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Abstract

The objective of this study is to highlight the

effect of porosity variation in a topology opti-

mization process in the field of fluid dynamics.

Usually a penalization term added to momen-

tum equation provides to get material distribu-

tion. Every time material is added inside the

computational domain, there is creation of new

fluid-solid interfaces and apparition of gradi-

ent of porosity. However, at present, porosity

variation is not taken account in topology opti-

mization and the penalization term used to lo-

cate the solid is analogous to a Darcy term used

for flows in porous media. With that in mind,

*Corresponding author: michael.rakotobe@univ-

reunion.fr

in this paper, we first develop an original one-

domain macroscopic model for the modelling

of flow through spatially varying porous me-

dia that goes beyond the scope of Darcy regime.

Next, we numerically solve a topology optimiza-

tion problem and compare the results obtained

with the standard model that does not include

effect of porosity variation with those obtained

with our model. Among our results, we show

for instance that the designs obtained are dif-

ferent but percentages of reduction of objective

functional remain quite close (below 4% of differ-

ence). In addition, we illustrate effects of poros-

ity and particle diameter values on final opti-

mized designs.

Keywords— Fluid dynamics, Topology optimiza-
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tion, Porous media, Variable porosity

1 Introduction

Topology optimization usually aims at finding the lo-

cation of a solid inside a fluid that either maximize or

minimize a given cost functional. The solid zones are

located thanks to a penalization term added to mo-

mentum equation which vanishes in the fluid zones

and goes to infinity in the solid zone. This term is

analogous to a Darcy term used for flows in porous

media. While such problems applied to fluid flow

originally concerned Stokes flows [1], it has then been

applied to several other setting like for instance heat

transfer in fluid flow [2, 3], turbulent flows [4, 5] or

buoyancy-driven flows [6, 7]. We also would like to

refer to the two following review papers [8, 9] for

many other references on this topic.

In this paper, we wish to perform topology opti-

mization using a porous media that only slow down

the flow instead of blocking it. Several references

dealing with such problems can be found in [9, p. 13,

Section 2.5]. More precisely one can find, in [10], a

penalization model allowing to get optimized porous

media modelled with Darcy law. In [11], topology

optimization problem with either fluid/porous or

solid phases is investigated. They used the penalized

Navier-Stokes model with a penalization parameter

that depends on the Darcy number Da hence fluid

corresponds to large Da, solid to small Da and porous

media to intermediate values. In [12, 13], the iner-

tial/nonlinear effect of the flow in the porous media

are taken into account thanks to the Darcy-Brinkman-

Forchheimer model and the porosity of the medium

is then used as optimization parameter. We empha-

size that looking for optimized porous medium is go-

ing to produce designs made by some isolated pieces

of porous media inside the fluid, we then have to

deal with the variation (gradient) of porosity in our

mathematical model. However, to the best of our

knowlege and in the aformentioned references, this

feature has not been taken into account.

The modelling of flow through porous media is

usually done with the volume averaging method pre-

sented in [14], where the concept of a representative

elementary volume (REV) is introduced. However,

we can see [15] that there are situations where the

notion of volume averaging is no longer applicable

due to effects of porosity variation. It is the case for

example in the so-called channeling effect where in

the vicinity of the wall, porosity is near unity before

reaching nearly its core value at about five diameters

from the wall [15]. A solution might be to consider a

deforming averaging volume and to deal with poros-

ity gradients which are explicitly present within the

macroscopic momentum equation as explained in
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[16]. In this study, we adopt this point of view and al-

though complex local closure problem were pointed

out by [16], we did not have this issue thanks to as-

sumptions taken from the outset in following the

development in [17].

Another difficulty encounter in the modelling of

porous media is the numerical treatment of inter-

faces between fluid and porous domains. Many au-

thors introduced special treatment of pressure and

velocity at the interface [18] [19] that are physically

reasoned to avoid unphysical numerical oscillations.

In this study, we use a smooth transition of the poros-

ity between fluid and porous domains in considering

the increase of packing density with depth. This

physical conception is supported by the findings of

[20] where the impact of depth-dependent porosity

was experimentally and numerically studied and a

porosity-depth relation has been obtained.

Owning to the previous literature review, this pa-

per is going to be dedicated to study the influence

of porosity variation in topology optimization. The

objective of this paper is thus to highlight effects of

porosity variation in a topology optimization pro-

cess in the field of fluid dynamics. To this end, we

have developed in Section 2 an original one-domain

macroscopic model for the modelling of flow through

variable porous media. Transition between fluid and

porous domains is based on porosity ε where we have

the Navier-Stokes equation for ε = 1 and a modified

Darcy-Brinkman-Forchheimer equation for ε , 1.

In Section 3, we begin by stating a topology opti-

mization problem for porous media for a general

cost function. Since solving numerically such prob-

lems with (e.g.) gradient-based algorithms needs the

porosity to be smooth enough to be differentiated, we

introduce a regularized version of our model from

Section 2. We then validate both our model and our

code by reproducing numerical results from the liter-

ature, namely on the case of a porous plug problem

where ε varies from 1 to 0.7 and then goes back to

1. We end this section by computing the continuous

adjoint model used to get the gradient of a general

cost functional.

Afterwards, in Section 4, we perform topology op-

timization for two geometrical configurations that

are classical in the topology optimization literature

aiming at minimizing the power dissipated by the

fluid in the computational domain. This paper then

ends with some conclusions and future works.

2 Governing equations

This section starts with the definition of the volume

averaging method used to obtain a flow model suit-

able for a medium who presents spatially varying

porosity. It consists of spatial averaging of phase
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behaviors over an elementary volume. The averag-

ing volume, denoted by V refers to a representative

elementary volume (REV) which is occupied by a

persistent solid phase s, with volume Vs and void

space occupied by fluid phase f with volume Vf . The

porosity ε is then defined as:

ε =
Vs

Vs +Vf
=
Vs
V
.

