N

HAL

open science

Boolean Algebras from Trace Automata

Alexandre Mansard

» To cite this version:

Alexandre Mansard. Boolean Algebras from Trace Automata. 39th TARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019), Dec 2019,
Bombay, India. pp.48:1-48:15, 10.4230/LIPIcs. FSTTCS.2019.48 . hal-03009734

HAL Id: hal-03009734
https://hal.univ-reunion.fr /hal-03009734
Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.univ-reunion.fr/hal-03009734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Boolean Algebras from Trace Automata
Alexandre Mansard
LIM, University of La Réunion, France

alexandre.mansard@univ-reunion.fr

—— Abstract

We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words.
Considering the length of a trace as the length of its Foata normal form, we define the operations of
level-length synchronization and of superposition of trace automata. We show that if a family F of
trace automata is closed under these operations, then for any deterministic automaton H € F, the
word languages accepted by the deterministic automata of F that are length-reducible to H form a
Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and
the subfamily of vector addition systems satisfy these closure properties. In particular, this yields
various Boolean algebras of word languages accepted by deterministic vector addition systems.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory

Keywords and phrases Boolean algebras, traces, automata, synchronization, pushdown automata,
vector addition systems

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2019.48

1 Introduction

In automatic verification, it is useful to highlight families of languages with good closure
properties, as for example Boolean algebras of languages. For example, the fact that the
first-order theory of any word-automatic graph' is decidable essentially relies on the Boolean
closure properties of regular languages: to any relation defined by a first-order formula, there
corresponds (in an effective way) a regular language and the problem of deciding whether
the graph satisfies a given statement reduces to the problem of deciding emptiness for the
corresponding regular language [13].

The regular, context-free, context-sensitive and recursively enumerable languages form
a famous increasing hierarchy of formal language families defined by Chomsky in [8] from
grammars of increasing complexity. It can also be obtained from families of automata. Indeed,
regular languages are accepted by finite automata, context-free languages are accepted by
pushdown automata (or more generally by word suffix automata [2]), context-sensitive
languages are accepted, for instance, by bounded synchronized automata [20], and recursively
enumerable languages are accepted by Turing machines [4]. And if it is well-known that
regular languages or context-sensitive languages form a Boolean algebra, it is also well-known
that it is not the case of context-free languages. Nevertheless, it was shown that various
subclasses of context-free languages form Boolean algebras [17, 18, 5], as for example visibly
pushdown languages with respect to a given pushdown alphabet [1]. Besides, pushdown
automata model sequential computations. For parallel computations, a relevant family of
automata consists of vector addition systems. Hence, the question arises of which Boolean
algebras can be obtained from this family of automata.

1 A word-automatic graph is a graph of which the vertex set is a regular language and each relation is
recognized by a finite letter by letter synchronized transducer.

© Alexandre Mansard;
37 licensed under Creative Commons License CC-BY
39th TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 48; pp. 48:1-48:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:alexandre.mansard@univ-reunion.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.48
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2

Boolean Algebras from Trace Automata

In this paper, we consider trace automata. Their vertices are Mazurkiewicz traces [10] and
they accept finite words. Traces bear the advantage of describing executions of concurrent
systems [23]. We define the length of a trace as the length of its Foata normal form and we
show that we can obtain Boolean algebras from any trace automata family F closed under
level-length synchronization and level-length superposition (Theorem 34). These operations
ensure the stability under intersection and difference of the class of recognized word languages.
More precisely, we show that for any deterministic automaton H € F, the class of languages
accepted by the deterministic automata in F length-reducible to H form a Boolean algebra
of word languages.

Then, we apply the previous result to the family TrSuffix of trace suffix automata (with
level-regular contexts), introduced in [16]. A trace suffix automaton is described by a finite set
of rules of the form W(u 4 v), where u and v are traces, a is a label and W is a level-regular
trace language (i.e., a language of traces of which the Foata normal forms form a regular
word language). We show that this family satisfies the closure conditions stated above.

Lastly, we deduce that the subfamily TrSuffix"A%
monoids of which the dependence alphabet is the equality also satisfies the closure conditions
stated above. Since TrSuffix"A8
(VAS), we obtain various Boolean algebras of word languages accepted by deterministic
vector addition systems.

of trace suffix automata over trace

essentially corresponds to some vector addition systems

Related works. In [6, 7], Caucal and Rispal adapt Eilenberg’s recognizability for languages
[11] to infinite automata in order to obtain Boolean algebras. More precisely, in [7], they show
how to obtain various Boolean algebras from any family of word automata (i.e., automata
of which vertices are words) closed under the operations of length synchronization and
superposition. However, vector additions systems, seen as word automata (each trace is
encoded by its Foata normal form), are not closed under length superposition.

Besides, in the literature, different types of VAS languages were considered [9, 12, 19, 22]:
the labeling function may be free or not, A-transitions (transitions labeled by the empty
word) may be allowed or not, the set of final markings may be finite or equal to all accessible
markings. In general, the various investigations focus on closure properties [12] and on
the relationship with the other classical formal languages enumerated above [22, 21, 14].
Indeed, it is well known that VAS languages contain regular languages, are incomparable
with context-free languages, but are context-sensitive [19]. The regularity (respectively the
context-freeness) of some VAS languages is decidable [22] (respectively [21, 14]). But, if some
type of VAS languages are closed under union and intersection, the complementation remains,
to our knowledge, a challenging problem. In the usual terminology of VAS (or Petri nets),
the VAS for which we prove that the languages form a Boolean algebra are labeled (i.e.,
the labeling function is total and may not be injective), deterministic (from any marking,
distinct transitions labeled by a same letter are not allowed) and equipped of a level-regular
set of final vertices. Moreover, an action can be performed only with respect to a context
that is assumed level-regular also.

