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bLMD-Laboratoire de météorologie dynamique, Palaiseau, France

cDTU - Technical University of Denmark

Abstract

Accurate solar forecasts is one of the most effective solution to enhance grid operations. As
the solar resource is intrinsically uncertain, a growing interest for solar probabilistic fore-
casts is observed in the solar research community. In this work, we compare two approaches
for the generation of day-ahead solar irradiance probabilistic forecasts. The first class of
models termed as deterministic-based models generates probabilistic forecasts from a de-
terministic value of the irradiance predicted by a Numerical Weather Prediction (NWP)
model. The second type of models denoted by ensemble-based models issues probabilistic
forecasts through the calibration of an Ensemble Prediction System (EPS) or from infor-
mation (such as mean and variance) derived from the ensemble. The verification of the
probabilistic forecasts is made using a sound framework. A numerical score, the Continuous
Ranked Probability Score (CRPS), is used to assess the overall performance of the different
models. The decomposition of the CRPS into reliability and resolution provides a further
detailed insight into the quality of the probabilistic forecasts. In addition, a new diagnostic
tool which evaluates the contribution of the statistical moments of the forecast distributions
to the CRPS is proposed. This tool denoted by MC-CRPS allows identifying the charac-
teristics of an ensemble that have an impact on the quality of the probabilistic forecasts.
The assessment of the different models is done on several sites experiencing very different
climatic conditions. Results show a general superior performance of ensemble-based models
as the gain in forecast quality measured by the CRPS ranges from 4% to 16% depending on
the site.

Keywords: Day-ahead solar irradiance probabilistic forecast, Ensemble
prediction system, Non parametric methods, Ensemble calibration, CRPS
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1. Introduction39

Operations of electrical power systems are becoming more challenging as the share of40

solar energy increases. In particular, due to the intrinsic variability of the solar resource,41

high penetration of solar power generation into the electrical grid may put in danger the42

grid supply-demand balance. Energy storage systems (EES) are one of the means used to43

ensure the grid stability. Notwithstanding, accurate PV power forecasting is a cost-effective44

way to size and operate ESS optimally. Consequently, PV power forecasts facilitate the45

large-scale integration of solar energy into the grid. In addition, for energy trading, accurate46

PV power forecasts are also required because penalties in proportion with the forecast errors47

are applied.48

In this study, however, we focus on the global horizontal solar irradiance (GHI) forecasts49

instead of PV power forecasts. The present work constitutes thus a first step in assessing50

the contribution of the proposed methodologies for improving the quality of the PV power51

forecasts and of their potential gain for improved grid operations. Day-ahead GHI forecasts52

are treated here as they have been considered essential to secure the power grid [1]. More-53

over, we propose to work on probabilistic forecasting in order to estimate the uncertainty54

associated to day-ahead GHI forecasts. This additional knowledge permits for instance grid55

operators to improve their decisions regarding the grid operations. The interested reader can56

refer to [2] or [3] to understand the benefits of a probabilistic forecast against a deterministic57

one.58

Day-ahead GHI forecasts are classically generated by Numerical Weather Predictions59

models (NWPs). For instance, The Integrated Forecasting System (IFS) model of the Eu-60

ropean Centre of Medium-Range Weather Forecasts (ECMWF) provides day-ahead GHI61

forecasts [4]. The forecasts can take either the form of a deterministic forecast or an en-62

semble forecast denoted by the term Ensemble Prediction System (EPS). EPS consists in63

a set of several perturbed forecasts of irradiance, each representing a possible future state64

of the atmosphere. If an EPS gives an important information about the uncertainty associ-65

ated to a forecast, it requires a high computational cost. Thus, the added value of EPS for66

probabilistic forecasting needs to be determined to justify their computation.67

We propose below to conduct a bibliographic survey related to day-ahead solar forecasts68

with a special emphasis on the use of NWP outputs to generate probabilistic forecasts.69

One of the first approach used to generate day-ahead probabilistic irradiance forecasts was70

proposed by Lorenz et al. [5]. In this work, a Gaussian distribution of the error of the71

ECMWF-IFS deterministic irradiance forecast was used to generate prediction intervals.72

Alessandrini et al. [6] developed an analog statistical method approach applied to a set of73

explanatory weather variables (GHI, cloud cover, air temperature, etc.) provided by the74

NWP Regional Atmospheric Modeling System (RAMS) to generate probabilistic PV power75

forecasts for three solar farms located in Italy. Zamo et al. [7] proposed two statistical76

approaches to generating probabilistic forecasts of daily PV production from information77

provided by Météo France’s EPS, PEARP. The first approach makes use of the PEARP78

control member as unique input to quantile regression methods while the second one averages79

the set of quantiles calculated from each of the 35 members of the PEARP ensemble. Bacher80
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et al. [8] used a weighted quantile regression (WQR) technique to compute up to 24h ahead81

probabilistic PV forecasts. In addition to lagged PV measurements, the WQR model used82

also a NWP-based GHI deterministic forecast. Lauret et al. [9] used the IFS model to83

produce quantile forecasts of solar irradiance and Iversen et al. [10] introduces the idea of84

modeling uncertainty by stochastic differential equations from a NWP-based deterministic85

forecast provided by the Danish Meteorological Institute. Bakker et al. [11] proposed a86

comparison of seven statistical regression models to issue GHI probabilistic forecasts from87

the deterministic numerical weather prediction (NWP) model HARMONIE-AROME (HA)88

and the atmospheric composition model CAMS.89

It must be noted that the above cited works make use of deterministic information90

extracted from NWP models to generate probabilistic forecasts with the help of statistical91

techniques like quantile regression or analog ensemble. Others authors like Sperati et al.92

[12] proceeded differently. In their work, Sperati et al. [12] generated up to 72h probabilistic93

forecasts from the raw EPS provided by the ECMWF. In this study, two post-processing94

methods (also called calibration techniques) applied to the initial raw ensemble were used95

to further improve the quality of the probabilistic forecasts. Massidda and Marrocu [13]96

went a little bit further and proposed a methodology to combine ECMWF ensemble and97

the high-resolution IFS deterministic forecast.98

If we extend our bibliographic survey to the probabilistic predictions of other weather99

variables such as wind, temperature or precipitation, more publications can be found on100

how to use information from NWP models to generate probabilistic forecasts. For example,101

Pinson [14] and Pinson and Madsen [15] suggested a framework for the calibration of wind102

ensemble forecasts. Junk et al. [16] proposed an original calibration model for wind-speed103

forecasting applied to ECMWF-EPS based on the combination between Nonhomogeneous104

Gaussian Regression and Analog Ensemble Models. Likewise, Hamill and Whitaker [17]105

suggested an adaptation of the analog ensemble technique for the calibration of ensemble106

precipitation forecast, using the statistical moments of the distribution such as mean and107

spread of the members as predictors.108

Wilks [18], followed in his methodology by Williams et al. [19], compared several post-109

processing techniques of weather EPS forecasts, such as ensemble dressing, Logistic Re-110

gression, Nonhomogeneous Gaussian Regression (NGR) and Rank-Histogram recalibration.111

