H. Hajjaj, P. Blanc, E. Groussac, J. Uribelarrea, G. Goma et al., Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation, Enzyme Microb. Technol, vol.27, pp.619-625, 2000.

L. Zhang, R. An, J. Wang, N. Sun, S. Zhang et al., Exploring novel bioactive compounds from marine microbes, Curr. Opin. Microbiol, vol.8, pp.276-281, 2005.

P. Vaishnav and A. L. Demain, Unexpected applications of secondary metabolites, Biotechnol. Adv, vol.29, pp.223-229, 2011.

S. Hasan, M. I. Ansari, A. Ahmad, and M. Mishra, Major bioactive metabolites from marine fungi: A review, Bioinformation, vol.11, 2015.

J. Hong, S. Jang, Y. M. Heo, M. Min, H. Lee et al., Investigation of marine-derived fungal diversity and their exploitable biological activities, Mar. Drugs, vol.13, pp.4137-4155, 2015.

R. Nicoletti and A. Trincone, Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin, Mar. Drugs, vol.14, 2016.

K. Kirti, S. Amita, S. Priti, and S. Jyoti, Colorful world of microbes: Carotenoids and their applications, Adv. Biol, vol.837891, 2014.

L. Dufossé, Pigments microbial, Encyclopedia of Microbiology, pp.457-471, 2009.

L. Dufossé, Microbial production of food grade pigments, Food Technol. Biotechol, vol.44, pp.313-323, 2006.

L. Dufossé, M. Fouillaud, Y. Caro, S. A. Mapari, and N. Sutthiwong, Filamentous fungi are large-scale producers of pigments and colorants for the food industry, Curr. Opin. Biotechnol, pp.56-61, 2014.

J. L. Adrio and A. L. Demain, Fungal biotechnology, Int. Microbiol, vol.6, pp.191-199, 2003.

M. S. Butler, The role of natural product chemistry in drug discovery, J. Nat. Prod, vol.67, pp.2141-2153, 2004.

J. F. Imhoff, Natural products from marine fungi-Still an underrepresented resource, Mar. Drugs, vol.14, 2016.

I. Bhatnagar and S. Kim, Immense essence of excellence: Marine microbial bioactive compounds, Mar. Drugs, vol.8, pp.2673-2701, 2010.

G. M. Cragg and D. J. Newman, Natural products: A continuing source of novel drug leads, Biochim. Biophys. Acta, vol.1830, pp.3670-3695, 2013.

J. R. Hanson, Natural Products: The Secondary Metabolites, p.147, 2003.

R. Ebel, 08-Natural product diversity from marine fungi, Comprehensive Natural Products II

H. Liu and L. Mander, , pp.223-262, 2010.

M. E. Rateb and R. Ebel, Secondary metabolites of fungi from marine habitats, Nat. Prod. Rep, vol.28, pp.290-344, 2011.

M. Fouillaud, M. Venkatachalam, E. Girard-valenciennes, Y. Caro, and L. Dufossé, Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities, Mar. Drugs, vol.14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399825

J. Avalos and M. Carmen-limon, Biological roles of fungal carotenoids, Curr. Genet, vol.61, pp.309-324, 2015.

A. O. Berestetskiy, E. L. Gasich, E. V. Poluektova, E. V. Nikolaeva, S. V. Sokornova et al., Biological activity of fungi from the phyllosphere of weeds and wild herbaceous plants, Microbiology, vol.83, pp.523-530, 2014.

E. Dadachova, R. A. Bryan, R. C. Howell, A. D. Schweitzer, P. Aisen et al., The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement, Pigment Cell Melanoma Res, vol.21, pp.192-199, 2008.

N. Gessler, A. Egorova, and T. Belozerskaya, Fungal anthraquinones. Appl. Biochem. Microbiol, vol.49, pp.85-99, 2013.

S. Jan?i?, J. C. Frisvad, D. Kocev, C. Gostin?ar, S. D?eroski et al., Production of secondary metabolites in extreme environments: Food-and airborne Wallemia spp. Produce toxic metabolites at hypersaline conditions, PLoS ONE, vol.11, 2016.

P. Margalith, Pigment Microbiology, p.156, 1992.

I. Kurobane, L. C. Vining, A. G. Mcinnes, and J. A. Walter, Use of 13 C in biosynthetic studies. The labeling pattern in dihydrofusarubin enriched from [ 13 C]-and [ 13 C, 2H]acetate in cultures of Fusarium solani, Can. J. Chem, vol.58, pp.1380-1385, 1980.

P. Julia, L. Martinkova, J. Lolinski, and F. Machek, Ethanol as substrate for pigment production by the fungus Monascus purpureus, Enzyme Microb. Technol, vol.16, pp.996-1001, 1994.

Y. J. Cho, H. J. Hwang, S. W. Kim, C. H. Song, and J. W. Yun, Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor, J. Biotechnol, vol.95, pp.13-23, 2002.

