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Abstract

mlogit is a package for R which enables the estimation of random utility models with
choice situation and/or alternative specific variables. The main extensions of the basic
multinomial model (heteroscedastic, nested and random parameter models) are imple-
mented.
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1. Introduction
Random utility models are the reference approach in economics when one wants to analyze
the choice by a decision maker of one among a set of mutually exclusive alternatives. Since
the seminal works of Daniel McFadden (McFadden 1974, 1978) who won the Nobel prize in
economics “for his development of theory and methods for analyzing discrete choice”, a large
amount of theoretical and empirical literature has been developed in this field.1

These models rely on the hypothesis that the decision maker is able to rank the different
alternatives by an order of preference represented by a utility function, the chosen alternative
being the one which is associated with the highest level of utility. They are called random
utility models because part of the utility is unobserved and is modeled as the realization of a
random deviate.
Different hypotheses on the distribution of this random deviate lead to different flavors of
random utility models. Early developments of these models were based on the hypothesis of
identical and independent errors following a Gumbel distribution,2 leading to the multinomial
logit model (MNL). More general models have since been proposed, either based on less
restrictive distribution hypotheses or by introducing individual heterogeneity.

1For a presentation of this literature, see Train (2009); the theoretical parts of this paper draw heavily on
this book.

2This distribution has the distinctive advantage that it leads to a probability which can be written as an
integral which has a closed form.

https://doi.org/10.18637/jss.v095.i11


2 mlogit: Random Utility Models in R

Maintaining the Gumbel distribution hypothesis but relaxing the i.i.d. (identically and inde-
pendently distributed) hypothesis leads to more general logit models (the heteroscedastic and
the nested logit models). Relaxing the Gumbel distribution hypothesis and using a normal
distribution instead leads to the multinomial probit model which can deal with heteroscedas-
ticity and correlation of the errors.
Individual heterogeneity can be introduced in the parameters associated with the covariates
entering the observable part of the utility or in the variance of the errors. This leads respec-
tively to the mixed effect models (MXL) and the scale heterogeneity model (S-MNL).
All these models can be estimated with the mlogit package (Croissant 2020b) which provides
a unified interface and is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=mlogit. The first version of mlogit was posted in
2008 and it was the first R package allowing the estimation of random utility models. Since
then, other package have emerged.3 The following packages provide useful additions tomlogit:

• mnlogit (Hasan, Wang, and Mahani 2016) enables efficient estimation of MNL for large
data sets,

• gmnl (Sarrias and Daziano 2017) estimates MXL and S-MNL, but also the so called
generalized multinomial logit model G-MNL which nests them,

• latent-class multinomial logit models (LC-MNL), for which the heterogeneity is due
to the fact that individuals belong to different classes and mixed-mixed models (MM-
MNL) which are a mixture of LC-MNL and MXL can also be estimated using the gmnl
package,

• Bayesian estimators for multinomial models are provided by packages bayesm (Rossi
2019), MNP (Imai and van Dyk 2017) and RSGHB (Dumont and Keller 2019).

The article is organized as follow. Section 2 explains how the usual formula-data and testing
interface can be extended in order to describe in a natural way the model to be estimated.
Section 3 describes the landmark multinomial logit model. Section 4 and 5 present two im-
portant extensions of this basic model: Section 4 presents models that relax the i.i.d. Gumbel
hypothesis and Section 5 introduces slope heterogeneity by considering some parameters as
random. Section 6 concludes.

2. Data management, model description and testing
The formula-data interface is a critical advantage of the R software. It provides a practical
way to describe the model to be estimated and to store data. However, the usual interface is
not flexible enough to deal correctly with random utility models. Therefore, mlogit provides
tools to construct richer data.frames and formulas.

2.1. Data management

Package mlogit is loaded using:

R> library("mlogit")
3See Sarrias and Daziano (2017, page 4) for a survey of relevant R packages.

https://CRAN.R-project.org/package=mlogit
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It comes with several data sets that we will use to illustrate the features of the package.
Data sets used for multinomial logit estimation concern some individuals, that make one
or a sequential choice of one alternative among a set of mutually exclusive alternatives. The
determinants of these choices are covariates that can depend on the alternative and the choice
situation, only on the alternative or only on the choice situation.
To illustrate this typology of the covariates, consider the case of repeated choice of destinations
for vacations by families:

• the length of the vacation and the season are choice situation specific variables,

• income and family size are individual specific variables,

• distance to destination and cost are alternative specific variables.

The unit of observation is therefore the choice situation, and it is also the individual if there
is only one choice situation per individual observed, which is often the case.
Data sets used to estimate random utility models have therefore a specific structure that can
be characterized by three indexes: the alternative, the choice situation and the individual.
These three indexes will be denoted alt, chid and id. Note that the distinction between
chid and id is only relevant if we have repeated observations for the same individual.
Data sets can have two different shapes: a “wide” shape (one row for each choice situation)
or a “long” shape (one row for each alternative and, therefore, as many rows as there are
alternatives for each choice situation).
Package mlogit deals with both formats by relying on the dfidx function from the dfidx
package (Croissant 2020a), which takes as first argument a data.frame and returns an object
of class ‘dfidx’, which in “long” format is a data.frame with a special column which contains
the corresponding indexes.

Wide format

Train4 is an example of a “wide” data set:

R> data("Train", package = "mlogit")
R> Train$choiceid <- 1:nrow(Train)
R> head(Train, 3)

id choiceid choice price_A time_A change_A comfort_A price_B time_B
1 1 1 A 2400 150 0 1 4000 150
2 1 2 A 2400 150 0 1 3200 130
3 1 3 A 2400 115 0 1 4000 115

change_B comfort_B
1 0 1
2 0 1
3 0 0

4Used by Ben-Akiva, Bolduc, and Bradley (1993) and Meijer and Rouwendal (2006).
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This data set contains data about a stated preference survey in the Netherlands. Each
individual has responded to several (up to 16) scenarios. For every scenario, two train tickets
A and B are proposed to the user, with different combinations of four attributes: price (the
price in cents of guilders), time (travel time in minutes), change (the number of changes)
and comfort (the class of comfort, 0, 1 or 2, 0 being the most comfortable class).
This “wide” format is suitable to store choice situation (or individual specific) variables be-
cause, in this case, they are stored only once in the data. Otherwise, it is cumbersome for
alternative specific variables because there are as many columns for such variables that there
are alternatives.
For such a “wide” data set, the shape argument of dfidx is mandatory, as its default value
is "long". The alternative specific variables are indicated with the argument varying which
is a numeric vector that indicates their position in the data frame. This argument is then
passed to stats::reshape that coerces the original data frame in “long” format. Further
arguments may be passed to stats::reshape. For example, as the names of the variables
are of the form price_A, one must add sep = "_" (the default value being "."). The choice
argument is also mandatory because the response has to be transformed in a logical value
in the “long” format. Given that each individual faces different choice situations, the id
variable containing the individual index nests the choice situation variable called choiceid.
This nesting structure in the indexes can be specified as a list through the argument idx.

R> Tr <- dfidx(Train, shape = "wide", choice = "choice",
+ varying = 4:11, sep = "_", idx = list(c("choiceid", "id")),
+ idnames = c("chid, "alt"),
+ opposite = c("price", "comfort", "time", "change"))

Note the use of the opposite argument for the four covariates: We expect negative coefficients
for all of them, taking the opposite of the covariates will lead to expected positive coefficients.
We next convert price and time in more meaningful units, namely hours and euros (1 guilder
was 2.20371 euros):

R> Tr$price <- Tr$price / 100 * 2.20371
R> Tr$time <- Tr$time / 60
R> head(Tr, 3)

~~~~~~~
first 3 observations out of 5858

~~~~~~~
choice price time change comfort idx

1 TRUE -52.88904 -2.5 0 -1 1:A
2 FALSE -88.14840 -2.5 0 -1 1:B
3 TRUE -52.88904 -2.5 0 -1 2:A

~~~ indexes ~~~~
chid id alt

1 1 1 A
2 1 1 B
3 2 1 A
indexes: 1, 1, 2
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An idx attribute is added to the data, which contains the three relevant indexes: choiceid
is the choice situation index, alt the alternative index and id is the individual index. This
attribute is a data.frame which can be extracted using the idx function.

R> head(idx(Tr), 3)

~~~ indexes ~~~~
choiceid id alt

1 1 1 A
2 1 1 B
3 2 1 A
indexes: 1, 1, 2

Long format

ModeCanada5 is an example of a data set in “long” format. It presents the choice of individuals
for a transport mode for the Ontario-Quebec corridor:

R> data("ModeCanada", package = "mlogit")
R> head(ModeCanada)

case alt choice dist cost ivt ovt freq income urban noalt
1 1 train 0 83 28.25 50 66 4 45 0 2
2 1 car 1 83 15.77 61 0 0 45 0 2
3 2 train 0 83 28.25 50 66 4 25 0 2
4 2 car 1 83 15.77 61 0 0 25 0 2
5 3 train 0 83 28.25 50 66 4 70 0 2
6 3 car 1 83 15.77 61 0 0 70 0 2

There are four transport modes (air, train, bus and car) and most of the variables are
alternative specific (cost for monetary cost, ivt for in vehicle time, ovt for out of vehicle
time, freq for frequency). The only choice situation specific variables are dist (the distance
of the trip), income (household income), urban (a dummy for trips which have a large city at
the origin or the destination) and noalt the number of available alternatives. The advantage
of this shape is that there are much fewer columns than in the “wide” format, the caveat
being that values of dist, income and urban are repeated four times.
For data in “long” format the shape argument is no longer mandatory.
To replicate published results later in the text (in the first part of Section 3.5), we will use only
a subset of the choice situations, namely those for which the four alternatives are available.
This can be done using the subset function with the subset argument set to noalt == 4
when estimating the model. This can also be done within dfidx, using the subset argument.
The information about the structure of the data can be explicitly indicated using choice
situations and alternative indexes (in this data set case and alt, respectively) or, in part,