The reader can refer to [20] and [21] for more details regarding the parametric calibration112

of ensemble forecasts with techniques like NGR with a special emphasis on the choice of the113

type of the parametric distribution used by the regression technique. Finally, the interested114

reader should consult the reference book [22], which proposes a summary of the common115

probabilistic forecasting ensemble-based models with their respective pros and cons.116

Based on this bibliographic survey, two different approaches for day-ahead GHI proba-117

bilistic forecasting with the help of NWP models can be identified, which we denoted here118

by approaches 1 and 2 :119

1. Approach 1 referred herein as deterministic-based models : the probabilistic forecast120

is computed from deterministic NWP predictors with the help of statistical methods.121

Linear Quantile Regression and Analog Ensemble techniques are particularly attractive122
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to implement this methodology.123

2. Approach 2 referred herein as ensemble-based models : the estimation of the forecast124

is made through the calibration of an EPS or from information (for example mean or125

spread) inferred from the ensemble. For instance, calibration techniques like Nonho-126

mogeneous Regression can be used to improve the raw ensemble EPS. Also, methods127

based on Linear Quantile Regression and Analog methods can be used to produce128

probabilistic forecasts from the mean and spread of the ensemble.129

It must be stressed however that, to the best of our knowledge, no previous works have130

been dedicated to the comparison of the two approaches and particularly in the realm of131

solar probabilistic forecasts. In this work, our main goal is therefore to assess the relative132

merits of each approach for day-ahead GHI probabilistic forecasts. Besides, we would like133

to highlight the possible added-value brought by EPS for probabilistic forecasting. Indeed,134

it is well known that the generation of such ensemble necessitates high computing capacities135

compared to a single deterministic forecast that is fed into a statistical method to produce136

the probabilistic forecasts. More precisely, it should be noted that the calculation cost is137

not the same to produce only the control member of EPS or the whole set of members.138

To understand the benefits associated with the usage of EPS, we propose in this paper a a139

sound and consistent methodology to evaluate the respective contribution of each approach.140

First, the quality appraisal of the different models will be made according the verification141

framework proposed by Lauret et al. [23]. This framework (which is not consistently pro-142

posed in the literature) is based on visual diagnostic tools and numerical scores like the143

Continuous ranked Probability Score (CRPS) which permits to objectively rank the com-144

peting forecasting methods. However, this classical verification framework is not sufficient to145

completely explain the contribution of the statistical moments of the forecast distributions146

to the forecast quality. That is why we propose in a second step a new tool that evaluates147

the accuracy of all moments of the forecast distribution and its contribution to the CRPS148

score. We hope that this new diagnostic tool will provide a more in-depth understanding149

of the performance of each approach. To this end, we evaluate models that generate day-150

ahead GHI probabilistic forecasts on 6 sites that experience different sky conditions. The151

probabilistic models are built :152

1. With only the control member of the EPS as a deterministic predictor (deterministic-153

based approach),154

2. With a deterministic predictor inferred from the whole set of EPS’s members. The155

first statistical moment (mean of the members) can be such a deterministic predictor156

(ensemble-based approach),157

3. With several predictors inferred from the ensemble like the mean and the variance of158

the ensemble (ensemble-based approach).159

We propose the following structure for the paper. Section 2 introduces the different160

forecasting models while section 3 briefly presents the diagnostic tools used for the verifica-161

tion of probabilistic forecasts. Section 4 presents the case studies and details the data used162

to evaluate the different probabilistic models. Section 5 provides a detailed assessment of163
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Figure 1: Illustration of an uniform construction of a CDF from an ensemble of M = 4 members (e1,e2,e3,e4).
The tails of the CDF are bounded by e0 and eM+1 which correspond to the minimum and the maximum of
the climatology.

the performance of the different methods. Finally, a discussion will be conducted in sec-164

tion 6, trying to understand the pros and cons of each forecasting methods and the factors165

impacting the forecast quality.166

2. Building probabilistic forecasts167

Regarding probabilistic forecasts of continuous predictand like GHI, a probability state-168

ment i.e. either a Probability Distribution Function (PDF) f or a Cumulative Distribution169

Function (CDF) F encodes the uncertainty of the forecast. In this work, three ways to170

estimate this CDF or PDF are considered: parametric PDFs, discrete quantile estimates of171

a CDF via a non-parametric method and CDF derived from EPS.172

In this study, the EPS is provided by the European Centre of Medium-Range Weather173

Forecasts (ECMWF). It corresponds to 50 perturbed members and a control run (unper-174

turbed member) [4] that give the cumul of the GHI with a 3 hours time step. This leads175

to a total of M = 51 members. An EPS can be seen as discrete estimates of a CDF when176

they are sorted in ascending order. Lauret et al. [23] discussed three ways to associate these177

sorted members to cumulative probabilities. In this work, we chose the uniform distribution178

which consists in a uniform spacing of the members and a linear interpolation between the179

members. More precisely, this choice assigns a probability mass of 1/(M + 1) between two180

members and for events that fall outside of the ensemble. Using this definition, the ith181

ensemble member can be interpreted as a quantile forecast with a probability level equal182

to τ = i
M+1

. Put differently, the ECMWF ensemble forecasts are in the form of 51 equally183

spaced quantiles with probability levels τ = 1
52
, 2
52
, · · · , 51

52
. This construction is illustrated184

in Figure 1, for an EPS with 4 members. In the following, we present first the different185

statistical techniques used to estimate the uncertainty of the forecasts. Secondly, we detail186

the two approaches introduced in section 1.187
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2.1. Statistical techniques used to generate probabilistic forecasts188

2.1.1. The linear quantile regession (LQR) technique189

This method estimates the quantiles of the cumulative distribution function F of some
response variable Y (also called predictand) by assuming a linear relationship between the
quantiles of Y, namely qτ and a set of explanatory variables X (called predictors):

qτ = βτ X + ε, (1)

where βτ is a vector of parameters to optimize for each probability level τ and ε represents190

a random error term.191

Following Koenker [24], the192

vector β̂τ that defines each quantile is obtained as the solution of the following mini-
mization problem:

β̂τ = arg min
β

N∑
i=1

Ψτ (Yi − βXi). (2)

where N is the number of pairs of observed predictand Yi, set of predictors Xi taken from193

the training set. Ψτ (u) is the quantile loss function defined as :194

Ψτ (u) =

{
uτ if u ≥ 0,

u(τ − 1) if u < 0,
(3)

with τ representing the quantile probability level. Hence, in quantile regression, the quantiles195

are estimated by applying asymmetric weights to the mean absolute error.196

Thus, the quantity q̂τ = β̂τX is the estimation of the τ th quantile obtained by the LQR197

method.198

It must be noted that the quantile regression method estimates each quantile separately199

