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METHODOLOGY ARTICLE Open Access

Development and comparative validation
of genomic-driven PCR-based assays to
detect Xanthomonas citri pv. citri in citrus
plants
Isabelle Robène1* , Véronique Maillot-Lebon1, Aude Chabirand2, Aurélie Moreau2, Nathalie Becker3,
Amal Moumène4, Adrien Rieux1, Paola Campos1,3, Lionel Gagnevin5, Myriam Gaudeul6, Claudia Baider7,
Fréderic Chiroleu1 and Olivier Pruvost1

Abstract

Background: Asiatic Citrus Canker, caused by Xanthomonas citri pv. citri, severely impacts citrus production
worldwide and hampers international trade. Considerable regulatory procedures have been implemented to
prevent the introduction and establishment of X. citri pv. citri into areas where it is not present. The effectiveness of
this surveillance largely relies on the availability of specific and sensitive detection protocols. Although several PCR-
or real-time PCR-based methods are available, most of them showed analytical specificity issues. Therefore, we
developed new conventional and real-time quantitative PCR assays, which target a region identified by comparative
genomic analyses, and compared them to existing protocols.

Results: Our assays target the X. citri pv. citri XAC1051 gene that encodes for a putative transmembrane protein.
The real-time PCR assay includes an internal plant control (5.8S rDNA) for validating the assay in the absence of
target amplification. A receiver-operating characteristic approach was used in order to determine a reliable cycle
cut-off for providing accurate qualitative results. Repeatability, reproducibility and transferability between real-time
devices were demonstrated for this duplex qPCR assay (XAC1051-2qPCR). When challenged with an extensive
collection of target and non-target strains, both assays displayed a high analytical sensitivity and specificity
performance: LOD95% = 754 CFUml− 1 (15 cells per reaction), 100% inclusivity, 97.2% exclusivity for XAC1051-2qPCR;
LOD95% = 5234 CFUml− 1 (105 cells per reaction), 100% exclusivity and inclusivity for the conventional PCR. Both
assays can detect the target from naturally infected citrus fruit. Interestingly, XAC1051-2qPCR detected X. citri pv.
citri from herbarium citrus samples. The new PCR-based assays displayed enhanced analytical sensitivity and
specificity when compared with previously published PCR and real-time qPCR assays.
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(Continued from previous page)

Conclusions: We developed new valuable detection assays useful for routine diagnostics and surveillance of X. citri
pv. citri in citrus material. Their reliability was evidenced through numerous trials on a wide range of bacterial
strains and plant samples. Successful detection of the pathogen was achieved from both artificially and naturally
infected plants, as well as from citrus herbarium samples, suggesting that these assays will have positive impact
both for future applied and academic research on this bacterium.

Keywords: Asiatic Citrus canker, Surveillance, Real-time quantitative PCR, Diagnostics, Cycle cut-off, Ancient DNA

Background
Over the last half century, there has been a dramatic in-
crease in biological invasions worldwide as a result of
globalization and increased international trade and travel
[1]. To limit the threat posed by the introduction of
exotic plant pathogens and pests through trade and hu-
man transport, many countries have tightened border
biosecurity surveillance, as well as phytosanitary inspec-
tion, and quarantine measures. This biosecurity effort
has slowed down the introduction and establishment of
pathogens despite the increase in trade and the inter-
national movement of people. However, biosecurity
measures have adopted to differing degrees across the
agricultural sector. Measures to protect annual crop and
pasture species have had a positive impact. In contrast,
the biosecurity effort should be enhanced for perennial
crops such as forest and fruit tree species, which remain
vulnerable [2]. When a plant disease outbreak is ob-
served in a new area, quick and appropriate manage-
ment measures, such as containment or eradication, are
necessary to avoid the establishment and further spread
of the pathogen. For efficient biosecurity surveillance
and plant disease management, identifying regulated
pathogens fast and accurately is essential. Misdiagnosis
can have a severe economic impact, for example, if un-
wanted pathogens are introduced or inappropriate man-
agement options applied [3–5].
Xanthomonas citri pv. citri, the causal agent of Asiatic

citrus canker (ACC), is an example of a high-concern
regulated pathogen that threatens an economically im-
portant fruit crop (i.e., collectively, citrus fruit rank #1
fruit crop worldwide). This bacterial pathogen causes
serious direct and indirect economic losses due to re-
duced crop yield and quality, the cost of eradication,
containment (including the destruction of nursery, grove
or backyard trees) or integrated management measures,
as well as embargos on the movement of fruit. In
addition, it raises concerns about environmental issues
linked to increased pesticide use and the development of
resistance to antimicrobials [4, 6]. For example, more
than one billion US dollars was spent over a decade in
Florida in an attempt to eradicate the pathogen [7].
Australia organized several successful ACC eradication
campaigns in the past [8, 9], and is currently conducting

a response plan in the Northern Territory at a cost of
millions of A$.
Although at least four distinct xanthomonads are patho-

