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Changes in Bacterial Diversity, Composition and 
Interactions During the Development of the 
Seabird Tick Ornithodoros maritimus (Argasidae)
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Mavingui1 & Pablo Tortosa1 & Karen D. McCoy4,5

Abstract
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and 
their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird 
soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these 
interactions change over tick development. Bacterial communities were characterised through next-generation sequenc-
ing of the V3–V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-
exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. 
Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, 
Brevibacterium and Arsenophonus, representing almost 60% of  the  reads. Bacterial diversity increased over tick 
devel-opment, and adult male ticks showed higher diversity than 
did adult female  ticks. Bacterial networks showed that  co-occurrence was more frequent than co-exclusion and 
highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a 
steady increase in the number of interactions through development. Although many bacterial interactions appeared 
unstable across life stages, some were maintained throughout develop-ment and were found in both sexes, such as 
Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of 
which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable 
associations delineate core microbial interactions, which are likely to be respon-sible for key biological functions.
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Introduction

Symbiotic associations between microorganisms and their in-
vertebrate hosts, where partners share essential biological
functions and work as a holobiont, are the subject of an in-
creasing number of studies [1, 2]. However, identifying these
associations can be difficult given the general richness of the
microbiome in most individuals. Quantifying within-host var-
iation in microbial composition over time can help detect
these associations, along with the drivers that shape them.
Such studies require multifaceted investigations that target
different aspects of the host biology and ecology and take into
account changing environmental conditions [3].

In arthropods, essential microbial interactions required for
completion of the host life cycle have been repeatedly dem-
onstrated, but most investigations focus on one or a limited
number of microbial taxa, particularly obligate endosymbi-
onts [4–6]. The advent of next-generation sequencing (NGS)
technologies has led to major advances in the characterisation
of microbiota [7–10]. These technologies enable the descrip-
tion of microbial communities in terms of both taxonomic
diversity and relative abundance. They also allow us to infer
microbial interactions using positive and negative correlations
between the numbers of reads obtained for each bacterial tax-
on [11, 12] and can be explored in related host species or
within a single host species throughout its development. For
example, Hegde et al. [12] have shown that bacterial network
associations in the mosquitoes Aedes albopictus and Culex
quinquefasciatus are less complex than in Aedes aegypti.
Interestingly, this study also demonstrated that some bacterial
interactions were common to several mosquito species and
stable regardless of the environment, while others appeared
more dynamic [12].

Ticks (order: Ixodida) are haematophagous ectoparasites
that exploit a large range of vertebrate hosts (i.e. reptiles, birds
and mammals, including humans) and are distributed across
the globe [13]. They represent an important group of vectors
and transmit numerous diseases of significant importance for
animal and human populations (e.g. Lyme disease, relapsing
fever, Crimean-Congo haemorrhagic fever virus, etc.) [13, 14].
Given the medical and veterinary importance of ticks, under-
standing the diversity of their microbiota and the nature of
within-holobiont interactions (i.e. among microbiota and be-
tween host andmicrobiota)may provide tools for the control of
tick-borne diseases [15, 16]. Although relatively few NGS
studies have examined tick microbiomes to date, most of these
focus on bacterial communities sheltered by hard ticks (family:
Ixodidae) [7, 16, 17], and little is known about these commu-
nities in soft ticks (family: Argasidae) [18–20]. These NGS
studies have shown that tick microbiota include a remarkable
diversity of endosymbiotic, commensal and pathogenic bacte-
ria. Some bacterial taxa are overwhelmingly dominant and
considered as essential endosymbionts in several tick species

[7, 16, 21, 22]. Among these genera, Coxiella and Francisella
have been shown to play a key role in tick biology by provi-
sioning essential nutrients [18, 23–25]. In addition to Coxiella
and Francisella, many other maternally inherited bacteria,
such as Arsenophonus and Cardinium, are present in ticks.
Although their action in the host remains to be documented,
these bacteria are usually considered facultative symbionts [21,
22], exhibiting variable infection frequencies in tick popula-
tions across diverse temporal and spatial scales [22]. While
facultative symbionts are not required for host survival, they
are known to encode essential traits in many arthropods: some
manipulate reproduction to favour their transmission, while
others protect their host against natural enemies or facilitate
adaptation to changing environments [5, 26]. As hosts can vary
in the number and types of facultative symbionts they harbour,
heritable and functionally important phenotypic variation can
exist within arthropod populations [27, 28].