(i.e. the minimization of the quantile loss function is made for each τ separately). As a200

consequence, one can obtain quantile regression curves that may intersect, i.e q̂τ1 > q̂τ2 when201

τ1 < τ2. To avoid this issue during the model fitting, we used the rearrangement method202

described by Chernozhukov et al. [25].203

Figure 2 shows some quantiles estimates of the CDF of the predictand Y (here GHI)204

as a function of the day-ahead forecasted GHI. Hence, in this case, the preditor X is the205

predicted irradiance which will be represented in this work either by the ECMWF control206

member or the mean of the ECMWF ensemble (see Table 2 below). This example shows that207

the forecast uncertainty depends on the level of the predicted irradiance. More precisely,208

and as shown by Figure 2, the dispersion of points is lower for values of predicted irradiance209

close to 0 W/m2 and greater for values between 40 and 100 W/m2.210
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Figure 2: Observed GHI vs. the predicted day-ahead GHI. The lines are the estimates of the quantiles
with probability levels of 0.2, 0.4, 0.6 and 0.8. Data are from the training period of Hawaii. Observed and
predicted GHI are averaged on the 3-hour window [17h-20h] local time.

2.1.2. The Analog Ensemble (AnEn) technique211

The analog ensemble technique is now quite a standard in the energy meteorology fore-212

casting community [26, 17]. Similarly to the LQR method, the analog technique is a non-213

parametric method that can be used to estimate the predictive CDF of the predictand.214

Considering a training set of N ordered (sorted by forecasts) pairs of GHI observa-215

tions/GHI forecasts (Yi, Ŷi)i=1,··· ,N , the procedure for determining the forecast CDF is as216

follows:217

1. For a new forecast taken from a testing set, calculate its distance from every past218

forecast order and find the rank R of the past forecast that is the closest to the new219

forecast.220

2. Form an ensemble by selecting the 2α + 1 past training observations Yk having their221

ranks k inside the interval [R− α,R + α].222

3. Compute the predictive CDF at a specific value y of the predictand using the following
equation:

F̂ (y) = P (Y ≤ y) =
1

2α + 1

2α+1∑
k=1

H(y − Yk), (4)
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where Y is the random value related to the predictand (here GHI) and H is the Heaviside223

or step function. The effectiveness of the method is strongly dependent on the value of α.224

It is proposed here to take α = 0.02N . This choice has been motivated by a preliminary225

study made on the training period. Appendix C details the selection of the optimal value226

of α. Finally, as for the linear quantile regresssion, note that the GHI forecasts used in the227

AnEn technique will be given either by the ECMWF control member or the mean of the228

ensemble (see Table 2 below).229

2.1.3. The Nonhomogeneous truncated Gaussian Regression technique (t NGR)230

The NGR technique also called in some studies “Ensemble Model Output Statistics”
(EMOS) has been introduced by Gneiting et al. [20] for probabilistic forecasting of weather
variables. This technique is dedicated to the post-processing of ensemble forecasts produced
by an EPS. The NGR technique builds the predictive PDF of the predictand Y from a normal
PDF. As such, this kind of model can be termed as a parametric model. The predictive pdf
f̂ estimated by the NGR method is given by:

f̂ ∼ N (a+
M∑
k=1

(bkmk), c+ dS2), (5)

where M is the number of members, mk is the kth member and S2 is the variance of the231

ensemble members distribution. The free parameters a, b1, · · · , bM , c and d are determined232

with the help of an optimization procedure. In this work, and following Gneiting et al.233

[20], these parameters are calculated by minimizing (over a training period) an evaluation234

metric for probabilistic forecasts called CRPS (see section 3.2 for details regarding CRPS).235

Furthermore, as GHI is a necessarily positive quantity, we propose, in this work, a variant236

of the NGR technique namely a truncated version (at 0) of the nonhomogeneous gaussian237

regression. In the following, the corresponding model is denoted as t NGR.238

2.1.4. The Nonhomogeneous Regression of Generalized Extreme Value technique (NR GEV )239

One can question the choice of a Gaussian distribution in the t NGR technique. Indeed,240

the distributions of observations for a fixed forecasting level are actually non-Gaussian. Two241

examples for the studied sites are presented in Figure 3.242
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(a) 6th decile for Hawaii
levels of forecasting from 484 to 584 W/m2 (b) 1st decile for Desert Rock

levels of forecasting from 0 to 38 W/m2

Figure 3: Example of distributions of observations for a fixed forecasting level.

On these specific examples, the distributions of observations are clearly non-Gaussian243

and the consideration of other types of distributions may improve the skills of the forecast.244

As pointed out in [21] and [27], other types of parametric distributions can be used245

to deal with this issue. Here, a Non homogeneous Regression approach with Generalized246

Extreme Value distributions is proposed to estimate the PDF of the predictand Y . The247

PDF of a generalized Extreme value distribution for a specific value y of the predictand248

GHI is defined as :249

f̂(y) =


1
σ

[
1 + ξ(y−µ

σ
)

](− 1
ξ
)−1

exp

(
−
[
1 + ξ(y−µ

σ
)
]− 1

ξ

)
ξ 6= 0,

1
σ

exp(−y−µ
σ

) exp

[
− exp(−y−µ

σ
)

]
ξ = 0.

(6)

The parameters µ, σ and ξ are to be determined by optimizing the CRPS over the train-250

ing period. We followed the framework of [28] and [29] to set these coefficients. Following251

this procedure, the mean µ and the scale parameter σ of the final distributions are deter-252

mined by linear regression, and depends only on variables inferred from the EPS. The mean253

is a linear combination of the mean of the members and the fraction of members which254

predict exactly zero. The scale parameter σ depends on the “Gini’s mean difference” (a255

measure of the variability closely related to the spread of the members, see [30] for details).256

Note that the shape parameter is taken as a constant. Thus, the minimization of the CRPS257

yields the linear coefficients for the mean µ and the scale parameter σ as well as the value of258

the shape parameter ξ. Note that the two techniques namely t NGR discussed above and259

NR GEV discussed here are part of a family of parametric methods named Nonhomoge-260

neous Regression (NR).261
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Site HAW DR SP PAL TIR LAN
Any perturbed member 138 75.3 126.5 97.7 110.7 98.8
Control member 135 72.8 91.9 102.9 100.8 93.2
Mean of the members 129.7 67.9 113.8 81.8 92.6 84.3
Median of the members 133.9 69.4 115.5 84.1 94.7 85.6

Table 1: RMSE (W/m2) of 4 deterministic forecasts that can be inferred from an EPS: any of the 50
perturbed members of ECMWF ensemble forecast, the control member (unperturbed) , the mean of the
members and the median of the members. See Table 3 for the signification of the acronyms of the different
sites.