2 Preliminaries

In this section, we give some preliminaries about automata and Mazurkiewicz traces. We use
standard notations. In particular, the union of two disjoint sets A and B is denoted A U B.

A. Mansard

2.1 Automata: definition and generalities

An automaton is given by a set of edges labeled by letters, plus initial and final vertices.
Let V be a set (of vertices), T be a set of symbols called terminals and C = {¢,0} be a
set of colors. A T-automaton G over V is a subset of V. x T xV U C x V of vertex set

Voe={veV|Iau(uav)eGV (v,a,u) € G} U {veV|Iec(cv)eG}

such that the set To = {a € T | 3u,v € V, (u,a,v) € G} is finite. The automaton G is finite
if its vertex set Vg is finite. Denote by I := {v € Vg | (¢t,v) € G} the set of initial vertices
of G and by Fg := {v € Vi | (0,v) € G} the set of final vertices of G.

An element (u,a,v) € G is an edge. Its label is a, its source is u and its target is v. The
notation u % v (or u % v when G is understood) means (u,a,v) € G. Any couple (c,v) € G
is a vertex v colored by ¢ € C.

The automaton G is deterministic if 15 is reduced to a singleton and for each a € T, if
(u % v and u % v') then v = v'. Given a family F of automata, we denote by Fger the
subfamily of F consisting in deterministic automata.

A path in G of source u and goal v, labeled by a word ay ...a, € T*, is a finite sequence
of the form u % ULy e we s Uf—1 %”) v, with u = v for £ = 0. We denote by u %) v the

existence of such a path. A path is accepting if its source is initial and its goal is final. The

language accepted by an automaton G is the set L(G) of words that label its accepting paths.

The regular languages of T-words are the languages accepted by finite automata.
A morphism f from a T-automaton G into a T-automaton H is a mapping f: Vg — Vg
such that

u —Z—) v = f(u) f{% f(v) and (c,u) € G = (¢, f(u)) € H

If such a morphism exists, we write G Lm (or just G — H) and we say that G is f-reducible

(or just reducible) to H. Moreover, if f is a bijection and G S HandH I G, then G
and H are said to be f-isomorphic.

» Lemma 1. Let G and H be automata. If G — H, then L(G) C L(H).

Suppose there exists a length-mapping | | : V. — N. A morphism f is length-preserving
if |f(v)| = |v| for any v € Viz. If such a morphism exists, we say that G is length-reducible to
H and we write G i)g H (or just G —¢ H). The automata G and H are length-isomorphic
if there exists a length-preserving morphism f such that G and H are f-isomorphic.

» Example 2. Let us consider the infinite binary tree Th := {Ku % Kua | u € {a,b}*} U

{Ku L Kub | v e {a,b}*} U {(t,K)} U {o} x K{a,b}* and the visibly pushdown
automaton Vis({c}, 2, {a,b}) :== {LT" Lby et |ln>0} U {LT" S LT |n>
1 Uu{LS 1y U {0} U {o} x{LT"|n >0} The automaton T is length-reducible

to Vis({c}, @, {a,b}). See Figure 1.

2.2 Mazurkiewicz traces

Given a (finite) alphabet ¥, recall that ¥* is the free monoid of finite X-words.

A dependence relation D on X is a reflexive and symmetric binary relation. The pair
(X, D) is called a dependence alphabet. The complement of D is the independence relation
I := ¥2\D. The (%, D)-trace equivalence =p is the least congruence on X* such that

48:3

FSTTCS 2019

48:4

Boolean Algebras from Trace Automata

1 Vis({c}, 2, {a,b})
@ - o)
/ \ a I1H<
Ka Kb
®------ - - - - -—-—-—------- o-LT
l/ \i? a b a b\{c
Ka? Kab Kba Kb
- - -0--0----@----------- LT

Figure 1 Ty is length-reducible to Vis({c}, &, {a,b}) (Example 2).

a X d 7 a — b
c b
Figure 2 The Foata normal form of [acbdab] (Example 4).

(a,b) € I = ab =p ba. The (X, D)-trace of a word w € ¥* is its =p-equivalence class. It is
denoted [w]. Note that =p-equivalent ¥-words have the same length. The quotient monoid
¥*/ =p is called the trace monoid of the dependence alphabet (X, D) and is denoted by
M(X, D). Its elements are called the traces over (X, D). The length of a trace t is the
length of any word belonging to it and is denoted |t|. Denote by Totaly, := 3 x ¥ the total
dependence relation over ¥ and by Idy, := {(a,a) | a € X} the equality. Note that in case of
D = Totaly, the trace monoid M (X, D) coincides with the free monoid X*.

Consider the finite alphabet Ip := {A C ¥ | Vay # as € A (a1,a2) € I} of independent
subsets of X, and denote by II;, : I}, — M(X, D) the canonical morphism defined by
II;, (@) = [e] and I, ({a1, - ,an}) = [a1...an] (n > 1). Consider the binary relation > on
I, :=1Ip\ {@} defined by: A>B <= Ybe B 3ac A (a,b) € D. The set of I}, -words of
the form A; ... A, (p > 0) such that A;>As>---> A, is denoted F. The surjective morphism
IT;, is not injective. Indeed, suppose X = {a, b} and alb, then I, ({a,b}) = II;, ({a}{b}).
The following proposition expresses that each trace is encodable by a unique I,-word in F.