Tick bacterial assemblages studied to date have been
shown to vary according to different biological factors such
as species, life stage, age and sex, as well as by the investigat-
ed tissue and environmental conditions [7, 29–41]. However,
few studies have thus far investigated bacterial interactions
within ticks [33, 42–45], with the exception of those focusing
on obligate symbionts (e.g. [14]). An analysis of Ixodes
ricinus microbiota suggested that virtually no bacterial genus
is required for the co-occurrence of another genus [43].
However, both negative and positive interactions (i) between
endosymbionts, (ii) between vertebrate pathogens (referred
herein as pathogens) and (iii) between endosymbionts and
pathogens have been reported in ticks. For instance, Duron
et al. [22] detected co-occurrence and mutual exclusion pat-
terns within the symbiotic bacterial communities of 81 tick
species. Francisella and Rickettsia endosymbionts appeared
mutually exclusive in Dermacentor occidentalis [44], and ex-
clusion patterns were demonstrated for Francisella and
Coxiella endosymbionts on different Amblyomma species
[46]. Moutailler et al. [47] reported a positive association be-
tween the Lyme disease pathogens Borrelia garinii and
Borrelia afzelii in I. ricinus. In D. andersoni, Gall et al. [48]
found a negative correlation between the endosymbiont
Rickettsia bellii and the pathogen Anaplasma marginale and
a positive correlation between Francisella endosymbionts and
the pathogen Francisella novicida. Previous studies also re-
ported exclusion between symbiotic and pathogenicRickettsia
[49, 50]. Understanding the nature of these interactions is thus
complex and, as of yet, incomplete.

The purpose of the present study was to characterise the
bacterial microbiota associatedwith the soft tickOrnithodoros
maritimus (family: Argasidae) and to examine the nature of
bacterial interactions according to life stage (i.e. larva, nymph
and adult). O. maritimus is a nidicolous soft tick species
(Fig. 1) living in or around the nests of their seabird hosts
[51], where all life stages co-occur. These ticks feed on birds





subsample of 50 specimens from this tick collection was
used in the present study and corresponded to 11 larvae,
12 nymphs and 27 adults (14 females and 13 males).

DNA Extraction, 16S Ribosomal RNA Gene Sequencing
and Bioinformatic Analyses

Each tick was rinsed in two successive baths of sterile water to
remove ethanol. Whole ticks were individually crushed in a
1.5-mL tube containing 180 μL of ATL buffer and incubated
overnight at 56 °C with 20 μL of proteinase K. DNAwas then
extracted using a Qiagen DNeasy Blood and Tissue Kit
(Qiagen, Les Ulis, France) following the manufacturer’s rec-
ommendations. One negative control was included in the ex-
traction protocol to identify DNA contaminations produced
during the extraction process.

The bacterial microbiota of each tick was investigated
through deep sequencing of the V3–V4 hypervariable region
of the bacterial 16S ribosomal RNA gene (16S rRNA gene).
In summary, the V3–V4 region (V3, forward primer: 5′-
TACGGRAGGCAGCAG-3′ and V4, reverse primer: 5′-
CTACCNGGGTATCTAAT-3′) was amplified from 5 ng of
DNA from each sample and the negative DNA extraction
control following the Metabiote® protocol for a standard
amplicon library preparation (Genoscreen, Lille, France). A
positive and a negative PCR control, corresponding to an as-
semblage of known bacteria and pure water, respectively,
were added during library preparation by Genoscreen. The
final amplification products (each containing a nucleotide in-
dex to differentiate the samples, as well as the adapters nec-
essary for carrying out the sequencing) were purified on beads
and then mixed in equal concentrations. Sequencing was re-
alized with a 2 × 250-bp paired-end chemistry using Illumina
MiSeq technology (Genoscreen, Lille, France). The
Illumina’s CASAVA software 1.8 was used to de-multiplex
the sequence reads and produce fastq files. Primers were re-
moved, and sequences were trimmed when the Phred quality
score (Q score) was inferior to 30. Assembly of the two-paired
sequences was realized with the FLASH tool [63], with a
minimum overlap of 30 bases and at least 97% identity in
the overlapping area. The generated sequences were analysed
with the software MOTHUR (version 1.35.1) [64] following
the MiSeq SOP protocol [65]. Briefly, we retained sequences
presenting (i) a size comprised between 400 and 440 bp, (ii)
no ambiguous bases and (iii) a maximum of eight homopoly-
mers. Chimeras were removed from the analysis with
UCHIME [66]. Operational taxonomic units (OTUs) were
generated based on 97% sequence similarity using the
OptiClust clustering method [67]. The SILVA database re-
lease 138 [68] was used for sequence alignments and taxo-
nomical assignments of OTUs. The estimated Good’s cover-
age [69] was calculated in MOTHUR in order to check the
representation of the bacterial community in each sample; an