Y. Cai, Y. Din, G. Ta, and X. Lia, Production of 1,5-dihydroxy-3-methoxy-7-methylanthracene-9,10-dione by submerged culture of Shiraia bambusicola, J. Microbiol. Biotechnol, vol.18, pp.322-327, 2008.

J. H. Yu and N. Keller, Regulation of secondary metabolism in filamentous fungi, Annu. Rev. Phytopathol, vol.43, pp.437-458, 2005.

G. Arumugam, S. Srinivasan, G. Joshi, D. Gopal, and K. Ramalingam, Production and characterization of bioactive metabolites from piezotolerant deep sea fungus Nigrospora sp. in submerged fermentation, J. Appl. Microbiol, vol.118, pp.99-111, 2015.

T. Netzker, J. Fischer, J. Weber, D. J. Mattern, C. C. König et al., Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters, Front. Microbiol, vol.6, p.299, 2015.

G. Lang, J. Wiese, R. Schmaljohann, and J. F. Imhoff, New pentaenes from the sponge-derived marine fungus Penicillium rugulosum: Structure determination and biosynthetic studies, Tetrahedron, vol.63, pp.11844-11849, 2007.

G. Bringmann, T. A. Gulder, G. Lang, S. Schmitt, R. Stöhr et al., Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A, Mar. Drugs, vol.5, pp.23-30, 2007.

J. Wiese, B. Ohlendorf, M. Blümel, R. Schmaljohann, and J. F. Imhoff, Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites, Mar. Drugs, vol.9, pp.561-585, 2011.

Y. Wang, J. Zheng, P. Liu, W. Wang, and W. Zhu, Three new compounds from Aspergillus terreus pt06-2 grown in a high salt medium, Mar. Drugs, vol.9, pp.1368-1378, 2011.

M. Varoglu and P. Crews, Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger, J. Nat. Prod, vol.63, pp.41-43, 2000.

M. Kobayashi, H. Uehara, K. Matsunami, S. Aoki, and I. Kitagawa, Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale cecilia, Tetrahedron Lett, vol.34, pp.7925-7928, 1993.

M. Fouillaud, M. Venkatachalam, M. Llorente, H. Magalon, P. Cuet et al., Biodiversity of pigmented fungi isolated from marine environment in La Réunion island, Indian ocean: New resources for colored metabolites, J. Fungi, vol.3, p.36, 2017.

M. Venkatachalam, H. Magalon, L. Dufossé, and M. Fouillaud, Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: New resources for natural red-colored metabolites, J. Food Compos. Anal, vol.70, pp.35-48, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865698

M. Venkatachalam, M. Zelena, F. Cacciola, L. Ceslova, G. Emmanuelle et al., Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry, J. Food Compos. Anal, vol.67, pp.38-47, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695109

D. Overy, H. Correa, C. Roullier, W. C. Chi, K. L. Pang et al., Does osmotic stress affect natural product expression in fungi? Mar, vol.15, 2017.

J. Huang, C. Lu, X. Qian, Y. Huang, Z. Zheng et al., Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi, Acta Oceanol. Sin, vol.30, pp.118-123, 2011.

Y. J. Cho, J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi et al., Production of red pigment by submerged culture of Paecilomyces sinclairii, Lett. Appl. Microbiol, vol.35, pp.195-202, 2002.

A. Méndez, C. Pérez, J. C. Montañéz, G. Martínez, and C. N. Aguilar, Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature, J. Zhejiang Univ. Sci. B, vol.12, pp.961-968, 2011.

F. Niknejad, M. Moshfegh, M. J. Najafzadeh, J. Houbraken, S. Rezaei et al., Halotolerant ability and alpha-amylase activity of some saltwater fungal isolates, Iran. J. Pharm. Res, vol.12, pp.113-119, 2013.

P. Velmurugan, Y. H. Lee, K. Nanthakumar, S. Kamala-kannan, L. Dufossé et al., Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component, J. Basic Microbiol, vol.50, pp.581-590, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01188125

Y. G. Li, F. Zhang, Z. T. Wang, and Z. B. Hu, Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry, J. Pharm. Biomed. Anal, vol.35, pp.1101-1112, 2004.

S. A. Mapari, A. S. Meyer, and U. Thrane, Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants, J. Agric. Food Chem, vol.54, pp.7027-7035, 2006.

C. N. Ogbonna, Production of food colorants by filamentous fungi, Afr. J. Microbiol. Res, vol.10, pp.960-971, 2016.

S. Babitha, C. R. Soccol, and A. Pandey, Solid-state fermentation for the production of Monascus pigments from jackfruit seed, Bioresour. Technol, vol.98, pp.1554-1560, 2007.

I. S. Aujla and T. C. Paulitz, An improved method for establishing accurate water potential levels at different temperatures in growth media, Front. Microbiol, 1497.

R. Masuma, Y. Yamaguchi, M. Noumi, S. Omura, and M. Namikoshi, Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi, Mycoscience, vol.42, pp.455-459, 2001.

S. Liu, J. Li, Y. Wu, Y. Ren, Q. Liu et al., De novo transcriptome sequencing of marine-derived Aspergillus glaucus and comparative analysis of metabolic and developmental variations in response to salt stress, Genes Genom, vol.39, pp.317-329, 2017.

