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Boolean Algebras from Trace Automata
Alexandre Mansard
LIM, University of La Réunion, France
alexandre.mansard@univ-reunion.fr

Abstract
We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words.
Considering the length of a trace as the length of its Foata normal form, we define the operations of
level-length synchronization and of superposition of trace automata. We show that if a family F of
trace automata is closed under these operations, then for any deterministic automaton H ∈ F , the
word languages accepted by the deterministic automata of F that are length-reducible to H form a
Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and
the subfamily of vector addition systems satisfy these closure properties. In particular, this yields
various Boolean algebras of word languages accepted by deterministic vector addition systems.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Boolean algebras, traces, automata, synchronization, pushdown automata,
vector addition systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.48

1 Introduction

In automatic verification, it is useful to highlight families of languages with good closure
properties, as for example Boolean algebras of languages. For example, the fact that the
first-order theory of any word-automatic graph1 is decidable essentially relies on the Boolean
closure properties of regular languages: to any relation defined by a first-order formula, there
corresponds (in an effective way) a regular language and the problem of deciding whether
the graph satisfies a given statement reduces to the problem of deciding emptiness for the
corresponding regular language [13].

The regular, context-free, context-sensitive and recursively enumerable languages form
a famous increasing hierarchy of formal language families defined by Chomsky in [8] from
grammars of increasing complexity. It can also be obtained from families of automata. Indeed,
regular languages are accepted by finite automata, context-free languages are accepted by
pushdown automata (or more generally by word suffix automata [2]), context-sensitive
languages are accepted, for instance, by bounded synchronized automata [20], and recursively
enumerable languages are accepted by Turing machines [4]. And if it is well-known that
regular languages or context-sensitive languages form a Boolean algebra, it is also well-known
that it is not the case of context-free languages. Nevertheless, it was shown that various
subclasses of context-free languages form Boolean algebras [17, 18, 5], as for example visibly
pushdown languages with respect to a given pushdown alphabet [1]. Besides, pushdown
automata model sequential computations. For parallel computations, a relevant family of
automata consists of vector addition systems. Hence, the question arises of which Boolean
algebras can be obtained from this family of automata.

1 A word-automatic graph is a graph of which the vertex set is a regular language and each relation is
recognized by a finite letter by letter synchronized transducer.
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48:2 Boolean Algebras from Trace Automata

In this paper, we consider trace automata. Their vertices are Mazurkiewicz traces [10] and
they accept finite words. Traces bear the advantage of describing executions of concurrent
systems [23]. We define the length of a trace as the length of its Foata normal form and we
show that we can obtain Boolean algebras from any trace automata family F closed under
level-length synchronization and level-length superposition (Theorem 34). These operations
ensure the stability under intersection and difference of the class of recognized word languages.
More precisely, we show that for any deterministic automaton H ∈ F , the class of languages
accepted by the deterministic automata in F length-reducible to H form a Boolean algebra
of word languages.

Then, we apply the previous result to the family TrSuffix of trace suffix automata (with
level-regular contexts), introduced in [16]. A trace suffix automaton is described by a finite set
of rules of the form W(u a−→ v), where u and v are traces, a is a label and W is a level-regular
trace language (i.e., a language of traces of which the Foata normal forms form a regular
word language). We show that this family satisfies the closure conditions stated above.

Lastly, we deduce that the subfamily TrSuffixVAS of trace suffix automata over trace
monoids of which the dependence alphabet is the equality also satisfies the closure conditions
stated above. Since TrSuffixVAS essentially corresponds to some vector addition systems
(VAS), we obtain various Boolean algebras of word languages accepted by deterministic
vector addition systems.

Related works. In [6, 7], Caucal and Rispal adapt Eilenberg’s recognizability for languages
[11] to infinite automata in order to obtain Boolean algebras. More precisely, in [7], they show
how to obtain various Boolean algebras from any family of word automata (i.e., automata
of which vertices are words) closed under the operations of length synchronization and
superposition. However, vector additions systems, seen as word automata (each trace is
encoded by its Foata normal form), are not closed under length superposition.

Besides, in the literature, different types of VAS languages were considered [9, 12, 19, 22]:
the labeling function may be free or not, λ-transitions (transitions labeled by the empty
word) may be allowed or not, the set of final markings may be finite or equal to all accessible
markings. In general, the various investigations focus on closure properties [12] and on
the relationship with the other classical formal languages enumerated above [22, 21, 14].
Indeed, it is well known that VAS languages contain regular languages, are incomparable
with context-free languages, but are context-sensitive [19]. The regularity (respectively the
context-freeness) of some VAS languages is decidable [22] (respectively [21, 14]). But, if some
type of VAS languages are closed under union and intersection, the complementation remains,
to our knowledge, a challenging problem. In the usual terminology of VAS (or Petri nets),
the VAS for which we prove that the languages form a Boolean algebra are labeled (i.e.,
the labeling function is total and may not be injective), deterministic (from any marking,
distinct transitions labeled by a same letter are not allowed) and equipped of a level-regular
set of final vertices. Moreover, an action can be performed only with respect to a context
that is assumed level-regular also.