index superior to 0.97 indicates a satisfactory per sample se-
quencing depth. As described in Minard et al. [9] and René-
Martellet et al. [37], we removed all OTUs from the analysis
for which the relative abundance was not at least ten times
superior to that detected in negative extraction and PCR con-
trols. OTUs represented by only one sequence were removed
from the analysis. Finally, sequences were proportionally nor-
malised to the sample with the smallest number of reads (n =
2814 reads). For an overview of the bioinformatics workflow,
see Online Resource 1 Fig. S1.

Bacterial Diversity and Community Structure

We assessed alpha diversity at the OTU level and performed
non-parametric comparisons between the different tick life
stages, i.e. larvae, nymphs and adults (three groups). In addi-
tion, we performed comparisons between sexes in adult ticks
(two groups). Previous studies indicated that the relatively
high abundance of Rickettsia in female ticks could explain
low bacterial diversity in this sex [39, 40]. To test this hypoth-
esis, we compared the alpha bacterial diversity between male
and female ticks with three additional datasets, corresponding
to data with the dominant taxa removed: (i) Rickettsia se-
quences removed, (ii) Coxiella sequences removed and (iii)
both Rickettsia and Coxiella sequences removed (Online
Resource 1 Fig. S1). Alpha diversity was evaluated using
Shannon’s diversity index, which was converted into an
equivalent number of species [70]. Differences in alpha diver-
sity across tick life stages were tested with a Kruskal-Wallis
test, followed by post-hoc pairwise comparisons to assess the
significance of differences between each tick life stage. The
pairwise comparison tests were realised using the function
“kruskalmc” from the R package “pgirmess” [71]. For sex,
differences in alpha diversity were tested using Wilcoxon
tests. To examine differences in community composition
among life stages, non-metric multidimensional scaling
(NMDS) ordination based on Bray-Curtis dissimilarities was
performed. In order to test if microbial communities differ
according to the life stage or sex, we then performed permu-
tational multivariate analysis of variance (PerMANOVA) on
the Bray-Curtis dissimilarities. All analyses were performed
using the R software (version 3.4.3) [72] . We used a linear
discriminant analysis (LDA) of effect size (LEfSe) [73] under
Galaxy (http://huttenhower.sph.harvard.edu/lefse/) to identify
bacterial genera whose relative abundance significantly
differed according to life stage and sex, and that best
discriminated each tick group (p value ≤ 0.05 and LDA
score > 2.0).

Bacterial Network Analyses

One bacterial network was generated at the genus level for
each tick life stage (larva, nymph and adult) and sex in adults.



For each of the five groups, network construction was per-
formed using bacterial taxa present in at least 50.0% of tick
specimens and whose relative abundance was superior to
0.1% of reads in order to discard rare taxa in the generated
data. Based on the procedure described by Faust and Raes
[74], bacterial networks were generated using CoNet plug-in
(version 1.1.1.beta) [74] implemented in Cytoscape (version
3.3.0) [75]. Significant associations were identified using five
methods: two correlation methods (Pearson and Spearman),
two dissimilarity distance methods (Bray-Curtis and
Kullback-Leibler) and mutual information similarity. The p
values calculated for all methods were merged using
Brown’s method [76], and false-discovery rates were
corrected using Benjamini and Hochberg’s procedure [77].
Finally, bacterial associations in the networks were represent-
ed as either co-occurrence (positive correlation) or co-
exclusion (negative correlation) considered herein as positive
or negative interactions, respectively. Investigating the pres-
ence of significant interactions and their sign across the dif-
ferent groups allowed us to detect changes in bacterial inter-
actions over tick development and in relation to sex.

