Q. Ye, Z. Y. Liu, J. F. Han, T. Jiang, X. F. Li et al., Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas, Infection, Genetics and Evolution, vol.43, pp.43-49, 2016.

L. R. Petersen, D. J. Jamieson, and M. A. Honein, Zika Virus, New England Journal of Medicine, vol.375, issue.3, pp.293-295, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01465099

V. M. Cao-lormeau, A. Blake, S. Mons, S. Lastère, C. Roche et al., Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study, The Lancet, vol.387, issue.10027, pp.1531-1539, 2016.

G. V. França, L. Schuler-faccini, W. K. Oliveira, C. M. Henriques, E. H. Carmo et al., Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation, The Lancet, vol.388, issue.10047, pp.891-897, 2016.

X. Xie, C. Shan, and P. Y. Shi, Restriction of Zika Virus by Host Innate Immunity, Cell Host Microbe, vol.19, issue.16, pp.30902-30905, 2016.

W. M. Schneider, M. D. Chevillotte, and C. M. Rice, Interferon-Stimulated Genes: A Complex Web of Host Defenses, Annual Review of Immunology, vol.32, issue.1, pp.513-545, 2014.

H. M. Lazear, J. Govero, A. M. Smith, D. J. Platt, E. Fernandez et al., A Mouse Model of Zika Virus Pathogenesis, Cell Host & Microbe, vol.19, issue.5, pp.720-730, 2016.

D. R. Smith, B. Hollidge, S. Daye, X. Zeng, C. Blancett et al., Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon, PLOS Neglected Tropical Diseases, vol.11, issue.1, p.e0005296, 2017.

B. Webster, S. W. Werneke, B. Zafirova, S. This, S. Coléon et al., Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses, eLife, vol.7, p.34273, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01822838

M. Swiecki and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells, Nature Reviews Immunology, vol.15, issue.8, pp.471-485, 2015.

A. L. Blasius and B. Beutler, Intracellular Toll-like Receptors, Immunity, vol.32, issue.3, pp.305-315, 2010.

T. Kawai, S. Sato, K. J. Ishii, C. Coban, H. Hemmi et al., Interferon-? induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6, Nature Immunology, vol.5, issue.10, pp.1061-1068, 2004.

P. Sun, S. Fernandez, M. A. Marovich, D. R. Palmer, C. M. Celluzzi et al., Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus, Virology, vol.383, issue.2, pp.207-215, 2009.

E. Décembre, S. Assil, M. L. Hillaire, W. Dejnirattisai, J. Mongkolsapaya et al., Sensing of Immature Particles Produced by Dengue Virus Infected Cells Induces an Antiviral Response by Plasmacytoid Dendritic Cells, PLoS Pathogens, vol.10, issue.10, p.e1004434, 2014.

L. Sinigaglia, S. Gracias, E. Décembre, M. Fritz, D. Bruni et al., Immature particles and capsid-free viral RNA produced by Yellow fever virus-infected cells stimulate plasmacytoid dendritic cells to secrete interferons, Scientific Reports, vol.8, issue.1, p.10889, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327450

J. R. Bowen, K. M. Quicke, M. S. Maddur, J. T. O?neal, C. E. Mcdonald et al., Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells, PLOS Pathogens, vol.13, issue.2, p.e1006164, 2017.

J. Rock, E. Schneider, J. R. Grun, A. Grutzkau, R. Kuppers et al., BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCgamma2, Eur J Immunol, vol.37, pp.3564-75, 2007.

S. Bos, W. Viranaicken, J. Turpin, C. El-kalamouni, M. Roche et al., The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells, Virology, vol.516, pp.265-273, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702657

H. Saïdi, M. Bras, P. Formaglio, M. T. Melki, B. Charbit et al., HMGB1 Is Involved in IFN-? Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells, PLOS Pathogens, vol.12, issue.2, p.e1005407, 2016.

E. Frumence, W. Viranaicken, S. Bos, M. T. Alvarez-martinez, M. Roche et al., A Chimeric Zika Virus between Viral Strains MR766 and BeH819015 Highlights a Role for E-glycan Loop in Antibody-mediated Virus Neutralization, Vaccines, vol.7, issue.2, p.55, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02477822

H. Lecoeur, L. M. De-oliveira-pinto, and M. L. Gougeon, Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay, Journal of Immunological Methods, vol.265, issue.1-2, pp.81-96, 2002.

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop et al., Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.

P. Wu, J. Wu, S. Liu, X. Han, J. Lu et al., TLR9/TLR7-triggered downregulation of BDCA2 expression on human plasmacytoid dendritic cells from healthy individuals and lupus patients, Clinical Immunology, vol.129, issue.1, pp.40-48, 2008.

T. S. Mathan, C. G. Figdor, and S. I. Buschow, Human Plasmacytoid Dendritic Cells: From Molecules to Intercellular Communication Network, Frontiers in Immunology, vol.4, 2013.