2 Preliminaries

In this section, we give some preliminaries about automata and Mazurkiewicz traces. We use
standard notations. In particular, the union of two disjoint sets A and B is denoted A ∪̇ B.
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2.1 Automata: definition and generalities
An automaton is given by a set of edges labeled by letters, plus initial and final vertices.

Let V be a set (of vertices), T be a set of symbols called terminals and C = {ι, o} be a
set of colors. A T -automaton G over V is a subset of V × T × V ∪ C × V of vertex set

VG := {v ∈ V | ∃ a, u (u, a, v) ∈ G ∨ (v, a, u) ∈ G} ∪ {v ∈ V | ∃ c (c, v) ∈ G}

such that the set TG = {a ∈ T | ∃ u, v ∈ V, (u, a, v) ∈ G} is finite. The automaton G is finite
if its vertex set VG is finite. Denote by IG := {v ∈ VG | (ι, v) ∈ G} the set of initial vertices
of G and by FG := {v ∈ VG | (o, v) ∈ G} the set of final vertices of G.

An element (u, a, v) ∈ G is an edge. Its label is a, its source is u and its target is v. The
notation u a−→

G
v (or u a−→ v when G is understood) means (u, a, v) ∈ G. Any couple (c, v) ∈ G

is a vertex v colored by c ∈ C.
The automaton G is deterministic if IG is reduced to a singleton and for each a ∈ T , if

(u a−→
G

v and u a−→
G

v′) then v = v′. Given a family F of automata, we denote by Fdet the
subfamily of F consisting in deterministic automata.

A path in G of source u and goal v, labeled by a word a1 . . . ak ∈ T ∗, is a finite sequence
of the form u

a1−→
G

u1, . . . , uk−1
ak−→
G

v, with u = v for k = 0. We denote by u a1...ak−−−−→
G

v the
existence of such a path. A path is accepting if its source is initial and its goal is final. The
language accepted by an automaton G is the set L(G) of words that label its accepting paths.
The regular languages of T -words are the languages accepted by finite automata.

A morphism f from a T -automaton G into a T -automaton H is a mapping f : VG → VH
such that

u
a−→
G
v =⇒ f(u) a−→

H
f(v) and (c, u) ∈ G =⇒ (c, f(u)) ∈ H

If such a morphism exists, we write G f−→ H (or just G −→ H) and we say that G is f -reducible
(or just reducible) to H. Moreover, if f is a bijection and G f−→ H and H f−1

−−→ G, then G
and H are said to be f -isomorphic.

I Lemma 1. Let G and H be automata. If G −→ H, then L(G) ⊆ L(H).

Suppose there exists a length-mapping | | : V −→ N. A morphism f is length-preserving
if |f(v)| = |v| for any v ∈ VG. If such a morphism exists, we say that G is length-reducible to
H and we write G f−→` H (or just G −→` H). The automata G and H are length-isomorphic
if there exists a length-preserving morphism f such that G and H are f -isomorphic.

I Example 2. Let us consider the infinite binary tree T2 := {Ku a−→ Kua | u ∈ {a, b}∗} ∪
{Ku b−→ Kub | u ∈ {a, b}∗} ∪ {(ι,K)} ∪ {o} × K{a, b}∗ and the visibly pushdown
automaton Vis({c},∅, {a, b}) := {⊥>n a,b−−→ ⊥>n+1 | n > 0} ∪ {⊥>n c−→ ⊥>n−1 | n >
1} ∪ {⊥ c−→ ⊥} ∪ {(ι,⊥)} ∪ {o} × {⊥>n | n > 0}. The automaton T2 is length-reducible
to Vis({c},∅, {a, b}). See Figure 1.

2.2 Mazurkiewicz traces
Given a (finite) alphabet Σ, recall that Σ∗ is the free monoid of finite Σ-words.

A dependence relation D on Σ is a reflexive and symmetric binary relation. The pair
(Σ, D) is called a dependence alphabet. The complement of D is the independence relation
I := Σ2\D. The (Σ, D)-trace equivalence ≡D is the least congruence on Σ∗ such that

FSTTCS 2019
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Figure 1 T2 is length-reducible to Vis({c},∅, {a, b}) (Example 2).

Figure 2 The Foata normal form of [acbdab] (Example 4).

(a, b) ∈ I ⇒ ab ≡D ba. The (Σ, D)-trace of a word w ∈ Σ∗ is its ≡D-equivalence class. It is
denoted [w]. Note that ≡D-equivalent Σ-words have the same length. The quotient monoid
Σ∗/ ≡D is called the trace monoid of the dependence alphabet (Σ, D) and is denoted by
M(Σ, D). Its elements are called the traces over (Σ, D). The length of a trace t is the
length of any word belonging to it and is denoted |t|. Denote by TotalΣ := Σ× Σ the total
dependence relation over Σ and by IdΣ := {(a, a) | a ∈ Σ} the equality. Note that in case of
D = TotalΣ, the trace monoid M(Σ, D) coincides with the free monoid Σ∗.