Results

Bacterial Diversity and Community Structure

For each sample, a Good’s coverage index superior to 0.98
was obtained, indicating a satisfactory representation of the
bacterial assemblage present in the samples (Table 1 and
Online Resource 2 Table S1). In negative PCR and DNA
extraction controls, 11 sequences (represented by 5 OTUs)
and 17,998 sequences (represented by 37 OTUs) were detect-
ed, respectively (Online Resource 2 Table S2). In the negative
DNA extraction control, 75.1% and 11.7% of the sequences
were classified as Escherichia Shigella and Sphingomonas,
respectively. These genera have been previously reported as
contaminants [78, 79]. Thus, based on our cleaning criteria,
we removed a total of 38 OTUs (represented by 104,716
reads) from the tick sample (Online Resource 2 Table S3).
The remaining 4 OTUs were not removed from the data, as
their relative abundance was ten times higher in ticks com-
pared with controls.We also removed 1819OTUs represented

by a single read (Online Resource 2 Tables S4 and S5).
Finally, after the different bioinformatic cleaning steps, a total
of 886,359 reads were retained from the sampled ticks, with a
mean of 17,727 reads per specimen (range 2814–26,748)
(Online Resource 2 Table S5). Based on the normalised data,
the phyla Proteobacteria (71.0%), Actinobacteria (13.8%),
Firmicutes (9.4%) and Bacteroidetes (5.4%) represented more
than 99.0% sequences. Sequences were distributed into 2575
OTUs and 864 genera among which four, namely Coxiella,
Rickettsia, Brevibacterium and Arsenophonus, accounted for
almost 60% of all sequences. Coxiella (37.0% of reads),
Rickettsia (10.8% of reads), Brevibacterium (6.6% of reads)
and Arsenophonus (5.5% of reads) were detected in 100.0%,
96.0%, 98.0% and 90.0% of the specimens, respectively
(Fig. 2 and Online Resource 2 Table S6). The relative abun-
dance of each genus varied at the individual level (Fig. 2).
Sequences belonging to Coxiella were represented mainly
by one OTU whose 16S sequence corresponded to the
Coxiella endosymbiont previously reported in O. maritimus
[58]. The genera Kocuria and Rickettsiella were detected in
our data with 330 and 28 sequences respectively, based on
normalised data. The genera Wolbachia was considered as
absent with only 1 sequence reported from the normalised
data. In addition, none of the following previously described
tick-associated bacteria was found in our samples:
Anaplasma, Bartonella, Borrelia, Cardinium, Ehrlichia,
Francisella, Lariskella, Midichloria and Spiroplasma.

Alpha diversity increased significantly with life stage (n =
50, Kruskal-Wallis test, X2 = 11.579, df = 2, p value < 0.005)
with larvae, nymphs and adults presenting average Shannon
number-equivalent diversity values of 7.33 ± 5.44, 16.58 ±
24.81 and 23.54 ± 22.19, respectively (Table 1). Multiple com-
parison tests indicated that alpha diversity was significantly
different between larvae and adults (post-hoc Kruskal-Wallis,
p value < 0.05), nymphs and adults (post-hoc Kruskal-Wallis, p
value < 0.05), but not between larvae and nymphs (post-hoc
Kruskal-Wallis, p value > 0.05). Within adults, alpha diversity
differed according to sex (n = 27, Wilcoxon test, W = 12, p
value < 0.001), with males displaying higher bacterial diversity
(average Shannon diversity index = 37.68 ± 24.72) than fe-
males (average Shannon diversity index = 10.40 ± 4.01)
(Table 1). Relative sample sizes did not seem to be an issue
for these analyses; power analyses, using the “kwpower”

Table 1 Summary of Good’s coverage index, OTUs and Shannon number equivalent diversity obtained for the microbiota of O. maritimus

Type Good’s coverage index Total OTUs detected Average number OTUs/sample Shannon number equivalent diversity

Larvae (n = 11) 0.998 ± 0.001 345 57.27 ± 30.26 7.33 ± 5.44

Nymphs (n = 12) 0.995 ± 0.005 1382 234.25 ± 185.94 16.58 ± 24.81

Adults (n = 27) 0.994 ± 0.003 2185 359.41 ± 161.90 23.54 ± 22.19

Males (n = 13) 0.991 ± 0.003 1929 473.92 ± 128.80 37.68 ± 24.72

Females (n = 14) 0.996 ± 0.002 1236 253.07 ± 107.00 10.40 ± 4.91







were based on comparable sample sizes and support the ob-
servation that network complexity increases with life stage.