5Used in particular by Forinash and Koppleman (1993), Bhat (1995), Koppelman and Wen (1998) and
Koppelman and Wen (2000).
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guessed by the dfidx function. Here, after subsetting, we have 2779 choice situations with
four alternatives, and the rows are ordered first by choice situation and then by alternative
(train, air, bus and car in this order).
The first way to read correctly this data frame is to ignore completely the two index variables.
In this case, the only supplementary argument to provide is the alt.levels argument which
is a character vector that contains the name of the alternatives in their order of appearance:

R> MC <- dfidx(ModeCanada, subset = noalt == 4,
+ alt.levels = c("train", "air", "bus", "car"))

Note that this can only be used if the data set is “balanced”, which means that the same set
of alternatives is available for all choice situations. It is also possible to provide the name of
the variable that contains the alternatives through the argument idx:

R> MC <- dfidx(ModeCanada, subset = noalt == 4, idx = list(NA, "alt"))

The name of the variable that contains the information about the choice situations can also
be indicated through the argument idx:

R> MC <- dfidx.data(ModeCanada, subset = noalt == 4, idx = "case",
+ alt.levels = c("train", "air", "bus", "car"))

Both alternative and choice situation variables can also be provided:

R> MC <- dfidx(ModeCanada, subset = noalt == 4,
+ idx = c("case", "alt"))

Moreover, as the two indexes are stored in the first two columns of the original data frame,
the idx argument can be left unspecified

R> MC <- dfidx(ModeCanada, subset = noalt == 4)

and the indexes can be kept as stand alone series if the drop.index argument is set to FALSE:

R> MC <- dfidx(ModeCanada, subset = noalt == 4, idx = c("case", "alt"),
+ drop.index = FALSE)
R> head(MC)

~~~~~~~
first 10 observations out of 11116