2.2. Obtaining probabilistic forecasts from deterministic forecasts (Deterministic-based ap-262

proach)263

Some of the techniques presented in section 2.1, namely the Linear Quantile Regression264

(LQR) and the Analog Ensemble(AnEn) techniques, are capable of generating a probabilistic265

forecast from a deterministic predictor.266

In our study, and regarding the deterministic-based approach, the control member of267

ECMWF-EPS is the predictor variable X of the LQR technique and it will be the forecast268

used in the AnEn procedure. The corresponding probabilistic models are denoted respec-269

tively as LQRc and AnEnc in the following.270

2.3. Obtaining probabilistic forecasts from ensemble forecasts (Ensemble-based approach)271

2.3.1. From the raw output of ECMWF-EPS272

Given a raw ensemble forecast of M members {mi}i=1,··· ,M , it seems natural to define273

directly a forecast CDF from this EPS as illustrated in Figure 1. Note that this definition274

corresponds to the “uniform” definition of a CDF derived from an ensemble” discussed in275

Lauret et al. [23].276

2.3.2. From information extracted from an EPS277

An EPS differs from a deterministic forecast by the multiplicity of predictors. In this278

work, we propose to assess the quality of two variants of probabilistic models built with279

information extracted from an EPS.280

The first variant will make use of the mean of the ensemble members of the EPS. The281

use of the mean of members as a deterministic predictor is justified by Table 1. For all the282

considered sites depicted in Table 3, Table 1 lists the Root Mean Square Error (RMSE)1 of283

different deterministic predictors extracted from an EPS.284

As shown by Table 1, the mean of all the members turns out to be the best predictor for285

deterministic forecasting. Hence, to quantify the improvement brought by the first moment286

estimation (i.e. the mean), two models denoted by LQRm and AnEnm based respectively287

on the LQR and AnEn techniques will be evaluated.288

1RMSE is a common metric used to assess the accuracy of deterministic forecasts [31]
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Approach Deterministic-based Ensemble-based
Predictors Control member Mean of members Mean and spread of members
Technique AnEn LQR AnEn LQR LQR NR

Model Abbreviation AnEnc LQRc AnEnm LQRm LQRs t NGR NR GEV

Table 2: Summary of all considered forecasting models with AnEn: Analog Ensemble, LQR: Linear Quantile
Regression, NR: Nonhomogeneous Regression

The second variant will include, in addition to the mean of the members, the spread (i.e.289

the variance) of the members of the EPS. The t NGR and the NR GEV models described290

in sections 2.1.3 and 2.1.4 use the first and second moment of the EPS distribution to build291

the predictive distributions. Furthermore, we also propose to use the LQR technique with292

a vector X of predictors given by293

X = [µ, S2], (7)

where µ represents the mean of members and S2 the variance of the ensemble. This method294

will be referred in this study as LQRs. Finally, Table 2 summarizes the different probabilistic295

models that will be evaluated in this study.296

3. Verification of the probabilistic forecasts297

In this section, we detail some of the verification tools proposed by Lauret et al. [23]298

that will be applied to assess the quality of GHI probabilistic forecasts. Following this work,299

we will rely on a quantitative score namely the continuous ranked probability score (CRPS)300

and its related skill score (CRPSS) to rank objectively the different methods. Moreover, and301

based on the recommendations of [23], we will provide the decomposition of the CRPS into302

the main attributes that affect the quality of the forecasts. In addition to this decomposition,303

it is worth noting that we will propose in this work a new way to have detailed insight into304

the performance of the methods. This new methodology is based on the contribution of the305

moments (mean, variance, etc.) of the forecast distribution to the CRPS (see section 3.3306

below).307

3.1. Attributes for a skillful probabilistic model308

We recall here briefly the two main attributes that characterize the quality of the prob-309

abilistic models namely reliability and resolution [32, 33]. Reliability or calibration evalu-310

ates the statistical consistency between the forecasts and the observations. In the case of311

a continuous variable like GHI, a high reliability is obtained if predictive distributions and312

distributions of observations agree. Resolution refers to the ability of the probabilistic model313

to discriminate among different forecast situations. More precisely, the more distinct the314

observed frequency distributions for various forecast situations are from the full climatolog-315

ical distribution, the more resolution the forecast model has. A high quality probabilistic316

model should issue reliable forecasts with high resolution. In other words, high reliability is317
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a necessary but not a sufficient condition for a high quality probabilistic forecast. The fore-318

cast should also exhibit high resolution. For instance, climatological forecasts are perfectly319

reliable but exhibit no resolution.320

3.2. CRPS321

In the verification framework proposed by Lauret et al. [23], the authors recommend the322

computation of a score like the Continuous Ranked Probability Score (CRPS) to evaluate323

the overall quality of the probabilistic models. We recall here the definition of the CRPS.324

3.2.1. Definition325

The CRPS measures the difference between the predicted and observed cumulative dis-
tributions functions (CDF) [34]. The CRPS reads as

CRPS =
1

N

N∑
i=1

∫ +∞

−∞

[
F̂ i
fcst(y)− F i

yobs
y)
]2
dy, (8)

where F̂fcst(y) is the predictive CDF of the predictand Y (here GHI) and Fyobs(y) is a326

cumulative-probability step function that jumps from 0 to 1 at the point where the value327

of the predictand y equals the observation yobs (i.e. Fyobs(y) = 1{y≥yobs}). The squared328

difference between the two CDFs is averaged over the N forecast/observation pairs. The329

CRPS score rewards concentration of probability around the step function located at the330

observed value [32]. In other words, the CRPS penalizes lack of resolution of the predictive331

distributions as well as biased forecasts. Note that the CRPS is negatively oriented (smaller332

values are better) and it has the same dimension as the forecasted variable. CRPS is a333

proper score meaning that it obtains the best expected value when the forecast distribution334

is equal to the true distribution of probability of the observation. Besides, using proper335

scoring rules allows the decomposition of the score into the two important attributes of the336

quality of a forecasting probabilistic model namely resolution and reliability. This permits337

to understand more precisely the characteristics of the quality of the forecast.338

3.2.2. CRPS Skill Score339

In a similar manner, skill scores are used to assess the forecast skill of deterministic340

forecasts [35], Pedro et al. [36] used the CRPS Skill Score (CRPSS) to gauge the quality of341

their probabilistic forecasting models against a reference method. The CRPSS metric (in342

%) reads as343

CRPSS = 100×
(

1− CRPSm

CRPSr

)
, (9)

where CRPSr denotes the CRPS of the reference method and CRPSm refers to the CRPS344

of the model under evaluation (see Table 2). A negative value of CRPSS indicates that345

the probabilistic method fails to outperform the reference model while a positive value of346

CRPSS means that the forecasting method improves on the reference model. Further, the347

higher the CRPSS, the better the improvement.348
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In this work, and following the recommendations of Doubleday et al. [37], the raw output349

of the ECMWF-EPS serves as the reference benchmark model.350

3.2.3. Decomposition of the CRPS351

The decomposition of the CRPS is given by :