» Proposition 3 (Foata normal form, [10]). Lett € M (X, D). There exists a unique I, -word
[tlg =A1---Ap €F (p>0), the Foata normal form of t, such that Il;, (A ---A,) =t.

» Example 4. Suppose ¥ = {a,b,c,d} and ale, bld, cId. The Foata normal form of
t = [acbdab] (see Figure 2) is [t|r = {a, c}{b, d}{a}{b}.

The following lemma is straightforward.

» Lemma 5 (Level automata). The set F of Foata normal forms is a reqular word language
over Ip,.

In general, [st]g and [s]|g[t]F may be different. Indeed, suppose D = {(a,a), (b,b)}. If
s = [a] and t = [ab], then [s|r = {a}, [t]Fr = {a,b} and [st|r = {a,b}{a}. The following
lemma expresses some compatibility between concatenation and Foata normal form.

» Lemma 6. Let s,t € M(X,D) such that [slg = A1--- A, (b = 0). Then there ex-
ist Bi,,...Bi, € I, (0 < k <p andl < i3 < --- < i < p)and Cy,...,Cp, €
I, (m > 0) such that [stlg = A1...(A;, U By,)...(4;, U By,)...A,C1...C, and
H[g(leszCICm):t

Proof. By induction on the length of ¢. <

A. Mansard

In the following, given a trace t, we denote by ||t|| the length of its Foata normal form.
A trace automaton is an automaton of which the vertices belong to some trace monoid
M (X, D) and accepts finite words (over an alphabet that may have no relation with X).

3 From word (suffix) automata to trace (suffix) automata

In this section, we recall how to obtain various Boolean algebras of deterministic context-free
languages from word suffix automata [7]. Then we consider the notion of level-regular trace
languages. This allows to define the family TrSuffix of trace suffix automata with level-regular
contexts, an extension to traces of word suffix automata. Lastly, we will define (in terms
of trace suffix automata) the vector addition systems from which we will obtain Boolean
algebras (Section 5).

3.1 Boolean algebras from word suffix automata

Given a word language L over T', a non-empty family of languages F, is a Boolean algebra
relative to L if Ly C L, L — Ly € Fr, and Ly N Ly € Fy, for any Ly, Ly € Fr,. Observe that if
Fr, is a Boolean algebra relative to L then @, L € Fp,.

A word suffix automaton is a finite union of automata of the form

Wuv)u {i}xI U {o}xF

where W, I and F are regular word languages (over a finite alphabet), u and v are words,
a €T and W(u % v) ={wu % wv | we W} We denote by Stack the family of word suffix
automata. The languages accepted by Stack are the context-free languages [3].

In [7], Caucal and Rispal show how to obtain various Boolean algebras of deterministic
context-free languages.

» Theorem 7 ([7]). Let H be a deterministic word suffix automaton of which the empty word
is not a vertex. Then the class of languages Recétackdet(H) ={L(G) | G € Stackget, G —¢ H}
is a Boolean algebra relative to L(H).

In the following, we will consider the family TrSuffix of trace suffix automata with level-
regular contexts, introduced in [16] (see Subsection 3.3). This family is an extension to
Mazurkiewicz traces of word suffix automata (a word suffix automaton is just a trace suffix
automaton with level-regular contexts over a trace monoid for which the dependence relation
is total). We will also consider the subfamily TrSuffix VA5 of vector addition systems and we
will show how to obtain Boolean algebras from these, in the same vein as Theorem 7.

3.2 Level-regularity

In order to build the family TrSuffix of trace suffix automata with level-regular contexts, let
us give some reminders about the notion of level-regular trace languages [16].

A (3, D)-trace language is a subset of M (X, D). If L is a trace language, then |JL£ =
{w € ¥* | [w] € L}. If L is a word language, then [L] is the trace language defined by
[L] := {[w] € M(X,D) | w € L}. In particular, [JL£] = £ and J[L] D L.

Given a trace language £ C M(X,D) and a trace t € M(X, D), the right residual
(respectively the left residual) of £ by t, Lt=1 (respectively t71L£), is Lt 7! := {s € M(%, D) |
st € L} (respectively t 1L := {s € M(Z, D) | ts € L}). The product of £ by t (respectively
the product of t by L), Lt (respectively tL), is Lt := {st € M (X, D) | s € L} (respectively
tL:={tse M(X,D)|seL}). If L1,Ls C M(X, D) are trace languages, their product is
the trace language L£1Ls := {t1ta | t1 € L1,t2 € Lo}. In particular, L& = OL = &.

48:5

FSTTCS 2019

48:6

Boolean Algebras from Trace Automata

A trace language £ C M (X, D) is recognizable if there exists a finite monoid N and a
monoid morphism ¢ : M (X, D) — N such that £ = ¢~ 1(¢(L)). The class of recognizable
trace languages is denoted by Rec(M (X, D)).

» Proposition 8 ([10]). The following are equivalent:
L is recognizable,
UL is a regular word language,
the set {t 1L |t € M(X, D)} of left residuals of L is finite,
the set {Lt71 |t € M(X, D)} of right residuals of L is finite.

» Remark 9. In case of D = Totaly, Rec(M (X, D)) = Reg(Z*).
» Proposition 10 ([10]). Rec(M (X, D)) is a Boolean algebra closed under concatenation.

