V. Sikka, V. K. Chattu, R. K. Popli, S. C. Galwankar, D. Kelkar et al., The Emergence of Zika Virus as a Global Health Security Threat: A Review and a Consensus Statement of the INDUSEM Joint working Group (JWG), J. Glob. Infect. Dis, vol.8, pp.3-15, 2016.

D. Musso and D. J. Gubler, Zika Virus, Clinical Microbiology Reviews, vol.29, issue.3, pp.487-524, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02263641

A. R. Plourde and E. M. Bloch, A Literature Review of Zika Virus, Emerging Infectious Diseases, vol.22, issue.7, pp.1185-1192, 2016.

S. C. Weaver, F. Costa, M. A. Garcia-blanco, A. I. Ko, G. S. Ribeiro et al., Zika virus: History, emergence, biology, and prospects for control, Antiviral Research, vol.130, pp.69-80, 2016.

A. D. Haddow, A. J. Schuh, C. Y. Yasuda, M. R. Kasper, V. Heang et al., Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage, PLoS Neglected Tropical Diseases, vol.6, issue.2, p.e1477, 2012.

B. D. Lindenbach and C. M. Rice, Molecular biology of flaviviruses, Advances in Virus Research, vol.59, pp.23-61, 2003.

S. S. Hasan, M. Sevvana, R. J. Kuhn, and M. G. Rossmann, Structural biology of Zika virus and other flaviviruses, Nature Structural & Molecular Biology, vol.25, issue.1, pp.13-20, 2018.

S. Bos, W. Viranaicken, J. Turpin, C. El-kalamouni, M. Roche et al., The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells, Virology, vol.516, pp.265-273, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702657

J. Y. Seo, R. Yaneva, and P. Cresswell, Viperin: A Multifunctional, Interferon-Inducible Protein that Regulates Virus Replication, Cell Host & Microbe, vol.10, issue.6, pp.534-539, 2011.

K. J. Helbig and M. R. Beard, The Role of Viperin in the Innate Antiviral Response, Journal of Molecular Biology, vol.426, issue.6, pp.1210-1219, 2014.

Y. L. Chan, T. H. Chang, C. L. Liao, and Y. L. Lin, The Cellular Antiviral Protein Viperin Is Attenuated by Proteasome-Mediated Protein Degradation in Japanese Encephalitis Virus-Infected Cells, Journal of Virology, vol.82, issue.21, pp.10455-10464, 2008.

K. H. Van-der-hoek, N. S. Eyre, B. Shue, O. Khantisitthiporn, K. Glab-ampi et al., Viperin is an important host restriction factor in control of Zika virus infection, Scientific Reports, vol.7, issue.1, 2017.

C. Panayiotou, R. Lindqvist, C. Kurhade, K. Vonderstein, J. Pasto et al., Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation, Journal of Virology, vol.92, issue.7, pp.2054-2071, 2018.

B. Vanwalscappel, T. Tada, and N. R. Landau, Toll-like receptor agonist R848 blocks Zika virus replication by inducing the antiviral protein viperin, Virology, vol.522, pp.199-208, 2018.

R. Lindqvist and A. K. Överby, The Role of Viperin in Antiflavivirus Responses, DNA and Cell Biology, vol.37, issue.9, pp.725-730, 2018.

X. Wang, E. R. Hinson, and P. Cresswell, The Interferon-Inducible Protein Viperin Inhibits Influenza Virus Release by Perturbing Lipid Rafts, Cell Host & Microbe, vol.2, issue.2, pp.96-105, 2007.

S. Wang, X. Wu, T. Pan, W. Song, Y. Wang et al., Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33, Journal of General Virology, vol.93, issue.1, pp.83-92, 2012.

E. Marcuzzi, R. Angioni, B. Molon, and B. Calì, Correction: Marcuzzi, E., et al. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int. J. Mol. Sci. 2019, 20, 96, International Journal of Molecular Sciences, vol.20, issue.11, p.2651, 2019.

N. Nasr, S. Maddocks, S. G. Turville, A. N. Harman, N. Woolger et al., HIV-1 infection of human macrophages directly induces viperin which inhibits viral production, Blood, vol.120, issue.4, pp.778-788, 2012.

K. J. Helbig, N. S. Eyre, E. Yip, S. Narayana, K. Li et al., The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A, Hepatology, vol.54, issue.5, pp.1506-1517, 2011.

K. J. Helbig, J. M. Carr, J. K. Calvert, S. Wati, J. N. Clarke et al., Viperin Is Induced following Dengue Virus Type-2 (DENV-2) Infection and Has Anti-viral Actions Requiring the C-terminal End of Viperin, PLoS Neglected Tropical Diseases, vol.7, issue.4, p.e2178, 2013.

A. S. Upadhyay, K. Vonderstein, A. Pichlmair, O. Stehling, K. L. Bennett et al., Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity, Cell. Microbiol, vol.16, pp.834-848, 2014.

A. S. Gizzi, T. L. Grove, J. J. Arnold, J. Jose, R. K. Jangra et al., A naturally occurring antiviral ribonucleotide encoded by the human genome, Nature, vol.558, issue.7711, pp.610-614, 2018.

D. Jiang, H. Guo, C. Xu, J. Chang, B. Gu et al., Identification of Three Interferon-Inducible Cellular Enzymes That Inhibit the Replication of Hepatitis C Virus, Journal of Virology, vol.82, issue.4, pp.1665-1678, 2007.

E. R. Hinson and P. Cresswell, The N-terminal Amphipathic ?-Helix of Viperin Mediates Localization to the Cytosolic Face of the Endoplasmic Reticulum and Inhibits Protein Secretion, Journal of Biological Chemistry, vol.284, issue.7, pp.4705-4712, 2008.

G. Gadea, S. Bos, P. Krejbich-trotot, E. Clain, W. Viranaicken et al., A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene, Virology, vol.497, pp.157-162, 2016.

A. Gaudry, S. Bos, W. Viranaicken, M. Roche, P. Krejbich-trotot et al., The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells, International Journal of Molecular Sciences, vol.19, issue.4, p.1093, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01767077

J. A. Wohlschlegel, E. S. Johnson, S. I. Reed, and J. R. Yates, Global analysis of protein sumoylation in Saccharomyces cerevisiae, J. Biol. Chem, vol.279, pp.45662-45668, 2004.

X. J. Yang and C. M. Chiang, Sumoylation in gene regulation, human disease, and therapeutic action, F1000Prime Reports, vol.5, 2013.

U. Sahin, O. Ferhi, X. Carnec, A. Zamborlini, L. Peres et al., Interferon controls SUMO availability via the Lin28 and let-7 axis to impede virus replication, Nat. Commun, vol.5, p.4187, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02440658

K. Doiron, V. Goyon, E. Coyaud, S. Rajapakse, B. Raught et al., The dynamic interacting landscape of MAPL reveals essential functions for SUMOylation in innate immunity, Sci. Rep, vol.7, p.107, 2017.

A. J. Lowrey, W. Cramblet, and G. L. Bentz, Viral manipulation of the cellular sumoylation machinery, Cell Communication and Signaling, vol.15, issue.1, 2017.

R. T. Hay, SUMO: A history of modification, Mol. Cell, vol.18, pp.1-12, 2005.

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.947-956, 2007.

E. Frumence, M. Roche, P. Krejbich-trotot, C. El-kalamouni, B. Nativel et al., The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction, Virology, vol.493, pp.217-226, 2016.