will constitute the
main issue of further works, but some considerations can be outlined here.

This definition is partly related to the ability of the CAMS products to provide an accurate
absolute estimation of the PM2.5 concentrations. CAMS is supposed to predict reliable absolute PM2.5

concentration values, and accuracy and biases are regularly estimated (see, for example, Ref. [36]).
However, the predicted PM2.5 concentration levels reported in this study for the Center West

region seem to be underestimated considering that this region is particularly affected by fires.
This demonstrates the need for a more specific evaluation of the products in South America, and in
Brazil in particular, that would help identify local biases, associated correction factors, and reference
values from a public health perspective. The impacts of the successive IFS upgrades on the amplitudes
of the predictions (Figure 1) cast doubt on the product’s absolute accuracy. In particular, the IFS
underwent a major upgrade on 9 July 2019 (IFS cycle 46R1), associated with changes in the vertical
resolution (from 60 vertical levels for the previous models to 137 levels for the new one) and in
the model components. This upgrade led to “pronounced improvement of surface PM2.5 and PM10

forecasts, especially during night time, by changes to the diurnal cycle of emissions and the introduction
of injection heights for biomass burning emissions” (https://atmosphere.copernicus.eu/node/472).
More specifically, overestimation of near-surface PM2.5 during fire events was reduced by changes
in the biomass-burning injection heights from the Global Fire Assimilation System (GFAS) and
the updated diurnal cycle. Simultaneously, the anthropogenic Secondary Organic Aerosol (SOA)
emission was updated with a diurnal cycle and regionally-varying ratio to carbon monoxide (CO)
emissions, resulting in a significant reduction in night-time near surface PM2.5 concentration in
polluted regions [36]. These changes are important for Brazil due to the extent of biomass burning
events, the presence of industrial activities, and mega-cities like São Paulo and Rio de Janeiro. As a
consequence, a significant drop in the estimated PM2.5 concentrations was observed, especially in the
Center West, Southeast, and South regions.

However, another perspective on the alert threshold definition issue can be adopted. The results
showed how the definition of different thresholds highly impacts the number of municipalities
experiencing an alert (Figure 11). Accurate predictions associated with an alert threshold that meets
national and international guidelines would theoretically be ideal but can potentially generate a high
number of alerts that would be difficult for local authorities to manage, notably due to limited public
service resources and population acceptability. This consequently could lead to the impossibility of
actually and systematically implementing the necessary prevention and mitigation actions. Moreover,
no threshold effect has been associated with the health-related impact of PM exposure [24]. In that
sense, a pragmatical method is required to define local alert thresholds according to local public
authority and population capacities. This definition would require a highly interdisciplinary approach
involving epidemiology, environmental science, human science, and public health.

https://atmosphere.copernicus.eu/node/472
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5. Conclusions

In this study, we demonstrated the possibility of using PM2.5 concentration forecasts provided
by CAMS to predict SARD cases in Brazil up to four days in advance and, consequently, to be
part of an early warning system of the health-related impacts of PM. Through the relationship to
different pollution types, this system could be effective for the whole Brazilian territory and beyond.
PM has been proven to aggravate COVID-19 symptoms. The mobilization of researchers, public health
actors, and the general population in the fight against the pandemic, particularly during the current
environmental disasters related to deforestation and forest fires, could provide an opportunity to
develop an alert system and implement both PM emission reduction actions and mitigation measures,
such as the wearing of adapted masks. This also would contribute to achieving the United Nation
Sustainable Development Goals 3.9: by 2030, substantially reduce the number of deaths and illnesses
from hazardous chemicals and air, water, and soil pollution and contamination.
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Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike information criterion
AOD Aerosol Optical Depth
CAMS Copernicus Atmosphere Monitoring Service
CONAMA Conselho Nacional de Meio Ambiente
ECMWF European Centre for Medium-Range Weather Forecasts
EMAp Escola de Matemática Aplicada
ESA European Space Agency
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FGV Fundação Getulio Vargas
Fiocruz Fundação Oswaldo Cruz
FTP File Transfer Protocol
GMAO Global Monitoring and Assimilation Service
HN minimum relative humidity
HX maximum relative humidity
IBAMA Instituto Brasileiro do meio ambiente e dos recursos naturais renováveis
IBGE Instituto Brasileiro de Geografia e Estatistica
IFS Integrated Forecasting System
INMET Instituto nacional de meteorologia
INPE Instituto Nacional de Pesquisa Espacial
MODIS Moderate Resolution Imaging Radiospectrometer
NASA National Aeronautics and Space Administration
NRT Near Real Time
PM Particulate Matter
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PMAp Polar Multi-sensor Aerosol product
PREC precipitation
PROCC Programa de computação científica
RSV Respiratory syncytial virus
REGIC Regiões de Influência das Cidades
SREGIC Statewide REGIC
SARD Severe Acute Respiratory Diseases
SARS Severe Acute Respiratory Syndromes
SINAN Sistema de Informação de Agravos de Notificação
SOA Secondary Organic Aerosol
TN minimum temperature
TX maximum temperature
UTC Coordinated Universal Time
WHO World Health Organization
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Appendix A. Data Sources and Description