The trace language [(ab)*] with aIb is not recognizable since its union, the set of words
over {a,b} with the same number of occurences of a and b, is not regular. Nevertheless,
the set {a,b}* of Foata normal forms of its elements is regular. This suggests considering a
weaker notion of recognizability.

» Definition 11. £ C M(X, D) is level-regular if the word language [L]g is regular.

Since [L]r = HI_D1 (L) N'F, any recognizable trace language is level-regular. Note also
that any level-regular trace language is a rational subset of the monoid M (X, D). Denote by
LevelReg(M (3, D)) the class of level-regular languages of the trace monoid M (X, D).

» Proposition 12 ([16]). LevelReg(M (X, D)) is a Boolean algebra.

The class LevelReg(M (X, D)) is not closed under concatenation [16]. Nevertheless,
multiplication and residuation of trace languages on the right by a trace preserves the
level-regularity.

» Lemma 13. Let £ € LevelReg(M (%, D)) and t € M (X, D). The trace languages L£t~!
and Lt are level-reqular.

Given a word language L, we denote by Pref(L) := {u | 3 v uv € L} the set of prefixes of
words in L. From the lemma below, it follows, in particular, that the set of prefixes of Foata
normal forms of a level-regular trace language is a regular word language.

» Lemma 14. Let £ € LevelReg(M (X, D)). Then II;, (Pref [L]r) € LevelReg(M (X, D)).

3.3 Trace suffix automata with level-regular contexts

We consider trace suffix automata with level-regular contexts [16]. These generalize both
word suffix automata (see Subsection 3.1) and vector addition systems (see the following
subsection).

A trace suffix automaton (with level-reqular contexts) over a trace monoid M (X, D) is of
the form

G= |J Wilwi 5 v) U {1} xZe U {0} x Fg

1<ign

where W, Ze, Fo € LevelReg(M (X, D)), u;,v; € M(2,D), a; € T and W;(u; = v;) =

(
{w;u; 2y wiv; | w; € Wi} (1 < i < n). The trace language W; is called the context of
the rewriting rule W;(u; = v;) (1 < i < n). Denote by TrSuffix the family of trace suffix

automata.

A. Mansard

Figure 3 The infinite quarter grid tree is a trace suffix automaton (see Example 15).

» Example 15 (Infinite quarter grid tree). See Figure 3. Consider the following trace suffix

automaton with level-regular contexts, where the independence relation is {(a,b), (b,a)}.

[L{ab, e} (€] = [a]) U [L{a,b,c}']([e] =) U [L{a,b,e}]([e] = [e])

In particular, it was shown in [16] that its first-order theory with reachability is decidable
though it is not a ground term rewriting graph [15].

The trace suffix automata for total dependence relations are the word suffix automata.
Thus regular languages and context-free languages are accepted by trace suffix automata.
On the other hand:

» Proposition 16 ([16, 20]). The languages accepted by the trace suffiz automata are context-
sensitive.

The previous proposition relies on the fact that trace suffix automata are actually
word-automatic automata [16] and the latter accept the context-sensitive languages [20].

3.4 Vector addition systems

Here, a vector addition system G over X is a trace suffix automaton over the trace monoid
M(3,1dy). Denote by TrSuffix V28 the family of vector addition systems. The family
TrSuffixA% is a subfamily of TrSuffix.

» Example 17. Observe that a vector addition system over a singleton alphabet is a word
suffix automaton since the equality relation over such an alphabet coincides with the total
relation. Let (T_1,Ty,T1) a triple of disjoint finite alphabets. The trace suffix automaton
VisVASVStack(p oy Ty) over M({T},{(T,T)}) defined below is a vector addition system
over the singleton alphabet {T}. It is length-isomorphic to a word suffix automaton. The
Boolean algebra Reck,, . e (VisVASVStack(p | Ty T1)) (see Theorem 7) is the family of
visibly pushdown languages with respect to (T-1, Ty, T1) ([1]).

VisVASVSea(r 1) = ([T > (T O U [TH(E =)
€Ty AeTy

O J mIan 2o U T 2 ED U x ([T} U {o} x [T]

AeT_ 1 AeT_ 1

48:7

FSTTCS 2019

48:8

Boolean Algebras from Trace Automata

A
S B SO IO BRI

I I I | al [I

| | b ! [! |
2\ I ‘/‘b\\‘ I I \
Lm0 @b e Lo

| | NG | NG |

| b | T b | T [’/ b
lr---e — o— "+ >=e- = o o
I | al I | al I i

‘V{‘ ‘V(‘ ‘V(‘

I I | I I I I I

PSR Y b -l m o

0 1 2 3 4 5 6 7

Figure 4 A vector addition system from a finite set of integer vectors.

In the previous example, the length variation of two adjacent vertices is almost 1. It is
no more the case for the following example that shows, in particular, how to obtain a vector
addition system from a finite set of integer vectors of the same dimension.

» Example 18. Consider the finite set A := {(%), (1),(3)} of 2-dimensional integer vectors
and the automaton G4 over N2, defined by

RGN |v,v' €N?a€ Ajv+a=1'}

={v—>

where [: A — T is the labeling function that maps (}) and () to the terminal b and (%)
to the terminal a. The automaton G4 is isomorphic to the vector addition system over the
alphabet {z,y} defined by the following rules

M([y] % [za]) U M([e] & [ay]) U M([e] 2 [azal)

where M denotes the trace monoid M ({z,y},Id, ,3). See Figure 4.