genic to citrus, only two of them, X. citri pv. citri and X. citri
pv. aurantifolii, cause visually indistinguishable canker-like
symptoms. They are the causal agents of Asiatic and South
American citrus canker, respectively. However, only the
former bacterium has a major agricultural significance, be-
cause it is the only one associated with serious canker out-
breaks even in countries where both pathovars occur
concomitantly. Within X. citri pv. citri, strains differ in host
range among citrus lines and can be classified into three dis-
tinct pathotypes. Pathotype A strains have the greatest glo-
bal economic impact on the citrus industry. They are widely
distributed and induce canker on a broad range of rutaceous
hosts, including many Citrus species, hybrids or related gen-
era such as trifoliate orange (Poncirus trifoliata) [4]. Patho-
type A* strains are pathogenic to a restricted range of citrus
hosts. Most outbreaks occur on Mexican lime (Citrus x aur-
antiifolia) in Asia, the Arabian Peninsula and Eastern Africa
[10–12]. Pathotype Aw has been reported to date on the In-
dian subcontinent, in the Arabian Peninsula and the USA.
Natural infections are restricted to Mexican lime and ale-
mow (C. xmacrophylla). It has the unique feature of causing
a hypersensitive response when inoculated into some non-
host citrus lines such as C. x paradisi and C. x sinensis [13,
14]. Pathotypes represent phylogenetically-coherent lineages
based on whole-genome sequencing (WGS) data or geno-
typing data [15–18]. These techniques have made it possible
to identify previously unreported sublineages within patho-
types A and A*, which are responsible for outbreaks both in
the pathogen’s area of origin or in regions where it has re-
cently emerged [11, 16, 18].
Long-distance dissemination of X. citri pv. citri occurs

primarily when humans transport diseased citrus plant
material [19]. Since the early 2000s, there have been re-
ports of several cases of geographical expansion and suc-
cessful pathogen establishment in some Western and
Eastern African countries, and the Caribbean [10, 20, 21].
X. citri pv. citri is a major threat to disease-free areas (e.g.
New Zealand, Australia, and countries in Southern Africa
and the Mediterranean) where it is listed as a quarantine
organism. Preventing the establishment of X. citri pv. citri
in new areas very much depends on the availability of
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specific detection protocols and the implementation of
surveillance and quarantine measures. Given the signifi-
cance of ACC, numerous molecular detection methods
have been developed, (i) conventional PCR assays [22–27],
(ii) real-time quantitative qPCR assays [28, 29]; and (iii)
Lamp assay [30]. Issues of inclusivity (i.e., the ability of the
assay to detect all strains of the target organism) and/or
exclusivity (i.e., the capacity to generate negative responses
from non-target strains) occur with most of the previous
assays developed for X. citri pv. citri [31]. Therefore, we
evaluated recently published diagnostic tools and devel-
oped a new system.
Many microbial genomes that are publicly available

constitute a valuable resource for identifying new, spe-
cific molecular markers. In this study, we describe the
development of highly specific conventional and real-
time PCR assays from a DNA marker selected using in
silico comparative genomic analysis of X. citri pv. citri ge-
nomes and non-target Xanthomonas genomes. The real-
time PCR assay amplified an endogenous plant DNA se-
quence present in the sample (5.8S rDNA) as a co-
extracted and co-amplified internal control. It reveals
any flaws in DNA extraction and the presence of PCR
inhibitors [32–34]. These protocols were further vali-
dated using naturally infected citrus material collected in
the field. These new molecular tools were independently
evaluated and compared to existing protocols by the
French Agency for Food, Environmental and Occupa-
tional Health & Safety (ANSES).

Results
Selection of a specific DNA fragment for PCR and qPCR
assay design
The comparative genomic analysis of 30 X. citri pv. citri
genomes against 30 other Xanthomonas genomes using
the MicroScope platform [35] resulted in the selection
of 33 coding DNA sequences (CDS), which were present
in all the X. citri pv. citri genomes and absent in the
non-target genomes used (Table S1). CDS with sizes <

100 bp (n = 2) and CDS corresponding to mobile ele-
ments (integrases, transposases, phage- and plasmid-
borne genes) were not considered further (n = 5). The
CDS XAC1051 (564 pb) encoding for a putative trans-
membrane protein displayed the best in silico specificity
among the remaining candidates. A homologous sequence
was only found in the X. citri pv. cajani strain LMG 558. It
was split into two fragments located on two different con-
tigs of its draft sequence. Thus, XAC1051 was used to de-
sign the qPCR Taqman® assay and conventional PCR
assays (Table 1). The Primer Express® software used to de-
sign systems could not generate an efficient probe/primer
system to allow the lack of amplification of X. citri pv.
cajani strains. Conversely, primers were successfully de-
signed to prevent the target amplification in X. citri pv.
cajani for the conventional PCR assay.

Analytical specificity of XAC1051-2qPCR
The 58 bp targeted DNA region of X. citri pv. citri strain
IAPAR 306, including the primers and probes perfectly
matched (100% identity and 100% query coverage) with
sequences belonging to all the 91 X. citri pv. citri ge-
nomes available on NCBI, three X. citri pv. citri histor-
ical genomes from herbarium samples used in this study
and the X. citri pv. cajani strain LMG 558. Conversely,
no significant similarity was found with sequences from
the other 2790 non-target xanthomonads.
All X. citri pv. citri strains showed a FAM-positive signal

when tested with the real-time PCR assay. The typical ex-
ponential amplification curves and Ct values ranged from
27.7 to 31.8 (mean of 29.7 and standard deviation of 1.0).
Among the 101 non-target strains, only three strains of X.
citri pv. cajani tested positive with the real-time PCR assay
with Ct values ranging from 22.9 to 23.7.