Table A1. Data used in the study: sources and description.

Data Spatial Resolution/
Spatial Unit

Source Type of Access (File Format) Question Addressed in the Study

PM2.5 concentration reanalyses ∼80 km CAMS reanalyses, Copernicus
Atmosphere Data Store
https://ads.atmosphere.
copernicus.eu/#!/home

HTTPS (GRIB or NETCDF) Description of the past PM2.5
concentration distribution, in space
and time

Archived PM2.5 concentration forecasts
(every 3 h)

∼40 km CAMS near real-time
database: https://apps.
ecmwf.int/datasets/data/
cams-nrealtime/levtype=sfc/

ECMWF API
(GRIB or NETCDF)

Feasibility study of an early warning
system; simulation of alert threshold
definition

PM2.5 hourly concentration forecasts
up to 5 days after the current day

∼40 km CAMS Global forecast data
https://confluence.ecmwf.int/
display/CKB/FTP+access+to+
CAMS+global+data

FTP (GRIB) Proposition for PM2.5 concentration
indicators to be included in an early
warning system (Appendix F)

States of Brazil State brazilmaps R package (R object) Cartography of administrative units
of Brazil

Municipalities of Brazil (Municípios) Municipalities brazilmaps R package (R object) Simulation of alert threshold definition

2019 population estimate in Brazil State brazilmaps R package (R object) SARD annual incidence

REGIC REGIC IBGE: https://www.ibge.
gov.br/geociencias/cartas-
e-mapas/redes-geograficas/
15798-regioes-de-influencia-
das-cidades.html?edicao=
27334&t=downloads

HTTP (ESRI ShapeFile) Exposure to environmental factors

SARD State InfoGripe database
http://info.gripe.fiocruz.br/;
https://gitlab.procc.fiocruz.
br/mave/repo/tree/master/
Dados/InfoGripe

HTTP (text .CSV) Epidemiological situation related to
SARD in Brazil

https://ads.atmosphere.copernicus.eu/#!/home
https://ads.atmosphere.copernicus.eu/#!/home
https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
https://confluence.ecmwf.int/display/CKB/FTP+access+to+CAMS+global+data
https://confluence.ecmwf.int/display/CKB/FTP+access+to+CAMS+global+data
https://confluence.ecmwf.int/display/CKB/FTP+access+to+CAMS+global+data
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15798-regioes-de-influencia-das-cidades.html?edicao=27334&t=downloads
http://info.gripe.fiocruz.br/
https://gitlab.procc.fiocruz.br/mave/repo/tree/master/Dados/InfoGripe
https://gitlab.procc.fiocruz.br/mave/repo/tree/master/Dados/InfoGripe
https://gitlab.procc.fiocruz.br/mave/repo/tree/master/Dados/InfoGripe