~~~~~~~
case alt choice dist cost ivt ovt freq income urban noalt idx

1 109 train 0 377 58.25 215 74 4 45 0 4 109:rain
2 109 air 1 377 142.80 56 85 9 45 0 4 109:air
3 109 bus 0 377 27.52 301 63 8 45 0 4 109:bus
4 109 car 0 377 71.63 262 0 0 45 0 4 109:car
5 110 train 0 377 58.25 215 74 4 70 0 4 110:rain
6 110 air 1 377 142.80 56 85 9 70 0 4 110:air
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7 110 bus 0 377 27.52 301 63 8 70 0 4 110:bus
8 110 car 0 377 71.63 262 0 0 70 0 4 110:car
9 111 train 0 377 58.25 215 74 4 35 0 4 111:rain
10 111 air 1 377 142.80 56 85 9 35 0 4 111:air

~~~ indexes ~~~~
case alt

1 109 train
2 109 air
3 109 bus
4 109 car
5 110 train
6 110 air
7 110 bus
8 110 car
9 111 train
10 111 air
indexes: 1, 2

2.2. Model description

Standard formulas are not very practical to describe random utility models, as these models
may use different sets of covariates. Actually, when working with random utility models, one
has to consider at most four sets of covariates:

1. alternative and choice situation specific covariates xij with generic coefficients β and
alternative specific covariates tj with a generic coefficient ν,

2. choice situation specific covariates zi with alternative specific coefficients γj ,

3. alternative and choice situation specific covariates wij with alternative specific coeffi-
cients δj ,

4. choice situation specific covariates vi that influence the variance of the errors.

The first three sets of covariates enter the observable part of the utility which can be written,
for alternative j:

Vij = αj + βxij + νtj + γjzi + δjwij .

As the absolute value of utility is irrelevant, only utility differences are useful to model the
choice for one alternative. For two alternatives j and k, we obtain:

Vij − Vik = (αj − αk) + β(xij − xik) + (γj − γk)zi + (δjwij − δkwik) + ν(tj − tk).

It is clear from the previous expression that coefficients of choice situation specific variables
(the intercept being one of those) should be alternative specific, otherwise they would disap-
pear in the differentiation. Moreover, only differences of these coefficients are relevant and can



8 mlogit: Random Utility Models in R

be identified. For example, with three alternatives 1, 2 and 3, the three coefficients γ1, γ2, γ3
associated to a choice situation specific variable cannot be identified, but only two linear
combinations thereof. Therefore, one has to make a choice of normalization and the simplest
one is to simply set γ1 = 0.
Coefficients for alternative and choice situation specific variables may (or may not) be al-
ternative specific. For example, transport time is alternative specific, but 10 min in public
transport may not have the same impact on utility than 10 min in a car. In this case, al-
ternative specific coefficients are relevant. Monetary cost is also alternative specific, but in
this case, one can consider that 1$ is 1$ whether it is spent for the use of a car or in public
transports. In this case, a generic coefficient is appropriate.
The treatment of alternative specific variables does not differ much from the alternative and
choice situation specific variables with a generic coefficient. However, if some of these variables
are introduced, the ν parameter can only be estimated in a model without intercepts to avoid
perfect multicollinearity.
Individual-related heteroscedasticity (see Swait and Louviere 1993) can be addressed by writ-
ing the utility of choosing j for individual i as Uij = Vij + σiεij , where ε has a variance that
does not depend on i and j and σ2

i = f(vi) is a parametric function of some individual-specific
covariates. Note that this specification induces choice situation heteroscedasticity, also de-
noted scale heterogeneity.6 As the overall scale of utility is irrelevant, the utility can also
be written as: U∗ij = Uij/σi = Vij/σi + εij , i.e., with homoscedastic errors. If Vij is a linear
combination of covariates, the associated coefficients are then divided by σi.
A logit model with only choice situation specific variables is sometimes called a multinomial
logit model, one with only alternative specific variables a conditional logit model and one with
both kind of variables a mixed logit model. This is seriously misleading: conditional logit
model is also a logit model for longitudinal data in the statistical literature and mixed logit
is one of the names of a logit model with random parameters. Therefore, in what follows, we
will use the name multinomial logit model for the model we have just described whatever the
nature of the explanatory variables used.
Package mlogit makes use of objects of class ‘Formula’ provided by the Formula package
(Zeileis and Croissant 2010). The Formula package provides richer formulas, which accept
multiple responses (a feature not used here) and multiple sets of covariates. Moreover, specific
model.frame and model.matrix methods which can be used with one or several sets of
covariates are available.
To illustrate the use of objects of class ‘Formula’, we use again the ModeCanada data set and
consider three sets of covariates that will be indicated in a three-part formula, which refers
to the first three items of the four point list at the beginning of Section 2.2.

• cost (monetary cost) is an alternative specific covariate with a generic coefficient
(part 1),

• income and urban are choice situation specific covariates (part 2),

• ivt (in vehicle travel time) is alternative specific and alternative specific coefficients are
expected (part 3).

6This kind of heteroscedasticity should not be confused with alternative heteroscedasticity (σ2
j 6= σ2

k) which
is introduced in the heteroscedastic logit model described in Section 4.1.
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R> library("Formula")
R> f <- Formula(choice ~ cost | income + urban | ivt)

Some parts of the formula may be omitted when there is no ambiguity. For example, the
following sets of formulas are identical:

R> f2 <- Formula(choice ~ cost + ivt | income + urban)
R> f2 <- Formula(choice ~ cost + ivt | income + urban | 0)

R> f3 <- Formula(choice ~ 0 | income | 0)
R> f3 <- Formula(choice ~ 0 | income)

R> f4 <- Formula(choice ~ cost + ivt)
R> f4 <- Formula(choice ~ cost + ivt | 1)
R> f4 <- Formula(choice ~ cost + ivt | 1 | 0)

By default, an intercept is added to the model but it can be removed by using + 0 or - 1 in
the second part.

R> f5 <- Formula(choice ~ cost | income + 0 | ivt)
R> f5 <- Formula(choice ~ cost | income - 1 | ivt)

A model.frame method is provided for ‘dfidx’ objects. It differs from the formula method
by the fact that the returned object is of class ‘dfidx’ and not an ordinary data frame, which
means that the information about the structure of the data is not lost. Defining a specific
model.frame method for ‘dfidx’ objects implies that the first argument of the function should
be a ‘dfidx’ object, which results in an unusual order of the arguments in the function (the
data first, and then the formula). Moreover, as the model matrix for random utility models
has specific features, we add a supplementary argument called pkg to the dfidx function so
that the returned object has a specific class (and inherits the ‘dfidx’ class):

R> MC <- dfidx(ModeCanada, subset = noalt == 4, pkg = "mlogit")
R> class(MC)

[1] "dfidx_mlogit" "dfidx" "data.frame"

R> f <- Formula(choice ~ cost | income | ivt)
R> mf <- model.frame(MC, f)
R> class(mf)

[1] "dfidx_mlogit" "dfidx" "data.frame"

Using mf as the argument of model.matrix enables the construction of the relevant model
matrix for random utility model as a specific model.matrix method for ‘difdx_mlogit’
objects is provided.

R> head(model.matrix(mf), 4)
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(Intercept):air (Intercept):bus (Intercept):car cost income:air
1 0 0 0 58.25 0
2 1 0 0 142.80 45
3 0 1 0 27.52 0
4 0 0 1 71.63 0

income:bus income:car ivt:train ivt:air ivt:bus ivt:car
1 0 0 215 0 0 0
2 0 0 0 56 0 0
3 45 0 0 0 301 0
4 0 45 0 0 0 262

The model matrix contains J−1 columns for every choice situation specific variables (income
and the intercept), which means that the coefficient associated to the first alternative (air)
is set to zero. It contains only one column for cost because we want a generic coefficient for
this variable. It contains J columns for ivt, because it is an alternative specific variable for
which we want alternative specific coefficients.

2.3. Testing

As for all models estimated by maximum likelihood, three testing procedures may be applied
to test hypotheses about models fitted using mlogit. The set of hypotheses tested defines two
models: the unconstrained model that does not take these hypotheses into account and the
constrained model which imposes these hypotheses.
This in turn defines three principles of tests: the Wald test, based only on the unconstrained
model, the Lagrange multiplier test (or score test), based only on the constrained model and
the likelihood ratio test, based on the comparison of both models.
Two of these tests are implemented in the lmtest package (Zeileis and Hothorn 2002): waldtest
and lrtest. The Wald test is also implemented as linearHypothesis in package car (Fox
and Weisberg 2019), with a fairly different syntax. We provide special methods of waldtest
and lrtest for ‘mlogit’ objects and we also provide a function for the Lagrange multiplier
(or score) test called scoretest.
We will see later that the score test is especially useful for ‘mlogit’ objects when one is
interested in extending the basic multinomial logit model because, in this case, the uncon-
strained model may be difficult to estimate. For the presentation of further tests, we provide
a convenient statpval function which extracts the statistic and the p value from the objects
returned by the testing function, which can be either of class ‘anova’ or ‘htest’.

R> statpval <- function(x) {
+ if (inherits(x, "anova"))
+ result <- as.matrix(x)[2, c("Chisq", "Pr(>Chisq)")]
+ if (inherits(x, "htest")) result <- c(x$statistic, x$p.value)
+ names(result) <- c("stat", "p-value")
+ round(result, 3)
+ }
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3. Random utility model and the multinomial logit model

3.1. Random utility model

The utility for alternative l is written as: Ul = Vl+εl where Vl is a function of some observable
covariates and unknown parameters to be estimated, and εl is a random deviate which contains
all the unobserved determinants of the utility. Alternative l is therefore chosen if εj < (Vl −
Vj) + εl ∀ j 6= l and the probability of choosing this alternative is then:

P(ε1 < Vl − V1 + εl, ε2 < Vl − V2 + εl, . . . , εJ < Vl − VJ + εl).

Denoting F−l the cumulative density function of all the ε’s except εl, this probability is:

(Pl | εl) = F−l(Vl − V1 + εl, . . . , Vl − VJ + εl).

Note that this probability is conditional on the value of εl. The unconditional probability
(which depends only on β and on the value of the observed explanatory variables) is obtained
by integrating out the conditional probability using the marginal density of εl, denoted fl:

Pl =
∫
F−l(Vl − V1 + εl, . . . , Vl − VJ) + εl)fl(εl)dεl.

The conditional probability is an integral of dimension J − 1 and the computation of the
unconditional probability adds one more dimension of integration.

3.2. The distribution of the error terms

The multinomial logit model (McFadden 1974) is a special case of the model developed in the
previous section. It is based on three hypotheses.
The first hypothesis is the independence of the errors. In this case, the univariate distribu-
tion of the errors can be used, which leads to the following conditional and unconditional
probabilities:

(Pl | εl) =
∏
j 6=l

Fj(Vl − Vj + εl) and Pl =
∫ ∏

j 6=l
Fj(Vl − Vj + εl) fl(εl) dεl,