The porosity is allowed to change between elemen-

tary volumes. In doing so, we are going to iden-

tify porosity coefficient inside gradient operators

and thus gradient of porosity is taken into account

in a modified Darcy-Brinkman-Forchheimer equa-

tion where we recover the Navier-Stokes equation for

ε = 1. We end this section by estimating orders of

magnitude of each term to obtain a reduced form of

momentum conservation equation in the case of a

convective flow.

2.1 Volume averaging

We use [21, Appendix A] to summarize the volume-

averaging technique. A physical property ψ is con-

sidered continuous in the phase fluid f where ψ = ψf

and in the solid phase s where ψ = ψs. The tech-

nique consists in averaging ψ in a REV. Averages are

calculated at the centroid of an averaging volume

designated by the variable x illustrated in Figure 1.

Figure 1: Representative elementary volumes

The following notations are adopted [21, p. 12, Eq.

(A8),(A9)]:

〈ψf 〉 = 〈ψf 〉 |x=
1
V

∫
Vs

ψs(x + ys) dVy,

〈ψf 〉f = 〈ψf 〉f |x=
1
Vs

∫
Vs

ψs(x + ys) dVy,

where 〈ψf 〉 is superficial volume average and 〈ψf 〉f

is intrinsic phase average. We emphasize that both

these quantities actually depend on x and are related

by:

〈ψf 〉 = ε 〈ψf 〉f .

In the sequel, we drop the braket and simply refer to

ψf to denote the intrinsic phase average of ψ.

In this paper, problems are modeled under the

assumptions of steady-state, Newtonian, incompress-

ible and laminar flow in forced convection. We also
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assumed the fluid has constant density ρ and con-

stant viscosity µ.

Following development in [17, p. 71, Eq.(3.48)]

and assuming that there is no phase-internal supply

nor phase-change of mass, the fluid mass conserva-

tion is:

∇ · (ε ρ vf ) = ρ∇ · (ε vf ) = 0,

where vf is the particle velocity vector. Introducing

the macroscopic velocity u = ε vf , the fluid mass

conservation reduces to:

∇ ·u = 0 ,

which thus represents the incompressibility condi-

tion.

For the fluid momentum conservation, we use the

following relationships:

• [17, p. 86, Eq. (3.114)]:

σ f = pf δ+ τf , ε ρ ffσ = pf ∇ε+ ffτ ,

• [17, Eq. (3.142) p.92,]:

τf =
2
3
µ (δ : df)δ − 2 µ df,

• [17, Eq. (3.154) p.94]:

ffτ = −ε2µk−1 · vf s − ε3ρ k−1/2 cF |vf s | · vf s,

where σ f is the stress tensor of the fluid, pf is the

thermodynamic pressure of the fluid, δ is the Kro-

necker symbol, τf is the deviatoric fluid stress ten-

sor, ffσ is the interfacial drag term, ffτ is the devi-

atoric fluid momentum exchange vector, df is the

rate of deformation tensor of the fluid phase with

df = 1
2

[
∇vf + (∇vf )T

]
and k is permeability tensor at

full saturation. We also recall that cF is the Forch-

heimer dimensionless form-drag constant and note

that it is often approximated by 0.55. In addition,vf s

is the relative velocity defined as:

vf s = vf − vs,

and since the velocity inside the solid is vs = 0, we

get vf s = vf . Now assuming that:

• external supply of momentum gf = 0,

• dynamic viscosity µ is constant,

• vf is solenoidal and ∇ · vf = δ : df = 0,

the momentum conservation equation (see [17, p. 73,

Eq. (3.56)]) becomes:

∇ · (ε ρ vf vf ) +∇(ε pf )− 2 µ ∇ · (ε df)

= pf ∇ε − ε2µk−1 · vf − ε3ρ k−1/2 cF |vf | · vf .

(1)

Introducing the macroscopic velocity u = ε vf and

using ∇(ε pf ) = ε∇pf + pf ∇ε, Eq. (1) can be recast as
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follow:

∇ · (ρε u u) + ε∇pf − 2 µ ∇ · (ε df)

= −ε µk−1 ·u− ε ρ k−1/2 cF |u| ·u.

(2)

We now wish to expand the term with the rate of

deformation tensor from Eq. (2). This gives:

−2 µ ∇ · (ε df)

= −ε µ ∆vf −µ (∇vf +
[
∇vf

]T
) · ∇ε

= −ε µ ∆(
u
ε

)−µ ∇(
u
ε

) · ∇ε −µ
[
∇(

u
ε

)
]T
· ∇ε,

(3)

where we used:

∆(
u
ε

) =
1
ε
∆u + u∆(

1
ε

) + 2∇u · ∇(
1
ε

)

=
1
ε
∆u− u

ε2∆ε+
2u
ε3 |∇ε|

2 − 2
ε2∇u · ∇ε,

(4)

to simplify it further. For the convective term from

Eq. (2), we have:

ρ ∇ · (1
ε

u u) =
ρ

ε
∇ · (u u)−

ρ

ε2 (u u) · ∇ε. (5)

Now gathering (3,4) and (5), Eq. (2) becomes:

ρ

ε
∇ · (u u)−

ρ

ε2 (u u) · ∇ε+ ε∇pf

−ε µ
(1
ε
∆u− u

ε2∆ε+
2u
ε3 |∇ε|

2 − 2
ε2∇u · ∇ε

)
−µ ∇(

u
ε

) · ∇ε −µ
[
∇(

u
ε

)
]T
· ∇ε

= −ε µk−1 ·u− ε ρ k−1/2 cF |u| ·u,

from which the momentum conservation equation

can be finally written as:

ρ

ε
∇ · (u u) + ε∇pf −µ ∆u

−
(
ρ

ε2 (u u)−
2 µ
ε
∇u +µ ∇(

u
ε

) +µ
[
∇(

u
ε

)
]T

)
· ∇ε

+
µu
ε
∆ε −

2µu
ε2 |∇ε|

2 + ε µ k−1 ·u + ε ρ k−1/2 cF u · |u|

= 0,
(6)

where the contribution of the variation/gradient of

porosity clearly appears.