Remote Sens. 2020, 12, 4074 22 of 45

Appendix B. Examples of PM2.5 Concentration Forecasts Obtained from CAMS NRT on Which an
Early Warning System Could Be Based

Figures A1 and A2 show the daily mean PM2.5 concentration forecasts for the next four days
from the current date (15 September 2020) at pixel (Figure A1) and municipality (Figure A2) levels.
The municipality of Cujubim (RO) is supposed to exceed the WHO AQG for the daily mean PM2.5

concentration on each of the next four days, with a predicted concentration above 50 µg m−3 on
18 September 2020. This municipality regularly experiences forest fires. Four farmers were arrested
for illegal deforestation and fires in August 2020 (https://globoplay.globo.com/v/8796016/),
and the municipality was among those most affected by fires in the state of Rondônia
in the first week of September 2020, along with the municipality of Porto Velho (https:
//g1.globo.com/ro/rondonia/natureza/amazonia/noticia/2020/09/08/rondonia-acumula-mais-
de-mil-focos-de-queimadas-nos-primeiros-7-dias-de-setembro-de-2020-alta-e-de-70percent.ghtml).
The other municipalities predicated to exceed the WHO AQGs for the next four days after the
15 September 2020 were Minaçu (GO), Itamarati (AM), Alvorada (BA, for two consecutive days),
Eirunepé (AM), Envia (AM), and Atalaia do Norte (AM).

Figure A1. Daily predicted mean concentration of PM2.5 in Brazil, for 15–18 September, 2020 at the
pixel level.

https://globoplay.globo.com/v/8796016/
https://g1.globo.com/ro/rondonia/natureza/amazonia/noticia/2020/09/08/rondonia-acumula-mais-de-mil-focos-de-queimadas-nos-primeiros-7-dias-de-setembro-de-2020-alta-e-de-70percent.ghtml
https://g1.globo.com/ro/rondonia/natureza/amazonia/noticia/2020/09/08/rondonia-acumula-mais-de-mil-focos-de-queimadas-nos-primeiros-7-dias-de-setembro-de-2020-alta-e-de-70percent.ghtml
https://g1.globo.com/ro/rondonia/natureza/amazonia/noticia/2020/09/08/rondonia-acumula-mais-de-mil-focos-de-queimadas-nos-primeiros-7-dias-de-setembro-de-2020-alta-e-de-70percent.ghtml


Remote Sens. 2020, 12, 4074 23 of 45

Figure A2. Daily predicted mean concentration of PM2.5 in Brazil per municipality for 15–18 September
2020 at the municipality level.
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Appendix C. PM2.5 Concentration Forecasts and Weekly Case Number of SARD

Figure A3. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD as a
function of the exam status: cases with positive viral infection laboratory test (red); cases with negative
viral infection laboratory test (orange); cases awaiting test results (yellow); cases without laboratory
information (blue); cases without test (light blue); others (grey). Data are presented by SREGIC from
29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological
week of 2019.



Remote Sens. 2020, 12, 4074 25 of 45

Figure A4. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD as a
function of the exam status: cases with positive viral infection laboratory test (red); cases with negative
viral infection laboratory test (orange); cases awaiting test results (yellow); cases without laboratory
information (blue); cases without test (light blue); others (grey). Data are presented by SREGIC from
29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological
week of 2019.
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Figure A5. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD as a
function of the exam status: cases with positive viral infection laboratory test (red); cases with negative
viral infection laboratory test (orange); cases awaiting test results (yellow); cases without laboratory
information (blue); cases without test (light blue); others (grey). Data are presented by SREGIC from
29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological
week of 2019.
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Appendix D. PM2.5 Concentration Forecasts and Weekly Case Number of SARD (in %)