Consider the finite alphabet ID := {A ⊆ Σ | ∀a1 6= a2 ∈ A (a1, a2) ∈ I} of independent
subsets of Σ, and denote by ΠID

: I∗D → M(Σ, D) the canonical morphism defined by
ΠID

(∅) = [ε] and ΠID
({a1, · · · , an}) = [a1 . . . an] (n > 1). Consider the binary relation B on

I−D := ID \ {∅} defined by: ABB ⇐⇒ ∀b ∈ B ∃a ∈ A (a, b) ∈ D. The set of I−D
∗-words of

the form A1 . . . Ap (p > 0) such that A1BA2B· · ·BAp is denoted F. The surjective morphism
ΠID

is not injective. Indeed, suppose Σ = {a, b} and aIb, then ΠID
({a, b}) = ΠID

({a}{b}).
The following proposition expresses that each trace is encodable by a unique I−D-word in F.

I Proposition 3 (Foata normal form, [10]). Let t ∈M(Σ, D). There exists a unique I−D-word
dteF = A1 · · ·Ap ∈ F (p > 0), the Foata normal form of t, such that ΠID

(A1 · · ·Ap) = t.

I Example 4. Suppose Σ = {a, b, c, d} and aIc, bId, cId. The Foata normal form of
t = [acbdab] (see Figure 2) is dteF = {a, c}{b, d}{a}{b}.

The following lemma is straightforward.

I Lemma 5 (Level automata). The set F of Foata normal forms is a regular word language
over I−D .

In general, dsteF and dseFdteF may be different. Indeed, suppose D = {(a, a), (b, b)}. If
s = [a] and t = [ab], then dseF = {a}, dteF = {a, b} and dsteF = {a, b}{a}. The following
lemma expresses some compatibility between concatenation and Foata normal form.

I Lemma 6. Let s, t ∈ M(Σ, D) such that dseF = A1 · · ·Ap (p > 0). Then there ex-
ist Bi1 , . . . Bik ∈ I−D (0 6 k 6 p and 1 6 i1 < · · · < ik 6 p) and C1, . . . , Cm ∈
I−D (m > 0) such that dsteF = A1 . . . (Ai1 ∪̇ Bi1) . . . (Aik ∪̇ Bik ) . . . ApC1 . . . Cm and
ΠI−

D
(Bi1 . . . BikC1 . . . Cm) = t.

Proof. By induction on the length of t. J
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In the following, given a trace t, we denote by ‖t‖ the length of its Foata normal form.
A trace automaton is an automaton of which the vertices belong to some trace monoid

M(Σ, D) and accepts finite words (over an alphabet that may have no relation with Σ).

3 From word (suffix) automata to trace (suffix) automata

In this section, we recall how to obtain various Boolean algebras of deterministic context-free
languages from word suffix automata [7]. Then we consider the notion of level-regular trace
languages. This allows to define the family TrSuffix of trace suffix automata with level-regular
contexts, an extension to traces of word suffix automata. Lastly, we will define (in terms
of trace suffix automata) the vector addition systems from which we will obtain Boolean
algebras (Section 5).

3.1 Boolean algebras from word suffix automata
Given a word language L over T , a non-empty family of languages FL is a Boolean algebra
relative to L if L1 ⊆ L, L−L1 ∈ FL and L1 ∩L2 ∈ FL for any L1, L2 ∈ FL. Observe that if
FL is a Boolean algebra relative to L then ∅, L ∈ FL.

A word suffix automaton is a finite union of automata of the form

W (u a−→ v) ∪ {ι} × I ∪ {o} × F

where W , I and F are regular word languages (over a finite alphabet), u and v are words,
a ∈ T and W (u a−→ v) = {wu a−→ wv | w ∈W}. We denote by Stack the family of word suffix
automata. The languages accepted by Stack are the context-free languages [3].

In [7], Caucal and Rispal show how to obtain various Boolean algebras of deterministic
context-free languages.

I Theorem 7 ([7]). Let H be a deterministic word suffix automaton of which the empty word
is not a vertex. Then the class of languages Rec`Stackdet

(H) = {L(G) | G ∈ Stackdet, G −→` H}
is a Boolean algebra relative to L(H).

In the following, we will consider the family TrSuffix of trace suffix automata with level-
regular contexts, introduced in [16] (see Subsection 3.3). This family is an extension to
Mazurkiewicz traces of word suffix automata (a word suffix automaton is just a trace suffix
automaton with level-regular contexts over a trace monoid for which the dependence relation
is total). We will also consider the subfamily TrSuffixVAS of vector addition systems and we
will show how to obtain Boolean algebras from these, in the same vein as Theorem 7.

3.2 Level-regularity
In order to build the family TrSuffix of trace suffix automata with level-regular contexts, let
us give some reminders about the notion of level-regular trace languages [16].

A (Σ, D)-trace language is a subset of M(Σ, D). If L is a trace language, then
⋃
L =

{w ∈ Σ∗ | [w] ∈ L}. If L is a word language, then [L] is the trace language defined by
[L] := {[w] ∈M(Σ, D) | w ∈ L}. In particular, [

⋃
L] = L and

⋃
[L] ⊇ L.