To get Eq. (6) in dimensionless form, we use the

following transformations:

u∗ =
u
U
, (x∗,y∗,z∗) =

(x,y,z)
L

,
(
pf

)∗
=

pf

ρ U2 .

The differential operators in the dimensionless co-

ordinates system are related to the original ones
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through:

∇∗(•) = L ∇(•), ∆∗(•) = L2 ∆(•),

and the dimensionless form of (6) then reads:

∇∗ · (1
ε

u∗ u∗) + ε∇∗(pf )∗ −∇∗ · ( 1
Re
∇∗u∗)

+
(

2
ε Re
∇∗u∗ − 1

Re
∇∗(u∗

ε
)− 1

Re

[
∇∗(u∗

ε
)
]T)
· ∇∗ε

+
1
ε Re

u∗ ∆∗ε − 2
ε2 Re

u∗ |∇∗ε|2

+
ε

Re Da
k(ε)
k0

·u∗ +
ε cF(

Da
k(ε)
k0

)1/2
u∗ · |u∗| = 0,

(7)

where we also introduced the Reynolds and Darcy

numbers, respectively defined as:

Re =
V ρL

µ
, Da =

k0

L2 ,

with V a characteristic velocity and L a characteristic

length. We finally define the remaining physical con-

stants from (7). The permability is defined using the

Carman-Kozeny relationship [22, 23] and reads:

k = k(ε) =
ε3 d2

p

K(1− ε)2 ,

with K an empirical constant and dp the mean parti-

cle diameter. The Darcy and Forchheimer terms are

rewritten by introducing a coefficient:

β =
K L2

d2
p
,

calculated with the characteristics of the porous me-

dia. In doing so and having in mind that all quan-

tities are without dimension, we can drop the ∗ in

(7) for clarify equations and the final momentum

conservation equation can be written:

∇ · ( 1
ε2 u u) +∇pf −∇ · ( 1

ε Re
∇u) +

1
ε3 u u · ∇ε

+
(

1
ε2 Re

∇u− 1
ε Re

∇(
u
ε

)− 1
ε Re

[
∇(

u
ε

)
]T

)
· ∇ε

+
1

ε2 Re
u ∆ε − 2

ε3 Re
u |∇ε|2 + β

(1− ε)2

ε3 Re
u

+β1/2 cF (1− ε)
ε3/2

u · |u| = 0.

(8)

We end with Eq. (8) which is an original macro-

scopic model of momentum conservation in a fluid

through porous matrix. We also identify Brinkman-

like terms as pointed by [16]. Although terms of

gradient of porosity that follow on taking account

on porosity variation can be found in literature, our

approach stands out. We proceed from a microscopic

balance equation for a physical property ψ in fol-

lowing development in [17] and introduce relation-

ships and assumptions that permit closure of momen-

tum equation at the outset. In addition, Darcy and
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Forchheimer terms rewritten in introducing Carman-

Kozeny relationship and β coefficient let us study

explicitely effect of particle diameter.

2.2 Model reduction

Our model presented in Eq. (8) contains many terms

that involve Reynolds number. We now estimate each

terms in order to obtain a reduced model for a con-

vective flow. To this end, we use the reference [16]

which established that average properties of evolv-

ing heterogeneities in porous matrix are not only

point dependent but also depend on the size of the

averaging volume. According to this statement, the

previous authors proposed the following length scale

constraint:

lβ 6 r0 ∼ Lε,Lu,

where lβ is a pore length scale, r0 is the radius of

averaging volume, Lε and Lu are respectively char-

acteristic length for porosity and averaged velocity.

We note by 4 the variation of a quantity and assume

that:

4ε = O (1) , u = O (U) .

Note that this ensures:

4u = O (U) .

We see in [14] that:

∇φ = O
(
4φ/Lφ

)
,

where φ is quantity of interest and Lφ the associated

characteristic length. We emphasize that all quan-

tities, namely U,Lε,Lu, are all dimensionless. We

have:

∇
(u
ε

)
=
∇u
ε

+u ∇
(1
ε

)
=
∇u
ε
−u ∇ε
ε2 = O

(
U
ε Lu

− U

ε2 Lε

)
.

Considering then that:

Lu ∼ Lε = L0,

we have:

∇
(u
ε

)
= O

(
U

ε2 L0

)
.

Similar computations show that the order of magni-

tude of the convective term is:

∇ ·
( 1
ε2 u u

)
=

1
ε2 ∇ · (u u) + u u · ∇(

1
ε2 )

=
1
ε2 ∇ · (u u)− 2

ε3 u u · ∇ε = O
(
U2

ε3 L0

)
,

and that the following terms are of the same order:

1
ε3 u u · ∇ε = O

(
U2

ε3 L0

)
,
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for the terms involving β, one has:

β1/2 cF (1− ε)
ε3/2

u · |u| = O
(√
β

cF (1− ε)
ε3/2

U2
)

= O
(√
βL0

(
U2

ε3 L0

))
,

β
(1− ε)2

ε3 Re
u = O

(
β

(1− ε)2

ε3 Re
U

)
= O

(
β L0

U Re

(
U2

ε3L0

))
.

Assuming then β, U, L0, Re satisfy for instance:

√
βL0 ≥ 1, U ≥ 1,

β L0

Re
≥ 1, (9)

we obtain that the Forchheimer and Darcy terms are

of the same magnitude as the convective term. Note

that assumptions (9) only ensure that these parame-

ters are not too small.