Dynamic range
The dynamic range of the duplex quantitative real-time
PCR was assayed with three independent 10-fold dilu-
tion series of strain IAPAR 306 in each of the five

Table 1 Primers and probes used in this study

Primers/probes Sequence 5′ > 3’ Amplicon size

XAC1051-2qPCR

P-XAC1051-MGB (6-Fam™) CGGTGAGAAGCTGTAC 58 bp

qPCR-XAC1051-F AGAGGCGCACTATGGCTTTC

qPCR-XAC1051-R CAACCCAGGACCTGCAAGAA

P-citrus5.8S- MGB (Vic™) ATCCCGTGAACCATCG 94 bp

citrus5.8S -F GCGAAATGCGATACTTGGTGTGA

citrus5.8S-R CGTGCCCTCGGCCTAATG

XAC1051-F/R PCR

XAC1051-F AAATTCTTGTCGATCTGCTGGCT 499 bp

XAC1051-R GCCGCCGCATAATTCTTCTCAC
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different plant matrices. Calibration curves were con-
structed for each plant matrix by plotting the obtained
Ct values against the Log10 of the standard concentra-
tions (Fig. 1 and Fig. S1). A very strong linear relation-
ship was observed between Ct values and the logarithm
of bacterial concentration down to 1 × 103 CFUml-1 for
all plant matrices with 0.988 > r2 > 0.992. The PCR effi-
ciency (E) ranged from 90 to 102% according to the dif-
ferent plant matrices. As target concentration decreased,
some of the replicate samples appeared to be negative
(undetermined results): 22 negative signals out of 45 and
39 out of 45 registered for the concentrations of 102

CFUml− 1 and 101 CFUml− 1, respectively. Nevertheless,
when the calibration curves included data from the 102

CFUml− 1 concentration, the coefficient and efficiency
values were still acceptable (0.976 > r2 > 0.991 and 92% <
E < 105%). In other words, the Ct values obtained for
low target concentrations could be valid and may be
considered as positive signals in routine diagnosis.

Plant internal control
A VIC-positive signal, with Ct values ranging from 22.6
to 30.9, was detected for all symptomless (n = 90) and
spiked plant samples with bacterial concentrations ran-
ging from 1 × 101 to 1 × 104 CFUml− 1 (n = 180). For
higher bacterial concentrations, the number of VIC-
positive signals decreased proportionally to the increase
in bacterial populations: 15/36, 3/36 and 0/36 positive

signals were registered for the concentrations of 1 × 105

CFUml− 1, 1 × 106 CFUml− 1 and 1 × 107 CFUml− 1,
respectively.

Analytical sensitivity in plant extracts
Before determining the analytical sensitivity, the first
step was to implement a Ct cut-off, i.e., the value of Ct
beyond which the real-time PCR signal was no longer
considered as positive. Based on Youden’s index, the
cut-off was estimated at 35.4 (Fig. 2). This cycle cut-off
value was used to convert the quantitative data into bin-
ary data.
The limit of detection (LOD95%) was then determined

for the whole dataset by plotting the numbers of positive
responses obtained at the different concentrations
against the Log10 of bacterial concentrations (Fig. 3).
Log-Log was the best fitting curve with an estimated
LOD95% of 754 CFUml− 1 (95% CI 600–949), which
corresponds to 15 bacteria per reaction. The same sam-
ples tested with the XAC1051-PCR assay yielded to an
estimated LOD95% of 5234 CFUml− 1 (95% CI 3656–
7482), which corresponds to 105 bacteria per test
sample.

Repeatability, reproducibility and transferability
The intra-assay coefficients of variation obtained for all
Ct value triplicates ranged from 0.035 to 2.482% with a
median of 0.429%. The inter-assay coefficients of

Fig. 1 Standard curve obtained for a dilution series of the X. citri pv. citri strain IAPAR 306 in a sweet orange matrix. XAC1051-2qPCR was run on
total DNA extracted from sweet orange leaves spiked with serially suspensions obtained from 10-fold serial dilution (107 to 102 CFUml− 1). The
standard curve was constructed using linear regression analysis of the threshold cycle (Ct) values for the serial dilutions over the Log10 of the
initial target concentrations (compilation of all series and runs, corresponding to 9 replicates at each concentration level). The linear regression
equation, the efficiency value and the adjusted R2 are indicated
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Fig. 2 Determining the Ct cut-off according to the Youden index J. The optimal cut-off point is the PCR cycle with the highest value of the
Youden index value, which represents a trade-off between sensitivity and specificity. The Ct cut-off was estimated to be 35.4

Fig. 3 Determining the limit of detection (LOD95%) of the real-time qPCR assay. The x-axis represents the log of the bacterial concentrations, and
the y-axis represents the probability of detection (POD) of replicate samples with a Ct value below 35.4 (cut-off). Each red point on the graph
corresponds to means of 45 data samples. The smooth fitting line represents the best fitting model to the data points, based on a least squares
approach using a probit model. The dark dotted vertical line indicates the bacterial concentration corresponding to LOD 95% (754 CFUml− 1) and
the two clear dotted lines indicate the corresponding 95% confidence interval
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variations were calculated using the Ct values obtained
for the three independent dilution series in each plant
matrix and ranged from 0. 492 to 2.775% with a median
of 1.558%. These low values reflected the repeatability
and the reproducibility of the assay.
The qPCR efficiency values collected during the trans-

ferability assessment were all included between accepted
range (90–110%) and all correlation coefficients were su-
perior to 0.98 (Table 2). Low intra- and inter-assay Cv
values were obtained for all experiments. Cut-off values
were determined for each experiment involving a differ-
ent qPCR device. These cut-off values were used to con-
vert the quantitative data into qualitative data and to
estimate the LOD95% values. LOD95% values were not
statistically significant when the XAC1051-2qPCR proto-
col was tested on QS and LC480 devices.