Given a trace language L ⊆ M(Σ, D) and a trace t ∈ M(Σ, D), the right residual
(respectively the left residual) of L by t, Lt−1 (respectively t−1L), is Lt−1 := {s ∈M(Σ, D) |
st ∈ L} (respectively t−1L := {s ∈M(Σ, D) | ts ∈ L}). The product of L by t (respectively
the product of t by L), Lt (respectively tL), is Lt := {st ∈M(Σ, D) | s ∈ L} (respectively
tL := {ts ∈ M(Σ, D) | s ∈ L}). If L1,L2 ⊆ M(Σ, D) are trace languages, their product is
the trace language L1L2 := {t1t2 | t1 ∈ L1, t2 ∈ L2}. In particular, L∅ = ∅L = ∅.

FSTTCS 2019



48:6 Boolean Algebras from Trace Automata

A trace language L ⊆ M(Σ, D) is recognizable if there exists a finite monoid N and a
monoid morphism φ : M(Σ, D) → N such that L = φ−1(φ(L)). The class of recognizable
trace languages is denoted by Rec(M(Σ, D)).

I Proposition 8 ([10]). The following are equivalent:
L is recognizable,⋃
L is a regular word language,

the set {t−1L | t ∈M(Σ, D)} of left residuals of L is finite,
the set {Lt−1 | t ∈M(Σ, D)} of right residuals of L is finite.

I Remark 9. In case of D = TotalΣ, Rec(M(Σ, D)) = Reg(Σ∗).

I Proposition 10 ([10]). Rec(M(Σ, D)) is a Boolean algebra closed under concatenation.

The trace language [(ab)∗] with aIb is not recognizable since its union, the set of words
over {a, b} with the same number of occurences of a and b, is not regular. Nevertheless,
the set {a, b}∗ of Foata normal forms of its elements is regular. This suggests considering a
weaker notion of recognizability.

I Definition 11. L ⊆M(Σ, D) is level-regular if the word language dLeF is regular.

Since dLeF = Π−1
ID

(L) ∩ F, any recognizable trace language is level-regular. Note also
that any level-regular trace language is a rational subset of the monoid M(Σ, D). Denote by
LevelReg(M(Σ, D)) the class of level-regular languages of the trace monoid M(Σ, D).

I Proposition 12 ([16]). LevelReg(M(Σ, D)) is a Boolean algebra.

The class LevelReg(M(Σ, D)) is not closed under concatenation [16]. Nevertheless,
multiplication and residuation of trace languages on the right by a trace preserves the
level-regularity.

I Lemma 13. Let L ∈ LevelReg(M(Σ, D)) and t ∈ M(Σ, D). The trace languages Lt−1

and Lt are level-regular.

Given a word language L, we denote by Pref(L) := {u | ∃ v uv ∈ L} the set of prefixes of
words in L. From the lemma below, it follows, in particular, that the set of prefixes of Foata
normal forms of a level-regular trace language is a regular word language.

I Lemma 14. Let L ∈ LevelReg(M(Σ, D)). Then ΠID
(Pref dLeF) ∈ LevelReg(M(Σ, D)).

3.3 Trace suffix automata with level-regular contexts
We consider trace suffix automata with level-regular contexts [16]. These generalize both
word suffix automata (see Subsection 3.1) and vector addition systems (see the following
subsection).

A trace suffix automaton (with level-regular contexts) over a trace monoid M(Σ, D) is of
the form

G =
⋃

16i6n
Wi(ui

ai−→ vi) ∪ {ι} × IG ∪ {o} × FG

where Wi, IG,FG ∈ LevelReg(M(Σ, D)), ui, vi ∈ M(Σ, D), ai ∈ T and Wi(ui
ai−→ vi) =

{wiui
ai−→ wivi | wi ∈ Wi} (1 6 i 6 n). The trace language Wi is called the context of

the rewriting rule Wi(ui
ai−→ vi) (1 6 i 6 n). Denote by TrSuffix the family of trace suffix

automata.
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Figure 3 The infinite quarter grid tree is a trace suffix automaton (see Example 15).

I Example 15 (Infinite quarter grid tree). See Figure 3. Consider the following trace suffix
automaton with level-regular contexts, where the independence relation is {(a, b), (b, a)}.

[⊥{a, b, c}∗]([ε] a−→ [a]) ∪ [⊥{a, b, c}∗]([ε] b−→ [b]) ∪ [⊥{a, b, c}∗]([ε] c−→ [c])
In particular, it was shown in [16] that its first-order theory with reachability is decidable

though it is not a ground term rewriting graph [15].

The trace suffix automata for total dependence relations are the word suffix automata.
Thus regular languages and context-free languages are accepted by trace suffix automata.
On the other hand:

I Proposition 16 ([16, 20]). The languages accepted by the trace suffix automata are context-
sensitive.

The previous proposition relies on the fact that trace suffix automata are actually
word-automatic automata [16] and the latter accept the context-sensitive languages [20].