At a finer level, the comparison of the different networks
showed that bacterial interactions considerably changed be-
tween life stages and sexes (Online Resource 1 Figs. S3 and
S4, Online Resource 3 Table S7). For instance, Rickettsia did
not systematically display the same interactions in the net-
works obtained from larvae, adults and females (Online
Resource 1 Figs. S3 and S4); no interaction with the genus
Rickettsia was found in networks generated using nymphal
and male datasets, whereas both positive and negative inter-
actions were present in larval and female networks (Online
Resource 1 Figs. S3 and S4, Online Resource 3 Table S7).
In some cases, the interaction pattern (co-occurrence or co-
exclusion) changed according to the development stage. For
example, co-exclusion was detected between Planococcus
and Paracoccus in the larval network, whereas co-
occurrence was reported in nymphal and adult networks
(Online Resource 4 Table S8). Despite these differences, some
bacterial taxa displayed the same type of interaction in most
networks, suggesting that these interactions are stable across
life stages and sexes. For instance, co-occurrence between
Brevibacterium and Staphylococcus was detected in all five
networks (Online Resource 4 Tables S8 and S9). Interestingly,
co-occurrence between the endosymbionts Coxiella and
Arsenophonus was detected in larvae and in adults, but not
in nymphs (Online Resource 4 Table S8). No other interac-
tions involving Coxiella and Arsenophonus were detected in
adult ticks, with similar findings for the individual female and
male datasets. In contrast, bacterial interactions involving
Coxiella and Arsenophonus were detected in larvae and
nymphs (Online Resource 1 Figs. S3 and S4).

Interestingly, the four most abundant bacterial genera
(Coxiella, Rickettsia, Brevibacterium and Arsenophonus) did
not display a higher number of interactions within the different
networks than less abundant genera (Online Resource 5
Table S10). Indeed, the genus with the highest number of
interactions varied according to tick life stage and sex. For
instance, in larvae, Corynebacterium displayed the highest
number of interactions (11 interactions), while 36 interactions
were reported for the genus Aliihoeflea in nymphs. In adults,
the genera Altererythrobacter, Novosphingobium and

Sulfitobacter displayed the highest number of interactions
(27 interactions for each taxon). In females, Brevundimonas
displayed the highest number of interactions (20 interactions),
while in males, the highest number of interactions was report-
ed for Euzebyella (16 interactions, Online Resource 5
Table S10). These genera appear as relatively central nodes
in the corresponding networks, which may indicate important
functional roles in microbial interactions.

Discussion

To date, few NGS studies have investigated the bacterial mi-
crobiota associated with soft tick species [18–20], and, to our
knowledge, the present work constitutes the first NGS study
of bacterial microbiota inOrnithodoros maritimus. The results
reveal some similarities to the microbiota of hard tick species.
For instance, we show that the microbial community of
O. maritimus is dominated by the genera Coxiella,
Rickettsia, Brevibacterium and Arsenophonus. The detection
of Coxiella and Rickettsia is consistent with previous targeted
studies on O. maritimus feeding on the same host species,
Larus michahellis [22, 52, 58, 59], and is common to the
majority of Ornithodoros spp. specimens tested to date [22].
Coxiella has been recently described as an obligate symbiont
providing vitamin B to ticks [23–25]. Some Rickettsia species
are also known to be maternally inherited symbionts, whereas
others are vertebrate pathogens acquired horizontally [81, 82].
Using a microfluidic real-time PCR amplification method,
Dupraz et al. [52] detected the presence of Rickettsia endo-
symbionts and the pathogen Rickettsia helvetica respectively
in 81.6% (164/201) and 6.0% (3/201) of ticks from the same
study site. Thus, most Rickettsia detected in the present sam-
ples likely correspond to the Rickettsia endosymbiont.
However, given the low discriminatory power of the 16S
rRNA gene fragment used, additional molecular information
is required to validate this hypothesis. Our data also revealed
the presence of the genus Arsenophonus in relatively high
abundance. Arsenophonus is one of the most diverse and
abundant maternally inherited bacteria reported in arthropods
[83–86] but has been rarely reported in ticks [22, 87, 88]. The
tick phenotype associated with Arsenophonus infection is