4 Level-length synchronization and Boolean algebras from trace
automata

In this section, we show how to obtain various Boolean algebras of word languages from
the family TrSuffix (Theorem 37). Actually, this will be deduced from a more general
result, since we give sufficient conditions for any family of trace automata to define Boolean
algebras (Theorem 34). After considering a notion of synchronization of two traces belonging
to disjoint trace monoids, we define their level-length synchronization. Then we define
the level-length synchronization and superposition of two trace automata (Definition 23
and 27) and we show that under some relevant assumptions, they accept respectively the
intersection and the difference (Lemmas 25 and 33). As a consequence, we show how to
obtain a Boolean algebra of word languages from any trace automata family closed under
level-length synchronization and superposition and from a deterministic automaton in this
family (Theorem 34). Finally, we show that the family TrSuffix is closed under level-length
synchronization and superposition.

Let M (31, D;1) and M (X2, D2) be trace monoids such that $1 N¥y =&

Let s € M(21,D;) and t € M (33, D3).

» Definition 19. The synchronization s || t of s and t is the product st in the trace monoid
M3y U3y, Dy U Ds).

» Definition 20. The level-length synchronization s ||= t of s and t is s || ¢ if ||s|| = ||t|| and
is not defined otherwise.

A. Mansard

We also define s ||> t:=s ||t if ||s|| > |¢t]] and s|<t:=s |t if |s]| <]

Given £ C M (321, Dq) and Ly C M(X4, D), we define
L1 || Lo = {Ifl H to | t] € El,tz S EQ} and £ H: Lo = {lfl H: to | t1 € ﬁl,tg € EQ},
L1 ||> Lo = {tl H> to | t1 € £1,t2 S EQ} and £ ||< Lo = {tl Hg to | t1 € £1,t2 S EQ}
These synchronized trace languages remain level-regular if £ and Lo are.

» Lemma 21. Let £ € LevelReg(M (X1, D1)) and Lo € LevelReg(M (X2, D). The follow-
ing trace languages are level-regular: L1 || L2, L1 ||> L2, L1 ||< L2, L1 ||= L2.

If a synchronized trace language is level-regular, then so are its projections. Let us make
explicit what such a projection is. For i € {1,2}, denoting i := 3 — i, we consider the
morphism 7; from M (¥X; U 3o, D1 U Dg) into M (%;, D;) defined by m;([a]) = [a] if a € ;
and 7;([a]) = [¢] if a € 3;. Given t € M (31 U 39, D1 U D3), there exists a unique couple
(t1,t2) € M(X1, D1) x M(X2, D) such that ¢t = t1to. This couple is given by ¢; = 7 (t) and
to = ma(t). The morphism 7; naturally extends to trace languages.

» Lemma 22. Let L € LevelReg(M (21 U 3o, D1 U Ds)). The trace languages w1 (L) and
w2 (L) are level-regular.

Now, we consider the level-length synchronization of two automata. It is an automaton
over the level-length synchronization of vertices of these automata.

» Definition 23. Let Gi and G2 be trace automata over respectively M(X1,D1) and
M (X9, D). Their level-length synchronization Gy ||= Gz is the trace automaton over
M (31 U Xy, D1 U Dy) defined by

Gil=Ge={pi|l=p2 S a1]= @ |m GL1> q1, P2 GL2> ¢}
U {¢} x (g ll= Ig,) U {o} x (Fa, |= Fa,)
» Lemma 24. G ||= G2 ™5, G; (i € {1,2}).

If two automata are length-reducible to a same deterministic one, then the intersection of
their languages is accepted by their level-length synchronization.

» Lemma 25. If H is a deterministic trace automaton such that Gy —¢ H and Gy —y H,
then L(G1 ||= G2) = L(G1) N L(G2).

Proof. Let u € L(G1) N L(G2) be a word. By Lemma 1 and since G; —; H, there exists an
accepting path labeled by u in H. Since H is deterministic, this path is unique. Then, for
any two paths in G; and G2 accepting u, the sequences of lengths of vertices of these paths
are same, because they are the same as the sequence of lengths of the path accepting v in H.
Hence, u labels an accepting path in G ||= G2. The other inclusion is straightforward. <«

If two deterministic automata are length-reducible to a same deterministic one, then their
level-length synchronization is also a deterministic automaton.

» Lemma 26. If Gy, Gy and H are deterministic trace automata such that G; — H
(1 € {1,2}), then Gy ||= G2 is a deterministic automaton.

We are now introducing the level-length superposition G //* H of trace automata. When
restricted to deterministic automata and if G —, H, this accepts the difference language
L(H) — L(G) (Lemma 33). Note that to accept the difference, we may consider simpler
operations. The level-length superposition bears the advantage of preserving the boundedness

48:9

FSTTCS 2019

48:10

Boolean Algebras from Trace Automata

of the degree. Indeed, we will consider families of automata of bounded degree and in order
to obtain Boolean algebras, we will require these families to be closed under level-length
superposition.

Given a word language L and a word u, we write u = L if u is a prefix of a word in L. A
trace automaton is [¢]-free if [¢] is not a vertex.