CRPS = REL−RES + UNC, (10)

where REL, RES and UNC are respectively the reliability part, the resolution part and the352

uncertainty part of the CRPS. The interested reader is referred to [23] for details regarding353

the computation of the different components of the CRPS.354

In addition to reliability and resolution, the uncertainty term accounts for the variability355

of the observations. It is an indication of the difficulty to forecast the variable of interest and356

cannot be modified by the forecasting model. It is also worth noting that the uncertainty part357

UNC corresponds to the score of the climatology. For scores like CRPS that are negatively358

oriented, the goal of a forecasting model is to minimize (resp. maximize) as much as possible359

the reliability term (resp. the resolution term). In fact, a forecasting model with a high360

resolution term means that the model has captured the maximum of the variability present361

in the data (which variability is measured by the uncertainty term).362

3.3. Contributions of the statistical moments of the forecast distribution to the CRPS363

In this study, a new methodology for a better understanding of the skills of a probabilistic364

forecast in relation with the CRPS score is developed. The main idea is to assess separately365

the contribution of the statistical moments (mean, variance, etc.) of the predictive distribu-366

tions to the CRPS and consequently to the quality of a probabilistic forecasting model. The367

principle of the method is to create two virtual forecasts which show the contribution of the368

statistical moments of the actual forecast to the CRPS. Let us illustrate the methodology369

with 3 forecast PDFs depicted in Figure 4. f represents the actual forecast PDF and fm1370

and fm2 the associated virtual PDF forecasts.371

The first virtual forecast fm1 is derived from the first moment (mean) of the actual
forecast f . Let m1 be the first moment of f and δ the Dirac distribution (corresponding to
the dotted vertical line in Figure 4), the PDF of fm1 is thereby defined by:

fm1(y) ≡ δ(y −m1). (11)

Note that this definition implies that the second, third and further moments of fm1 are equal372

to 0.373

The second virtual forecast fm2 is given by a Gaussian distribution with first and second
moments equal to those of f . Let m2 be the second moment of f , fm2 is defined as:

fm2 ∼ N (m1,m2). (12)

Being a Gaussian distribution, the third, fourth and further moments of fm2 are equal to 0.374

The contribution of the statistical moments of the distribution to the CRPS is computed
as follows. First, the CRPS of each forecast namely CRPSf , CRPSfm1 and CRPSfm2
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Figure 4: Illustration of the virtual forecasts fm1 and fm2 related to the forecast PDF f

are averaged over the N forecast/observation pairs. This leads to the corresponding values
CRPS, CRPSm1 and CRPSm2. Second, the difference G2 = CRPSm1 − CRPSm2 and
G+ = CRPSm2−CRPS are calculated. Note that one can therefore rewrite the CRPS as:

CRPS = CRPSm1 −G2 −G+. (13)

Note that the CRPSm1 of the deterministic forecast fm1 is actually its Mean Absolute375

Error (MAE)2 (see [34] for details).376

G2 is the measure of the gain in CRPS or equivalently in forecast quality that results377

from the additional information brought by the second moment of the distribution. G+378

represents the gain resulting from the other statistical moments. G2 is assumed to be379

positive. If it is found negative, then the probabilistic forecast has no added value compared380

to a deterministic forecast. Indeed, the CRPS of the probabilistic forecast would be higher381

than the CRPS of the deterministic one (CRPSm1,which is the MAE), thus denoting a loss382

of quality of the probabilistic forecast. On the other hand, G+ is generally positive. It can383

be null or negative if the forecast distribution obtains a higher CRPS score than a Gaussian384

distribution defined by N (m1,m2). This would indicate that the forecast distribution is less385

suitable than a Gaussian distribution.386

In section 5.3 below, we propose to present this diagnostic tool under the form of a387

bar-plot, where CRPS, G+ and G2 are stacked in this order. G2 is denoted by the pink388

part of the bar, G+ by the green part and CRPS by the blue part. Note that a black line389

on the top of the blue part is used to better highlight the value of the CRPS and a dotted390

black line indicates CRPSm1 (see Figure 6). In the following, we refer to this diagnostic391

tool based on the contribution of the moments of the forecast distributions to the CRPS as392

“MC-CRPS”.393

2Similarly to RMSE, MAE is also a common metric used to assess the accuracy of deterministic forecasts.
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4. Case studies394

Six sites are chosen to test the selected models. The first one, Desert Rock, which is part395

of the SURFRAD network, is located in an arid area. It experiences a high occurrence of396

clear skies and consequently a very low variability. Two other sites, the airport of Hawaii,397

where the NREL set up a radiometric network, and Saint-Pierre, which is located on the398

coastal part of the island La Réunion, are insular sites. Both present a high yearly solar399

irradiation but also an important variability due to frequent partly cloudy skies. These400

differences between the two types of sites will permit testing the models under different sky401

conditions. For an extensive study on the multiple factors that impact the climatology and402

sky conditions in the specific case of Saint-Pierre and La Réunion, see Badosa et al. [38] or403

Kalecinski [39].404

As the aforementioned sites exhibit a similar level of irradiation, three other BSRN sites405

namely Palaiseau, Tiruvallur and Langley are also considered to test our methodology. The406

six chosen sites experience different levels of annual solar irradiation and of sky conditions.407

Thus, this set of sites is representative of the various climates around the world. The main408

characteristics of these six sites are given in Table 3. The solar variability, presented in the409

last line of Table 3, is defined as the standard deviation of the changes in the clear sky index410

[40].411

4.1. Measurements412

The measured data used in this work are global horizontal irradiance (GHI) time series413

recorded at the six considered sites. These datasets have been prepared for previous works414

related to the development and the benchmarking of probabilistic solar forecasts [41, 42].415

They correspond to two years of data divided in a training set (the first year) and test set416

(the second year). As the ensemble forecasts used here are provided with a 3-hour time step,417

the recorded time series, initially formatted with a 1-hour granularity, were averaged with418

a 3-hour time step. A quality check and several test were performed on the recorded GHI419

time series. The results are given in Appendix A.420
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Desert Rock
(USA)

Hawaii
(USA)

Saint-Pierre
(Reunion)

Acronym DR HAW SP
Provider SURFRAD NREL PIMENT
Position 36.6N, 119.0W 21.3N, 158.1W 21.3S, 55.5E
Elevation (m) 1007 11 75
Climate type Desert Insular tropic Insular tropic
Years of record 2012 - 2013 2010-2011 2012 - 2013
Annual solar irradiation (MWh/m2) 2.105 1.969 2.053
Solar variability 1-h (σ∆kt∗1hour) 0.146 0.209 0.241

Palaiseau
(France)

Tiruvallur
(India)

Langley
(USA)

Acronym PAL TIR LAN
Provider BSRN BSRN BSRN
Position 48.7N, 2.2E 13.1N, 80.0E 37.1N, 76.4W.
Elevation (m) 156 36 3
Climate type Mild oceanic Monsoon Humid
Years of record 2016-2017 2018-2019 2015-2016
Annual solar irradiation (MWh/m2) 1.172 1.835 1.685
Solar variability 1-h (σ∆kt∗1hour) 0.281 0.190 0.186

Table 3: Main characteristics of time series of recorded global horizontal irradiance (GHI) used to test the
models.