Detection from naturally infected fruit
In order to detect X. citri pv. citri from symptomatic fruits
collected in the field, we used XAC1051-PCR, XAC1051-
2qPCR and enumeration of Xanthomonas-like colonies on
semi-selective agar medium (Table S2). All samples showing
canker lesions were tested positive using these methods for
all four assayed citrus lines, while all the healthy citrus con-
trol samples tested negative. Non-repeatable low qPCR sig-
nals (Ct > 35.4), interpreted as negative results, were
obtained for some replicates of a few symptomless samples.
Some doubtful Xanthomonas colonies were observed on KC
medium for some tangor samples. Nevertheless, suspensions
from these colonies were tested negative by XAC1051-
2qPCR. The plant signal was detected for all symptomless
samples, which confirmed that the failure to detect X. citri
pv. citri was not due to a technical problem during the step
of DNA extraction and/or PCR amplification.

Detection from herbarium citrus samples
DNA extracted from the three herbarium specimens dis-
played substantial fragmentation (between 70 and 90 nt

on average, see Table S3), as expected for DNA obtained
from this type of material [36]. Nevertheless, they all
tested positive with the Xac-qPCR assay. The presence
of X. citri pv. citri in these samples was further con-
firmed by analyzing the next generation sequencing data
(Table S3) obtained from the same samples during the
course of another study (Rieux, unpublished data).

Comparison of XAC1051-based conventional and real-
time PCR assays with existing molecular tests
All X. citri pv. citri strains, irrespective of pathotype,
tested positive with all five PCR assays and the three
qPCR assays, with the exception of strain NCPPB 211
for J-Taqpth-qPCR (Table 3 and Table S4). The X. citri
pv. aurantifolii B and C strains only tested positive only
with the conventional Jpth1/2 and VM3/VM4 PCR as-
says and the VM-Syb-qPCR assay, which is consistent
with previously published data [31].
In terms of exclusivity, the XAC1051-F/R PCR assay

displayed 100% exclusivity whereas the other PCR assays
picked up some non-target strains, with exclusivity
values of 77.8% for both Jpth1/2 and VM 3/4 primers,
88.8% for XACF/R primers and 75.0% for XCF/R, re-
spectively. Most of the PCR-positive non-target strains
were phylogenetically close to X. citri [37]. Among the
qPCR assays, XAC1051-2qPCR displayed the best exclu-
sivity because only one non-target strain of X. citri pv.
cajani was amplified, as seen above (97.2% exclusivity). J-
Taqpth-qPCR showed an acceptable specificity (91.7%
exclusivity) whereas VM-Syb-qPCR assay displayed only
77.8% exclusivity (i.e., the same value as for the conven-
tional primer pairs).
The sensitivity of the different molecular assays was

compared using different combinations of X. citri pv.
citri strains and plant matrices (Table S5). Of the differ-
ent conventional tests, the XAC1051-F/R assay was the
most sensitive, with a detection threshold of 3 × 103

ml− 1 in most of the plant matrices. A few samples were

Table 2 Characteristics of the XAC1051-2qPCR assay performed using three different devices

Plant matrix StepOnePlus QS LC480

qPCR Efficiency lemon 93% 94% 97%

orange 102% 103% 106%

R2 lemon 0.992 0.981 0.984

orange 0.988 0.986 0.987

Intra-assay variation Cv range (median) 0.07–2.48%
(0.34)

0.13–4.6%
(0.60)

0.14–3.6%
(0.81)

Inter-assay variation Cv range (median) 0.49–2.5%
(1.50)

0.55–3%
(1.30)

0.84–2.4%
(1.50)

Cut-off values 35.9 38.43 38.89

LOD95%
(CI)

2.90
(2.76–3.04)

3.04
(2.96–3.11)

3.09
(2.92–3.25)

Vic Ct range 25.8–31.2 22.3–27.9 23.4–29.7
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positive at 3 × 104 ml− 1. The Miyoshi XCF/R protocol
yielded similar results whereas all other conventional
PCR assays were found less sensitive (3 × 104 to 3 × 107

CFUml− 1, depending on plant matrices and strains
tested). Cut-off thresholds were determined for each
real-time protocol using the ROC method. As expected,
real-time PCR assays displayed a higher level of sensitiv-
ity than the conventional PCRs with almost identical
sensitivity (a majority of detection limits at 3 × 103 CFU
ml− 1).

