M. Weber, M. Coldewey-egbers, V. E. Fioletov, S. M. Frith, J. D. Wild et al., Total ozone trends from 1979 to 2016 derived from five merged observational datasets -the emergence into ozone recovery, Atmos. Chem. Phys, vol.18, pp.2097-2117, 2018.

J. C. Farman, B. G. Gardiner, and J. D. Shanklin, Large losses of total ozone in Antarctica reveal seasonal ClO x/NO x interaction, Nature, vol.315, pp.207-210, 1985.

S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, On the depletion of Antarctic ozone, Nature, vol.321, pp.755-758, 1986.

M. Rigby, S. Park, T. Saito, L. M. Western, A. L. Redington et al., Increase in CFC-11 emissions from eastern China based on atmospheric observations, Nature, vol.569, pp.546-550, 2019.

W. T. Ball, J. Alsing, D. J. Mortlock, J. Staehelin, J. D. Haigh et al., Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys, vol.18, pp.1379-1394, 2018.

P. Braesicke, J. Neu, V. Fioletov, S. Godin-beekmann, D. Hubert et al., Update on Global Ozone: Past, Present, and Future. In Scientific Assessment of Ozone Depletion, 2018.

S. Pawson, W. Steinbrecht, A. J. Charlton-perez, M. Fujiwara, A. Y. Karpechko et al., Update on global ozone: Past, present, and future, Scientific Assessment of Ozone Depletion, 2014.

W. Chehade, M. Weber, and J. P. Burrows, Total ozone trends and variability during 1979-2012 from merged data sets of various satellites, Atmos. Chem. Phys, vol.14, pp.7059-7074, 2014.

W. T. Ball, J. Alsing, J. Staehelin, S. M. Davis, L. Froidevaux et al., Stratospheric ozone trends for 1985-2018: sensitivity to recent large variability, Atmos. Chem. Phys, vol.19, pp.12731-12748, 2019.

M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, A review on the forecasting of wind speed and generated power, Renew. Sust. Energ. Rev, vol.13, pp.915-920, 2009.

X. Zhang, Q. Zhang, G. Zhang, Z. Nie, Z. Gui et al., A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition, Int. J. Environ. Res. Public. Health, p.15, 2018.

G. P. Zhang and M. Qi, Neural network forecasting for seasonal and trend time series, Eur. J. Oper. Res, vol.160, pp.501-514, 2005.

A. Tealab, Time series forecasting using artificial neural networks methodologies: A systematic review, future computing inform. j, vol.3, pp.334-340, 2018.

C. Tian, Y. Hao, and J. Hu, A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization, Applied Energy, vol.231, pp.301-319, 2018.

G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, vol.50, pp.159-175, 2003.

I. Khandelwal, R. Adhikari, and G. Verma, Time Series Forecasting Using Hybrid ARIMA and ANN Models Based on DWT Decomposition, Procedia Comput. Sci, vol.48, pp.173-179, 2015.

J. Zhou, T. Peng, C. Zhang, and N. Sun, Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for, Monthly Streamflow Forecasting, vol.10, p.628, 2018.

A. Altan, S. Karasu, and S. Bekiros, Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos Soliton. Fract, vol.126, pp.325-336, 2019.

Y. Liu, L. Guan, C. Hou, H. Han, Z. Liu et al., Wind Power Short-Term Prediction Based on LSTM and Discrete Wavelet Transform, Appl. Sci, vol.9, p.1108, 2019.

Y. Li, H. Wu, and H. Liu, Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction, Energy Convers. Manag, vol.167, pp.203-219, 2018.

H. M. Nazir, I. Hussain, M. Faisal, A. M. Shoukry, S. Gani et al., Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis, Complexity, pp.1-14, 2019.

J. Gilles, Empirical wavelet transform, IEEE Trans. Signal. Process, vol.61, pp.3999-4010, 2013.

S. Hochreiter and J. Schmidhuber, World Ozone and Ultraviolet Radiation Data Centre website, Neural Computation, vol.9, pp.1735-1780, 1997.