3.4 Vector addition systems
Here, a vector addition system G over Σ is a trace suffix automaton over the trace monoid
M(Σ, IdΣ). Denote by TrSuffixVAS the family of vector addition systems. The family
TrSuffixVAS is a subfamily of TrSuffix.

I Example 17. Observe that a vector addition system over a singleton alphabet is a word
suffix automaton since the equality relation over such an alphabet coincides with the total
relation. Let (T−1, T0, T1) a triple of disjoint finite alphabets. The trace suffix automaton
VisVAS∨ Stack(T−1, T0, T1) over M({>}, {(>,>)}) defined below is a vector addition system
over the singleton alphabet {>}. It is length-isomorphic to a word suffix automaton. The
Boolean algebra Rec`Stackdet

(VisVAS∨ Stack(T−1, T0, T1)) (see Theorem 7) is the family of
visibly pushdown languages with respect to (T−1, T0, T1) ([1]).

VisVAS∨ Stack(T−1, T0, T1) :=
⋃
λ∈T1

[>+]([ε] λ−→ [>]) ∪̇
⋃
λ∈T0

[>+]([ε] λ−→ [ε])

∪̇
⋃

λ∈T−1

[>+]([>] λ−→ [ε]) ∪̇
⋃

λ∈T−1

[>]([ε] λ−→ [ε]) ∪̇ {ι} × {[>]} ∪̇ {o} × [>+]

FSTTCS 2019
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Figure 4 A vector addition system from a finite set of integer vectors.

In the previous example, the length variation of two adjacent vertices is almost 1. It is
no more the case for the following example that shows, in particular, how to obtain a vector
addition system from a finite set of integer vectors of the same dimension.

I Example 18. Consider the finite set A :=
{

( 2
−1 ), ( 1

1 ), ( 3
0 )
}
of 2-dimensional integer vectors

and the automaton GA over N2, defined by

GA := {v l(a)−−→ v′ | v, v′ ∈ N2, a ∈ A, v + a = v′}

where l : A −→ T is the labeling function that maps ( 1
1 ) and ( 3

0 ) to the terminal b and ( 2
−1 )

to the terminal a. The automaton GA is isomorphic to the vector addition system over the
alphabet {x, y} defined by the following rules

M([y] a−→ [xx]) ∪ M([ε] b−→ [xy]) ∪ M([ε] b−→ [xxx])

where M denotes the trace monoid M({x, y}, Id{x,y}). See Figure 4.

4 Level-length synchronization and Boolean algebras from trace
automata

In this section, we show how to obtain various Boolean algebras of word languages from
the family TrSuffix (Theorem 37). Actually, this will be deduced from a more general
result, since we give sufficient conditions for any family of trace automata to define Boolean
algebras (Theorem 34). After considering a notion of synchronization of two traces belonging
to disjoint trace monoids, we define their level-length synchronization. Then we define
the level-length synchronization and superposition of two trace automata (Definition 23
and 27) and we show that under some relevant assumptions, they accept respectively the
intersection and the difference (Lemmas 25 and 33). As a consequence, we show how to
obtain a Boolean algebra of word languages from any trace automata family closed under
level-length synchronization and superposition and from a deterministic automaton in this
family (Theorem 34). Finally, we show that the family TrSuffix is closed under level-length
synchronization and superposition.

Let M(Σ1, D1) and M(Σ2, D2) be trace monoids such that Σ1 ∩ Σ2 = ∅.
Let s ∈M(Σ1, D1) and t ∈M(Σ2, D2).

I Definition 19. The synchronization s ‖ t of s and t is the product st in the trace monoid
M(Σ1 ∪̇ Σ2, D1 ∪ D2).

I Definition 20. The level-length synchronization s ‖= t of s and t is s ‖ t if ‖s‖ = ‖t‖ and
is not defined otherwise.
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We also define s ‖> t := s ‖ t if ‖s‖ > ‖t‖ and s ‖6 t := s ‖ t if ‖s‖ 6 ‖t‖.
Given L1 ⊆M(Σ1, D1) and L2 ⊆M(Σ2, D2), we define

L1 ‖ L2 := {t1 ‖ t2 | t1 ∈ L1, t2 ∈ L2} and L1 ‖= L2 := {t1 ‖= t2 | t1 ∈ L1, t2 ∈ L2},
L1 ‖> L2 := {t1 ‖> t2 | t1 ∈ L1, t2 ∈ L2} and L1 ‖6 L2 := {t1 ‖6 t2 | t1 ∈ L1, t2 ∈ L2}.
These synchronized trace languages remain level-regular if L1 and L2 are.

I Lemma 21. Let L1 ∈ LevelReg(M(Σ1, D1)) and L2 ∈ LevelReg(M(Σ2, D2)). The follow-
ing trace languages are level-regular: L1 ‖ L2, L1 ‖> L2, L1 ‖6 L2, L1 ‖= L2.