Conducting a similar analysis, we can estimate the

terms below:

∇ · ( 1
ε Re

∇u) =
1

ε2 Re
(ε∆u−∇u ∇ε) = O

(
1

ε2 Re
U

L2
0

)
,

1
ε2 Re

∇u · ∇ε = O
(

1
ε2 Re

U

L2
0

)
,

1
ε Re

∇(
u
ε

) · ∇ε = O
(

1
ε3 Re

U

L2
0

)
,

1
ε2 Re

u ∆ε = O
(

1
ε2 Re

U

L2
0

)
,

2
ε3 Re

u |∇ε|2 = O
(

2
ε3 Re

U

L2
0

)
.

We emphasize that all the previous terms are almost

of the same magnitude and we now show that they

are actually negligeable. First, note that since ε ≤ 1,

we have:
1

ε2 Re
U

L2
0

≤ 1
ε3 Re

U

L2
0

,

if the Renoylds number and L0 are such that:

L0Re� 1,

one can infer:

1
ε3 Re

U

L2
0

� U

ε3 L0
≤ U2

ε3 L0
,

and the terms below:

∇ · ( 1
ε Re

∇u);
1

ε2 Re
∇u · ∇ε;

1
ε Re

∇(
u
ε

) · ∇ε;
1

ε2 Re
u ∆ε;

2
ε3 Re

u |∇ε|2,

can thus be disregarded from Eq. (8).

To summarize the analysis conducted in this sec-

tion so far, if we assume that:

Lu ∼ Lε = L0, U ≥ 1,
√
βL0 ≥ 1,

β L0

Re
≥ 1 and L0Re� 1,

we obtain a reduced form of Eq. (8) in maintaining
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the Brinkman term:

∇ · ( 1
ε2 u u) +

1
ε3 u u · ∇ε+∇pf −∇ · ( 1

ε Re
∇u)

+β
(1− ε)2

ε3 Re
u + β1/2 cF (1− ε)

ε3/2
u · |u| = 0.

(10)

Eq. (10) is interesting because porosity coefficients

are effectively inside gradient operators for the con-

vective term and the Brinkman term when poros-

ity varies. In addition to this, there is a source

term (
1
ε3 u u · ∇ε) which is new and who appears

when porosity variation have been taken into account.

That make Eq. (10) different from the usual Darcy-

Brinkman-Forchheimer equation and suitable for a

variable porosity medium in the case of convective

flow.

3 Topology optimization prob-

lem

In the previous section, we derived a mathematical

model for steady state incompressible flow in vari-

able porous media. We now wish to perform topology

optimization using Eq. (10) as constraints. We are

then going to consider the porosity ε as a function

of a design variable α. The fluid zones can then be

defined as:

Ωf := {x ∈Ω | ε(α(x)) = 1} ,

while the porous zones with a given constant porosity

ε0 are:

Ωp := {x ∈Ω | ε(α(x)) = ε0} .

We emphasize that such function taking only two

discrete values leads to optimization problems that

are difficult or even impossible to solve (see e.g. [24]).

As it is usually done in topology optimization, we

thus introduce a regularisation function used to in-

terpolate porosity by means of the design variable

α. Such regularization also allows to use gradient-

based algorithms to numerically solve the topology

optimization problem. We adopt the methodology

from [25] and then use:

ε(α) = (ε0 − εf )hτ (α) + εf , (11)

where:

hτ (α) =
(

1
1 + exp(−τ(α −α0))

− 1
1 + exp(τ α0)

)
,

is a smooth regularization of a step function which,

as τ→ +∞, goes to 0 for α < α0 and to 1 for α > α0. In

addition, one have α ∈ [0, αmax] for a given αmax and

εf = 1. We note that the fluid zones Ωf are obtained,
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as τ → +∞, when α ≤ α0 and the porous zones Ωp

when α > α0. It is worth noting that regularising the

porosity ε allows to correctly define it’s derivative.

The latter is of great help since gradient of porosity

are taking account in our flow model (10).

The topology optimization problem considered in

this paper is finally written in the following general

form:

Minimize J (u, p, α)

Subject to Equations (10) for (u, p, α)

Boundary conditions on Γ .

(12)

Assuming that ∂Ω = Γ = Γin ∪ Γw ∪ Γout is decom-

posed respectively with an inlet, walls and an outlet,

we use the next boundary conditions for the direct

problem:

on Γin : u = uin = 1, ∂np = 0,

on Γw : u = 0, ∂np = 0, (13)

on Γout : ∂nu = 0, p = 0.

In the sequel of this section, we first reproduce a

numerical case study of [19] and [18]. These results

are going to serve as validation of our code as well as

the regularization of porosity introduced in our state

problem (10). Next, we compute the adjoint model

associated to our optimizarion problem (12) since the

latter is going to be needed to compute the gradient

of the cost function.

3.1 Justification of primal equations and

code validation

We justify our flow models Eq. (8) and Eq. (10) in

a two-dimensional rectangular geometry of length

L containing a porous insert in the interval [x1, x2]

while fluid zones are located in the inverval [0, x1]∪

[x2, L]. We chose to interpolate the porosity ε with

the help of the following regularisation function:

ε(x) = S1(x)× S2(x),

with:

S1(x) = εf

+ (ε0 − εf )

 tanh( τ(x−x1)
2 )− tanh(− τ x1

2 )
2

 ,
S2(x) = εf (14)

+ (
1
ε0
− εf )

 tanh( τ(x−x2)
2 )− tanh(− τ x2

2 )
2

 ,
where εf = 1 the fluid porosity, ε0 the porous material

porosity and τ a parameter who influences stiffness

of the transition between fluid and porous zones. In

this case, porosity interpolation hence variations of

this quantity stem from a physical basis. Indeed,

porosity near interface region differs from that in the

porous core, thus the porosity undergoes a spatial
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variation as illustrated in Figure 5 and 6 from [20].