G. M. Dobson, D. N. Harrison, and F. A. Lindemann, Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions, P. Roy. Soc. A-Math. Phy, vol.110, pp.660-693, 1926.

R. S. Stolarki, A. J. Krueger, M. R. Schoeberl, R. D. Mcpeters, P. A. Newman et al., Nimbus 7 SBUV/TOMS measurements of the springtime Antarctic ozone hole, Nature, vol.322, pp.808-811, 1986.

W. B. Grant, Ozone measuring instruments for the stratosphere; Collection Work in Optics, Opt. Soc. Am: Washington DC, 1989.

N. Mbatha and S. Xulu, Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought, vol.6, p.95, 2018.

H. B. Mann, Nonparametric tests against trend, Econometrica, vol.13, pp.245-259, 1945.

R. Sneyers, On the statistical analysis of series of observations, World Metrological Organization, vol.143, 1991.

T. Pohlert and . Trend, Non-Parametric Trend Tests and Change-Point Detection, 2018.

J. Schaber and . Pheno, Auxiliary functions for phenological data analysis, 2018.

M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4144-4147, 2011.

I. Daubechies, Ten Lectures on Wavelets, 1992.

C. L. Giles, S. Lawrence, and A. C. Tsoi, Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference, Mach. Learn, vol.44, pp.161-183, 2001.

. Miniconda-conda, , 2019.

Y. Xu, W. Yang, and J. Wang, Air quality early-warning system for cities in China, Atmos. Environ, vol.148, pp.239-257, 2017.

K. W. Thoning, P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res: Atmos, vol.94, pp.8549-8565, 1989.

F. Apadula, C. Cassardo, S. Ferrarese, D. Heltai, and A. Lanza, Thirty Years of Atmospheric CO2 Observations at the Plateau Rosa Station, Italy. Atmosphere, vol.10, p.418, 2019.

V. E. Fioletov, Ozone climatology, trends, and substances that control ozone, Atmos.Ocean, vol.46, pp.39-67, 2008.

A. M. Toihir, T. Portafaix, V. Sivakumar, H. Bencherif, A. Pazmino et al., Variability and trend in ozone over the southern tropics and subtropics, Ann. Geophys, vol.36, pp.381-404, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01753340

. Nasa-ozone-watch, Latest status of ozone, 2020.

J. Harmouche, D. Fourer, F. Auger, P. Borgnat, and P. Flandrin, The sliding singular spectrum analysis: A data-driven nonstationary signal decomposition tool, IEEE Trans. Signal. Process, vol.66, pp.251-263, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589464

A. Moghtaderi, P. Borgnat, and P. Flandrin, Trend filtering: empirical mode decompositions versus ?1 and Hodrick-Prescott, Adv. Adapt. Data Anal, vol.3, pp.41-61, 2011.

V. S. Geetikaverma, Empirical Wavelet Transform & its Comparison with Empirical Mode Decomposition: A review, Int. J. Appl. Eng, 2005.

Z. Wu and N. E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, P. Roy. Soc. A-Math. Phy, vol.460, pp.1597-1611, 2004.

Y. Sang, Z. Wang, and C. Liu, Comparison of the MK test and EMD method for trend identification in hydrological time series, J. Hydrol, vol.510, pp.293-298, 2014.

K. E. Taylor, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res: Atmos, vol.106, pp.7183-7192, 2001.

N. Bègue, D. Vignelles, G. Berthet, T. Portafaix, G. Payen et al., Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption, Atmos. Chem. Phys, vol.17, pp.15019-15036, 2017.

N. Bègue, L. Shikwambana, H. Bencherif, J. Pallotta, V. Sivakumar et al., Statistical analysis of the long-range transport of the 2015 Calbuco volcanic eruption from ground-based and space-borne observations, Ann. Geophys, vol.2020, pp.395-420