Table 2 Details on bacterial
networks produced from
O. maritimus according to life
stage and sex

Life stage Number
of nodes

Number of edges Number of co occurrences Number of co exclusions

Larva (n = 11) 20 66 50 16

Nymph (n = 12) 55 570 555 15

Adult (n = 27) 60 412 388 24

Male (n = 13) 62 177 170 7

Female (n = 14) 54 164 144 20



unknown, but nutritional and protective functions have
been linked to the presence of this bacterial genus in
haematophagous insects and psyllids [89, 90]. In addition,
Arsenophonus sp. was suggested to reduce insecticide re-
sistance in pest insects [91], while Arsenophonus nasoniae
is a sex-ratio modifier in wasps [88, 92]. Although previ-
ous ly repor ted in t icks [39 , 93–95] , the genus
Brevibacterium is poorly known. Brevibacterium species
occurring in haematophagous arthropods (kissing bugs,
sand flies and horn flies) have been simply described as
non-pathogenic bacteria with low abundance [96–98].
However, the recurrent presence of Brevibacterium in di-
verse unrelated haematophagous arthropods suggests that
these bacteria may play a role in blood digestion by their
arthropod hosts, and thus possibly in ticks. Experimental
work will now be required to test this hypothesis.

Reads corresponding to Rickettsiella were also detected in
our samples, but in limited numbers and not in all tick speci-
mens. This situation appears consistent with the exclusion pat-
tern previously reported between this genus and Coxiella-like
endosymbionts in Ornithodoros spp. [22]. The absence of
Wolbachia genera is also coherent with the study of Duron
et al. [22] who did not detect these bacteria in O. maritimus
or other Ornithodoros species. As mentioned above, the 16S
rRNA gene fragment used in the present study did not allow us
to go down to the species level and thus demonstrate the pres-
ence of bacterial pathogens (e.g. Kocuria, Rickettsia and
Rickettsiella). However, we did not detect sequences for the
following bacterial genera, which frequently include pathogen-
ic species: Anaplasma, Bartonella, Borrelia, Ehrlichia and
Francisella.The absence of these genera is consistent with their
low prevalence or absence in adult ticks from the same site [52].
Interestingly, the absence of the Borrelia genus in our data
contrasts with its molecular detection (by PCR with 99% se-
quence identity with Borrelia turicatae an agent of relapsing
fever) in O. maritimus parasitising the Mediterranean storm
petrel (Hydrobates pelagicus) from Espartar Island (Balearic
archipelago, Spain) [57]. This difference suggests microbial
variation according to the considered vertebrate host and/or
geographical region where ticks are sampled.

Our study demonstrates that bacterial diversity increases
throughout tick development. This pattern is best explained
by the acquisition of bacterial taxa through environmental
contamination and/or infection during successive blood
meals. These results contrast with studies reporting low bac-
terial diversity in adult hard tick species compared with larvae
or nymphs [31, 38, 95, 99]; such reports may result from
technical issues associated with relative abundance of differ-
ent bacterial species (see below) and/or host factors such as
the nature of bloodmeal species [31, 38, 99].

Our data also show that bacterial diversity in O. maritimus
differs according to sex, with females displaying lower bacte-
rial diversity than males. These results are consistent with

studies carried out on hard ticks [40, 44] and a recent study
on the soft tick Argas japonicus [20] suggesting that this is a
general trend in ticks. Treuren et al. [40] proposed that the low
bacterial diversity detected in female Ixodes ticks results from
the relative high abundance of Rickettsia that hinders the de-
tection of rare bacterial taxa. Indeed, both Thapa et al. [39] and
Brinkerhoff et al. [100] found similar microbial diversities in
adult male and female Ixodes scapularis after the in silico
removal of Rickettsia sequences from bacterial communities.
In our study, we found that Rickettsia are abundant in both
males and females (females 17.0% of reads, range 0.0–40.4%;
males 3.2% of reads, range 0.0–15.7%) and that Coxiella are
significantly more abundant in females than in males (females
36.0% of reads, range 21.3–59.1%; males 26.4% of reads,
range 14.6–49.3%). The high abundance of Coxiella in fe-
males is consistent with previous reports for some hard tick
species [33, 37, 95]. In our study, the in silico removal of
Coxiella and/or Rickettsia sequences did not alter the relative
patterns of diversity; males continued to show higher alpha
diversity compared with females.