If a synchronized trace language is level-regular, then so are its projections. Let us make
explicit what such a projection is. For i ∈ {1, 2}, denoting ī := 3 − i, we consider the
morphism πi from M(Σ1 ∪̇ Σ2, D1 ∪̇ D2) into M(Σi, Di) defined by πi([a]) = [a] if a ∈ Σi

and πi([a]) = [ε] if a ∈ Σī. Given t ∈ M(Σ1 ∪̇ Σ2, D1 ∪̇ D2), there exists a unique couple
(t1, t2) ∈M(Σ1, D1)×M(Σ2, D2) such that t = t1t2. This couple is given by t1 = π1(t) and
t2 = π2(t). The morphism πi naturally extends to trace languages.

I Lemma 22. Let L ∈ LevelReg(M(Σ1 ∪̇ Σ2, D1 ∪̇ D2)). The trace languages π1(L) and
π2(L) are level-regular.

Now, we consider the level-length synchronization of two automata. It is an automaton
over the level-length synchronization of vertices of these automata.

I Definition 23. Let G1 and G2 be trace automata over respectively M(Σ1, D1) and
M(Σ2, D2). Their level-length synchronization G1 ‖= G2 is the trace automaton over
M(Σ1 ∪̇ Σ2, D1 ∪̇ D2) defined by

G1 ‖= G2 := {p1 ‖= p2
a−→ q1 ‖= q2 | p1

a−−→
G1

q1, p2
a−−→
G2

q2}

∪ {ι} × (IG1 ‖= IG2) ∪ {o} × (FG1 ‖= FG2)

I Lemma 24. G1 ‖= G2
πi−→` Gi (i ∈ {1, 2}).

If two automata are length-reducible to a same deterministic one, then the intersection of
their languages is accepted by their level-length synchronization.

I Lemma 25. If H is a deterministic trace automaton such that G1 −→` H and G2 −→` H,
then L(G1 ‖= G2) = L(G1) ∩ L(G2).

Proof. Let u ∈ L(G1) ∩ L(G2) be a word. By Lemma 1 and since G1 −→` H, there exists an
accepting path labeled by u in H. Since H is deterministic, this path is unique. Then, for
any two paths in G1 and G2 accepting u, the sequences of lengths of vertices of these paths
are same, because they are the same as the sequence of lengths of the path accepting u in H.
Hence, u labels an accepting path in G1 ‖= G2. The other inclusion is straightforward. J

If two deterministic automata are length-reducible to a same deterministic one, then their
level-length synchronization is also a deterministic automaton.

I Lemma 26. If G1, G2 and H are deterministic trace automata such that Gi −→` H

(i ∈ {1, 2}), then G1 ‖= G2 is a deterministic automaton.

We are now introducing the level-length superposition G �] H of trace automata. When
restricted to deterministic automata and if G −→` H, this accepts the difference language
L(H) − L(G) (Lemma 33). Note that to accept the difference, we may consider simpler
operations. The level-length superposition bears the advantage of preserving the boundedness
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of the degree. Indeed, we will consider families of automata of bounded degree and in order
to obtain Boolean algebras, we will require these families to be closed under level-length
superposition.

Given a word language L and a word u, we write u v L if u is a prefix of a word in L. A
trace automaton is [ε]-free if [ε] is not a vertex.

I Definition 27. Let G and H be [ε]-free trace automata over respectively M(Σ1, D1) and
M(Σ2, D2) and ] /∈ Σ1 ∪̇ Σ2. The level-length superposition of G on H is the trace automaton
G �] H over M(Σ1 ∪̇ {]} ∪̇ Σ2, D1 ∪̇ {(], ])} ∪̇ D2) defined by

G �] H :=
(1) {p ‖= s

a−→ q ‖= t | p a−→
G
q, s

a−→
H

t}
(2) ∪ {ι} × (IG ‖= IH)
(3) ∪ {o} × ((VG − FG) ‖= FH)
(4) ∪ {p ‖= s

a−→ p[]] ‖ t | s a−→
H

t, ‖s‖ 6 ‖t‖, p ∈ VG,¬∃p′(p
a−→
G
p′ ∧ ‖p′‖ = ‖t‖)}

(5) ∪ {p ‖= s
a−→ q[]] ‖= t | s a−→

H
t, ‖s‖ > ‖t‖, p ∈ VG,¬∃p′(p

a−→
G
p′ ∧ ‖p′‖ = ‖t‖), dqeF v dpeF}

(6) ∪ {p[]] ‖6 s
a−→ p[]] ‖ t | s a−→

H
t, ‖s‖ 6 ‖t‖, dpeF v dVGeF}

(7) ∪ {p[]] ‖6 s
a−→ p[]] ‖6 t | s a−→

H
t, ‖s‖ > ‖t‖, dpeF v dVGeF}

(8) ∪ {p[]] ‖6 s
a−→ q[]] ‖= t | s a−→

H
t, ‖s‖ > ‖t‖, ‖t‖ < ‖p[]]‖, dpeF v dVGeF, dqeF v dpeF}

(9) ∪ {o} × ({p[]] ‖6 s | dpeF v dVGeF, s ∈ FH})
(10) ∪ {ι} × ({[]] ‖ s | s ∈ IH ,¬(∃p ∈ IG ‖p‖ = ‖s‖)})

Let us give some more explanations about this definition. First, observe that there are
two kinds of vertices: those in which ] occurs and the other ones. Then, observe that the
edges between non ]-vertices are those of G ‖= H. Note that the edges at lines (4) and (5)
are the only ones between ]-vertices and non ]-vertices, and that they leave the set VG‖=H of
non ]-vertices. Thus, once a path leaves VG‖=H , it never returns.