4.2. Forecasts421

As mentioned above, the initial day-ahead ensemble forecasts, covering the same period422

as the measurements, are provided by the European Centre of Medium-Range Weather423

Forecasts (ECMWF). The EPS is released by ECMWF at 12:00 for the 72 next hours with424

a 3-hours timestep which allows it to be used for day-ahead scheduling or trading purposes.425

5. Results426

Based on the verification framework proposed by Lauret et al. [23], the overall perfor-427

mance of the different probabilistic methods is measured by the CRPS and the CRPSS.428

Detailed insight in the quality of the models is obtained through the decomposition of the429

CRPS and the new “MC-CRPS” method. Note that this section is dedicated to the pre-430

sentation of the main results of the study. The next section will be devoted to an in-depth431

discussion related to the pros and cons of each approach and the added-value brought by432

the MC-CRPS methodology.433

5.1. Overall performance of the methods434

Table 4 lists the CRPS obtained by the different methods. However, in order to better435

highlight the relative merits of each approach, Figure 5 shows the CRPS skill scores of all436
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 5: CRPS Skill Score of all models for the six considered sites. Grey : deterministic-based approach,
Cyan : ensemble-based approach using the mean of the members, Green : ensemble-based approach using
mean and standard deviation of the members.
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the forecasting models. Let us recall that positive values of skill scores mean that the model437

outperforms the reference model (here the raw ECMWF-EPS) while negative values reveal438

that the quality of the evaluated model is worse than the reference one.439

As shown by Figure 5, regardless the site under study, the highest CRPS skill scores are440

obtained by the ensemble-based approach (represented by the cyan and green bars). Con-441

versely, except the case of Hawaii, the deterministic-based approach (grey bars) yields lower442

or even negative skill scores. These negative CRPSS values indicate that the deterministic-443

based models do not always achieve to increase the quality of the raw ensemble forecasts444

(see for example Palaiseau and Langley).445

A deeper look into the performance of the ensemble-based approach shows that models446

using the mean and the standard deviation of the ensemble members (green bars) exhibit447

a better forecast skill than models using only the mean of the members (cyan bars) albeit448

the improvement is less pronounced for Hawaii. Overall, the model with the highest skill449

score appears to be either LQRs or NR GEV . Regarding the latter, it may suggest that450

a judicious choice of the underlying PDF (see Equation 6) used by a calibration technique451

like Nonhomogenous Regression (NR) can further improve the quality of the probabilistic452

forecasts.453

Finally, in order to quantify the relative improvement provided by the ensemble-based454

approach over the deterministic-based approach, we calculate the gain in CRPS based on455

the CRPS values of the best performer of each approach. It appears that the level of456

improvement is very dependent on the studied site. It is moderate for Hawaii and Tiruvallur457

(4%), becomes larger for Saint-Pierre (approximately 8%) and quite significant for Desert458

Rock (approximately 12%), Langley and Palaiseau (approximately 16%).459

5.2. Detailed insight through the decomposition of the CRPS460

Table 4 also provides the decomposition of the CRPS into reliability and resolution of461

the different forecasting methods. As mentioned previously, a forecast should exhibit a small462

reliability term and a large resolution term. It is worth mentioning first that all models sig-463

nificantly improves the reliability component of the raw EPS forecasts and that the level of464

improvement strongly depends on the reliability of the initial raw ensemble. Second, it can465

be noted that the reliability of all calibrated forecasts is fairly comparable. In addition, re-466

gardless the site, it appears that, overall, the ensemble-based approach does not significantly467

improve reliability compared to the deterministic-based approach. Looking in more details,468

models based on the AnEn technique often appears to generate the most reliable forecasts469

while the t NGR model generally provides the less reliable forecasts. Also, in the case of470

Non homogeneous calibration technique, GEV distributions seem to be more suitable than471

Gaussian distributions, since NR GEV is slightly more reliable than the t NGR model.472

Regarding the resolution component, it must be noted first that the deterministic-based473

approach fails to improve the resolution of the raw Ensemble. Conversely, resolution in-474

creases with the ensemble-based approach, and particularly when the spread of EPS mem-475

bers is taken as as input of the models i.e. case of the LQRs,t NGR and NR GEV models.476

Finally, one can state that the decomposition of the CRPS given in Table 4 reveals that477
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Site HAW DR SP PAL TIR LAN

CRPS (W/m2)

raw Ensemble 67.7 29.4 59.4 38.6 46.8 40.0
AnEnc 50.1 30.1 58.5 44.0 47.8 42.8
LQRc 48.4 28.6 55.1 43.3 44.4 42.0
AnEnm 48.5 28.9 55.3 38.4 44.9 38.9
LQRm 46.9 27.9 52.7 38.6 43.4 38.0
LQRs 46.8 25.2 51.4 36.2 42.5 35.2
t NGR 47.2 25.7 52.0 36.2 43.3 35.8
NR GEV 46.6 25.5 50.8 36.2 43.2 35.7

Reliability (W/m2)

raw Ensemble 23.2 8.4 13.4 7.5 11.5 8.2
AnEnc 4.2 4.8 6.6 4.9 7.2 4.8
LQRc 4.4 5.3 7.1 5.4 6.7 5.3
AnEnm 4.1 4.7 6.2 4.9 7.9 4.5
LQRm 4.4 5.7 7.0 5.7 8.2 5.0
LQRs 4.5 5.9 7.6 5.3 8.2 5.4
t NGR 4.7 6.5 8.4 5.4 8.0 5.7
NR GEV 4.1 6.2 7.2 5.4 7.8 5.8

Resolution (W/m2)

raw Ensemble 113.3 154.0 126.7 95.4 125.7 122.5
AnEnc 111.9 149.7 120.8 87.4 120.4 116.4
LQRc 113.9 151.7 124.7 88.6 123.3 117.7
AnEnm 113.4 150.8 123.5 93.0 124.0 120.0
LQRm 115.3 152.8 127.0 93.6 125.8 121.4
LQRs 115.5 155.6 128.9 95.6 126.8 124.7
t NGR 115.3 155.7 129.0 95.8 125.8 124.3
NR GEV 115.3 155.6 129.1 95.6 125.7 124.5

Uncertainty (W/m2) All Models 157.8 175.0 172.7 126.5 161.0 154.4

Table 4: CRPS and its components reliability, resolution and uncertainty of all considered models for the
6 sites. Cyan : deterministic-based approach, Green : ensemble-based approach. Red values indicate the
worst CRPSs while the black bold ones show the best CRPSs.
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the difference in quality between the two approaches is mainly explained by the resolution478

component, whereas reliability is fairly comparable.479

5.3. Detailed insight through the CRPS Moments-Contributions480

(a) MC-CRPS for Hawaii (b) MC-CRPS for Desert Rock

(c) MC-CRPS for Saint-Pierre (d) MC-CRPS for Palaiseau

(e) MC-CRPS for Tiruvallur (f) MC-CRPS for Langley

Figure 6: MC-CRPS of the six sites and all forecasting models. A black line is used to better highlight the
value of the CRPS and a dotted black line indicates the value of CRPSm1.