Our interpolation then follows the same idea in con-

sidering a transition layer thickness by the parameter

τ .

We reproduce a porous plug problem studied by

[19] and [18]. Parameters are:

ε = 0.7, ReH = 1,000, Da = 10−2,10−3,10−4,10−5.

It is a two dimensional rectangular geometry with

dimensions L×H . L is composed of fluid parts ∆x1

and ∆x3 and porous part on ∆x2. We used a grid

with grading in the flow direction and applied a cosi-

nus function in the H direction. To reproduce fully

developed velocity boundary conditions at the inlet

and at the outlet, we choosed ∆x1 = ∆x3 = 200H .

Pressure boundary condition is zero at the outlet

and was extrapolated to all other boundaries. We

applied a no slip condition at the walls. The porous

insert has a length of ∆x2 = 5H . Numerical schemes

used were Gauss cubic for gradient operators, Gauss

upwind for convective term, Gauss linear for other

divergence-like terms and limited Gauss linear cor-

rected 0.5 for Laplacian terms. According to [26, p.

4, Eq. (14)], velocity and pressure on a face f are cal-

culated with opposite interpolation factors, we have:

uf = (1 − λf )up + λf uN and pf = λf pp + (1 − λf )pn

where λf is the interpolation factor and f is a face

separating cells P and N .

Results obtained are compared in terms of adimen-

sional velocity magnitudes along the line y/H=0.5

on the interval x/H ∈ [2.5, 12.5] with results of [19]

and [18]. They are presented in Figure 2 for different

Darcy numbers (10−2, 10−3, 10−4 and 10−5).

Although results are presented for the complete

model Eq. (8), it is interesting to note that the re-

duced model Eq. (10) allows getting exactly same

outputs. We observe a very good agreement between

our simulations results and results obtained in liter-

ature. For Da = 10−2, velocity profile corresponds

exactly to that obtained in Betchen et al. [18] and for

Da = 10−3, 10−4 and 10−5 to that obtained in Degroot

et al. [19]. There is a slight discrepancy for Da = 10−2

due to different treatment of pressure at interfaces

between fluid and porous domains [19]. Either way,

we managed to reproduce flow results in the transi-

tion between pure fluid and porous regions without

the need of particular interfaces pressure conditions

as done in [19] and [18]. To do so, we have chosen

a continuous transition for porosity variation with

the help of a sigmoid function (see Eq. (14)). In the

expression of this function, there is a particular τ

number which made it possible to obtain consistent

results. This τ value was found gradually and corre-

sponds to the moment where there are no numerical

oscillations in the velocity profile. This τ parame-

12



Figure 2: Results obtained in comparison with [18] and [19]. Porous insert in the interval [5, 10].
Da = (10−2, 10−3, 10−4, 10−5) and ReH = 1,000.

ter influences stiffness of the fluid/porous transition

zones and simulations without regularisation (not

presented here) resulted with non-physical oscilla-

tions that became more pronounced as Darcy number

decreases. Non-physical oscillations comes from nu-

merical procedure as pointed by [19]. The effect of

the regularisation function is illustrated in Figure 3

for different values of τ . High value of τ results in a

sharp transition and a low value creates a smooth

transition. It seems that the use of a continuous

porosity variation to represent transition between

fluid and porous regions gives physically reasonable

results. We will not comment further sigmoid func-

tion’s parameters which is not the purpose of this

paper. We plan instead to showcase applications of

continuous porosity variation in case of topology op-

timization.

3.2 Gradient computation with adjoint

method

We are going to solve the optimization problem with

gradient-based optimization algorithm. The latter

requires computation of the gradient of the cost func-

tional with respect to the design variable α. To do

this we rely on a continuous adjoint method (see e.g.

[27]) and we compute the adjoint model for general

13



Figure 3: Influence of τ parameter in the transi-
tion between fluid and porous domains

cost functions such as:

J (u, p, α) =
∫
Ω

JΩ (u, p, α) dΩ+
∫
Γ

JΓ (u, p, α) dΓ .

The Lagrangian functional related to our optimiza-

tion problem is written:

L (u,p,α,u∗,p∗) =

+
∫
Ω

JΩ (u,p,α) dΩ+
∫
Γ

JΓ (u,p,α) dΓ

−
∫
Ω

p∗ ∇ ·u dΩ−
∫
Ω

u∗ ·
[
−∇ · ( 1

ε Re
∇u)

]
dΩ

−
∫
Ω

u∗ ·
[
∇ · ( 1

ε2 u u) +
1
ε3 uu · ∇ε+∇p

]
dΩ

−
∫
Ω

u∗ ·
[
β

(1− ε)2

ε3 Re
u + β1/2 cF (1− ε)

ε3/2
u · |u|

]
dΩ

−
∫
Γw

(u ·Φw) dΓw

−
∫
Γin

((u−uin) ·Φin) dΓin

−
∫
Γout

(∂nu ·Φout + p ϕ) dΓout,

where we introduced Lagrange multiplier

(u∗,p∗,Φw,Φin,Φout,ϕ). It is worth noting that

the last three adjoint variables will not contribute

to the adjoint model (see e.g. [25, p. 9, Remark 1])

and are introduced only to enforce the boundary

condtions. Denoting by:

∂F
∂X

[δX] = lim
h→0

F(X + hδX)−F(X)
h

,

the derivative of a given function F : X ∈ E 7→ F(X) ∈

F for two normed spaces E,F, the adjoint model can

be defined by:

∂L
∂(u,p)

[δu,δp] = 0, ∀δu,δp.