S. A. Mapari, Chemotaxonomic Exploration of Fungal Biodiversity for Polyketide Natural Food Colorants, 2009.

N. Gunde-cimerman, A. Oren, and A. Plemenita?, Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya, vol.9, 2005.

D. Ritchie, Salinity optima for marine fungi affected by temperature, Am. J. Bot, vol.44, pp.870-874, 1957.

D. Ritchie, The efect of salinity and temperature on marine and other fungi from various climates, Bull. Torrey Bot. Club, vol.86, pp.367-373, 1959.

P. H. Dunn and G. E. Baker, Filamentous fungi of the Psammon habitat at Enewetak atoll, Marshall islands, Mycologia, vol.75, pp.839-853, 1983.

J. E. Janso, V. S. Bernan, M. Greenstein, T. S. Bugni, and C. M. Ireland, Penicillium dravuni, a new marine-derived species from an alga in fiji, Mycologia, vol.97, pp.444-453, 2005.

R. Lorenz and H. Molitoris, Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi, Can. J. Bot, vol.70, pp.2111-2115, 1992.

R. J. O'mahony, A. T. Burns, S. Millam, P. Hooley, and D. A. Fincham, Isotropic growth of spores and salt tolerance in Aspergillus nidulans, Mycol. Res, vol.106, pp.1480-1486, 2002.

M. K. Kun?i?, T. Kogej, D. Drobne, and N. Gunde-cimerman, Morphological response of the halophilic fungal genus Wallemia to high salinity, Appl. Environ. Microbiol, vol.76, pp.329-337, 2010.

A. Blomberg and L. Adler, Physiology of osmotolerance in fungi, Adv. Microb. Physiol, vol.33, pp.145-212, 1992.

S. M. Bowman and S. J. Free, The structure and synthesis of the fungal cell wall, BioEssays, vol.28, pp.799-808, 2006.

J. C. Kapteyn, H. Van-den-ende, and F. M. Klis, The contribution of cell wall proteins to the organization of the yeast cell wall, Biochim. Biophys. Acta Gen. Subj, vol.1426, pp.373-383, 1999.

W. H. Mager and M. Siderius, Novel insights into the osmotic stress response of yeast, FEMS Yeast Res, vol.2, pp.251-257, 2002.

G. Castillo and V. Demoulin, Nacl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest, Mycol. Res, vol.101, pp.341-344, 1997.

V. C. Santos-ebinuma, I. C. Roberto, M. F. Teixeira, A. Pessoa, and . Jr, Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum, Braz. J. Microbiol, vol.45, pp.731-742, 2014.

L. K. Chintapenta, C. C. Rath, B. Maringinti, and G. Ozbay, Culture conditions for growth and pigment production of a mangrove Penicillium species, J. Multidiscip. Sci. Res, vol.2, pp.1-05, 2014.

I. W. Sutherland, Biotechnology of Microbial Exopolysaccharides, vol.9, p.163, 1990.

H. Hajjaj, P. Blanc, E. Groussac, G. Goma, J. Uribelarrea et al., Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber, Biotechnol. Bioeng, vol.64, pp.497-501, 1999.

J. Ahn, J. Jung, W. Hyung, S. Haam, and C. Shin, Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature, Biotechnol. Prog, vol.22, pp.338-340, 2006.

L. K. Chintapenta, C. C. Rath, B. Maringinti, and G. Ozbay, Pigment production from a mangrove Penicillium, Afr. J. Biotechnol, vol.13, pp.2668-2674, 2014.

Z. Chadni, M. H. Rahaman, I. Jerin, K. M. Hoque, and M. A. Reza, Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries, Mycology, vol.8, pp.48-57, 2017.

F. C. Lopes, D. M. Tichota, J. Q. Pereira, J. Segalin, A. De-oliveira-rios et al., Pigment production by filamentous fungi on agro-industrial byproducts: An eco-friendly alternative, Appl. Biochem. Biotechnol, vol.171, pp.616-625, 2013.

T. ?ezanka and J. Spí?ek, Griseofulvin and other biologically active halogen containing compounds from fungi, Stud. Nat. Prod. Chem, vol.32, pp.471-547, 2005.

Y. Hsu, L. Hsu, Y. Liang, Y. Kuo, and T. Pan, New bioactive orange pigments with yellow fluorescence from Monascus-fermented Dioscorea, J. Agric. Food Chem, vol.59, pp.4512-4518, 2011.

M. M. Eman and M. S. Abbady, Secondary metabolites and bioactivity of the Monascus pigments, review. Glob. J. Biotechnol. Biochem, vol.9, pp.1-13, 2014.

P. Patakova, Monascus secondary metabolites: Production and biological activity, J. Ind. Microbiol. Biotechnol, vol.40, pp.169-181, 2013.

L. Martinkova and D. Veselý, Biological activity of polyketide pigments produced by the fungus Monascus, J. Appl. Microbiol, vol.79, pp.609-616, 1995.