Figure 6 shows the results of the MC-CRPS introduced in section 3.3. As seen, the481

final CRPS values, of the forecasting models occur to be dependent on their respective482

CRPSm1 values. In particular, models from the ensemble-based approach appear to have483

best CRPSm1 than models from the deterministic-based approach (see for instance the case484

of Langley). This means that the aggregation of members improves the estimation of the first485

moment. Among the ensemble-based models, except for the cases of Hawaii and Tiruvallur,486

the superiority of the LQRs, NR GEV and tNGR models using the mean and standard487
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deviation of the ensemble members can be mainly explained by a greater contribution of488

G2. Thus the spread of EPS members is effective and improves more importantly G2 than489

CRPSm1. Further, the best performer among the three aforementioned models is finally490

determined by G+. This highlights the importance of the choice of the distribution in the491

non homogenous regression calibration framework.492

For example, overall, NR GEV performs better than the t NGR model because of G+.493

Let us stress that the choice of strictly truncated Gaussian distributions in the implemen-494

tation of a NGR technique forces G+ to be very close to 0 in the MC-CRPS. Hence, the495

benefits of GEV distributions compared to Gaussian distributions are highlighted by the496

MC-CRPS method.497

6. Discussion498

In this section, we try to give more clues regarding the merits of each proposed approach.499

Also, a discussion related to the advantages brought by the MC-CRPS is proposed.500

6.1. Deterministic-based approach versus ensemble-based approach501

Let us recall that the deterministic-based approach uses a unique deterministic predictor502

while the ensemble-based approach makes use of the information conveyed by the ensemble.503

Therefore, the main weakness of the deterministic-based approach is the lack of information504

feeding the models. Since the distribution needs to be completely determined from one single505

deterministic predictor, the spread and the possible skewness and kurtosis of the forecasting506

distribution need to be only inferred from this single predictor. Conversely, the benefits507

gained from the multiplicity of predictors provided by the ensemble-based approach need to508

be significant to justify the computation of the EPS. Two types of benefits can be discussed.509

First, the aggregation of predictors leads to a better estimation of the first moment.510

This is visible in Figure 6 where models issued from the ensemble-based approach get better511

CRPSm1 than models from the deterministic-based approach. It is clear that a gain in the512

estimation of the first moment can be obtained by the substitution of the control member513

by the mean of all members.514

Second, regarding the determination of the second moment, the uncertainty is already515

carried by the level of forecasting of the mean of the EPS members. These variables are516

dependent, as shown in Appendix B (the standard deviations of the observations clearly517

depends on the level of forecasting). Hence, using the spread of the members of EPS as518

input of the forecasting models can only be justified if it brings an extra-information on the519

uncertainty. It is assumed that the spread of the members is higher if the uncertainty is so.520

Indeed it indicates if slight errors in the initial conditions could lead to great differences in521

the final state of the atmosphere.522

Thus, it appears necessary to investigate on the quantity of information actually provided523

by the spread of the members. In order to do this, the correlation between the standard524

deviation of the observations and the spread of the members has been studied. This has been525

made for a fixed level of forecasting, in order to remove the dependency between uncertainty526

and level of forecasting. Then an average over all levels of forecasting has been calculated527
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to produce Figure 7. This kind of plot is of great utility to know the added value of the528

standard deviation of the EPS forecast members. If the dependence between the spread of529

the members and the uncertainty of the forecast for a fixed level of forecasting is strong,530

then a large improvement can be expected for calibration models using the spread of the531

members as an input, compared to simpler models.532

Figure 7: Standard deviation of observations vs. standard deviation of the EPS members (raw ECMWF
ensembles). Normalization of the standard deviation has been done by dividing the standard deviations by
the maximum of the standard deviation for each site.

As shown by Figure 7, the amount of new information given by the spread of the members533

is very dependent on the studied site. When for Hawaii, the correlation between the standard534

deviation of the observations and the spread of the members is almost null, it is quite535

significant for the other sites and especially for Langley and Desert Rock. A link can be536

established between this finding and Figure 5 which shows that the success of taking into537

account the spread of members in the forecasting models depends on the site. It is clearly538

less valuable in Hawaii than in other sites, and it is particularly successful in Desert Rock539

and Langley. It is also consistent with Figure 6 where G2 is significantly higher in Desert540

Rock for LQRs, t NGR and NR GEV models.541

6.2. Discussion related to CRPS Moments-Contributions542

In order to consolidate the results obtained in Figure 6, a complete analysis of the543

statistical moments of the probability distributions produced by the forecasting methods544

has been conducted. This kind of study is traditionally done to assess the strengths and545

weaknesses of a forecasting model. Although the deterministic measure of a statistical546

moment is not a proper scoring rule, it is of great interest to use it to understand the547

behaviour of the forecasting models.548

First, an evaluation of the accuracy of the first moment has been conducted. A good549

forecasting model should have the ability to give a mean value of the forecasting distributions550
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as close as possible to the mean of the observation values. A measure of this ability can551

be obtained by calculating the Root Mean Square Error (RMSE) or Mean Absolute Error552

(MAE) of the mean of the forecasting distributions. In this study, the MAE has been553

chosen as it is exactly the definition of CRPSm1 introduced in section 3.3 (see [34] for554

details). Figure 6 gives therefore the results related to the accuracy of the first moment of555

the distributions.556

Second, a probabilistic forecast also provides an estimation on the level of uncertainty,557

which is reflected by the spread of the forecasting distribution (i.e. the second statistical558

moment). Some works have been specifically dedicated to the assessment of the accuracy559

of the spread of the predictive distributions. Among others, one can cite the studies related560

to the spread-skill relationship (see [43] or [44]). These works are guided by the idea that561

the variance of a probabilistic forecast should be larger if the uncertainty of the forecast is562

so. Fortin et al. [45] proposed a criterion for the evaluation of the accuracy of the second563

moment of the distributions. This criterion is based on the fact that statistical consistency564

requires that the spread of the forecasting distributions should be equal to the RMSE of the565

mean of the forecast. Following [45], spread is calculated as the square root of the mean566

of the variances of the forecasting distributions. The accuracy of the second moment is567

therefore measured by calculating the RMSE of the differences between spread and RMSE568

of the mean of the distributions (i.e. RMSEM). Figure 8 plots the RMSE of the difference569

(spread−RMSEM) , computed over the evaluation period.570
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 8: Accuracy of the second moment for the six studied sites and all forecasting models

Conversely to the first moment, the accuracy of the second moment gradually improves571

when the information taken by the forecasting model is more complete. Using the mean572

of members instead of the control member increases the second moment accuracy. Taking573

into account the spread of the EPS improves further the accuracy by approximately the574
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same extent (except for Hawaii, for the reasons discussed in section 6.1). Nevertheless,575

this improvement depends on the site. As shown by Figure 8, the accuracy of the second576

moment for Hawaii is almost equal for each model. It is consistent with the results depicted577

in Figure 7, showing that the information of the second moment of the EPS distribution in578

Langley and Desert Rock is the most valuable , as opposed to the information of Hawaii579

EPS distribution.580

The accuracy of the second moment can be linked to the gain G2 introduced in the MC-581

CRPS section (see section 3.3). The correlation between these two values is highlighted in582

Figure 9, which shows the ratio G2/CRPSm1 versus the accuracy of the second moment.583
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 9: Link between G2 and the accuracy of the second moment.