Figure A6. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD expressed
as a percentage of the total number of reported cases and as a function of the exam status: cases with
positive viral infection laboratory test (red); cases with negative viral infection laboratory test (orange);
cases awaiting test results (yellow); cases without laboratory information (blue); cases without test
(light blue); others (grey). Data are presented by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A7. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD expressed
as a percentage of the total number of reported cases and as a function of the exam status: cases with
positive viral infection laboratory test (red); cases with negative viral infection laboratory test (orange);
cases awaiting test results (yellow); cases without laboratory information (blue); cases without test
(light blue); others (grey). Data are presented by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A8. PM2.5 concentration forecasts (archived CAMS NRT) provided four days before the current
date and averaged per epidemiological week (black line) and weekly case number of SARD expressed
as a percentage of the total number of reported cases and as a function of the exam status: cases with
positive viral infection laboratory test (red); cases with negative viral infection laboratory test (orange);
cases awaiting test results (yellow); cases without laboratory information (blue); cases without test
(light blue); others (grey). Data are presented by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Appendix E. Rainfall and Weekly Case Number of SARD

Figure A9. Rainfall averaged per epidemiological week, and weekly case number of SARD as a
function of the exam status: cases with positive viral infection laboratory test (red); cases with negative
viral infection laboratory test (orange); cases awaiting test results (yellow); cases without laboratory
information (blue); cases without test (light blue); others (grey). Data are presented by SREGIC,
from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the 27th
epidemiological week of 2019.
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Figure A10. Rainfall averaged per epidemiological week, and weekly case number of SARD as
a function of the exam status: cases with positive viral infection laboratory test (red); cases with
negative viral infection laboratory test (orange); cases awaiting test results (yellow); cases without
laboratory information (blue); cases without test (light blue); others (grey). Data are presented by
SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the
27th epidemiological week of 2019.



Remote Sens. 2020, 12, 4074 32 of 45

Figure A11. Rainfall averaged per epidemiological week, and weekly case number of SARD as
a function of the exam status: cases with positive viral infection laboratory test (red); cases with
negative viral infection laboratory test (orange); cases awaiting test results (yellow); cases without
laboratory information (blue); cases without test (light blue); others (grey). Data are presented by
SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of 2017 to the
27th epidemiological week of 2019.
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Appendix F. Temperature and Weekly Case Number of SARD

Figure A12. Minimum and maximum temperatures averaged per epidemiological week and weekly
case number of SARD as a function of the exam status: cases with positive viral infection laboratory test
(red); cases with negative viral infection laboratory test (orange); cases awaiting test results (yellow);
cases without laboratory information (blue); cases without test (light blue); others (grey). Data are
presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of
2017 to the 27th epidemiological week of 2019.
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Figure A13. Minimum and maximum temperatures averaged per epidemiological week and weekly
case number of SARD as a function of the exam status: cases with positive viral infection laboratory test
(red); cases with negative viral infection laboratory test (orange); cases awaiting test results (yellow);
cases without laboratory information (blue); cases without test (light blue); others (grey). Data are
presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of
2017 to the 27th epidemiological week of 2019.
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Figure A14. Minimum and maximum temperatures averaged per epidemiological week and weekly
case number of SARD as a function of the exam status: cases with positive viral infection laboratory test
(red); cases with negative viral infection laboratory test (orange); cases awaiting test results (yellow);
cases without laboratory information (blue); cases without test (light blue); others (grey). Data are
presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th epidemiological week of
2017 to the 27th epidemiological week of 2019.
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Appendix G. Relative Humidity and Weekly Case Number of SARD

Figure A15. Minimum and maximum relative humidity averaged per epidemiological week and
weekly case number of SARD as a function of the exam status: cases with positive viral infection
laboratory test (red); cases with negative viral infection laboratory test (orange); cases awaiting
test results (yellow); cases without laboratory information (blue); cases without test (light blue);
others (grey). Data are presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th
epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A16. Minimum and maximum relative humidity averaged per epidemiological week and
weekly case number of SARD as a function of the exam status: cases with positive viral infection
laboratory test (red); cases with negative viral infection laboratory test (orange); cases awaiting
test results (yellow); cases without laboratory information (blue); cases without test (light blue);
others (grey). Data are presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th
epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A17. Minimum and maximum relative humidity averaged per epidemiological week and
weekly case number of SARD as a function of the exam status: cases with positive viral infection
laboratory test (red); cases with negative viral infection laboratory test (orange); cases awaiting
test results (yellow); cases without laboratory information (blue); cases without test (light blue);
others (grey). Data are presented by SREGIC, from 29 January 2017 to 6 July 2019, i.e., from the 5th
epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Appendix H. Residuals of the Multivariate Linear Regression Models for PM2.5 Concentrations
and Case Number of SARD