S. Seth, L. Oberdörfer, R. Hyde, K. Hoff, V. Thies et al., CCR7 Essentially Contributes to the Homing of Plasmacytoid Dendritic Cells to Lymph Nodes under Steady-State As Well As Inflammatory Conditions, The Journal of Immunology, vol.186, issue.6, pp.3364-3372, 2011.

P. S. Jahn, K. S. Zanker, J. Schmitz, and A. Dzionek, BDCA-2 signaling inhibits TLR-9-agonist-induced plasmacytoid dendritic cell activation and antigen presentation, Cell Immunol, vol.265, pp.15-22, 2010.

A. Silvin, C. I. Yu, X. Lahaye, F. Imperatore, J. B. Brault et al., Constitutive resistance to viral infection in human CD141+dendritic cells, Science Immunology, vol.2, issue.13, p.eaai8071, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02988666

A. Bréhin, J. Mouriès, M. P. Frenkiel, G. Dadaglio, P. Desprès et al., Dynamics of Immune Cell Recruitment during West Nile Encephalitis and Identification of a New CD19+B220?BST-2+Leukocyte Population, The Journal of Immunology, vol.180, issue.10, pp.6760-6767, 2008.

J. Decalf, S. Fernandes, R. Longman, M. Ahloulay, F. Audat et al., Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients, Journal of Experimental Medicine, vol.204, issue.10, pp.2423-2437, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01402312

N. Desai and J. Goldfarb, Co-cultured human embryos may be subjected to widely different microenvironments: pattern of growth factor/cytokine release by Vero cells during the co-culture interval, Human Reproduction, vol.13, issue.6, pp.1600-1605, 1998.

N. N. Desai and J. M. Goldfarb, Growth factor/cytokine secretion by a permanent human endometrial cell line with embryotrophic properties, Journal of Assisted Reproduction and Genetics, vol.13, issue.7, pp.546-550, 1996.

W. Cao, L. Zhang, D. B. Rosen, L. Bover, G. Watanabe et al., BDCA2/Fc?RI? Complex Signals through a Novel BCR-Like Pathway in Human Plasmacytoid Dendritic Cells, PLoS Biology, vol.5, issue.10, p.e248, 2007.

B. Kerscher, J. A. Willment, and G. D. Brown, The Dectin-2 family of C-type lectin-like receptors: an update, International Immunology, vol.25, issue.5, pp.271-277, 2013.

A. Dzionek, Y. Sohma, J. Nagafune, M. Cella, M. Colonna et al., BDCA-2, a Novel Plasmacytoid Dendritic Cell?specific Type II C-type Lectin, Mediates Antigen Capture and Is a Potent Inhibitor of Interferon ?/? Induction, Journal of Experimental Medicine, vol.194, issue.12, pp.1823-1834, 2001.

B. Aouar, D. Kovarova, S. Letard, A. Font-haro, J. Florentin et al., Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells, PloS One, vol.11, p.156063, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01357267

C. Wang, H. Puerta-guardo, S. B. Biering, D. R. Glasner, E. B. Tran et al., Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation, PLOS Pathogens, vol.15, issue.7, p.e1007938, 2019.

S. Shresta, J. L. Kyle, H. M. Snider, M. Basavapatna, P. R. Beatty et al., Interferon-Dependent Immunity Is Essential for Resistance to Primary Dengue Virus Infection in Mice, Whereas T- and B-Cell-Dependent Immunity Are Less Critical, Journal of Virology, vol.78, issue.6, pp.2701-2710, 2004.

K. M. Quicke and M. S. Suthar, The Innate Immune Playbook for Restricting West Nile Virus Infection, Viruses, vol.5, issue.11, pp.2643-2658, 2013.

J. Morrison, M. Laurent-rolle, A. M. Maestre, R. Rajsbaum, G. Pisanelli et al., Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling, PLoS Pathogens, vol.9, issue.3, p.e1003265, 2013.

B. Webster, S. Assil, and M. Dreux, Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells, Journal of Virology, vol.90, issue.22, pp.10050-10053, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01909011

X. Sun, S. Hua, H. R. Chen, Z. Ouyang, K. Einkauf et al., Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication, Cell Reports, vol.21, issue.12, pp.3471-3482, 2017.

M. C. Silva, A. Guerrero-plata, F. D. Gilfoy, R. P. Garofalo, and P. W. Mason, Differential Activation of Human Monocyte-Derived and Plasmacytoid Dendritic Cells by West Nile Virus Generated in Different Host Cells, Journal of Virology, vol.81, issue.24, pp.13640-13648, 2007.