which means that the conditional probability is the product of J − 1 univariate cumulative
density functions and only the evaluation of a one-dimensional integral is required to compute
the unconditional probability.
The second hypothesis is that each ε follows a Gumbel distribution, whose density and prob-
ability functions are, respectively:

f(z) = 1
θ
e−

z−µ
θ e−e

− z−µ
θ and F (z) =

∫ z

−∞
f(t)dt = e−e

− z−µ
θ , (1)

where µ is the location parameter and θ the scale parameter. The first two moments of the
Gumbel distribution are E(z) = µ+ θγ, where γ is the Euler-Mascheroni constant (≈ 0.577)
and VAR(z) = π2

6 θ
2. The mean of εj is not identified if Vj contains an intercept. We can then,
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without loss of generality suppose that µj = 0, ∀j. Moreover, the overall scale of utility is
not identified. Therefore, only J − 1 scale parameters may be identified, and a natural choice
of normalization is to impose that one of the θj is equal to one.
The last hypothesis is that the errors are identically distributed. As the location parameter
is not identified for any error term, this hypothesis is essentially a homoscedasticity hypoth-
esis, which means that the scale parameter of the Gumbel distribution is the same for all
the alternatives. As one of them has been previously set to one, we can therefore suppose
that, without loss of generality, θj = 1, ∀j ∈ 1 . . . J . The conditional and unconditional
probabilities then further simplify to:

(Pl | εl) =
∏
j 6=l

e−e
−(Vl−Vj+εl) and Pl =

∫ +∞

−∞

∏
j 6=l

e−e
−(Vl−Vj+t)

e−te−e
−t
dt.

The probabilities have then simple, closed forms, which correspond to the logit transformation
of the deterministic part of the utility:

Pl = eVl∑J
j=1 e

Vj
.

3.3. Independence of irrelevant alternatives property
If we consider the probabilities of choice for two alternatives l andm, we have Pl = eVl/

∑
j e

Vj

and Pm = eVm/
∑
j e

Vj . The ratio of these two probabilities is:

Pl
Pm

= eVl

eVm
= eVl−Vm .

This probability ratio for the two alternatives depends only on the characteristics of these
two alternatives and not on those of other alternatives. This is called the IIA property
(for independence of irrelevant alternatives). IIA relies on the hypothesis that the errors
are identical and independent. It is not a problem by itself and may even be considered as a
useful feature for a well specified model. However, this hypothesis may be in practice violated,
especially if some important variables are omitted.

3.4. Interpretation
In a linear model, the coefficients are the marginal effects of the explanatory variables on the
explained variable. This is not the case for the multinomial logit model. However, meaningful
results can be obtained using relevant transformations of the coefficients.

Marginal effects
The marginal effects are the derivatives of the probabilities with respect to the covariates,
which can be choice situation specific (zi) or alternative specific (xij):

∂Pil
∂zi

= Pil
(
βl −

∑
j Pijβj

)
∂Pil
∂xil

= γPil(1− Pil)
∂Pil
∂xik

= −γPilPik.
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• For a choice situation specific variable, the sign of the marginal effect is not neces-
sarily the sign of the coefficient. Actually, the sign of the marginal effect is given by(
βl −

∑
j Pijβj

)
, which is positive if the coefficient for alternative l is greater than a

weighted average of the coefficients for all the alternatives, the weights being the prob-
abilities of choosing the alternatives. In this case, the sign of the marginal effect can be
established with no ambiguity only for the alternatives with the lowest and the greatest
coefficients.

• For an alternative specific variable, the sign of the coefficient can be directly inter-
preted. The marginal effect is obtained by multiplying the coefficient by the product
of two probabilities which is at most 0.25. The rule of thumb is therefore to divide the
coefficient by four in order to have an upper bound of the marginal effect.

Note that the last equation can be rewritten: ∂Pil/Pil
∂xik

= −γPik. Therefore, when a charac-
teristic of alternative k changes, the relative change of the probabilities for every alternatives
except k are the same, which is a consequence of the IIA property.

Marginal rates of substitution

Coefficients are marginal utilities, which cannot be interpreted. However, ratios of coefficients
are marginal rates of substitution. For example, if the observable part of utility is: V =
β0 + β1x1 + βx2 + βx3, joint variations of x1 and x2 which ensure the same level of utility
satisfy dV = β1dx1 + β2dx2 = 0 so that:

−dx2
dx1
|dV=0= β1

β2
.

For example, if x1 is transport time (in hours) and x2 is transport cost (in $), β1 = 1.5 and
β2 = 0.05, β1

β2
= 30 is the marginal rate of substitution of time in terms of $ and the value of

30 means that to reduce the travel time of one hour, the individual is willing to pay at most
30$ more. Stated more simply, time value is 30$ per hour.

Consumer’s surplus

Consumer’s surplus has a very simple expression for multinomial logit models, which was
first derived by Small and Rosen (1981). The level of utility attained by an individual is
Uj = Vj + εj , j being the chosen alternative. The expected utility, from the searcher’s point
of view is then E(maxj Uj), where the expectation is taken over the values of all the error
terms. Its expression is simply, up to an additive unknown constant, the logarithm of the
denominator of the logit probabilities, often called the “log-sum”:

E(U) = ln
J∑
j=1

eVj + C.

If the marginal utility of income α is known and constant, the expected surplus is simply
E(U)/α.
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3.5. Application

Random utility models are fitted using the mlogit function. Basically, only two arguments are
mandatory, formula and data, if an object of class ‘dfidx’ (and not an ordinary data.frame)
is provided.

ModeCanada

We first use the ModeCanada data set, which was already coerced to a ‘dfidx’ object (called
MC) in the previous section. The same model can then be estimated using as data argument
this ‘dfidx’ object:

R> ml.MC1 <- mlogit(choice ~ cost + freq + ovt | income | ivt, MC)

or a data.frame. In the latter case, further arguments that will be subsequently passed to
dfidx should be indicated:

R> ml.MC1b <- mlogit(choice ~ cost + freq + ovt | income | ivt, ModeCanada,
+ subset = noalt == 4, idx = c("case", "alt"))

mlogit provides two further useful arguments:

• reflevel indicates which alternative is the “reference” alternative, i.e., the one for
which the coefficients of choice situation specific covariates are set to zero,

• alt.subset indicates a subset of alternatives on which the estimation has to be per-
formed; in this case, only the lines that correspond to the selected alternatives are
used and all the choice situations where not selected alternatives have been chosen are
removed.

We estimate the model on the subset of three alternatives (we exclude bus whose market
share is negligible in our sample) and we set car as the reference alternative. Moreover, we
use a total transport time variable computed as the sum of the in vehicle and the out of
vehicle time variables.

R> MC$time <- with(MC, ivt + ovt)
R> ml.MC1 <- mlogit(choice ~ cost + freq | income | time, MC,
+ alt.subset = c("car", "train", "air"), reflevel = "car")

The main results of the model are computed and displayed using the summary method:

R> summary(ml.MC1)

Call:
mlogit(formula = choice ~ cost + freq | income | time, data = MC,

alt.subset = c("car", "train", "air"), reflevel = "car",
method = "nr")

Frequencies of alternatives:
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car train air
0.45757 0.16721 0.37523

nr method
6 iterations, 0h:0m:0s
g'(-H)^-1g = 6.94E-06
successive function values within tolerance limits

Coefficients :
Estimate Std. Error z-value Pr(>|z|)

(Intercept):train -0.97034440 0.26513065 -3.6599 0.0002523 ***
(Intercept):air -1.89856552 0.68414300 -2.7751 0.0055185 **
cost -0.02849715 0.00655909 -4.3447 1.395e-05 ***
freq 0.07402902 0.00473270 15.6420 < 2.2e-16 ***
income:train -0.00646892 0.00310366 -2.0843 0.0371342 *
income:air 0.02824632 0.00365435 7.7295 1.088e-14 ***
time:car -0.01402405 0.00138047 -10.1589 < 2.2e-16 ***
time:train -0.01096877 0.00081834 -13.4036 < 2.2e-16 ***
time:air -0.01755120 0.00399181 -4.3968 1.099e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1951.3
McFadden R^2: 0.31221
Likelihood ratio test : chisq = 1771.6 (p.value = < 2.22e-16)

The frequencies of the different alternatives in the sample are first indicated. Next, some
information about the optimization is displayed: the Newton-Raphson method (with analytic
gradient and Hessian) is used, as it is the most efficient method for this simple model for
which the log-likelihood function is globally concave. Note that very few iterations and
computing time are required to estimate this model. Then the usual table of coefficients is
displayed followed by some goodness of fit measures: the value of the log-likelihood function,
which is compared to the value for the model containing only intercepts, which leads to the
computation of the McFadden R2 and to the likelihood ratio test.
The fitted method can be used either to obtain the probability of actual choices (type =
"outcome") or the probabilities for all the alternatives (type = "probabilities").

R> head(fitted(ml.MC1, type = "outcome"))

109 110 111 112 113 114
0.1909475 0.3399941 0.1470527 0.3399941 0.3399941 0.2440011

R> head(fitted(ml.MC1, type = "probabilities"), 4)

car train air
109 0.4206404 0.3884120 0.1909475
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110 0.3696476 0.2903582 0.3399941
111 0.4296769 0.4232704 0.1470527
112 0.3696476 0.2903582 0.3399941

Note that the log-likelihood is the sum of the logarithm of the fitted outcome probabilities and
that, as the model contains intercepts, the average fitted probabilities for every alternative
equal the market shares of the alternatives in the sample.

R> sum(log(fitted(ml.MC1, type = "outcome")))

[1] -1951.344

R> logLik(ml.MC1)

'log Lik.' -1951.344 (df=9)

R> apply(fitted(ml.MC1, type = "probabilities"), 2, mean)

car train air
0.4575659 0.1672084 0.3752257

Predictions can be made using the predict method. If no data is provided, predictions are
made for the sample mean values of the covariates.

R> predict(ml.MC1)

car train air
0.5066362 0.2116876 0.2816761

Assume, for example, that we wish to predict the effect of a reduction of train transport time
of 20%. We first create a new data frame simply by multiplying train transport time by 0.8
and then using the predict method on this new data frame.

R> NMC <- MC
R> NMC[idx(NMC)$alt == "train", "time"] <- 0.8 *
+ NMC[idx(NMC)$alt == "train", "time"]
R> Oprob <- fitted(ml.MC1, type = "probabilities")
R> Nprob <- predict(ml.MC1, newdata = NMC)
R> rbind(old = apply(Oprob, 2, mean), new = apply(Nprob, 2, mean))

car train air
old 0.4575659 0.1672084 0.3752257
new 0.4044736 0.2635801 0.3319462

If, for the first individuals in the sample, we compute the ratio of the probabilities of the air
and the car mode, we obtain:



Journal of Statistical Software 17

R> head(Nprob[, "air"] / Nprob[, "car"])

109 110 111 112 113 114
0.4539448 0.9197791 0.3422401 0.9197791 0.9197791 0.6021092

R> head(Oprob[, "air"] / Oprob[, "car"])

109 110 111 112 113 114
0.4539448 0.9197791 0.3422401 0.9197791 0.9197791 0.6021092

which is an illustration of the IIA property. If train time changes, it changes the probabilities
of choosing air and car, but not their ratio.
We next compute the surplus for individuals of the sample induced by train time reduction.