Figure A18. uPM (black line) and uSARD (red line) by SREGIC, from 29 January 2017 to 6 July 2019,
i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A19. uPM (black line) and uSARD (red line) by SREGIC, from 29 January 2017 to 6 July 2019,
i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.

Figure A20. uPM (black line) and uSARD (red line) by SREGIC, from 29 January 2017 to 6 July 2019,
i.e., from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Appendix I. Residuals of the Multivariate Linear Regression Models for PM2.5 Concentrations
and SARD Negative Test Rate

Figure A21. uPM (black line) and uNR (red line) by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.
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Figure A22. uPM (black line) and uNR (red line) by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.

Figure A23. uPM (black line) and uNR (red line) by SREGIC from 29 January 2017 to 6 July 2019, i.e.,
from the 5th epidemiological week of 2017 to the 27th epidemiological week of 2019.



Remote Sens. 2020, 12, 4074 43 of 45

References

1. Loomis, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.;
Mattock, H.; Straif, K. on behalf of the International Agency for Research on Cancer Monograph Working
Group IARC. The carcinogenicity of outdoor air pollution. Lancet 2013, 14, 1262–1263. [CrossRef]

2. Health Effects Institute (HEI). State of Global Air 2019; Special Report; Health Effects Institute: Boston, MA,
USA, 2019. Available online: https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf
(accessed on 9 November 2020).

3. Rao, X.; Patel, P.; Puett, R.; Rajagopalan, S. Air pollution as a risk factor for type 2 diabetes. Toxicilogical Sci.
2015, 143, 231–241. [CrossRef] [PubMed]

4. IBGE. IBGE Divulga as Estimativas da População dos Municípios para 2019. 2019. Available online:
https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/25278-
ibge-divulga-as-estimativas-da-populacao-dos-municipios-para-2019 (accessed on 9 November 2020).

5. Andreão, W.L.; Pinto, J.A.; Pedruzzi, R.; Kumar, P.; Albuquerque, T.T.A. Quantifying the impact of particle
matter on mortality and hospitalizations in four Brazilian metropolitan areas. J. Environ. Manag. 2020,
270, 110840. [CrossRef] [PubMed]

6. Reddington, C.L.; Butt, E.W.; Ridley, D.A.; Artaxo, P.; Morgan, W.T.; Coe, H.; Spracklen, D.V. Air quality
and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 2015,
8, 768–771. [CrossRef]

7. World Health Organization (WHO). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen
Dioxide and Sulfur Dioxide—Global Update 2005—Summary of Risk Assessment. 2005. Available online:
https://apps.who.int/iris/handle/10665/69477 (accessed on 9 November 2020).

8. Alves, N.O.; Vessoni, A.T.; Quinet, A.; Fortunato, R.S.; Kajitani, G.S.; Peixoto, M.S.; de Souza Hacon, S.;
Artaxo, P.; Saldiva, P.; Menck, C.F.M.; et al. Biomass burning in the Amazon region causes DNA damage and
cell death in human lung cells. Sci. Rep. 2017, 7, 10937. [CrossRef]

9. Artaxo, P. Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia.
J. Geophys. Res. 2002, 107, LBA 49-1–LBA 49-14. [CrossRef]

10. do Carmo, C.N.; Hacon, S.;Longo, K.M.; Freitas, S.; Ignotti, E.; Ponce de Leon, A.; Artaxo, P. Associação entre
material particulado de queimadas e doenças respiratórias na região sul da Amazônia brasileira. Rev. Panam
Salud Publica 2010, 27, 10–16. [CrossRef]