» Definition 27. Let G and H be [g]-free trace automata over respectively M (X1, D) and
M (32, Do) and £ ¢ 31 U Xa. The level-length superposition of G on H is the trace automaton
G J* H over M(21 U {8} U 2o, Dy U {(#,8)} U Dy) defined by

G /' H :=

M) pl=s>al=tlpas—t}

(2) Vg x g |l= In)

3) Udo} x (Ve - Fo) |- Fiu)

@) Uipll=s=plllItls — sl <ltlp € Ve, -3 (02" Al = [}

) Uipll=s =l ll=t]s—>t sl > Iltlp € Vo, =3p'(p > »" AllP'Il = [It]) Tg]w T [p]r}
6) U A{pl] ll< s = plE] [£ 15—t [Isll < [Itll, [p1e C [Vale}

(7) U Apld] ll< s = plE) < t[s — & lls] > [1e]l, [P]e E [Valr}

®) U plt] ll< s =gl ll=t]s =t sl > [1ell [l < lIp[g]ll, [P1e E [Velr, [qle E [ple}

(9) U Ao} x ({pltl l< s | [plr E [Valr,s € Fu})

(10) Uy x {[8) I s s € T, ~(3Fp € Lo |Ipll = lIsI))

Let us give some more explanations about this definition. First, observe that there are
two kinds of vertices: those in which # occurs and the other ones. Then, observe that the
edges between non f-vertices are those of G ||= H. Note that the edges at lines (4) and (5)
are the only ones between f-vertices and non f-vertices, and that they leave the set Vg _p of
non f-vertices. Thus, once a path leaves Vi _g, it never returns.

Givent € M (X1 U {f} U Xy, D; U D), we denote by 71 (t) (respectively ma(t)) the unique
trace in M (37 U {#}, D1) (respectively M (Xs, Ds)) such that ¢ = m(¢)m2(t).

For each edge s % t and each vertex z of G J/* H, H-projecting on s (i.e., ma(x) = s),

there exists an edge x //Lu) y with y H-projecting on t (i.e., mo(y) = t). Since on the other
GJtH

hand, any initial vertex of H lifts to an initial vertex of G J/* H (lines (2) and (10)), it follows
that any initial path in H (an initial path is a path of which the source is an initial vertex)
lifts to an initial path of G J/* H.

» Lemma 28. Any word that labels an initial path in H, also labels an initial path in G JJ* H.

Lastly, note that we preserve the fact that the level-length of any vertex is given by the
level-length of its H-component (see Lemma 30). In particular, the first component is not
longer than the second one.

It will be relevant to discuss about the final vertices of G J/* H only under some more
assumptions about G and H (Lemma 30, Corollary 32 and Lemma 33).

» Example 29. Let us consider the automata described in Example 2. The unique initial
vertex of Ty //* Vis({c}, @, {a,b}) is K ||= L. The final vertices of Ty J/* Vis({c}, 2, {a,b})
are these for which the number of occurrences of f is 1. See Figure 5 for the restriction of
Ty JJ* Vis({c}, @, {a,b}) to the vertices accessible from the initial vertex and co-accessible
from final vertices.

» Lemma 30. G Jf H =, H.

A. Mansard

Figure 5 Trimmed level-length superposition of T3 on Vis({c}, @, {a,b}) (see Example 29).

By Lemma 1, L(G /¥ H) C L(H). That is, if a word labels an accepting path in G J* H
then it also labels an accepting path in H. The converse is not true in general, as we will see
in Lemma 33.

The level-length superposition preserves determinism.

» Lemma 31. If G and H are deterministic, then G JJ* H is deterministic.

Observe that the automaton described at lines (1), (2) and (3) (Definition 27) is the
level-length synchronization of H and the automaton obtained from G by declaring final the
non final vertices and vice-versa. By Lemma 25 and since obviously H —, H, we deduce the
following corollary.

» Corollary 32. If G and H are deterministic, G —y H and w is a word that labels an initial
path in G ||= H, then w € L(G) N L(H) <= w ¢ L(G JJ* H).

The level-length superposition accepts the difference.

» Lemma 33. If G and H are deterministic and G —¢ H, then L(G JJ* H) = L(H) — L(G).

Proof. By Lemmas 30, 31 and Corollary 32, it remains to show that any word w € L(H) —
L(G) that does not label any initial path in G ||= H is accepted by G /* H. The unique initial
path in the deterministic automaton G /* H labeled by w is accepting since its goal is of the
form plf] ||< s (s € Fr) and any such vertex is final in G //* H (line (9) in Definition 27). <

Let us apply Lemmas 25 and 33. From any trace automata family closed under level-length
synchronization and superposition, we obtain various Boolean algebras of word languages
from the deterministic automata of this family.

» Theorem 34. Let F be a family of trace automata closed under level-length synchronization
and superposition and H € Fqey [e]-free. Then the class of languages Recefdet (H) ={L(G) |
G € Faet, G —¢ H} is a Boolean algebra relative to L(H).

48:11

FSTTCS 2019

48:12

Boolean Algebras from Trace Automata

Let us show that Theorem 34 applies to the family TrSuffix.
» Proposition 35. The family TrSuffix is closed under level-length synchronization.

Proof (Sketch). First, observe that given G1,G2 € TrSuffix, the sets of initial vertices
and final vertices of G ||= Ga are level-regular by Lemma 21. Indeed, the level-length
synchronization of level-regular languages remains level-regular. Then, since the operation
||= is distributive over union, it suffices to suppose that G; (respectively Gs) is of the
form Wi(u; % wvy) over M (X1, D;) (respectively Wa(uy KN vg) over M (X9, Dy)) with
W; € LevelReg(M (3, D;)),ui,v; € M(2;,D;) (i € {1,2}). If a # b, then G ||= G3 = @.
Suppose a = b. We show that G ||= G2 == {p1 ||=p2 = @1 ||= ¢2 | p1 GL1> q1, P2 GL; g2} is

equal to (Wiuy [|= Waus)(ur || u2)™t N (Wivy ||= Wava)(v1 || v2) ™) (wr | ue = 01 || va).
Since Wiuy ||= Waua)(uy || uz)™t N (Wivy [|= Wavs)(v1 || v2) 1 is level-regular by Lemmas
13, 21 and Proposition 12, this proves the proposition. |

» Proposition 36. The family TrSuffix is closed under level-length superposition.