Given t ∈M(Σ1 ∪̇ {]} ∪̇ Σ2, D1 ∪̇ D2), we denote by π1(t) (respectively π2(t)) the unique
trace in M(Σ1 ∪̇ {]}, D1) (respectively M(Σ2, D2)) such that t = π1(t)π2(t).

For each edge s a−→
H

t and each vertex x of G �] H, H-projecting on s (i.e., π2(x) = s),

there exists an edge x a−−−−→
G�]H

y with y H-projecting on t (i.e., π2(y) = t). Since on the other

hand, any initial vertex of H lifts to an initial vertex of G�]H (lines (2) and (10)), it follows
that any initial path in H (an initial path is a path of which the source is an initial vertex)
lifts to an initial path of G �] H.

I Lemma 28. Any word that labels an initial path in H, also labels an initial path in G�]H.

Lastly, note that we preserve the fact that the level-length of any vertex is given by the
level-length of its H-component (see Lemma 30). In particular, the first component is not
longer than the second one.

It will be relevant to discuss about the final vertices of G �] H only under some more
assumptions about G and H (Lemma 30, Corollary 32 and Lemma 33).

I Example 29. Let us consider the automata described in Example 2. The unique initial
vertex of T2 �] Vis({c},∅, {a, b}) is K ‖= ⊥. The final vertices of T2 �] Vis({c},∅, {a, b})
are these for which the number of occurrences of ] is 1. See Figure 5 for the restriction of
T2 �] Vis({c},∅, {a, b}) to the vertices accessible from the initial vertex and co-accessible
from final vertices.

I Lemma 30. G �] H π2−→` H.
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Figure 5 Trimmed level-length superposition of T2 on Vis({c},∅, {a, b}) (see Example 29).

By Lemma 1, L(G �] H) ⊆ L(H). That is, if a word labels an accepting path in G �] H
then it also labels an accepting path in H. The converse is not true in general, as we will see
in Lemma 33.

The level-length superposition preserves determinism.

I Lemma 31. If G and H are deterministic, then G �] H is deterministic.

Observe that the automaton described at lines (1), (2) and (3) (Definition 27) is the
level-length synchronization of H and the automaton obtained from G by declaring final the
non final vertices and vice-versa. By Lemma 25 and since obviously H −→` H, we deduce the
following corollary.

I Corollary 32. If G and H are deterministic, G −→` H and w is a word that labels an initial
path in G ‖= H, then w ∈ L(G) ∩ L(H)⇐⇒ w /∈ L(G �] H).

The level-length superposition accepts the difference.

I Lemma 33. If G and H are deterministic and G −→` H, then L(G �] H) = L(H)− L(G).

Proof. By Lemmas 30, 31 and Corollary 32, it remains to show that any word w ∈ L(H)−
L(G) that does not label any initial path in G ‖= H is accepted by G�]H. The unique initial
path in the deterministic automaton G �] H labeled by w is accepting since its goal is of the
form p[]] ‖6 s (s ∈ FH) and any such vertex is final in G�]H (line (9) in Definition 27). J

Let us apply Lemmas 25 and 33. From any trace automata family closed under level-length
synchronization and superposition, we obtain various Boolean algebras of word languages
from the deterministic automata of this family.

I Theorem 34. Let F be a family of trace automata closed under level-length synchronization
and superposition and H ∈ Fdet [ε]-free. Then the class of languages Rec`Fdet

(H) = {L(G) |
G ∈ Fdet, G −→` H} is a Boolean algebra relative to L(H).
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Let us show that Theorem 34 applies to the family TrSuffix.

I Proposition 35. The family TrSuffix is closed under level-length synchronization.

Proof (Sketch). First, observe that given G1, G2 ∈ TrSuffix, the sets of initial vertices
and final vertices of G1 ‖= G2 are level-regular by Lemma 21. Indeed, the level-length
synchronization of level-regular languages remains level-regular. Then, since the operation
‖= is distributive over union, it suffices to suppose that G1 (respectively G2) is of the
form W1(u1

a−→ v1) over M(Σ1, D1) (respectively W2(u2
b−→ v2) over M(Σ2, D2)) with

Wi ∈ LevelReg(M(Σi, Di)), ui, vi ∈ M(Σi, Di) (i ∈ {1, 2}). If a 6= b, then G1 ‖= G2 = ∅.
Suppose a = b. We show that G1 ‖= G2 := {p1 ‖= p2

a−→ q1 ‖= q2 | p1
a−−→
G1

q1, p2
a−−→
G2

q2} is

equal to
(
(W1u1 ‖= W2u2)(u1 ‖ u2)−1 ∩ (W1v1 ‖= W2v2)(v1 ‖ v2)−1) (u1 ‖ u2

a−→ v1 ‖ v2).
Since (W1u1 ‖= W2u2)(u1 ‖ u2)−1 ∩ (W1v1 ‖= W2v2)(v1 ‖ v2)−1 is level-regular by Lemmas
13, 21 and Proposition 12, this proves the proposition. J

I Proposition 36. The family TrSuffix is closed under level-length superposition.