Some computations then gives:

∂L
∂(u, p)

[δu, δp] =
∫
Ω

∂JΩ
∂(u, p)

[δu, δp] dΩ

+
∫
Γ

∂JΓ
∂(u, p)

[δu, δp] dΓ +
∫
Ω

δp ∇ ·u∗ dΩ

−
∫
Γ

δp u∗ ·n dΓ

+
∫
Ω

δu ·
(
∇p∗ + [∇(u∗)]T u

ε2

)
dΩ

14



+
∫
Ω

δu ·
( 1
ε2 (u · ∇)u∗ − 1

ε3 u∗ u · ∇ε
)

dΩ

+
∫
Ω

δu ·
(
[∇(u)]T u∗

ε2 +∇ · ( 1
ε Re

∇u∗)
)

dΩ

+
∫
Ω

δu ·
(
− [∇(ε u)]T u∗

ε3

)
dΩ

+
∫
Ω

δu ·
(
−β (1− ε)2

ε3 Re
u∗

)
dΩ

+
∫
Ω

δu ·
(
−β1/2 cF (1− ε)

ε3/2

[
|u| u∗ +

(u ·u∗)
|u|

u
])

dΩ

−
∫
Γ

δu ·
(
p∗ n + (

1
ε2 u∗ ·u) n +

1
ε2 [(u ·n) u∗]

)
dΓ

−
∫
Γ

δu ·
( 1
ε Re
∇u∗ n

)
dΓ

+
∫
Γ

u∗ · 1
ε Re

∇δu n dΓ −
∫
Γw

(δu ·Φw) dΓw

−
∫
Γin

(δu ·Φin) dΓin

−
∫
Γout

(∂nδu ·Φout + δp ϕ) dΓout.

and we obtain the following final form of the adjoint

problem:

−∂JΩ
∂p

= ∇ ·u∗ in Ω

−∂JΩ
∂u

= ∇p∗ + [∇(u∗)]T u
ε2 +

1
ε2 (u · ∇)u∗ − 1

ε3 u∗ u · ∇ε

− [∇(ε u)]T u∗

ε3 + [∇(u)]T u∗

ε2 +∇ · ( 1
ε Re

∇u∗)

−β (1− ε)2

ε3 Re
u∗ − β1/2 cF (1− ε)

ε3/2

[
|u| u∗ +

(u ·u∗)
|u|

u
]

in Ω.

(15)

For the adjoint boundary conditions, we obtain:

on Γin : u∗ ·n− ∂JΓ
∂p

= 0 and u∗t = 0 [25],

on Γw : u∗ = 0, (16)

on Γout : p∗ n + (
1
ε2 u∗ ·u) n +

1
ε2 [(u ·n) u∗]

+
1
ε Re
∇u∗ n− ∂JΓ

∂u
= 0.

According to the adjoint method, the gradient of

the cost functional J(u, p, α) at some α is given by:

−∂JΩ
∂α

= −2
∂ε(α)
ε3(α)

u u : [∇u∗]T

+∇ ·
[

1
ε3(α)

[u u]T u∗
]
∂ε(α) +

∂ε(α)
ε2(α) Re

∇u : [∇u∗]T

+
3 ∂ε(α)
ε4(α)

u∗ · (u u · ∇ε(α)) + u∗ ·u
2 β (1− ε(α)) ∂ε(α)

ε3(α) Re

+u∗ ·u
3 β (1− ε(α))2 ∂ε(α)

ε4(α) Re
+ u∗ ·u|u|

β1/2 ∂ε(α) cF

ε3/2(α)

+
3
2

u∗ ·u|u|
β1/2 cF (1− ε(α)) ∂ε(α)

ε3/2(α)
(17)

−∂JΓ
∂α

= 2
∂ε(α)
ε3(α)

[u u]T u∗ ·n

− 1
ε3(α)

[
[u u]T u∗ ·n

]
∂ε(α)

− ∂ε(α)
ε2(α) Re

[∇u]T u∗ ·n.

(18)

Note that (18) reduces to:

∂JΓ
∂α

= 0,
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if ∂αε(α) = 0 on boundaries. This assumption is actu-

ally satisfied if we look for optimized porous media

either with constant porosity ε0 or pure fluid on the

boundaries of the computational domain.

4 Results and discussion

We illustrate with help of numerical experimen-

tations the contributions of our new macroscopic

model in its reduced form (Section 2, Eq. (10)) on

topology optimization. Two geometries from litera-

ture are investigated:

• Geometry 1: a bend pipe as studied for instance

in [28, 3].

• Geometry 2: a single pipe as studied for instance

in [1, 29, 25].

For both geometric setting, the computational do-

main is square-shaped, with an adimensional side

L = 1. The inlet flow is prescribed with a constant adi-

mensional velocity equal to unity and the Reynolds

number is fixed to:

Re = 1,000.

We use the following values for the parameters in-

volved in the regularization function:

τ = 0.5, α0 = 10 and αmax = 20.

We emphasize the parameter τ is taken small enough

to allow more porosity variation which is the purpose

of this paper. Indeed, the larger τ is, the sharper the

interpolation function is (see [25, section 3]). There-

fore, a smaller value of τ allows the porosity to take

more intermediate values between fluid (ε = 1) and

porous (ε = ε0). We propose to solve the topology

optimization problem with a steepest descent algo-

rithm where the gradient is computed thanks to the

adjoint method introduced in Section 3. Here, the de-

sign objective is to minimize a power function, which

for the absence of body fluid forces is the dissipated

power in the fluid (see e.g. [30]):

JΓ (u,p) = −
∫
Γ

(p +
1
2

u2) u ·n dΓ .