This requires the computation of the log-sum term (also called inclusive value or inclusive
utility) for every choice situation, which is:

ivi = ln
J∑
j=1

eβ
>xij .

For this purpose, we use the logsum function, which works on a vector of coefficients and
a model.matrix. The basic use of logsum consists on providing as unique argument (called
coef) an ‘mlogit’ object. In this case, the model.matrix and the coef are extracted from
the same model.

R> ivbefore <- logsum(ml.MC1)

To compute the log-sum after train time reduction, we must provide a model.matrix which is
not the one corresponding to the fitted model. This can be done using the X argument which
is a matrix or an object from which a model.matrix can be extracted. This can also be done
by filling the data argument (a data.frame or an object from which a data.frame can be
extracted using a model.frame method), and eventually the formula argument (a formula
or an object for which the formula method can be applied). If no formula is provided but if
data is an ‘dfidx’ object, the formula is extracted from it.

R> ivafter <- logsum(ml.MC1, data = NMC)

Surplus variation is then computed as the difference of the log-sums divided by the opposite
of the cost coefficient which can be interpreted as the marginal utility of income:

R> surplus <- - (ivafter - ivbefore) / coef(ml.MC1)["cost"]
R> summary(surplus)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5852 2.8439 3.8998 4.6971 5.8437 31.3912



18 mlogit: Random Utility Models in R

Consumer’s surplus variation range from 0.6 to 31$, with a median value of about 4$.
Marginal effects are computed using the effects method. By default, they are computed at
the sample mean, but a data argument can be provided. The variation of the probability and
of the covariate can be either absolute or relative. This is indicated with the type argument
which is a combination of two a (as absolute) and r (as relative) characters. For example,
type = "ar" means that what is measured is an absolute variation of the probability for a
relative variation of the covariate.

R> effects(ml.MC1, covariate = "income", type = "ar")

car train air
-0.1822177 -0.1509079 0.3331256

The results indicate that, for a 100% increase of income, the probability of choosing air
increases by 33 percentage points, while the probabilities of choosing car and train decrease
by 18 and 15 percentage points.
For an alternative specific covariate, a matrix of marginal effects is displayed.

R> effects(ml.MC1, covariate = "cost", type = "rr")

car train air
car -0.9131273 0.9376923 0.9376923
train 0.3358005 -1.2505014 0.3358005
air 1.2316679 1.2316679 -3.1409703

The cell in the lth row and the cth column indicates the change of the probability of choosing
alternative c when the cost of alternative l changes. As type = "rr", elasticities are com-
puted. For example, a 10% change of train cost increases the probabilities of choosing car
and air travel by 3.36%. Note that the relative changes of the probabilities of choosing one
of these two modes are equal, which is a consequence of the IIA property.
Finally, in order to compute travel time valuation, we divide the coefficients of travel times
(in minutes) by the coefficient of monetary cost (in $).

R> coef(ml.MC1)[grep("time", names(coef(ml.MC1)))] /
+ coef(ml.MC1)["cost"] * 60

time:car time:train time:air
29.52728 23.09447 36.95360

The value of travel time ranges from 23 for train to 37$ per hour for plane.

NOx

The second example is a data set used by Fowlie (2010), called NOx. She analyzed the effect of
an emissions trading program (the NOx budget program which seeks to reduce the emission of
nitrogen oxides) on the behavior of producers. More precisely, coal electricity plant managers
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may adopt one out of fifteen different technologies in order to comply with the emissions
defined by the program. Some of them require high investment (the capital cost is kcost)
and are very efficient to reduce emissions, some other require much less investment but are less
efficient and the operating cost (denoted vcost) is then higher, especially because pollution
permits must be purchased to offset emissions exceeding their allocation.
The focus of the paper is on the effects of the regulatory environment on the manager’s
behavior. Some firms are deregulated, whereas other are either regulated or public. Rate of
return is applied for regulated firms, which means that they perceive a “fair” rate of return
on their investment. Public firms also enjoy significant cost of capital advantages. Therefore,
the main hypothesis of the paper is that public and regulated firms will adopt much more
capitalistic intensive technologies than deregulated and public ones, which means that the
coefficient of capital cost should take a higher negative value for deregulated firms. Capital
cost is interacted with the age of the plant (measured as a deviation from the sample mean
age), as firms should weigh capital costs more heavily for older plants, as they have less time
to recover these costs.
Multinomial logit models are estimated for the three sub-samples defined by the regulatory
environment. The 15 technologies are not available for every plant, the sample is therefore re-
stricted to available technologies, using the available covariate. Three technology dummies
are introduced: post for post-combustion pollution control technology, cm for combustion
modification technology and lnb for low NOx burners technology.
A last model is estimated for the whole sample, but the parameters are allowed to be propor-
tional to each other. The scedasticity function is described in the fourth part of the formula, it
contains here only one covariate, env. Note also that for the last model, the author introduced
a specific capital cost coefficient for deregulated firms.7

R> data("NOx", package = "mlogit")
R> NOx$kdereg <- with(NOx, kcost * (env == "deregulated"))
R> NOxml <- dfidx(NOx, idx = list(c("chid", "id"), "alt"))
R> ml.pub <- mlogit(choice ~ post + cm + lnb + vcost + kcost + kcost:age |
+ - 1, subset = available & env == "public", data = NOxml)
R> ml.reg <- update(ml.pub, subset = available & env == "regulated")
R> ml.dereg <- update(ml.pub, subset = available & env == "deregulated")
R> ml.pool <- mlogit(choice ~ post + cm + lnb + vcost + kcost + kcost:age +
+ kdereg | - 1 | 0 | env, subset = available == 1, data = NOxml,
+ method = "bhhh")
R> library("texreg")
R> texreg(list(Public = ml.pub, Deregulated = ml.dereg, Regulated = ml.reg,
+ Pooled = ml.pool), caption = "Environmental compliance choices.",
+ omit.coef = "(post)|(cm)|(lnb)", float.pos = "t!", label = "tab:nox",
+ dcolumn = TRUE)

Results are presented in Table 1, using the texreg package (Leifeld 2013). Coefficients are
very different on the sub-samples defined by the regulatory environment. Note in particular
that the capital cost coefficient is positive and insignificant for public and regulated firms,
as it is significantly negative for deregulated firms. Errors seems to have significant larger

7Note the use of the method argument, set to "bhhh". See Section 5.3 for details.
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Public Deregulated Regulated Pooled
vcost −1.56∗∗∗ −0.19∗∗∗ −0.28∗∗∗ −0.31∗∗∗

(0.36) (0.06) (0.06) (0.04)
kcost 0.04 −0.06∗∗ 0.01 0.01

(0.11) (0.02) (0.03) (0.02)
kcost:age −0.08 −0.04∗∗ −0.02∗ −0.02∗∗∗

(0.04) (0.01) (0.01) (0.01)
kdereg −0.07∗∗∗

(0.01)
sig.envderegulated 0.32∗∗

(0.12)
sig.envpublic −0.33∗∗∗

(0.08)
AIC 168.92 690.15 731.48 1634.22
Log Likelihood −78.46 −339.07 −359.74 −808.11
Num. obs. 113 227 292 632
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Environmental compliance choices.

variance for deregulated firms and lower ones for public firms compared to regulated firms.
The hypothesis that the coefficients (except the kcost one) are identical up to a multiplicative
scalar can be performed using a likelihood ratio test:

R> stat <- 2 * (logLik(ml.dereg) + logLik(ml.reg) + logLik(ml.pub) -
+ logLik(ml.pool))
R> stat

'log Lik.' 61.67179 (df=6)

R> pchisq(stat, df = 9, lower.tail = FALSE)

'log Lik.' 6.377284e-10 (df=6)

The hypothesis is strongly rejected.

4. Logit models relaxing the i.i.d. hypothesis
In the previous section, we assumed that the error terms were i.i.d., i.e., uncorrelated and ho-
moscedastic. Extensions of the basic multinomial logit model have been proposed by relaxing
one of these two hypotheses while maintaining the hypothesis of a Gumbel distribution.

4.1. The heteroscedastic logit model
The heteroscedastic logit model was proposed by Bhat (1995). The probability that Ul > Uj
is:

P(εj < Vl − Vj + εl) = e−e
−

(Vl−Vj+εl)
θj

,
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which implies the following conditional and unconditional probabilities

(Pl | εl) =
∏
j 6=l

e−e
−

(Vl−Vj+εl)
θj

,

Pl =
∫ +∞

−∞

∏
j 6=l

e−e− (Vl−Vj+t)
θj

 1
θl
e
− t
θl e−e

− t
θl dt

=
∫ +∞

0

e−∑j 6=l e
−
Vl−Vj−θl ln t

θj

 e−tdt.
There is no closed form for this integral, but it can be efficiently computed using a Gauss
quadrature method, and more precisely the Gauss-Laguerre quadrature method.

4.2. The nested logit model

The nested logit model was first proposed by McFadden (1978). It is a generalization of the
multinomial logit model that is based on the idea that some alternatives may be joined in
several groups (called nests). The error terms may then present some correlation in the same
nest, whereas error terms of different nests are still uncorrelated.
Denoting m = 1 . . .M the nests and Bm the set of alternatives belonging to nest m, the
cumulative distribution of the errors is:

exp

− M∑
m=1

 ∑
j∈Bm

e−εj/λm

λm
 .

The marginal distributions of the ε’s are still univariate extreme value, but there is now some
correlation within nests where 1− λm is a measure of the correlation, i.e., λm = 1 implies no
correlation. In the special case where λm = 1 ∀m, the errors are i.i.d. Gumbel errors and the
nested logit model reduces to the multinomial logit model. It can then be shown that the
probability of choosing alternative j that belongs to nest l is:

Pj =
eVj/λl

(∑
k∈Bl e

Vk/λl
)λl−1

∑M
m=1

(∑
k∈Bm e

Vk/λm
)λm ,

and that this model is a random utility model if all the λ parameters are in the 0–1 interval.8

Let us now write the deterministic part of the utility of alternative j as the sum of two terms:
the first one (Zj) being specific to the alternative and the second one (Wl) to the nest it
belongs to:

Vj = Zj +Wl.

8A slightly different version of the nested logit model (Daly 1987) is often used, but is not compatible
with the random utility maximization hypothesis. Its difference from the previous expression is that the
deterministic parts of the utility for each alternative are not divided by the nest elasticity. The differences
between the two versions have been discussed in Koppelman and Wen (1998), Heiss (2002) and Hensher and
Greene (2002).
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We can then rewrite the probabilities as follows:

Pj = e(Zj+Wl)/λl∑
k∈Bl

e(Zk+Wl)/λl
×

(∑
k∈Bl

e(Zk+Wl)/λl
)λl∑M

m=1

(∑
k∈Bm

e(Zk+Wm)/λm
)λm

= eZj/λl∑
k∈Bl

eZk/λl
×

(
eWl/λl

∑
k∈Bl

eZk/λl
)λl∑M

m=1

(
eWm/λm

∑
k∈Bm

eZk/λm
)λm .

Then denote Il = ln
∑
k∈Bl e

Zk/λl which is often called the log-sum, the inclusive value or the
inclusive utility.9 We then can write the probability of choosing alternative j as:

Pj = eZj/λl∑
k∈Bl e

Zk/λl
× eWl+λlIl∑M

m=1 e
Wm+λmIm

.

The first term Pj|l is the conditional probability of choosing alternative j if nest l is chosen. It
is often referred as the lower model. The second term Pl is the marginal probability of choosing