Proof (Sketch). Since G J/* (Hy U Hy) = G J* Hy U G J)* Hy, it suffices to consider
G= U Wiui 2 v) U {1} xZTg U {0} x Fg over M(£,,D;) and H = Z(z %
1<ign
y) U {¢} xZyg U {0} x Fy over M (X2, D3). We may assume that the level-length variation
of the rules W;(u; < v;) (1 <i < n) and Z(z = y) is constant and is equal respectively
to 0; and 0. We show that the sets of initial and final vertices of G // # H correspond to
level-regular trace languages. Then, by distinguishing the cases dy > 0 and dy < 0, we show
that the sets of edges constituting G' J/* H (Definition 27) can be described as trace suffix
automata with level-regular contexts. In each case, the level-regularity of the trace languages
considered (for initial and final vertices and for the contexts of the rewriting rules) will be
ensured by Proposition 12 and Lemmas 13, 14, 21, 22. |

Let us apply Theorem 34 and Propositions 35 and 36.

» Theorem 37. Let H be an [g]-free deterministic trace suffiz automaton. Then
Rechsufing,, (H) = {L(G) | G € TrSuffixqer, G —¢ H} is a Boolean algebra relative to
L(H).

5 Vector addition systems

By Theorem 34 and since we will prove that TrSuffix VA8

ization and superposition, we obtain various Boolean algebras of word languages accepted by
deterministic vector addition systems.

is closed under level-length synchron-

» Theorem 38. Let H e TrSuffix}a® [e]-free. Then Recf}\rsuﬂﬁxys (H) = {L(GQ) | G €
TrSuffixYAS, G —¢ H} is a Boolean algebra relative to L(H).

Proof. Given Theorem 34, it suffices to show that TrSuffix V25 is closed under level-length
synchronization and superposition. Consider G1,Go € TrSuffix VA% with G over 1, G over
Y2, Y1 N Yy =2 and § ¢ Xy U Xy. Then observe that Gy ||= G2 (respectively Gy /¥ Go) is
a trace suffix automaton over ¥; U Xy (respectively over X1 U {8} U X,). <

» Example 39. The Boolean algebra Recl,q, gy vas (VisV25 Y 5%% (a5 &1 {a})) is the Boolean
det
algebra of regular languages over the singleton alphabet {a}.

A. Mansard

b,c b b b
O a O a O a O

[] >0 > e > e -

- 9w Vo«

o c o [o 3 o bc b b b

¢ ! | | -

1 1 ‘ ‘ <) \) .

I | ‘ ‘ — g -
‘ 5 b o. < << 0o <

]

%%
\

®c.°
<

m
IS)
sk
v -
ST

:m.é.mkggggggg‘o.
/
o c"’
B
o

Lhe
>

o
[]
15

Figure 6 A trace suffix automaton that
accepts {a"ba" | n > 0} (Example 40).

Figure 7 A trace suffix automaton that
accepts {a"b"c" | n > 0}* (Example 41).

» Example 40. It is well-known that the language L = {a"ba™ | n > 0}, while being
context-free, is not a visibly pushdown language [1]. Consider the following vector addition
system G over {1, a,b} defined by

G i=[(La)" L]([p] = [e)) U [b(La)*L]([e] % [La]) U [(La)" L] (a] & [L])
U {e} x {[Lb]} U {o} x [L7]

We have L = L(G) € ReCZTrsufﬁxXAtS (Vis¥VAS VStack (g (1 La})). See Figure 6.

» Example 41. It is well-known that the language L = {a"b™c"™ | n > 0}* is not context-free.

Consider the following vector addition system G over {1, a,b} defined by

G = [(Lab)* L]([e] * [Lab]) U [(Lab)*(La) L]([b] = [e]) U [(La)* L]([La] > [¢])
U e <[} U {o} x {[L]}

We have L = L(G) € RechrSufﬁngts (VisVAS VStack(fe1 (b} fa})). See Figure 7.

6 Conclusion

Summing up, we have shown how to obtain various Boolean algebras from any family of trace
automata closed under level-length synchronization and superposition. The family TrSuffix
of trace suffix automata with level-regular contexts and the subfamily TrSuffix"AS
addition systems satisfy these closure conditions. In particular, we obtain various Boolean

of vector

algebras of context-sensitive languages accepted by deterministic vector addition systems.
However, a better understanding of these languages seems to be a challenging problem.

VAS

Moreover, it would be interesting to show that some other subfamilies of TrSuffix also

satisfy the closure conditions stated above.

48:13

FSTTCS 2019

48:14

Boolean Algebras from Trace Automata

—— References

1

10

11

12

13

14

15

16

17

18

R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
202-211, 2004. doi:10.1145/1007352.1007390.

D. Caucal. On the Regular Structure of Prefix Rewriting. Theor. Comput. Sci., 106(1):61-86,
1992. d0i:10.1016/0304-3975(92)90278-N.

D. Caucal. On Infinite Transition Graphs Having a Decidable Monadic Theory. In Automata,
Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany,
8-12 July 1996, Proceedings, pages 194-205, 1996. doi:10.1007/3-540-61440-0_128.