This cost functional is of interest and frequently used

in the literature. In that sense, it is suitable for our

study which is centered in the transition between

fluid and porous materials. Note that JΩ = 0. Some

computations also yield:

−∂JΓ
∂p

δp =
∫
Γ
δp u ·n dΓ

−∂JΓ
∂u

δu =
∫
Γ
(p +

1
2
|u|2) δu ·n dΓ +

∫
Γ
(u ·n) (u · δu) dΓ ,
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and the adjoint boundary conditions are:



u∗ = 0 on Γw

u∗t = 0 and u∗n = −un on Γin

− p∗ n− (
1
ε2 u∗ ·u) n− (

1
ε2 u ·n) u∗ − 1

ε Re
∇u∗ n

= (p +
1
2
|u|2) n + (u ·n) u on Γout .

(19)

For the pressure losses cost function, the adjoint

model then reduces to Eq. (15) with boundary condi-

tions (19) and the gradient of the cost function can

be found in (17),(18).

The main steps of the algorithm consist to com-

pute sensitivities by adjoint method and evaluate

the optimality condition. For our simulations we

used a SIMPLE algorithm, to solve both direct and

adjoint problems, and stopped the process when

residuals for u ≤ 10−5 and for p ≤ 10−6. The for-

ward problem and the optimization processes are

implemented using OpenFOAM. At the beginning

of the optimization process the cavity is filling of

fluid. The design variables are evaluated by using

the conjugated-gradient descent direction method

associated to Polack–Ribiere method [25, p. 5, Figure

2]. We started the optimization procedure at itera-

tion 1,000 to avoid numerical issues when solving the

pressure at the beggining. Residuals of the cost func-

tional reached 10−7 before the end of the SIMPLE

algorithm.

This section begins with topology optimization

procedure using an almost impermeable domain

which corresponds to a solid of Darcy number equal

to 10−5 [31]. Thereafter a comparison when porosity

variation is not taken account in topology optimiza-

tion, as is often the case at present is analysed. This

section ends with a study of porosity and particle

diameter effects on material distribution.

4.1 Case of an impermeable domain

Conventionally, a cell who must contain a solid is

equivalent to a penalization term sufficiently strong

so that porous material added becomes impermeable.

Solidified part becomes almost impermeable (see [32,

31]) for:

Da ≤ 10−5.

We show in Figure 4 that with a complete description

of a porous medium, considering porosity ε and par-

ticle diameter dp by means of β and for a fixed Darcy

number of Da = 10−5, we obtain different optimized

designs. To that extent, porous material distribution

obtained only by specifying permeability is lacking.

We provide cost functionals evolutions in Figure 5 for

the single pipe and the bend pipe. There is a reduc-

tion of cost functionals values over iterations until a

17



plateau is reached for each geometrical configuration

and for each (ε0,β) combination. The different combi-

nations are presented in Table 1 as well as final values

of each functionals with and without optimization.

Final values are close but lowest ones are obtained

for high porosities and high beta values hence small

particle diameter values. Final designs obtained af-

ter optimization are different. We observe that high

values of porosity and beta enhanced added material

ratio and provide better cost functionals reduction,

up to 9% for the single pipe and 14% for the bend

pipe. So we can conclude that, topology optimization

procedure with Darcy number of 10−5 results in dif-

ferent final designs depending on the porosity and

the particle diameter of the porous medium under

study.

4.2 With and without gradient of poros-

ity

In this study we have developed a macroscopic flow

model in which porosity can spatially vary. Hence

porosity coefficients are found within gradient opera-

tors. Moreover, terms of gradient of porosity appear.

For a convective flow, general model becomes a re-

duced one because some terms are negligible (Sec-

tion 2.2). Reduced model is able to reproduce same

results as the general one in the case presented in

Section 3.1. We have made numerical experimenta-

tions without taking into account porosity variation.

This resulted in our case by the absence of the term

(
1
ε3 uu · ∇ε) in the reduced form of the momentum

equation. Cost functional’s improvement percent-

ages are presented in Table 2 for the single pipe and

the bend pipe in comparison with results obtained in

taking account porosity variation.

Several values of ε and β were tested to have

broad range of comparison. Percentages of reduc-

tion of objective functionals are very similar, with

or without gradient of porosity. Maximal deviation

is 4%. For the bend pipe, the value of ε = 0.5 /

β = 2.104 allows an improvement of 2% in favour of

the model with gradient of porosity. In contrast, for

(ε,β) = (0.8,1.105) and (ε,β) = (0.8,2.104) the model

without considering gradient of porosity allows for

better improvement (respectively 7% and 6%) in-

stead of respectively (5% and 2%).

For the single pipe, taking account gradient of

porosity is attractive regarding objective functional’s

values for (ε,β) = (0.5,1.105). Otherwise, for other

values, deviations are of the order of 1%. It may be

noted that (ε,β) = (0.8,2.104) does not allow any en-

hancement for the objective functional in the case of

single pipe in taking account porosity variation. The

latter observation is of importance since optimiza-

tion’s algorithm have still added materials inside the
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Table 1: Porosity and particle diameter combinations to maintain a constant Darcy number of 10−5

and final functional value associated
ε β J bend pipe (Geometry 1) J single pipe (Geometry 2)
- - 0.0350053 0.0333810

0.9 ' 7.106 0.0302537 0.0302941
0.8 ' 1.106 0.0305171 0.0308692
0.7 ' 4.105 0.0307196 0.0309085
0.6 ' 1.105 0.0310652 0.0312197
0.5 = 5.104 0.0311963 0.0314046

Figure 4: Different designs obtained in case of a constant Darcy number equal to 10−5 for the
Geometry 1 (upper) and Geometry 2 (lower)
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Figure 5: Cost functionals values over iterations in case of constant Darcy number equal to 10−5

for Geometry 1 (left) and Geometry 2 (right)

Table 2: Functional reduction (%) in taking account porosity variation (a) or not (b).
ε β Da Geometry 1 (a) Geometry 1 (b)

0.3 1.106 6.10−8 18 18
0.3 1.105 6.10−7 12 12
0.5 1.106 5.10−7 17 17
0.5 1.105 5.10−6 12 12
0.5 2.104 3.10−5 9 7
0.8 1.106 1.10−5 12 12
0.8 1.105 1.10−4 5 7
0.8 2.104 6.10−4 2 6
ε β Da Geometry 2 (a) Geometry 2 (b)

0.3 1.106 6.10−8 13 14
0.5 1.106 5.10−7 12 13
0.5 1.105 5.10−6 8 6
0.5 2.104 3.10−5 3 3
0.8 1.106 1.10−5 7 6
0.8 1.105 1.10−4 2 2
0.8 2.104 6.10−4 0 2
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computational domain.