Proof (Sketch). Since G �] (H1 ∪ H2) = G �] H1 ∪ G �] H2, it suffices to consider
G =

⋃
16i6n

Wi(ui
ai−→ vi) ∪ {ι} × IG ∪ {o} × FG over M(Σ1, D1) and H = Z(x a−→

y) ∪ {ι}× IH ∪ {o}×FH over M(Σ2, D2). We may assume that the level-length variation
of the rules Wi(ui

ai−→ vi) (1 6 i 6 n) and Z(x a−→ y) is constant and is equal respectively
to δi and δH . We show that the sets of initial and final vertices of G �] H correspond to
level-regular trace languages. Then, by distinguishing the cases δH > 0 and δH < 0, we show
that the sets of edges constituting G �] H (Definition 27) can be described as trace suffix
automata with level-regular contexts. In each case, the level-regularity of the trace languages
considered (for initial and final vertices and for the contexts of the rewriting rules) will be
ensured by Proposition 12 and Lemmas 13, 14, 21, 22. J

Let us apply Theorem 34 and Propositions 35 and 36.

I Theorem 37. Let H be an [ε]-free deterministic trace suffix automaton. Then
Rec`TrSuffixdet

(H) = {L(G) | G ∈ TrSuffixdet, G −→` H} is a Boolean algebra relative to
L(H).

5 Vector addition systems

By Theorem 34 and since we will prove that TrSuffixVAS is closed under level-length synchron-
ization and superposition, we obtain various Boolean algebras of word languages accepted by
deterministic vector addition systems.

I Theorem 38. Let H ∈ TrSuffixVAS
det [ε]-free. Then Rec`TrSuffixVAS

det
(H) = {L(G) | G ∈

TrSuffixVAS
det , G −→` H} is a Boolean algebra relative to L(H).

Proof. Given Theorem 34, it suffices to show that TrSuffixVAS is closed under level-length
synchronization and superposition. Consider G1, G2 ∈ TrSuffixVAS with G1 over Σ1, G2 over
Σ2, Σ1 ∩ Σ2 = ∅ and ] /∈ Σ1 ∪̇ Σ2. Then observe that G1 ‖= G2 (respectively G1 �] G2) is
a trace suffix automaton over Σ1 ∪̇ Σ2 (respectively over Σ1 ∪̇ {]} ∪̇ Σ2). J

I Example 39. The Boolean algebra Rec`TrSuffixVAS
det

(VisVAS∨ Stack(∅,∅, {a})) is the Boolean
algebra of regular languages over the singleton alphabet {a}.
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Figure 6 A trace suffix automaton that
accepts {anban | n > 0} (Example 40).
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Figure 7 A trace suffix automaton that
accepts {anbncn | n > 0}∗ (Example 41).

I Example 40. It is well-known that the language L = {anban | n > 0}, while being
context-free, is not a visibly pushdown language [1]. Consider the following vector addition
system G over {⊥, a, b} defined by

G := [(⊥a)∗⊥]([b] b−→ [ε]) ∪ [b(⊥a)∗⊥]([ε] a−→ [⊥a]) ∪ [(⊥a)∗⊥+]([a] a−→ [⊥])
∪ {ι} × {[⊥b]} ∪ {o} × [⊥∗]

We have L = L(G) ∈ Rec`TrSuffixVAS
det

(VisVAS∨ Stack(∅, {b}, {a})). See Figure 6.

I Example 41. It is well-known that the language L = {anbncn | n > 0}∗ is not context-free.
Consider the following vector addition system G over {⊥, a, b} defined by

G := [(⊥ab)∗⊥]([ε] a−→ [⊥ab]) ∪ [(⊥ab)∗(⊥a)+⊥]([b] b−→ [ε]) ∪ [(⊥a)∗⊥]([⊥a] c−→ [ε])
∪ {ι} × {[⊥]} ∪ {o} × {[⊥]}

We have L = L(G) ∈ Rec`TrSuffixVAS
det

(VisVAS∨ Stack({c}, {b}, {a})). See Figure 7.

6 Conclusion

Summing up, we have shown how to obtain various Boolean algebras from any family of trace
automata closed under level-length synchronization and superposition. The family TrSuffix
of trace suffix automata with level-regular contexts and the subfamily TrSuffixVAS of vector
addition systems satisfy these closure conditions. In particular, we obtain various Boolean
algebras of context-sensitive languages accepted by deterministic vector addition systems.
However, a better understanding of these languages seems to be a challenging problem.
Moreover, it would be interesting to show that some other subfamilies of TrSuffixVAS also
satisfy the closure conditions stated above.
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