D. Caucal. On the transition graphs of turing machines. Theor. Comput. Sci., 296(2):195-223,
2003. doi:10.1016/30304-3975(02)00655-2.

D. Caucal. Boolean algebras of unambiguous context-free languages. In TARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2008, December 9-11, 2008, Bangalore, India, pages 83-94, 2008. doi:10.4230/LIPIcs.FSTTCS.
2008.1743.

D. Caucal and C. Rispal. Recognizability for Automata. In Developments in Language Theory -
22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
pages 206218, 2018. doi:10.1007/978-3-319-98654-8_17.

D. Caucal and C. Rispal. Boolean Algebras by Length Recognizability. In Tiziana Margaria,
Susanne Graf, and Kim G. Larsen, editors, Models, Mindsets, Meta: The What, the How, and
the Why Not? Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday, pages
169-185. Springer International Publishing, Cham, 2019. doi:10.1007/978-3-030-22348-9_
11.

N. Chomsky. Three models for the description of languages. IRE Transactions on Information
Theory, 2(3):113-124, September 1956. doi:10.1109/TIT.1956.1056813.

S. Crespi-reghizzi and D. Mandrioli. Petri nets and szilard languages. Information and Control,
33(2):177-192, 1977. doi:10.1016/S0019-9958(77)90558-7.

V. Diekert and G. Rozenberg. The Book of Traces. WORLD SCIENTIFIC, 1995. doi:
10.1142/2563.

S. Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., Orlando, FL, USA,
1974.

M. Hack. Decidability questions for Petri nets. PhD thesis, MIT, Dept. Electrical Engineering,
Cambridge, Mass., USA, 1975.

B. Hodgson. On Direct Products of Automaton Decidable Theories. Theor. Comput. Sci.,
19:331-335, 1982. doi:10.1016/0304-3975(82)90042-1.

J. Leroux, V. Penelle, and G. Sutre. On the Context-Freeness Problem for Vector Addition
Systems. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,
New Orleans, LA, USA, June 25-28, 2013, pages 43-52, 2013. doi:10.1109/LICS.2013.9.
C. Loéding. Model-Checking Infinite Systems Generated by Ground Tree Rewriting. In
Foundations of Software Science and Computation Structures, 5th International Conference,
FOSSACS 2002. Held as Part of the Joint Furopean Conferences on Theory and Practice of
Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, pages 280-294, 2002.
doi:10.1007/3-540-45931-6_20.

A. Mansard. Unfolding of Finite Concurrent Automata. In Proceedings 11th Interaction and
Concurrency Ezxperience, ICE 2018, Madrid, Spain, June 20-21, 2018., pages 68—84, 2018.
doi:10.4204/EPTCS.279.8.

K. Mehlhorn. Pebbling Mountain Ranges and its Application of DCFL-Recognition. In
Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands,
July 14-18, 1980, Proceedings, pages 422-435, 1980. doi:10.1007/3-540-10003-2_89.

D. Nowotka and J. Srba. Height-Deterministic Pushdown Automata. In Mathematical
Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007, Ceskij
Krumlov, Czech Republic, August 26-31, 2007, Proceedings, pages 125-134, 2007. doi:10.
1007/978-3-540-74456-6_13.

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/0304-3975(92)90278-N
https://doi.org/10.1007/3-540-61440-0_128
https://doi.org/10.1016/S0304-3975(02)00655-2
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1743
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1743
https://doi.org/10.1007/978-3-319-98654-8_17
https://doi.org/10.1007/978-3-030-22348-9_11
https://doi.org/10.1007/978-3-030-22348-9_11
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1016/S0019-9958(77)90558-7
https://doi.org/10.1142/2563
https://doi.org/10.1142/2563
https://doi.org/10.1016/0304-3975(82)90042-1
https://doi.org/10.1109/LICS.2013.9
https://doi.org/10.1007/3-540-45931-6_20
https://doi.org/10.4204/EPTCS.279.8
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/978-3-540-74456-6_13
https://doi.org/10.1007/978-3-540-74456-6_13

A. Mansard

19

20

21

22

23

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1981.

C. Rispal. The synchronized graphs trace the context-sensitive languages. Flectr. Notes Theor.
Comput. Sci., 68(6):55—70, 2002. doi:10.1016/S1571-0661(04)80533-4.

S. R. Schwer. The context-freeness of the languages associated with vector addition systems is
decidable. Theoretical Computer Science, 98(2):199-247, 1992. doi:10.1016/0304-3975(92)
90002-W.

R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Computer and
System Sciences, 23(3):299-325, 1981. doi:10.1016/0022-0000(81)90067-2.

G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science (Vol. 4), pages
1-148. Oxford University Press, Inc., New York, NY, USA, 1995. URL: http://dl.acm.org/
citation.cfm?id=218623.218630.

48:15

FSTTCS 2019

https://doi.org/10.1016/S1571-0661(04)80533-4
https://doi.org/10.1016/0304-3975(92)90002-W
https://doi.org/10.1016/0304-3975(92)90002-W
https://doi.org/10.1016/0022-0000(81)90067-2
http://dl.acm.org/citation.cfm?id=218623.218630
http://dl.acm.org/citation.cfm?id=218623.218630

	Introduction
	Preliminaries
	Automata: definition and generalities
	Mazurkiewicz traces

	From word (suffix) automata to trace (suffix) automata
	Boolean algebras from word suffix automata
	Level-regularity
	Trace suffix automata with level-regular contexts
	Vector addition systems

	Level-length synchronization and Boolean algebras from trace automata
	Vector addition systems
	Conclusion