Distributions of the variable design α are pre-

sented in Figure 6. For α = 0 (white colour) we have

fluid and for α = 20 (black colour) we have porous

materials. In terms of designs obtained, the parame-

ter β and thus the particle diameter is the key indica-

tor if there is a need in considering porosity variation.

For β = 1.106 designs obtained are similar. However,

for all other configurations, designs obtained after

optimization are different.

4.3 Effect of porosity value

Numerical experiments for ε = 0.3 − 0.5 − 0.8 were

carried out. For β = 1.106 cost functionals present

reduction of 18 and 12% respectively for ε = 0.3−0.8

in the case of the bend pipe (Table 2). It should

be noted that percentages of reduction are identical

with or without taking account porosity variation. In

the case of single pipe, we have an enhancement of

13% and 7% with gradient of porosity and 14% and

6% without gradient of porosity. When porosity in-

creases, objective functionals reduction declines. Up

to half less in the case of single pipe when porosity

varies from 0.3 to 0.8. Nevertheless, when porosity

varies from 0.3 to 0.5 and β = 1.106, cost functionals

present only variation of 1% for the bend pipe and

the single pipe. This trend is confirmed by β = 1.105

where in the case of the bend pipe, changing porosity

from 0.3 to 0.5 has no effect on the cost functionals

amelioration. For β = 2.104, it is interesting to note

that without taking account porosity variation, re-

duction of cost functionals are imperceptible (near

1%) when porosity varies from 0.5 to 0.8. But the

model who takes account porosity variation presents

a significant gap from 9% to 2% for the bend pipe

and 3% to 0% for the single pipe.

Regarding the designs obtained, we observe that

the larger the porosity is, the higher is the field of

actualisation of the variable of conception. This can

be due to an accentuation of zones which must be

penalized resulting to more porous materials added

by the algorithm. Consequently, the optimization’s

algorithm has more difficulty to penalize key areas.

It follows that cost functional reduction is less attrac-

tive.

4.4 Effect of particle diameter value

Numerical experiments for β = 1.106 − 1.105 − 2.104

were finally carried out. For ε = 0.5 we observe a

decrease of cost functionals reduction once β de-

cline. Percentages improvement of cost functionals

are 17−12% and 9% for the bend pipe and 12−8%

and 3% for the single pipe when taking account

porosity variation. For ε = 0.8 we make the same

observation, percentages are 12− 5% and 2% for the

bend pipe and 7−2% and 0% for the single pipe when
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Figure 7: Velocity magnitude without optimiza-
tion for the bend pipe (Geometry 1) and for the
single pipe (Geometry 2).

taking account porosity variation. This is logical be-

cause, for a given stream tube section, a straight flow

is naturally less mechanical energy consuming than

a tortuous flow path.

Regarding designs obtained, they are totally differ-

ent from those for a constant porosity according to

the value of β. It can be concluded that β and thus

particle diameter has a great impact on the final de-

sign after optimization. This finding is reinforced by

the fact that a high β coefficient always corresponds

to a better reduction of the objective functional. In

the case of the bend pipe, for ε = 0.3, when β goes

from 1.106 to 1.105, percentages of reduction vary

from 18% to 12% while for ε = 0.5, percentages of

amelioration vary from 17% to 12%. In that case, it is

clear that porosity has no influence while β is indeed

the important parameter.

Remark: As seen from Figure 7, there are recir-

culations generated by the main flow between the two

openings. These secondary flows are driven by shear.

The two vortex structures, once established, maintain

the main flow in its position. However, these secondary

flows, although they are useful to the main flow to main-

tain themselves, cost the fluid system energy. It seems

therefore natural that the optimization algorithm adds

material (see Figure 8) to inhibit these inefficient areas

while preserving the overall shape of the main flow (see

Figure 9).
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5 Conclusions and future works

In this paper, we have modelled Newtonian incom-

pressible flow through porous media having spatially

varying porosity. Thanks to dimensional analysis,

we obtained a reduced, hence simpler, mathemati-

cal model that takes into account spatial variations

of porosity. We then justified both our numerical

code and our model by comparing our results on a

benchmark from the litterature, namely a porous in-

sert inside a fluid channel. We have shown that

the method outlined here can correctly predict flows

with or without a porous matrix. We have also shown

that it is possible to optimize a flow by minimizing

the mechanical power loss using a porous medium in

which the distribution of dp and k are heterogeneous.

It is worth noting that the adjoint model has been

derived for a general cost function and can then be

applied without any changes to other cost functions.

Regarding the perspectives, we emphasize that the

mathematical model and the general adjoint method

developed in this paper make it possible to con-

sider the use in future of real porous media to op-

timize fluidic systems. In addition, since this pa-

per developed modelling of flow through variable

media, it could be very interesting to consider now

topology optimization problems with so-called multi-

materials [33, 34], hence optimized porous media

with piecewise-constant porosity. A last very inter-

esting (yet difficult) perspective may be to extend the

results obtained this paper to time-dependent flows

in spatially/time varying porous media.
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