D. Bruni, M. Chazal, L. Sinigaglia, L. Chauveau, O. Schwartz et al., Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons, Science Signaling, vol.8, issue.366, pp.ra25-ra25, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285424

S. Assil, S. Coleon, C. Dong, E. Decembre, L. Sherry et al., Plasmacytoid Dendritic Cells and Infected Cells Form an Interferogenic Synapse Required for Antiviral Responses, Cell Host Microbe, vol.25, pp.730-745, 2019.

F. Colavita, V. Bordoni, C. Caglioti, M. Biava, C. Castilletti et al., ZIKV Infection Induces an Inflammatory Response but Fails to Activate Types I, II, and III IFN Response in Human PBMC, Mediators of Inflammation, vol.2018, pp.1-6, 2018.

Y. Hu, X. Dong, Z. He, Y. Wu, S. Zhang et al., Zika virus antagonizes interferon response in patients and disrupts RIG-I?MAVS interaction through its CARD-TM domains, Cell & Bioscience, vol.9, issue.1, p.46, 2019.

S. L. Rossi and N. Vasilakis, Modeling Zika Virus Infection in Mice, Cell Stem Cell, vol.19, issue.1, pp.4-6, 2016.

A. Kumar, S. Hou, A. M. Airo, D. Limonta, V. Mancinelli et al., Zika virus inhibits type?I interferon production and downstream signaling, EMBO reports, vol.17, issue.12, pp.1766-1775, 2016.

D. L. Carbaugh, R. S. Baric, and H. M. Lazear, Envelope Protein Glycosylation Mediates Zika Virus Pathogenesis, Journal of Virology, vol.93, issue.12, pp.113-132, 2019.

S. Bos, W. Viranaicken, E. Frumence, G. Li, P. Desprès et al., The Envelope Residues E152/156/158 of Zika Virus Influence the Early Stages of Virus Infection in Human Cells, Cells, vol.8, issue.11, p.1444, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02988039

Y. Wu, Q. Liu, J. Zhou, W. Xie, C. Chen et al., Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro, Cell Discovery, vol.3, issue.1, p.17006, 2017.

H. Puerta-guardo, D. R. Glasner, D. A. Espinosa, S. B. Biering, M. Patana et al., Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism, Cell Reports, vol.26, issue.6, pp.1598-1613.e8, 2019.

. Bos, ZIKV Inhibits Interferon Response Frontiers in Immunology | www.frontiersin.org, vol.11, p.582061, 2020.

S. Alcon-lepoder, P. Sivard, M. T. Drouet, A. Talarmin, C. Rice et al., Secretion of Flaviviral Non-Structural Protein NS1: from Diagnosis to Pathogenesis, Novartis Foundation Symposia, vol.277, pp.233-250, 2008.

Y. Xu, Y. Hu, B. Shi, X. Zhang, J. Wang et al., HBsAg inhibits TLR9-mediated activation and IFN-? production in plasmacytoid dendritic cells, Molecular Immunology, vol.46, issue.13, pp.2640-2646, 2009.

C. C. Lo, J. A. Schwartz, D. J. Johnson, M. Yu, N. Aidarus et al., HIV Delays IFN-? Production from Human Plasmacytoid Dendritic Cells and Is Associated with SYK Phosphorylation, PLoS ONE, vol.7, issue.5, p.e37052, 2012.

J. Florentin, B. Aouar, C. Dental, C. Thumann, G. Firaguay et al., HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells, Blood, vol.120, issue.23, pp.4544-4551, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02507284

M. J. Bailey, J. Duehr, H. Dulin, F. Broecker, J. A. Brown et al., Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model, Nature Communications, vol.9, issue.1, p.4560, 2018.

M. J. Bailey, F. Broecker, J. Duehr, F. Arumemi, F. Krammer et al., Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus, mBio, vol.10, issue.2, pp.2861-2879, 2019.

B. Grubor-bauk, D. K. Wijesundara, M. Masavuli, P. Abbink, R. L. Peterson et al., NS1 DNA vaccination protects against Zika infection through T cell?mediated immunity in immunocompetent mice, Science Advances, vol.5, issue.12, p.eaax2388, 2019.

S. L. Bailey-bucktrout, S. C. Caulkins, G. Goings, J. A. Fischer, A. Dzionek et al., Cutting Edge: Central Nervous System Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Autoimmune Encephalomyelitis, The Journal of Immunology, vol.180, issue.10, pp.6457-6461, 2008.

B. Bielecki, I. Jatczak-pawlik, P. Wolinski, A. Bednarek, and A. Glabinski, Central Nervous System and Peripheral Expression of CCL19, CCL21 and Their Receptor CCR7 in Experimental Model of Multiple Sclerosis, Archivum Immunologiae et Therapiae Experimentalis, vol.63, issue.5, pp.367-376, 2015.

S. Bos, Undestanding the viral molecular factors involved in Zika virus pathogenicity in humans, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02879562

. Bos, . Poirier-beaudouin, . Seffer, . Manich, . Mardi et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, Copyright © 2020