To sum up, the great advantage of the MC-CRPS is to reconcile the score of a proba-584

bilistic forecasting model and the explanation of its performance by examining the accuracy585

of the moment-based distributions.586
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Moreover, the link between the calibration of the moments and the score is highlighted,587

because the contribution of the accuracy of the moments to the score is quantified. Here,588

in the proposed new diagnostic tool MC-CRPS, the accuracy of the statistical moments of589

the forecasting distributions is quantified by the proper score itself. This diagnostic tool590

is complementary of the decomposition discussed in section 3.2.3, i.e. the reliability and591

resolution of fm1 and fm2 can also be computed and studied. The MC-CRPS diagnostic592

tool also highlights the benefits of probabilistic forecasting, as the comparison between593

CRPSm1 and CRPS provides a measure of the quality difference between deterministic and594

probabilistic forecasting.595

7. Conclusions596

Based on the two types of forecasts i.e deterministic or ensemble forecast (denoted by the597

term EPS for ensemble prediction system) issued by the meteorological centre ECWMF, two598

approaches for generating day-ahead solar irradiance probabilistic forecasts were proposed.599

The first approach creates probabilistic forecasts from the deterministic day-ahead GHI600

predictor while the second one generates probabilistic forecasts from the calibration of the601

EPS or from information inferred from the EPS.602

The goal of this work was to quantify the possible added-value of the EPS on the quality603

of the forecasts. Six sites experiencing different sky conditions were chosen for the appraisal604

of the different probabilistic models. Quality of the different probabilistic models have been605

evaluated with common diagnostic tools such as the CRPS and its decomposition. A new606

diagnostic tool called MC-CRPS has also been introduced. It consists in the measure of the607

contribution of each statistical moment of the forecasting distributions to the CRPS.608

Overall, models adopting the ensemble-based approach have been found to issue proba-609

bilistic forecasts with better quality than the ones based on the deterministic-based approach.610

The gain in quality, based on the CRPS metric, ranges from 4 % up to 16 %.611

One other important contribution of this work is the new diagnostic tool related to the612

CRPS score based on the moments of the ensemble distribution called MC-CRPS. This613

MC-CRPS tool allowed to identify two characteristics of EPS that have an impact on the614

quality of probabilistic forecasts. First, the aggregation of deterministic predictors of the615

ensemble leads to an improvement of the estimation of the first moment and thus, raises the616

overall quality of a probabilistic forecast. Second, the spread of the EPS members turns to617

be be a good predictor that permits to enhance the estimation of the second moment of the618

forecasting distributions. Finally, in terms of forecast quality, it can be concluded that using619

an EPS (which requires high computing capacities) to produce day-ahead GHI probabilistic620

forecasts should be favored compared to a deterministic (less demanding) approach. This621

work opens the way to the assessment of the forecast value of each approach i.e. the benefit622

(economical or others) gained from the use of these probabilistic forecasts in an operational623

context.624
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Appendix A. Data quality check750

A quality check has been conducted for the observation data of each of the six studied
sites. As the decomposition of irradiance into diffuse and direct has not been measured, the
exhaustive set of BSRN recommended quality checks could not been conducted (see [46]),
but only the first plot. It consists in the plot of measured irradiance versus solar zenith
angle. The rarely reached limit is plotted in dashed line and the physical possible limit is
plotted in solid line. The second check is a frequency histogram of the clear-sky index (k*)
for each site. k* is defined as:

k∗ =
Irradiance

ClearSky Irradiance
(A.1)

where the clear-sky irradiance is calculated with the Bird clear-sky model [47]. The maxi-751

mum of the observed frequency is supposed to be at k∗ = 1. The third check is a plot of the752

k*, only for clear-sky days. The morning data is reported by black dots and afternoon data753

by red dots. From this plot, it is possible to see if clear-sky irradiances are well-reported754

by the measurement data. If not, the line drawn by the dots is not straight. To extract755

clear-sky days from the data, the process proposed in Badosa et al. [38] has been followed.756

The last figure is a plot of the k* for each hour and day of the year. It allows to detect757
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if systematical biases exist at some days/hours of the year. It also allows to easily detect758

missing data.759

Figure A.10: Desert Rock
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Figure A.11: Saint-Pierre
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Figure A.12: Hawaii
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Figure A.13: Palaiseau

35



Figure A.14: Tiruvallur
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Figure A.15: Langley

No major issues have been detected concerning the six studied sites. For some sites760

(Tiruvallur, Langley, Saint-Pierre), it is possible to guess that some reflexions occur for761

extreme hours and some seasons. This leads to the phenomenon of overirradiance where k*
762

can easily reach a value of 4.763

Appendix B. Bias and standard deviation of EPS members distribution and764

observations for the six sites765

The definition of the probabilistic forecast presented in section 2.3.1 is often under-766

dispersive, and consequently obtains poor scores. The associated rank histograms usually767

get characteristic U-shapes, with overpopulated extreme ranks. In this section, we attempt768

to demonstrate why a calibration procedure is needed for raw forecasts. To this end, a769

comparison between members distributions and observation distributions depending on the770

level of forecasting has been conducted for the 2 first statistical moments. These plots771

show clearly under-dispersive raw ensembles. The standard deviations need to be corrected.772

The discrepancy between distributions of members and observations indicates a statistical773

inconsistency between observations and forecasts, and therefore a bad reliability, and justifies774

the use of calibration models.775

37



Figure B.16: Bias and standard deviation of EPS members distribution and observations for the six sites,
depending on the level of forecasting
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Appendix C. Selection of the optimal α776

Figure C.17 presents the results related to the optimal selection of the parameter α. As777

shown by Figure C.17 , regardless of the site under study, the optimal value corresponds to778

the minimum of the CRPS calculated on the training evaluation set.779

(a) Hawaii (b) Desert Rock (c) Saint-Pierre

(d) Palaiseau (e) Tiruvallur (f) Langley

Figure C.17: Determination of the α. The optimal value corresponds to the minimum of the CRPS.
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