The construction of bacterial networks allowed us to char-
acterise major bacterial interactions inO. maritimus. The gen-
erated networks indicated that co-occurrence (positive corre-
lation) was more frequent than co-exclusion (negative corre-
lation). Bacterial interactions also appeared to be distinct
across developmental stages, with the number of non-
random interactions increasing through tick development.
The increase in network complexity over development corre-
lates with increasing bacterial diversity. However, additional
investigations are now required to obtain comparable data for
each life stage (larva, nymph and adult) from distinct geo-
graphic locations in order to strengthen our conclusions and
test the link between bacterial diversity and network complex-
ity. In addition, as tick’s microbiota also depend on the envi-
ronment [17] and bloodmeals [7], future work should be con-
ducted under laboratory conditions [95] in order to control for
confounding factors which may blur our understanding of
microbial interactions.

Despite developmental changes, our analyses show that
some bacterial interactions are stable throughout the life of
a tick, regardless of its sex. For example, positive interac-
tions between Brevibacterium and Staphylococcus and be-
tween Coxiella and Arsenophonus were found in almost all
bacterial networks. In keeping with the concept of a core
microbiome, we propose here that there are also core mi-
crobial interactions that are maintained throughout devel-
opment with potentially important biological functions.
The case of Coxiella and Arsenophonus is particularly il-
lustrative: these two symbionts are vertically transmitted
from mother to offspring through the egg cytoplasm [58,
87]. This co-inheritance suggests that their long-term and
stable coexistence in ticks is probable and may be essential
for tick survival.



In the present study, we investigated the bacterial diversity
harboured by O. maritimus hosted by a single seabird species
(L. michahellis) in one colony (Carteau Islet). However,
O. maritimus and other Ornithodoros species can parasitise
a large range of seabird species [53, 101]. These ticks depend
completely on their vertebrate hosts for dispersal among col-
onies, and even potentially among nests within a colony [101,
102]. For these reasons, Ornithodoros ticks constitute a rele-
vant model for future studies to explore the effect of the ver-
tebrate host species and sampling region on the composition
of tick microbiota. In the present study, bacterial diversity was
characterized with Illumina sequencing of the bacterial 16S
rRNA V3–V4 hypervariable region. Even if this technology
allows us to have an overview of the majority of bacterial taxa
evolving in ticks, it may still underestimate total diversity due
to differences in detectability among bacterial groups due to
primer choice [103, 104] or taxonomic annotation errors
linked to the chosen reference database [105]. Thus, future
studies in this system should both compare alternative proto-
cols at the within-population level to account for potential
detection biases and apply the same technique across geo-
graphic locations and host species to ensure robust compari-
sons of overall bacterial diversity and the role of different
factors in shaping microbial interactions over a tick’s lifetime.

It is important to emphasize that we investigated bacterial
interactions from NGS reads and microbial network infer-
ences. Despite recent technological advances, understanding
complex microbial relationships remain challenging and mi-
crobial network inferences present some computational limi-
tations [74, 106–108]. In addition, microbial networks do not
provide information on the biological nature of interactions.
Thus, experimental investigations are now required to specif-
ically test the biological basis of the positive and negative
interactions between taxa that we found here. Hypotheses on
the nature of these interactions could be provided by
conducting descriptive analyses on different tick tissues [29,
109]. Indeed, the detection of bacterial taxa in the same tis-
sue(s) (e.g. midguts, salivary glands, reproductive tissues,
etc.) could be indicative of direct interaction. Alternatively,
the use of fluorescent in situ hybridisation (FISH) [110, 111]
would allow us to localise bacterial taxawithin tick organs and
would hence provide relevant information regarding co-
occurrence or co-exclusion [112]. In ticks, the best-
documented examples for co-exclusion involve Coxiella and
Francisella, both of which have a pronounced tropism for
ovaries and Malpighian tubules [18, 113, 114]. This type of
tropism is considered indicative of a high level of lifestyle
specialisation towardsmutualism; infection of the ovaries sug-
gests transovarian transmission, whereas infection of the
Malpighian tubules suggests a nutritional function [18, 113,
114]. In this way, experimental studies could illuminate the
mechanisms and biological significance of the bacterial inter-
actions that we uncovered in the present study.
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