11. Jacobson, L.S.V.; Hacon, S.S.; Castro, H.A.; Ignotti, E.; Artaxo, P.; Ponce de Leon, A.C.M. Association between
fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon:
A panel study. Environ. Res. 2012, 117, 27–35. [CrossRef]

12. Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.;
Junior, C.H.S.; Arai, E.; Aguiar, A.P. 21st Century drought-related fires counteract the decline of Amazon
deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [CrossRef]

13. Aragão, L.E.O.C.; Silva Junior, C.H.L.; Anderson, L.O. Brazil’s Challenge to Restrain Deforestation and Fires
in the Amazon during COVID-19 Pandemic in 2020: Environmental, Social Implications and Their Governance;
Technical Note; Instituto Nacional de Pesquisas Espaciais (INPE): São José dos Campos, Brazil 2020; 34p.
[CrossRef]

14. Observatório de Clima e Saúde (ICIC/Fiocruz). Covid-19 e Queimadas na Amazônia Legal e no Pantanal:
Aspectos Cumulativos e Vulnerabilidades. Technical Note, 2020. Available online: https://www.icict.fiocruz.
br/sites/www.icict.fiocruz.br/files/nota_queimadascovid_out2020.pdf (accessed on 13 November 2020).

15. Henderson, S.B. The Covid-19 Pandemic and Wildfire Smoke: Potentially Concomitant Disasters. Am. J.
Public Health 2020, 110, e1–e3. [CrossRef]

16. Sedlmaier, N.; Hoppenheidt, K.; Krist, H.; Lehmann, S.; Lang, H. Generation of avian influenza virus
(AIV) contaminated fecal fine particulate matter (PM): Genome and infectivity detection and calculation of
immission. Vet. Microbiol. 2009, 139, 156–164. [CrossRef] [PubMed]

17. Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.;
Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review.
Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [CrossRef]

http://dx.doi.org/10.1016/S1470-2045(13)70487-X
https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf
http://dx.doi.org/10.1093/toxsci/kfu250
http://www.ncbi.nlm.nih.gov/pubmed/25628401
https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/25278-ibge-divulga-as-estimativas-da-populacao-dos-municipios-para-2019
https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/25278-ibge-divulga-as-estimativas-da-populacao-dos-municipios-para-2019
http://dx.doi.org/10.1016/j.jenvman.2020.110840
http://www.ncbi.nlm.nih.gov/pubmed/32501238
http://dx.doi.org/10.1038/ngeo2535
https://apps.who.int/iris/handle/10665/69477
http://dx.doi.org/10.1038/s41598-017-11024-3
http://dx.doi.org/10.1029/2001JD000666
http://dx.doi.org/10.1590/S1020-49892010000100002
http://dx.doi.org/10.1016/j.envres.2012.05.006
http://dx.doi.org/10.1038/s41467-017-02771-y
http://dx.doi.org/10.13140/RG.2.2.17256.49921
https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/nota_queimadascovid_out2020.pdf
https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/nota_queimadascovid_out2020.pdf
http://dx.doi.org/10.2105/AJPH.2020.305744
http://dx.doi.org/10.1016/j.vetmic.2009.05.005
http://www.ncbi.nlm.nih.gov/pubmed/19539435
http://dx.doi.org/10.3402/tellusb.v64i0.15598


Remote Sens. 2020, 12, 4074 44 of 45

18. Setti, L.; Passarini, F. Relazione Circa l’Effetto Dell’inquinamento da Particolato Atmosferico e la Diffusione
di Virus Nella Popolazione. Actu-Environnement Website, 2020. Available online: https://www.actu-
environnement.com/media/pdf/news-35178-covid-19.pdf (accessed on 13 October 2020).

19. Gaddi, A.V.; Capello, F. Particulate Does Matter: Is Covid-19 Another Air Pollution Related Disease? Preprint 2020.
Available online: https://doi.org/10.13140/RG.2.2.22283.85286/2 (accessed on 11 December 2020).