nest l and is referred as the upper model. Wl + λlIl can be interpreted as the expected utility
of choosing the best alternative in l, Wl being the expected utility of choosing an alternative
in this nest (whatever this alternative is) and λlIl being the expected extra utility gained by
being able to choose the best alternative in the nest. The inclusive values link the two models.
It is then straightforward to show that IIA applies within nests, but not for two alternatives
in different nests.
A consistent but inefficient way of estimating the nested logit model is to estimate separately
its two components. The coefficients of the lower model are first estimated, which enables the
computation of the inclusive values Il. The coefficients of the upper model are then estimated,
using Il as covariates. Maximizing directly the likelihood function of the nested model leads
to a more efficient estimator.

4.3. Applications

ModeCanada

Bhat (1995) estimated the heteroscedastic logit model on the ModeCanada data set. Using
package mlogit, the heteroscedastic logit model is obtained by setting the heterosc argument
to TRUE:

R> ml.MC <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,
+ reflevel = "car", alt.subset = c("car", "train", "air"))
R> hl.MC <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,
+ reflevel = "car", alt.subset = c("car", "train", "air"),
+ heterosc = TRUE)
R> coef(summary(hl.MC))[11:12, ]

Estimate Std. Error z-value Pr(>|z|)
sp.train 1.2371829 0.1104610 11.200182 0.000000e+00
sp.air 0.5403239 0.1118353 4.831425 1.355592e-06

9We have already encountered this expression in Section 3.4.
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The variance of the error terms of train and air are respectively higher and lower than the
variance of the error term of car (set to one). Note that the z values and p values of the
output are not particularly meaningful, as the hypothesis that the coefficient is zero (and not
one) is tested. The homoscedasticity hypothesis can be tested using any of the three tests. A
particular convenient syntax is provided in this case. For the likelihood ratio and the Wald
test, one can use only the fitted heteroscedastic model as argument. In this case, it is guessed
that the hypothesis that the user wants to test is the homoscedasticity hypothesis.

R> lr.heter <- lrtest(hl.MC, ml.MC)
R> wd.heter <- waldtest(hl.MC, heterosc = FALSE)

or, more simply:

R> lrtest(hl.MC)
R> waldtest(hl.MC)

The Wald test can also be computed using the linearHypothesis function from the car
package:

R> library("car")
R> lh.heter <- linearHypothesis(hl.MC, c("sp.air = 1", "sp.train = 1"))

For the score test, we provide the constrained model as argument, which is the standard
multinomial logit model and the supplementary argument which defines the unconstrained
model, which is in this case heterosc = TRUE.

R> sc.heter <- scoretest(ml.MC, heterosc = TRUE)
R> sapply(list(wald = wd.heter, lh = lh.heter, score = sc.heter,
+ lr = lr.heter), statpval)

wald lh score lr
stat 25.196 25.196 9.488 6.888
p-value 0.000 0.000 0.009 0.032

The homoscedasticity hypothesis is strongly rejected using the Wald test, but only at the 1%
and 5% level for, respectively, the score and the likelihood ratio tests.

JapaneseFDI

Head and Mayer (2004) analyzed the choice of one of the 57 European regions belonging to
9 countries by Japanese firms to implement a new production unit.

R> data("JapaneseFDI", package = "mlogit")
R> jfdi <- dfidx(JapaneseFDI, idx = list("firm", c("region", "country")),
+ idnames = c("chid", "alt"), drop.index = FALSE)

Note that the argument idx is a list of two elements, where the second element contains the
names of the column containing the regions and the countries, indicating the nestedness of
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regions within countries and where region is a grouping variable, feature used later to easily
define the nests. There are two sets of covariates: the wage rate wage, the unemployment rate
unemp, a dummy indicating whether the region is eligible to European funds elig and the
area area are observed at the regional level and are therefore relevant for the estimation of
the lower model, whereas the social charges rate scrate and the corporate tax rate ctaxrate
are observed at the country level and are therefore suitable for the upper model.
We first estimate a multinomial logit model:

R> ml.fdi <- mlogit(choice ~ log(wage) + unemp + elig + log(area) + scrate +
+ ctaxrate | 0, data = jfdi)

Note that, as the covariates are only alternative specific, the intercepts are not identified and
therefore have been removed. We next estimate the lower model, which analyzes the choice of
a region within a given country. Therefore, for each choice situation, we estimate the choice of
a region on the subset of regions of the country which has been chosen. Moreover, observations
concerning Portugal and Ireland are removed as these two countries are mono-regions.

R> lm.fdi <- mlogit(choice ~ log(wage) + unemp + elig + log(area) | 0,
+ data = jfdi, subset = country == choice.c & !country %in% c("PT", "IE"))

We next use the fitted lower model in order to compute the inclusive value at the country
level:

ivig = ln
∑
j∈Bg

eβ
>xij ,

where Bg is the set of regions for country g. When a grouping variable is provided in the
dfidx function, inclusive values are by default computed for every group g (global inclusive
values are obtained by setting the type argument to "global"). By default, output is set
to "chid" and the result is a vector (if type = "global") or a matrix (if type = "region")
with row number equal to the number of choice situations. If output is set to "obs", a vector
of length equal to the number of lines of the data in “long” format is returned. The following
code indicates different ways to use the logsum function:

R> lmformula <- formula(lm.fdi)
R> head(logsum(ml.fdi, data = jfdi, formula = lmformula, type = "group"), 2)

BE DE ES FR IE IT NL PT
3 3.595818 5.415838 3.593702 5.153709 1.933707 5.051387 4.077845 2.702028
4 4.113243 5.765190 4.445012 5.383095 1.960462 5.687569 4.490379 3.200124

UK
3 4.900622
4 5.378561

R> head(logsum(ml.fdi, data = jfdi, formula = lmformula, type = "global"))

3 4 5 7 8 9
6.736116 7.182139 7.121855 7.084245 7.133368 7.133368
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R> head(logsum(ml.fdi, data = jfdi, formula = lmformula, output = "obs"))

[1] 3.595818 3.595818 3.595818 3.595818 5.415838 5.415838

R> head(logsum(ml.fdi, data = jfdi, formula = lmformula, type = "global",
+ output = "obs"))

[1] 6.736116 6.736116 6.736116 6.736116 6.736116 6.736116

To add the inclusive values in the original data.frame, we use output = "obs" and the type
argument can be omitted as its default value is "group":

R> JapaneseFDI$iv <- logsum(lm.fdi, data = jfdi, formula = lmformula,
+ output = "obs")

We next select the relevant variables for the estimation of the upper model, select unique
lines in order to keep only one observation for every choice situation / country combination
and finally we coerce the response (choice.c) to a logical for the chosen country.

R> JapaneseFDI.c <- subset(JapaneseFDI,
+ select = c("firm", "country", "choice.c", "scrate", "ctaxrate", "iv"))
R> JapaneseFDI.c <- unique(JapaneseFDI.c)
R> JapaneseFDI.c$choice.c <- with(JapaneseFDI.c, choice.c == country)

Finally, we estimate the upper model, using the previously computed inclusive value as a
covariate.

R> jfdi.c <- dfidx(JapaneseFDI.c, choice = "choice.c",
+ idnames = c("chid", "alt"))
R> um.fdi <- mlogit(choice.c ~ scrate + ctaxrate + iv | 0, data = jfdi.c)

If one wants to obtain different iv coefficients for different countries, the iv covariate should
be introduced in the third part of the formula and the coefficients for the two mono-region
countries (Ireland and Portugal) should be set to one using the constPar argument.

R> um2.fdi <- mlogit(choice.c ~ scrate + ctaxrate | 0 | iv, data = jfdi.c,
+ constPar = c("iv:PT" = 1, "iv:IE" = 1))

We next estimate the full-information maximum likelihood nested model. It is obtained by
adding a nests argument to the mlogit function. This should be a named list of alternatives
(here regions), the names being the nests (here the countries). More simply, if a group variable
has been indicated while using dfidx, nests can be a Boolean.
Two flavors of nested models can be estimated, using the un.nest.el argument which is a
Boolean. If TRUE, one imposes that the coefficient associated with the inclusive utility is the
same for every nest, which means that the degree of correlation inside each nest is the same.
If FALSE, a different coefficient is estimated for every nest.
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Mult.
logit

Lower
model

Upper
model

Upper
model

Nested
logit (1)

Nested
logit (2)

log(wage) 0.47 1.21∗ 0.46 0.77∗∗

(0.25) (0.48) (0.25) (0.25)
unemp −8.90∗∗∗ −9.77∗∗∗ −7.62∗∗∗ −6.95∗∗

(1.69) (2.39) (1.60) (2.28)
elig −0.25 −0.89∗∗ −0.34 −0.18

(0.21) (0.33) (0.20) (0.18)
log(area) 0.31∗∗∗ 0.29∗∗∗ 0.29∗∗∗ 0.15∗∗

(0.05) (0.06) (0.05) (0.05)
scrate −2.26∗∗∗ −2.49∗∗∗ 0.15 −2.44∗∗∗ −0.88

(0.38) (0.38) (1.72) (0.38) (0.86)
ctaxrate −4.82∗∗∗ −3.69∗∗∗ −1.78 −4.13∗∗∗ −2.35

(0.59) (0.60) (1.32) (0.66) (1.25)
iv 0.66∗∗∗ 0.85∗∗∗

(0.06) (0.08)
iv:BE 0.72∗∗∗ 0.48∗

(0.08) (0.19)
iv:DE 0.72∗∗∗ 0.52∗∗

(0.08) (0.17)
iv:ES 0.86∗∗∗ 0.77∗∗∗

(0.05) (0.20)
iv:FR 0.75∗∗∗ 0.67∗∗∗

(0.04) (0.09)
iv:IT 0.62∗∗∗ 0.25∗∗

(0.05) (0.08)
iv:NL 0.69∗∗∗ 0.18

(0.06) (0.10)
iv:UK 0.87∗∗∗ 0.86∗∗∗

(0.06) (0.10)
AIC 3469.13 1738.04 1746.58 1713.86 3467.96 3437.01
Log Lik. −1728.57 −865.02 −870.29 −845.93 −1726.98 −1703.50
Num. obs. 452 421 452 452 452 452
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2: Choice by Japanese firms of a European region.

R> nl.fdi <- mlogit(choice ~ log(wage) + unemp + elig + log(area) + scrate +
+ ctaxrate | 0, data = jfdi, nests = TRUE, un.nest.el = TRUE)
R> nl2.fdi <- update(nl.fdi, un.nest.el = FALSE, constPar = c("iv:PT" = 1,
+ "iv:IE" = 1))

The results of the fitted models are presented in Table 2.

R> library("texreg")
R> texreg(list("Mult. logit" = ml.fdi, "Lower model" = lm.fdi,
+ "Upper model" = um.fdi, "Upper model" = um2.fdi,
+ "Nested logit (1)" = nl.fdi, "Nested logit (2)" = nl2.fdi),
+ fontsize = "small", float.pos = "t!", label = "tab:nlogit",
+ caption = "Choice by Japanese firms of a European region.",
+ dcolumn = TRUE)
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For the nested logit models, two tests are of particular interest:

• the test of no nests, which means that all the nest elasticities are equal to one,

• the test of unique nest elasticities, which means that all the nest elasticities are equal
to each other.

For the test of no nests, the nested model is provided as the unique argument for the lrtest
and the waldtest function. For the scoretest, the constrained model (i.e., the multinomial
logit model) is provided as the first argument and the second argument is nests, which
describes the nesting structure that one wants to test.

R> lr.nest <- lrtest(nl2.fdi)
R> wd.nest <- waldtest(nl2.fdi)
R> sc.nest <- scoretest(ml.fdi, nests = TRUE, constPar = c("iv:PT" = 1,
+ "iv:IE" = 1))

The Wald test can also be performed using the linearHypothesis function:

R> lh.nest <- linearHypothesis(nl2.fdi, c("iv:BE = 1", "iv:DE = 1",
+ "iv:ES = 1", "iv:FR = 1", "iv:IT = 1", "iv:NL = 1", "iv:UK = 1"))
R> sapply(list(wald = wd.nest, lh = lh.nest, score = sc.nest, lr = lr.nest),
+ statpval)

wald lh score lr
stat 208.407 208.407 60.28 50.122
p-value 0.000 0.000 0.00 0.000

The three tests reject the null hypothesis of no correlation. We next test the hypothesis that
all the nest elasticities are equal.

R> lr.unest <- lrtest(nl2.fdi, nl.fdi)
R> wd.unest <- waldtest(nl2.fdi, un.nest.el = TRUE)