Discussion
Xanthomonas citri pv. citri is a major threat to global
citrus production. The success of surveillance strategies
and quarantine measures to control the international
movement of X. citri pv. citri is highly dependent on the
availability of rapid and reliable in planta detection
tools. Previous studies have shown that a number of
existing diagnostic protocols developed for X. citri pv.
citri display insufficient exclusivity or in some cases in-
clusivity [31]. In this study, we developed new, highly
specific and sensitive molecular assays to diagnose, de-
tect and quantify X. citri pv. citri in citrus tissues. We
compared the new assays to existing diagnostic tools
using a broad collection of target and non-target strains
and in different citrus matrices. Importantly, the present
study evaluated how PCR protocols reacted to an exten-
sive X. citri pv. citri strain collection, a feature that most
earlier studies failed to achieve. Indeed, we assayed rep-
resentative samples of all the lineages/sublineages of this
bacterium, which have been reported to date throughout
the world [11, 16–18, 38].
The selected target gene, XAC1051, encodes for a

hypothetical transmembrane protein and is present on
the chromosome of strains for which a complete genome
sequence is available. This gene is part of a genomic

region previously considered to be specific to X. citri pv.
citri, when compared to X. citri pv aurantifolii B and C
strains [39].
When a conventional PCR format was used, our assay

appeared perfectly specific with 100% inclusivity and ex-
clusivity, values that outcompete other conventional
PCR assays.
Real-time quantitative PCR assays have significant

benefits compared to conventional PCR, including
shorter turnaround time, reproducibility and sensitivity.
In addition, this method can be used for both qualitative
and quantitative assessments (for recent examples, see
[40, 41]). We therefore developed a duplex real-time
PCR assay, targeting the same bacterial gene, and includ-
ing a plant internal control. This control targets a plant
5.8S rDNA sequence conserved among Citrus species.
We demonstrated successful amplification of the plant
internal control for X. citri pv. citri concentrations ≤1 ×
104 CFUml− 1. The plant signal was inhibited when
higher bacterial concentrations were present in the ex-
tracts, which is consistent with previously published data
[42]. Importantly, the plant control always yielded posi-
tive reactions in the absence of a bacterial signal. There-
fore, it shows that a negative response for the bacterium
is not due to a failure in the DNA extraction or PCR
amplification process.
The XAC-1051-2qPCR assay was shown to be highly

specific (100% inclusivity and 97.2% exclusivity). It dis-
played the best specificity when compared to the other
real-time PCR assays available to date. Only strains of X.
citri pv. cajani, responsible for bacterial leaf spot disease
of pigeon pea (Cajanus cajan, Fabaceae) [43] tested posi-
tive with this molecular assay. This pathogen seems geo-
graphically restricted to India where pigeon pea is its
sole known host species. X. citri pv. cajani was identified
as the closest relative to X. citri pv. citri in a recent

Table 3 Comparison of the specificity of several PCR and real-time qPCR protocols

Assay X. citri pv. citri X. citri pv.
aurantifolii
(n = 5)

X. euvesicatoria pv.
citrumelonis (n = 2)

Other X. citria

pathovars (n = 9)
Other
Xanthomonasa

species (n = 11)

Saprophytic
xanthomonadsb

(n = 15)

A
(n = 63)

A*
(n = 11)

Aw

(n = 4)

PCR Jpth1/2 62c 11 4 5 0 7 1 0

PCR VM3/4 63 11 4 5 0 7 1 0

PCR XACF/R 63 11 4 0 0 4 0 0

PCR XCF/R 63 11 4 0 0 9 0 0

PCR XAC1051-F/R 63 11 4 0 0 0 0 0

qPCR XAC1051-2qPCR 63 11 4 0 0 1 0 0

qPCR J-Taqpth-qPCR 63 11 4 0 0 3 0 0

qPCR VM-Syb-qPCR 63 11 4 5 0 7 1 0
a Isolated from Citrus spp. but not pathogenic to Citrus spp.
b Isolated from Citrus spp.
c Number of positive samples
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phylogenomic analysis [38], suggesting that this DNA re-
gion may have been present in their most recent com-
mon ancestor. If necessary, suspect samples can be
confirmed by performing the XAC1051-F/R PCR assay.
When real-time quantitative PCR is used as a qualita-

tive method, a Ct cut-off, i.e., the PCR cycle number
above which any sample response value (Ct) is consid-
ered to be a false positive, must be set. Indeed, depend-
ing on experimental conditions, some false positives
with high Ct values may be registered. These values re-
sult from a spontaneous increase in fluorescence back-
ground emissions and/or low-level DNA cross-
contaminations [44, 45]. The cut-off varies depending
on the experiment context: inherent characteristics of
the real-time PCR system, qPCR instrument, qPCR mix
and DNA template. A statistical approach based on
ROC analysis, where both false positive and false nega-
tive qPCR signals are considered, allowed us to establish
an optimal Ct cut-off. The estimated Ct cut-off was ap-
plied to determine the level of sensitivity of our assay in
different plant matrices. The XAC-1051-2qPCR assay
was shown to be highly sensitive with the capacity to de-
tect approximatively 15 target cells per reaction. It dem-
onstrated high repeatability and reproducibility. It also
proved to be transferable between PCR cyclers with an
optimization step, without compromising sensitivity and
specificity. Importantly, the XAC-1051-2qPCR assay
showed a good ability to detect the target from naturally
infected citrus fruits. Interestingly, as predicted in silico,
the XAC-1051-2qPCR assay was able to detect X. citri
pv. citri from some herbarium samples dating back to
1911 (Table S3), despite the small quantities, the high
fragmentation and the chemical modifications expected
when ancient DNA (aDNA) is obtained from samples of
this type [36]. The success of this assay is probably due
to its high sensitivity and the small size of the target
DNA (58pb). Interestingly, this result suggests that mo-
lecular tools, such as our XAC-1051-2qPCR assay, are
useful for screening herbaria for plant pathogens.
Screening is a prerequisite for further investigations such
as metagenomics or population genetic analyses geared
to reconstructing the evolutionary history of plant path-
ogens [46, 47].