20. Han, Y.; Lam, J.C.K.; Li, V.O.K.; Guo, P.; Zhang, Q.; Wang, A.; Crowcroft, J.; Wang, S.; Fu, J.; Gilani, Z.; et al.
The effects of outdoor air pollution concentrations and lockdowns on Covid-19 infections in Wuhan and other
provincial capitals in China. Preprint 2020. Available online: https://doi.org/10.20944/preprints202003.
0364.v1 (accessed on 11 December 2020).

21. Andrée, B.P.J. Incidence of COVID-19 and Connections with Air Pollution Exposure: Evidence from the Netherlands;
Policy Research Working Paper No. 9221; World Bank: Washington, DC, USA, 2020.

22. Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the
United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049.
[CrossRef] [PubMed]

23. Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung
cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002,
287, 1132–1141. [CrossRef]

24. World Health Organization (WHO) Regional Office for Europe. Review of Evidence on Health Aspects
of Air Pollution—REVIHAAP Project. Technical Report. 2013. Available online: https://www.euro.who.
int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf (accessed on
9 November 2020).

25. Vormittag, E.; Almeida, R. Avaliação da RESOLUção 491/2018 Quanto à sua Efetividade para Proteção
da Saúde e Sobre os Mecanismos de Informação à Sociedade. Technical Report of the Instituto Saúde
e Sustentabilidade, 2019. Available online: https://www.saudeesustentabilidade.org.br/wp-content/
uploads/2019/06/Avaliacao-491.18-rev3final.pdf (accessed on 13 October 2020).

26. Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. The Updated Brazilian National Air Quality Standards:
A Critical Review. J. Braz. Chem. Soc. 2020, 31, 523–535. [CrossRef]

27. Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. Temporal Anomalies in Burned Area Trends: Satellite
Estimations of the Amazonian 2019 Fire Crisis. Remote Sens. 2020, 12, 151. [CrossRef]

28. Chau, K.; Franklin, M.; Gauderman, W.J. Satellite-Derived PM2.5 Composition and Its Differential Effect on
Children’s Lung Function. Remote Sens. 2020, 12, 1028. [CrossRef]

29. Peláez, L.M.G.; Santos, J.M.; de Almeida Albuquerque, T.T.; Reis, N.C., Jr.; Andreão, W.L.; de Fátima, A.M.
Air quality status and trends over large cities in South America. Environ. Sci. Policy 2020, 114, 422–435.
[CrossRef]

30. Grupo de Métodos Analíticos de Vigilância Epidemiológica (MAVE). PROCC/Fiocruz e EMap/FGV,
e GT-Influenza da Secretaria de Vigilância em Saúde do Ministério da Saúde. InfoGripe Website. Available
online: http://info.gripe.fiocruz.br/ (accessed on 13 October 2020).

31. Grupo de Métodos Analíticos de Vigilância Epidemiológica (MAVE). PROCC/Fiocruz e EMap/FGV,
e GT-Influenza da Secretaria de Vigilância em Saúde do Ministério da Saúde. InfoGripe Online Repository.
Available online: https://gitlab.procc.fiocruz.br/mave/repo/-/tree/master/Dados/InfoGripe (accessed on
13 October 2020).

32. Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.;
Benedetti, A.; et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1).
Geosci. Model Dev. 2019, 12, 4627–4659. [CrossRef]

33. Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.;
Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem.
Phys. 2019, 19, 3515–3556. [CrossRef]