R> sc.unest <- scoretest(ml.fdi, nests = TRUE, un.nest.el = FALSE,
+ constPar = c("iv:IE" = 1, "iv:PT" = 1))
R> lh.unest <- linearHypothesis(nl2.fdi, c("iv:BE = iv:DE", "iv:BE = iv:ES",
+ "iv:BE = iv:FR", "iv:BE = iv:IT", "iv:BE = iv:NL", "iv:BE = iv:UK"))
R> sapply(list(wald = wd.unest, lh = lh.unest, score = sc.unest,
+ lr = lr.unest), statpval)

wald lh score lr
stat 73.535 73.535 60.28 46.954
p-value 0.000 0.000 0.00 0.000

Once again, the three tests strongly reject the hypothesis.
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5. The random parameters (or mixed) logit model

5.1. Derivation of the model

A mixed logit model or random parameters logit model is a logit model for which the param-
eters are assumed to vary from one individual to another. It is therefore a model that takes
the heterogeneity of the population into account.

The probabilities

For the standard logit model, the probability that individual i chooses alternative j is:

Pil(xi, β) = eβ
>xil∑

j e
β>xij

.

Suppose now that the coefficients are individual-specific. The probabilities are then:

eβ
>
i xil∑

j e
β>i xij

.

A first approach consists of estimating the parameters for every individual. However, these
parameters are identified and can be consistently estimated only if a large number of choice
situations per individual is available, which is scarcely the case. A more appealing approach
consists on considering the βi’s as random draws from a distribution whose parameters are
estimated, which leads to the mixed logit model. The conditional probability that individual i
will choose alternative l for a given value of βi is:

Lil(xi, βi) = eβ
>
i xil∑

j e
β>i xij

.

To get the unconditional probability, we have to integrate out this conditional probability,
using the density function of β. Suppose that Vil = α+βixil, i.e., there is only one individual-
specific coefficient and that the density of β is f(β, θ), θ being the vector of the parameters
of the distribution of β. The unconditional probability is then:

Pil(xi, θ) =
∫
β

eβxil∑
j e

βxij
f(β, θ)dβ,

which is a one-dimensional integral that can be efficiently estimated by quadrature methods.
If Vil = β>i xil where βi is a vector of length K and f(β, θ) is the joint density of the K
individual-specific coefficients, the unconditional probability is:

Pil(xi, θ) =
∫
β1

∫
β2
. . .

∫
βK

eβ
>xil∑

j e
β>xij

f(β, θ)dβ1dβ2 . . . dβK .

This is a K-dimensional integral which cannot easily be estimated by quadrature methods.
The only practical method is then to use simulations. More precisely, R draws of the param-
eters are taken from the distribution of β, the probability is computed for every draw and



Journal of Statistical Software 29

the unconditional probability, which is the expected value of the conditional probabilities, is
estimated by the average of the R probabilities.

Individual parameters

The expected value of a random coefficient (E(β)) is simply estimated by the mean of the
R draws on its distribution: β̄ =

∑R
r=1 βr. Individual parameters are obtained by first

computing the probabilities of the observed choice of i for every value of βr:

Pir =
∑
j yije

β
>
r xij∑

j e
β>r xij

,

where yij is a dummy equal to one if i has chosen alternative j. The expected value of the
parameter for an individual is then estimated by using these probabilities to weigh the β
values:

β̂i =
∑R
r=1 Pirβr∑R
r=1 Pir

.

Panel data

If there are repeated observations for the same individuals, the longitudinal dimension of
the data can be taken into account in the mixed logit model, assuming that the random
parameters of individual i are the same for all their choice situations. Denoting yitl a dummy
equal to one if i chooses alternative l for the tth choice situation, the conditional probability
of the observed choice is:

Lit(xit, yit, βi) =
∏
j

∑
j yitje

β>i xitl∑
j e

β>i xitj
.

The joint conditional probability for the T observations of individual i is then:

Li(xi, yi, βi) =
∏
t

∏
j

∑
j yitje

β>i xitj∑
j e

β>i xitj
,

which leads to the following unconditional probabilities:

Pi(xi, yi, θ) =
∫
β1

∫
β2
. . .

∫
βK

∏
t

∏
j

∑
j yitje

β>xitj∑
j e

β>xitj
f(β, θ)dβ1dβ2 . . . dβK .

5.2. Application

The random parameter logit model is estimated by providing a rpar argument to the function
mlogit. This argument is a named vector, the names being the random coefficients and
the values the name of the law of distribution. Currently, the normal ("n"), log-normal
("ln"), zero-censored normal ("cn"), uniform ("u") and triangular ("t") distributions are
available. For these distributions, two parameters are estimated which are, for normal related
distributions, the mean and the standard-deviation of the underlying normal distribution and
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for the uniform and triangular distribution, the mean and the half range of the distribution.
For these last two distributions, zero-bounded variants are also provided ("zbt" and "zbu").
These two zero-bounded distributions are defined by only one parameter (the mean) and their
definition domain varies from zero to twice the mean.
Several considerations may lead to the choice of a specific distribution:

• if correlated coefficients are required, the natural choice is a (transformed-) normal
distribution, "n", "ln" and "cn",

• it is often the case that one wants to impose that the distribution of a random parameter
takes only positive or negative values. For example, the price coefficient should be
negative for every individual. In this case, "zbt" and "zbu" can be used. The use of
"ln" and "cn" can also be relevant but, in this case, if only negative values are expected,
one should consider the distribution of the opposite of the random price coefficient. This
can easily be done using the opposite argument of the function dfidx10,

• the use of unbounded distributions often leads to implausible values of some statistics
of the random parameters, especially the mean. This is particularly the case for the
log-normal distribution, which has an heavy left tail. In this case, the use of bounded
distributions like the uniform and the triangular distributions can be used.

Furthermore, the argument R is the number of draws, halton indicates whether Halton draws
(see Train 2009, Chapter 9) should be used (NA and NULL indicate respectively that default
Halton draws are used and that pseudo-random numbers are used), panel is a Boolean which
indicates if the panel data version of the log-likelihood should be used.
Correlations between random parameters can be introduced only for normal-related dis-
tributed random parameters, using the correlation argument, as there is no obvious way
to introduce correlation for random parameters following an uniform or a triangular distri-
bution. If TRUE, all the normal-related random parameters are correlated. The correlation
argument can also be a character vector indicating the random parameters that are assumed
to be correlated.

Train

We use the Train data set, previously coerced to an object of class ‘dfidx’ called Tr. We
first estimate the multinomial model: both alternatives being virtual train trips, it is relevant
to use only generic coefficients and to remove the intercept:

R> Train.ml <- mlogit(choice ~ price + time + change + comfort | - 1, Tr)
R> coef(summary(Train.ml))

Estimate Std. Error z-value Pr(>|z|)
price 0.06735804 0.003393252 19.850585 0.000000e+00
time 1.72055142 0.160351702 10.729861 0.000000e+00
change 0.32634094 0.059489152 5.485722 4.117843e-08
comfort 0.94572555 0.064945464 14.561842 0.000000e+00

10See Section 2.1.
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All the coefficients are highly significant and have the predicted positive sign (remember that
an increase in the variable comfort implies using a less comfortable class). The coefficients
cannot be directly interpreted, but dividing them by the price coefficient, we get monetary
values:

R> coef(Train.ml)[-1] / coef(Train.ml)[1]

time change comfort
25.54337 4.84487 14.04028

We obtain the value of 26 euros for an hour of traveling, 5 euros for a change and 14 euros to
travel in a more comfortable class. We then estimate a model with three random parameters:
time, change and comfort. We first estimate the uncorrelated mixed logit model:

R> Train.mxlu <- mlogit(choice ~ price + time + change + comfort | - 1, Tr,
+ panel = TRUE, rpar = c(time = "n", change = "n", comfort = "n"),
+ R = 100, correlation = FALSE, halton = NA, method = "bhhh")
R> names(coef(Train.mxlu))

[1] "price" "time" "change" "comfort" "sd.time"
[6] "sd.change" "sd.comfort"

Compared to the multinomial logit model, there are now three more coefficients which are
the standard deviations of the distribution of the three random parameters. The correlated
model is obtained by setting the correlation argument to TRUE.

R> Train.mxlc <- update(Train.mxlu, correlation = TRUE)
R> names(coef(Train.mxlc))

[1] "price" "time" "change"
[4] "comfort" "chol.time:time" "chol.time:change"
[7] "chol.change:change" "chol.time:comfort" "chol.change:comfort"

[10] "chol.comfort:comfort"

There are now six parameters which are the elements of the Choleski decomposition of the
covariance matrix of the three random parameters. These six parameters are therefore the
elements of the following matrix

C =

 c11 0 0
c12 c22 0
c13 c23 c33


such that:

CC> =

 c2
11 c11c12 c11c13

c11c12 c2
12 + c2

22 c12c23 + c22c23
c11c13 c12c3 + c22c23 c2

13 + c2
23c

2
33

 =

 σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

 ,
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where σ2
i and σij are respectively the variance of the random parameter i and the covariance

between two random parameters i and j. Therefore, the first estimated parameter can be
simply interpreted as the standard deviation of the first random parameter, but the five other
can not be interpreted easily.
Random parameters may be extracted using the function rpar which takes as first argument
an ‘mlogit’ object and as second argument par the parameter(s) to be extracted. This
function returns a ‘rpar’ object and a summary method is provided to describe it:

R> marg.ut.time <- rpar(Train.mxlc, "time")
R> summary(marg.ut.time)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 1.283749 4.893752 4.893752 8.503756 Inf

The estimated random parameter is in the “preference space”, which means that it is the
marginal utility of time.
Parameters in the “willingness to pay” (WTP) space are easier to interpret. They can be
estimated directly (a feature not supported by mlogit) or can be obtained from the marginal
utility by dividing it by the coefficient of a covariate expressed in monetary value (a price for
example), taken as a non random parameter. The ratio can then be interpreted as a monetary
value (or willingness to pay). To obtain the distribution of the random parameters in the
WTP space, one can use the norm argument of rpar:

R> wtp.time <- rpar(Train.mxlc, "time", norm = "price")
R> summary(wtp.time)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 8.753119 33.367588 33.367588 57.982056 Inf

The median value (and the mean value as the distribution is symmetric) of transport time is
about 33 euros. Several methods/functions are provided to extract the individual statistics
(mean, med and stdev respectively for the mean, the median and the standard deviation):

R> mean(rpar(Train.mxlc, "time", norm = "price"))

[1] 33.36759

R> med(rpar(Train.mxlc, "time", norm = "price"))

[1] 33.36759

R> stdev(rpar(Train.mxlc, "time", norm = "price"))

[1] 36.49347
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In case of correlated random parameters, as the estimated parameters cannot be directly