Conclusions
Herein, we conducted a thorough comparative analysis
of several conventional and quantitative PCR protocols
using the same strain collection and plant samples.
Thus, we hope to provide end-users with precise infor-
mation with regard to the respective advantages and lim-
itations of the different protocols in order to help them
select one or more complementary methods for testing
plant material or microbial cultures.

In agreement with previous studies [48–50], we con-
clude that genome-informed identification of targets is a
powerful aid when it comes to developing highly specific
diagnostic techniques for plant pathogens.

Methods
Bacterial strains and culture conditions
Ninety-eight strains of X. citri pv. citri, representing the
currently known genetic diversity of this pathovar were
used in this study (Table S6). This collection included
the strain LMG 696. This X. citri pv. citri pathotype A*
strain was recently authenticated by WGS data, after ini-
tially being mislabeled as X. campestris pv. durantae
[38].
The present study also examined 101 non-target

strains representing other bacterial genera, other patho-
vars of X. citri, other Xanthomonas strains pathogenic to
rutaceous species and saprophytic Xanthomonas strains
isolated from citrus (Table S7).
To compare the different PCR and real-time quantita-

tive PCR protocols (see 2.10 and 3.4), a specific collec-
tion of strains was used, including some of the strains of
Tables S6 and S7. This collection is listed separately in
Table S4 to facilitate comprehension.
Strains were stored at − 80 °C on beads in cryovials

(Microbank Prolab Diagnostics) or freeze-dried for long-
term storage. All strains were streaked on yeast-
peptone-glucose agar (YPGA; yeast extract 7 g l− 1, pep-
tone 7 g l− 1, glucose 7 g l− 1, and agar 18 g l− 1; pH 7.2)
plates at 28 °C for 3–4 days to check for purity. Subcul-
tures were produced from single colonies on YPGA
plates incubated at 28 °C for 48 h. Bacterial suspensions
were prepared and diluted in 0.01M Tris buffer pH 7.2
(Sigma 7–9 Sigma-Aldrich, Saint-Quentin Fallavier,
France) unless otherwise stated. Plant or canker lesion
homogenates were prepared in the same buffer supple-
mented with 2% polyvinylpyrrolidone (PVP) with an
average mol wt of 40,000 (Sigma-Aldrich).

Selection of a DNA target specific to Xanthomonas citri
pv. citri and a plant internal control
A preliminary bioinformatics screening of candidate
CDSs was performed using the “gene phyloprofile” tool
in the MicroScope platform (Genoscope, Evry, France)
[35] on 30 X. citri pv. citri genomes, including pathotype
A, A* and AW strains against 30 non-target genomes of
Xanthomonas (other species and pathovars). The aim
was to select CDSs conserved in all X. citri pv. citri ge-
nomes that had limited or no identity to CDSs from
non-target genomes present in the database. Then, using
the selected nucleotide sequences as query, we per-
formed BLASTn and Megablast searches against NCBI
databases (February 2020): nr/nt, draft (n = 2225) and
complete genomes (n = 565) of Xanthomonas group
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(taxid = 32,033), complete plasmids (n = 17,302) and
complete bacteriophages (n = 2717). In silico presence
and identity of chosen target regions was further con-
firmed in the three ancient genomes used in this study
(see above, detection from herbarium citrus samples,
and Table S3).
The 5.8S rDNA sequence from C. x aurantiifolia

(MF797954) was selected to develop a endogenous plant
internal control. This multicopy DNA region is con-
served in the Rutaceae family, particularly among Citrus
species.

Duplex real-time quantitative PCR (XAC1051-2qPCR) and
PCR assays
Taqman® probe and primers were designed from the X.
citri pv. citri XAC1051 gene and the plant 5.8S rDNA
sequence using Primer Express® software Version 3.0
(Applied Biosystems, Courtaboeuf, France) and were
provided by Applied Biosystems (Courtaboeuf, France).
The different Taqman® probe and primer systems were
checked in Oligo 7.6 (Molecular Biology Insights, Inc.,
Cascade, CO, USA) in order to minimize interactions
between the different oligonucleotides. The selected
primers and probes are listed in Table 1.
Amplifications were carried out in 15-μl reaction vol-

umes (in HPLC grade water) containing 7.5 μl of 2×
Mastermix (Applied Biosystems), 600 nM of qPCR-
XAC1051-F and qPCR -XAC1051-R primers, 425 nM of
5′FAM-labeled XAC-1051 MGB probe (P-XAC1051-
MGB), 50 nM of citrus5.8SF and citrus5.8SR primers, 50
nM of 5′VIC-labeled citrus5.8S MGB probe (P-
citrus5.8S- MGB) and 2 μl (pure bacterial suspensions)
or 5 μl (total plant DNA extract) of template DNA.
The real-time PCR cycling conditions included a step

at 50 °C for 2 min, an initial denaturation step at 95 °C
for 2 min followed by 40 cycles of denaturation and an-
nealing/elongation for 15 s at 95 °C and 1min at 60 °C,
respectively. Analyses were performed using the StepO-
nePlus software version v2.2.2. Each sample was at least
duplicated.
Conventional primers were also designed from the