34. Freitas, A.R.R.; Donalisio, M.R. Respiratory syncytial virus seasonality in Brazil: Implications for the
immunisation policy for at-risk populations. Mem. Inst. Oswaldo Cruz 2016, 111. [CrossRef] [PubMed]

https://www.actu-environnement.com/media/pdf/news-35178-covid-19.pdf
https://www.actu-environnement.com/media/pdf/news-35178-covid-19.pdf
https://doi.org/10.13140/RG.2.2.22283.85286/2
https://doi.org/10.20944/preprints202003.0364.v1
https://doi.org/10.20944/preprints202003.0364.v1
http://dx.doi.org/10.1126/sciadv.abd4049
http://www.ncbi.nlm.nih.gov/pubmed/33148655
http://dx.doi.org/10.1001/jama.287.9.1132
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf
https://www.saudeesustentabilidade.org.br/wp-content/uploads/2019/06/Avaliacao-491.18-rev3final.pdf
https://www.saudeesustentabilidade.org.br/wp-content/uploads/2019/06/Avaliacao-491.18-rev3final.pdf
http://dx.doi.org/10.21577/0103-5053.20190212
http://dx.doi.org/10.3390/rs12010151
http://dx.doi.org/10.3390/rs12061028
http://dx.doi.org/10.1016/j.envsci.2020.09.009
http://info.gripe.fiocruz.br/
https://gitlab.procc.fiocruz.br/mave/repo/-/tree/master/Dados/InfoGripe
http://dx.doi.org/10.5194/gmd-12-4627-2019
http://dx.doi.org/10.5194/acp-19-3515-2019
http://dx.doi.org/10.1590/0074-02760150341
http://www.ncbi.nlm.nih.gov/pubmed/27120006


Remote Sens. 2020, 12, 4074 45 of 45

35. Wiemken, T.L.; Mattingly, W.A.; Furmanek, S.P.; Guinn, B.E.; English, C.L.; Carrico, R.; Peyrani, P.;
Ramirez, J.A. Impact of Temperature Relative Humidity and Absolute Humidity on the Incidence of
Hospitalizations for Lower Respiratory Tract Infections Due to Influenza, Rhinovirus, and Respiratory
Syncytial Virus: Results from Community-Acquired Pneumonia Organization (CAPO) International Cohort
Study. Univ. Louisville J. Respir. Infect. 2017, 1, 7. [CrossRef]

36. Basart, S.; Benedictow, A.; Bennouna, Y.; Blechschmidt, A.-M.; Chabrillat, S.; Christophe, Y.; Cuevas, E.;
Eskes, H.J.; Hansen, K.M.; Jorba, O. Upgrade Verification Note for the CAMS Real-Time Global Atmospheric
Composition Service: Evaluation of the E-suite for the CAMS Upgrade of July 2019; Copernicus Atmosphere
Monitoring Service (CAMS) Report; ECMWF—Shinfield Park: Reading, UK, 2019. Available online: https:
//doi.org/10.24380/fcwq-yp50 (accessed on 11 December 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.18297/jri/vol1/iss3/7
https://doi.org/10.24380/fcwq-yp50
https://doi.org/10.24380/fcwq-yp50
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Data
	Cases of Severe Acute Respiratory Diseases (SARD)
	PM2.5 Concentrations
	Meteorological Data

	Data Analysis
	Population Exposure to Environmental Factors
	Correlation between PM2.5 Concentrations and SARD Cases


	Results
	Characterization of the Exposure to Environmental Factors
	Spatial Distribution of SARD Cases
	SpatialPM2.5 Distribution
	PM2.5 Concentration and SARD Case Correlations
	An Early Warning System

	Discussion
	General Approach
	Early Warning System Feasibility
	Alert Thresholds

	Conclusions
	Data Sources and Description
	Examples of PM2.5 Concentration Forecasts Obtained from CAMS NRT on Which an Early Warning System Could Be Based
	PM2.5 Concentration Forecasts and Weekly Case Number of SARD
	PM2.5 Concentration Forecasts and Weekly Case Number of SARD (in %)
	Rainfall and Weekly Case Number of SARD
	Temperature and Weekly Case Number of SARD
	Relative Humidity and Weekly Case Number of SARD
	Residuals of the Multivariate Linear Regression Models for PM2.5 Concentrations and Case Number of SARD
	Residuals of the Multivariate Linear Regression Models for PM2.5 Concentrations and SARD Negative Test Rate
	References