interpreted, a vcov method for ‘mlogit’ objects is provided. It has a what argument whose
default value is "coefficient". In this case the usual covariance matrix of the coefficients
is return. If what = "rpar", the covariance matrix of the correlated random parameters is
returned if type = "cov" (the default) and the correlation matrix (with standard deviations
on the diagonal) is returned if type = "cor". The object is of class ‘vcov.mlogit’ and a
summary method for this object is provided which computes, using the delta method, the
standard errors of the parameters of the covariance or the correlation matrix.

R> vcov(Train.mxlc, what = "rpar")

time change comfort
time 28.6460389 -0.2787999 5.557933
change -0.2787999 3.1047367 1.232467
comfort 5.5579334 1.2324667 7.895535

R> vcov(Train.mxlc, what = "rpar", type = "cor")

time change comfort
time 5.35219945 -0.02956296 0.3695645
change -0.02956296 1.76202630 0.2489270
comfort 0.36956453 0.24892701 2.8098994

R> summary(vcov(Train.mxlc, what = "rpar", type = "cor"))

Estimate Std. Error z-value Pr(>|z|)
sd.time 5.352199 0.381135 14.0428 < 2.2e-16 ***
sd.change 1.762026 0.144592 12.1862 < 2.2e-16 ***
sd.comfort 2.809899 0.178295 15.7599 < 2.2e-16 ***
cor.time:change -0.029563 0.232414 -0.1272 0.898782
cor.time:comfort 0.369565 0.114068 3.2399 0.001196 **
cor.change:comfort 0.248927 0.110321 2.2564 0.024047 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(vcov(Train.mxlc, what = "rpar", type = "cov"))

Estimate Std. Error z-value Pr(>|z|)
var.time 28.64604 4.07982 7.0214 2.197e-12 ***
var.change 3.10474 0.50955 6.0931 1.107e-09 ***
var.comfort 7.89553 1.00198 7.8799 3.276e-15 ***
cov.time:change -0.27880 0.51550 -0.5408 0.5886
cov.time:comfort 5.55793 0.89161 6.2336 4.559e-10 ***
cov.change:comfort 1.23247 0.30131 4.0903 4.308e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The correlation can be restricted to a subset of random parameters by filling the correlation
argument with a character vector indicating the corresponding covariates:

R> Train.mxlc2 <- update(Train.mxlc, correlation = c("time", "comfort"))
R> vcov(Train.mxlc2, what = "rpar", type = "cor")

time comfort
time 5.5726158 0.3909467
comfort 0.3909467 3.0631462

The presence of random coefficients and their correlation can be investigated using any of the
three tests. Actually, three nested models can be considered, a model with no random effects,
a model with random but uncorrelated effects and a model with random and correlated effects.
We first present the three tests three tests of no correlated random effects:

R> lr.mxc <- lrtest(Train.mxlc, Train.ml)
R> wd.mxc <- waldtest(Train.mxlc)
R> lh.mxc <- linearHypothesis(Train.mxlc, c("chol.time:time = 0",
+ "chol.time:change = 0", "chol.time:comfort = 0",
+ "chol.change:change = 0", "chol.change:comfort = 0",
+ "chol.comfort:comfort = 0"))
R> sc.mxc <- scoretest(Train.ml, rpar = c(time = "n", change = "n",
+ comfort = "n"), R = 100, correlation = TRUE, halton = NA,
+ panel = TRUE)
R> sapply(list(wald = wd.mxc, lh = lh.mxc, score = sc.mxc, lr = lr.mxc),
+ statpval)

wald lh score lr
stat 288.287 288.287 208.765 388.057
p-value 0.000 0.000 0.000 0.000

The hypothesis of no correlated random parameters is strongly rejected. We then present the
three tests of no correlation, the existence of random parameters being maintained.

R> lr.corr <- lrtest(Train.mxlc, Train.mxlu)
R> lh.corr <- linearHypothesis(Train.mxlc, c("chol.time:change = 0",
+ "chol.time:comfort = 0", "chol.change:comfort = 0"))
R> wd.corr <- waldtest(Train.mxlc, correlation = FALSE)
R> sc.corr <- scoretest(Train.mxlu, correlation = TRUE)
R> sapply(list(wald = wd.corr, lh = lh.corr, score = sc.corr, lr = lr.corr),
+ statpval)

wald lh score lr
stat 103.195 103.195 10.483 42.621
p-value 0.000 0.000 0.015 0.000
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The hypothesis of no correlation is strongly rejected with the Wald and the likelihood ratio
test, only at the 5% level for the score test.

RiskyTransport

The second example is a study by Leon and Miguel (2017) who consider a mode-choice
model for transit from Freetown’s airport (Sierra-Leone) to downtown. Four alternatives
are available: ferry, helicopter, water-taxi and hovercraft. A striking characteristic of their
study is that all these alternatives experienced fatal accidents in recent years, so that the
fatality risk is non-negligible and differs much from an alternative to another. For example,
the probabilities of dying using the water taxi and the helicopter are respectively of 2.55 and
18.41 out of 100000 passenger-trips. This feature enables the authors to estimate the value
of a statistical life. For an individual i, the utility of choosing alternative j is:

Uij = βil(1− pj) + βic(cj + witj) + εij ,

where pj is the probability of dying while using alternative j, cj and tj are the monetary
cost and the transport time of alternative j and wi is the wage rate of individual i (which is
supposed to be his valuation of transportation time); Cij = cj+witj is therefore the individual
specific generalized cost for alternative j, βil and βic are the (individual specific) marginal
utilities of surviving and of expense. The value of the statistical life (VSL) is then defined by:

VSLi = −βil
βic

= ∆Cij
∆(1− pj)

.

The two covariates of interest are cost (the generalized cost in $PPP) and risk (mortality
per 100000 passenger-trips). The risk variable being purely alternative specific, intercepts
for the alternatives cannot therefore be estimated. To avoid endogeneity problems, the au-
thors introduce as covariates marks the individuals gave to five attributes of the alternatives:
comfort of the seat, noise level, crowdedness, convenience of the docking or landing location
and the “quality” of the clientele. We first estimate a multinomial logit model.

R> data("RiskyTransport", package = "mlogit")
R> RT <- dfidx(RiskyTransport, choice = "choice",
+ idx = list(c("chid", "id"), "mode"), idnames = c("chid", "alt"))
R> ml.rt <- mlogit(choice ~ cost + risk + seats + noise + crowdness +
+ convloc + clientele | 0, data = RT, weights = weight)

Note the use of the weights argument in order to set weights to the observations, as done in
the original study.

R> coef(ml.rt)[c("risk", "cost")]

risk cost
-0.093907630 -0.009540895

The ratio of the coefficients of risk and of cost is 9.84 (hundred of thousands of $), which
means that the estimated value of the statistical life is a bit less than one million $. We next
consider a mixed logit model. The coefficients of cost and risk are assumed to be random,
following a zero-bounded triangular distribution.
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Multinomial logit Mixed logit
cost −0.010∗∗∗ −0.019∗∗∗

(0.001) (0.001)
risk −0.094∗∗∗ −0.103∗∗∗

(0.011) (0.016)
seats 0.152 0.108

(0.244) (0.233)
noise −0.029 0.142

(0.265) (0.229)
crowdness −0.919∗∗∗ −0.716∗∗

(0.244) (0.223)
convloc −0.377 −0.150

(0.202) (0.197)
clientele −0.257 −0.331

(0.265) (0.254)
AIC 3250.747 3177.250
Log Likelihood −1618.374 −1581.625
Num. obs. 1793 1793
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Transportation choices.

R> mx.rt <- mlogit(choice ~ cost + risk + seats + noise + crowdness +
+ convloc + clientele | 0, data = RT, weights = weight,
+ rpar = c(cost = "zbt", risk = "zbt"), R = 100, halton = NA,
+ panel = TRUE)

The results are presented in Table 3.

R> texreg(list("Multinomial logit" = ml.rt, "Mixed logit" = mx.rt),
+ digits = 3, float.pos = "t!", label = "tab:risktr",
+ dcolumn = TRUE, caption = "Transportation choices.")

Note that the log-likelihood is much larger for the mixed effect logit. Individual-level param-
eters can be extracted using the fitted method, with the type argument set to parameters.

R> indpar <- fitted(mx.rt, type = "parameters")
R> head(indpar)

id cost risk
1 8020605 -0.02096705 -0.10105817
2 8260102 -0.01666475 -0.11211057
3 8260104 -0.01728864 -0.08302831
4 8260106 -0.01494848 -0.07319789
5 8260108 -0.01687051 -0.06501337
6 8260201 -0.02133116 -0.10285434



Journal of Statistical Software 37

0.000

0.002

0.004

250 500 750 1000 1250

VSL

de
ns

ity

african

no

yes

Figure 1: The value of a statistical life.

We can then compute the VSL for every individual and analyze their distribution, using
quantiles and plotting in Figure 1 the empirical density of VSL for African and non-African
travelers (as done in Leon and Miguel 2017, Table 4, p. 219 and Figure 5, p. 223).11

R> indpar$VSL <- with(indpar, risk / cost * 100)
R> quantile(indpar$VSL, c(0.025, 0.975))

2.5% 97.5%
432.4199 1054.3428

R> mean(indpar$VSL)

[1] 608.94

Note that computing the VSL as the ratio of two random parameters which can take zero
value can lead to extremely high values if the individual parameter for cost is close to zero.12

R> max(indpar$cost)

[1] -0.002924437

R> max(indpar$VSL)
11Note that individual-specific parameters should be interpreted with caution, as they are consistent esti-

mates of individual parameters only if the number of choice situations for every individual is large (see Train
2009, p. 266).

12See Daly, Hess, and Train (2012) for a discussion of the specifications of mixed logit models which assure
finite moments of the distribution of willingness to pay.
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[1] 3131.825

This is not the case here as (absolute) minimum value of cost is −0.003 which leads to a
maximum value of VSL of 3131$.

R> library("ggplot2")
R> RT$id <- RT$id
R> indpar <- merge(unique(subset(as.data.frame(RT),
+ select = c("id", "african"))), indpar)
R> ggplot(indpar) + geom_density(aes(x = VSL, linetype = african)) +
+ scale_x_continuous(limits = c(200, 1200))

5.3. Optimization problems

Except for the simple multinomial logit model, the user can encounter computational prob-
lems while trying to estimate a model. This is especially true for some mixed logit models,
in particular for those which introduce log-normally distributed random parameters and cor-
relation. In this situation, the following approaches can be used:

• use the BHHH method instead of the default, which is BFGS (by setting the method
argument to "bhhh"),

• provide user defined starting values by filling the start argument,

• set some parameters to constants, using the constPar argument and then update this
fitted preliminary model by using the parameters obtained as starting values and re-
moving the constPar argument,

• if the convergence is still not achieved, try another model. For example, for mixed
logit models, switch from a log-normal to a triangular distribution or from correlated
to uncorrelated random parameters.

6. Conclusions
Package mlogit estimates a large set of random utility models with a unified and user-friendly
interface, together with functions and methods which compute and return useful results, like
predicted probabilities, inclusive values, marginal effects, consumer surplus and individual
parameters.
Some of the models that can be fitted using mlogit have not been presented in this article,
namely:

• the rank-ordered logit model which is relevant in situations where individuals do not
choose one among a set of mutually exclusive alternatives, but rank them,

• the overlapping nested logit model which is a nested logit model where some alternatives
may belong to more than one nest,
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• the paired combinatorial logit model which is a nested logit model where every possible
combination of two alternatives is a nest,

• the multinomial probit model, obtained when the errors are assumed to follow a multi-
variate normal distribution.

All these models are illustrated in several vignettes of the mlogit package.
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