XAC1051 gene using Oligo 7.6 (Table 1). Amplifications
were carried out in 25-μl reaction volumes containing
5 μl of Green GoTaq® Reaction Buffer, 2 mM MgCl2,
0.5 μM of XAC1051-F and XAC1051-R, 0.2 mM each
dNTP, 1.25 U of GoTaq® DNA Polymerase (Promega,)
and 2 μl of template DNA. PCR amplifications were per-
formed using a Veriti™ Thermal Cycler (Applied Biosys-
tems, Courtaboeuf, France). The amplification program
included denaturation at 95 °C for 2 min, 35 cycles con-
sisting of denaturation at 95 °C for 45 s, annealing at
65 °C for 45 s, and extension at 72 °C for 1 min, and a
final extension step at 72 °C for 5 min.

Specificity of XAC1051-2qPCR assay
The in silico-determined specificity of the 58 bp target
region from X. citri pv. citri was subject to an addition
experimental check following the guidelines in the EPPO
PM 7/98 (4) standard protocol [51]. The real time PCR
protocol was assayed on pure cultures of target (n = 98)
and non-target (n = 101) strains (Tables S6 and S7).
Spectrophotometrically adjusted suspensions containing
approx. 1 × 108 CFUml− 1 were diluted 100 or 10,000-
fold for non-target and target strain assays, respectively.
The suspensions were heated at 95 °C for 2 min and
chilled on ice.

Dynamic range in the plant matrix
The dynamic range of the real-time PCR assay, i.e., the
range of initial template concentrations for which accur-
ate Ct values are obtained, was determined on the dilu-
tion series of the strain IAPAR 306 in different citrus
matrices: sweet orange (C. x sinensis), clementine man-
darin (C. reticulata), grapefruit (C. x paradisi), lemon
(C. x limon) and makrut lime (C. hystrix). Overnight cul-
tures of IAPAR 306 were adjusted spectrophotometric-
ally to a concentration of approx. 1 × 108 CFUml− 1 and
serially 10-fold diluted. Fruit peel (0.1 g) was homoge-
nized in 10ml buffer using a grinder (Homex 6, Bioreba,
Reinach, Switzerland) and spiked with bacterial suspen-
sions at final concentrations ranging from 1 × 101 to 1 ×
107 CFUml− 1. Three replicated dilution series were per-
formed in each citrus matrix. Total DNA was extracted
from 2ml homogenates using DNeasy Plant Mini kit
(Qiagen, Courtaboeuf, France). Three qPCR replicates
were carried out at each contamination level (nine Ct
values were thus registered for each plant matrix and
contamination level). Non-template controls (NTC) con-
sisting of plant matrix and mix without DNA were in-
cluded as negative samples (n = 18). Standard curves
were generated for each citrus matrix by plotting Ct
values against the logarithm of initial DNA concentra-
tions. The reaction efficiency E was calculated according

to the slope of the standard curves as follows: E

¼ 10ð −
1

slopeÞ − 1 . The XAC1051-F/R PCR assay was also
performed in duplicate using the same samples.

Cut-off Ct value and limit of detection (LOD)
A ROC (Receiver operating characteristic) was used in
order to determine the Ct cut-off value, i.e., the PCR
cycle number above which signals are no longer inter-
preted as positive [52, 53]. This analysis, based on the
determination of the Youden J index, which considers
false positives and negatives [42, 54], was performed on
Ct values obtained (see § 2.5. above) for samples with a
priori positive status, i.e., citrus spiked samples with dif-
ferent bacterial concentrations (n = 135) and for samples
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with a priori negative status, i.e., NTC (n = 110). Samples
with Ct values higher than the Ct cut-off value were
then considered negative.
The analytical sensitivity of the XAC1051-2qPCR and

the XAC1051-F/R PCR were estimated by determining
the 95% limit of detection (LOD95%), i.e., the concentra-
tion at which a detection probability of 95% is expected
[55–57] as explained previously [42].

Repeatability, reproducibility and transferability
Repeatability (i.e., the level of agreement between repli-
cates of a sample tested under the same conditions) and
reproducibility (i.e., the ability of a test to provide con-
sistent results when applied to aliquots of the same sam-
ple tested under different conditions (time, personnel,
equipment, location, etc.)) were estimated according to
the EPPO standard PM 7/76 (5) [58]. Repeatability was
evaluated by computing intra-assay coefficients of vari-
ation (Cv ¼ σ

μÞ based on Ct mean values of qPCR tripli-

cates obtained for the concentrations ranging from 1 ×
103 CFUml− 1 to 1 × 107 CFUml− 1 (70 Cv values). Re-
producibility was evaluated on three qPCR runs inde-
pendently performed for each plant matrix at different
times. Inter-assay Cv values were calculated from the Ct
values (PCR triplicate means) obtained for concentra-
tions ranging from 1 × 103 CFUml− 1 to 1 × 107 CFU
ml− 1 (25 Cv values).
The protocol’s transferability was evaluated by repro-

ducibility experiments performed by different operators,
at different periods and in different laboratories (Cirad
and ANSES). Dilution series of suspensions prepared
from the IAPAR 306 strain in lemon and orange matri-
ces already tested on the StepOnePlus device (Applied
Biosystems) were also assayed using the Light Cycler LC
480 (Roche Life Science, Meylan, France) and the
Quantstudio5 (QS5) (Applied Biosystems) real-time PCR
systems. The application of the StepOnePlus master mix
and real time cycling conditions for other devices gave
poor results and required optimization (data not shown).
Successful amplifications were obtained for both LC480
and QS5 devices when using the GoTaq® probe qPCR
master mix kit (Promega) and the following cycling con-
ditions: a step at 95 °C for 2 min followed by 45 cycles of
denaturation and annealing/elongation for 15 s at 95 °C
and 1min at 60 °C, respectively. The concentrations of
the different primers and probes remained the same as
for the StepOnePlus. Efficiency and correlation coeffi-
cients were calculated for each fruit/real-time device
data set. Cut-off values and LOD95% were estimated for
each real-time qPCR device data set. Intra-assay and in-
ter coefficients of variation were also calculated for each
real-time qPCR device data set.

Detection from naturally infected fruit
Fifteen fruit (several species) showing typical ACC symp-
toms were collected in citrus groves in Reunion (Table
S2). Three lesions per fruit (0.1 g each) were sampled
and independently homogenized in 10 ml buffer (45
samples). Fifty microliters were plated in duplicates on
KC medium to estimate target concentrations [59]. Total
DNA was extracted from 2ml homogenates using
DNeasy Plant Mini kit (Qiagen, Courtaboeuf, France).
Fifteen citrus fruits showing no canker symptoms were
analyzed as well, with two or three samples (same size as
diseased samples) collected independently per fruit and
processed as described above (43 samples). Conventional
and real time quantitative PCR assays were performed
on the different samples as described in § 2.3.

Detection from herbarium citrus samples
The duplex PCR assay was also used to screen three herb-
arium citrus samples bearing typical citrus canker lesions,
and collected between 1911 to 1992 in different areas
(Table S3). They were provided by the Royal Mauritius
Herbarium (acronym: MAU) and the National Herbarium
of the Muséum National d’Histoire Naturelle, France
(acronym: P). DNA extraction was performed in a bleach-
cleaned facility room according to the protocol described
in §2.5 using 0.01 g of leaf fragments (instead of fruit peel)
as starting material. DNA concentration and fragment size
were measured with Qubit (Invitrogen life Technologies)
and TapeStation (Agilent Technologies) high sensitivity
assays, respectively, according to the manufacturers’ in-
structions. The XAC1051-dqPCR assay was performed as
described in § 2.3.

Comparison of XAC1051-based conventional and real-
time PCR assays with existing molecular tests
This comparison was performed by a laboratory (ANSE
S), which is different to the one where the qPCR
XAC1051-based conventional and real-time PCR assays
were developed (Cirad). We considered a selection of
published PCR and real-time PCR protocols based on
previously published data [31] or preliminary experimen-
tal and/or in silico data analyses (in the case of the most
recent protocols). This excluded a recently published
multiplex protocol designed to detect and differentiate
between several citrus-associated xanthomonads [23],
because the primers selected for X. citri pv. citri patho-
type A perfectly matched in silico and reacted in prelim-
inary assays with five other Xanthomonas citri
pathovars. Table S8 presents the published protocols
(and associated experimental conditions), which passed
the first screen and were compared to the XAC1051-
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based conventional and real-time PCR assays in terms of
analytical specificity and sensitivity.
In the first assay, bacterial suspensions in sterile dis-

tilled water (containing approx. 1 × 104 or 1 × 106 CFU
ml− 1 for target and non-target strains, respectively) were
used. A set of X. citri pv. citri strains (n = 78) and other
xanthomonads (n = 42) (Table S4) was assayed in dupli-
cate to compare the analytical specificity following the
guidelines in EPPO PM 7/98 (4) standard protocol [51].
Then, the comparison of analytical sensitivity was car-

ried out on different plant matrices spiked with tenfold-
diluted bacterial suspensions. Plant matrices included
the leaf or fruit peel of sweet orange grapefruit, lemon,
Tahiti lime (C. x latifolia), clementine (C. x clementina)
and makrut lime. They were spiked with 10-fold dilu-
tions of the X. citri pv. citri strain CFBP 2525 with final
concentrations ranging from 3 × 102 to 3 × 107 CFU
ml− 1. In addition, leaves and fruit peels of Mexican lime
(i.e., a host species susceptible to all X. citri pv. citri
pathotypes) were spiked with 10-fold dilutions of the fol-
lowing strains: pathotype A strains JJ238–29 and
LH001–1 (lineage 1 and 2, respectively), pathotype Aw

strain LG115 (lineage 3), pathotype A* strain CFBP 2911
(lineage 4), the X. citri pv. aurantifolii pathotype B strain
CFBP 2902 or the X. citri pv. aurantifolii pathotype C
strain CFBP 2866 (same final concentrations as CFBP
2525). Homogenate production (0.1 mg plant matrix 5
ml buffer) and DNA extractions were performed as de-
scribed above. PCR or real-time PCR assays were per-
formed in duplicate.
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