J. A. Borgia and G. B. Fields, Chemical synthesis of proteins, Trends Biotechnol, vol.18, pp.243-251, 2000.

H. Hojo, Recent progress in the chemical synthesis of proteins, Curr. Opin. Struct. Biol, vol.26, pp.16-23, 2014.

F. Liu, A. N. Zaykov, J. J. Levy, R. D. Dimarchi, and J. P. Mayer, Chemical synthesis of peptides within the insulin superfamily, J. Pept. Sci, vol.22, pp.260-270, 2016.

M. Graf, M. Mardirossian, F. Nguyen, A. C. Seefeldt, G. Guichard et al., Proline-rich antimicrobial peptides targeting protein synthesis, Nat. Prod. Rep, vol.34, pp.702-711, 2017.

K. Arora, B. Program, and A. Arbor, Total Synthesis of Glycosylated Proteins Alberto, vol.200, pp.165-187, 2015.

Y. H. Zhang, Renewable carbohydrates are a potential high-density hydrogen carrier, Int. J. Hydrog. Energy, vol.35, pp.10334-10342, 2010.

H. Yim, R. Haselbeck, W. Niu, C. Pujol-baxley, A. Burgard et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol, vol.7, pp.445-452, 2011.

J. A. Martínez, F. Bolívar, and A. Escalante, Shikimic Acid Production in Escherichia coli: From Classical Metabolic Engineering Strategies to Omics Applied to Improve Its Production, Front. Bioeng. Biotechnol, vol.3, pp.1-16, 2015.

J. W. Lee, D. Na, J. M. Park, J. Lee, S. Choi et al., Systems metabolic engineering of microorganisms for natural and non-natural chemicals, Nat. Chem. Biol, vol.8, pp.536-546, 2012.

X. Chen, Y. Wang, X. Dong, G. Hu, and L. Liu, Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production, Appl. Microbiol. Biotechnol, vol.101, pp.4041-4052, 2017.

D. Stanton, Microbial or Mammalian? Biosilta Backs the Former Licensing E. Coli platform. Biopharma Reporter, p.20, 2020.

M. Theisen and J. C. Liao, Industrial Biotechnology: Escherichia coli as a Host. Ind. Biotechnol, vol.1, pp.149-181, 2016.

Y. H. Zhang, Substrate channeling and enzyme complexes for biotechnological applications, Biotechnol. Adv, vol.29, pp.715-725, 2011.

I. Wheeldon, S. D. Minteer, S. Banta, S. C. Barton, P. Atanassov et al., Substrate channelling as an approach to cascade reactions, Nat. Chem, vol.8, pp.299-309, 2016.

S. Z. Tan and K. L. Prather, Dynamic pathway regulation: Recent advances and methods of construction, Curr. Opin. Chem. Biol, vol.41, pp.28-35, 2017.

N. Fontaine, B. Grondin-perez, F. Cadet, and B. Offmann, Modeling of a Cell-Free Synthetic System for Biohydrogen Production, J. Comput. Sci. Syst. Biol, vol.8, pp.132-139, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01488304

X. Ye, Y. Wang, R. C. Hopkins, M. W. Adams, B. R. Evans et al., Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails, ChemSusChem, vol.2, pp.149-152, 2009.

W. A. Khattak, M. Ul-islam, M. W. Ullah, B. Yu, S. Khan et al., Yeast cell-free enzyme system for bioethanol production at elevated temperatures, Process. Biochem, vol.49, pp.357-364, 2014.

Y. H. Zhang, Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges, Biotechnol. Adv, vol.33, pp.1467-1483, 2015.

L. Huang, J. Sheng, Z. Xu, X. Zhu, and J. Cai, Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes, Appl. Microbiol. Biotechnol, vol.98, pp.1785-1794, 2014.

J. Yang, A. Voloshin, J. R. Swartz, H. Velkeen, R. Levy et al., Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system, Biotechnol. Bioeng, vol.89, pp.503-511, 2005.

Y. Lu, Cell-free synthetic biology: Engineering in an open world, Synth. Syst. Biotechnol, vol.2, pp.23-27, 2017.

J. A. Schoborg, C. E. Hodgman, M. J. Anderson, and M. C. Jewett, Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis, Biotechnol. J, vol.9, pp.630-640, 2014.

P. Shrestha, T. M. Holland, and B. C. Bundy, Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing, Biotechniques, vol.53, pp.163-174, 2012.

Y. P. Zhang, Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities, Biotechnol. Bioeng, vol.105, pp.663-677, 2009.

P. Carbonell, J. Wong, N. Swainston, E. Takano, N. J. Turner et al., Enzyme selection tool for pathway design, Bioinformatics, vol.34, pp.2153-2154, 2018.

J. Stelling, Mathematical models in microbial systems biology, Curr. Opin. Microbiol, vol.7, pp.513-518, 2004.

J. D. Orth, I. Thiele, and B. O. Palsson, What is flux balance analysis?, Nat. Biotechnol, vol.28, pp.245-248, 2010.

M. W. Covert, I. Famili, and B. O. Palsson, Identifying Constraints that Govern Cell Behavior: A Key to Converting Conceptual to Computational Models in Biology?, Biotechnol. Bioeng, vol.84, pp.763-772, 2003.

K. Smallbone, E. Simeonidis, D. S. Broomhead, and D. B. Kell, Something from nothing-Bridging the gap between constraint-based and kinetic modelling, FEBS J, vol.274, pp.5576-5585, 2007.

S. Schmeier, J. Hakenberg, E. Klipp, U. Leser, and A. Kowald, Finding Kinetic Parameters Using Text Mining, Omi. A J. Integr. Biol, vol.8, pp.131-152, 2004.

H. Bisswanger, Enzyme assays, Perspect. Sci, vol.1, pp.41-55, 2014.

B. Teusink, J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. Van-der-weijden et al., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry, Eur. J. Biochem, vol.267, pp.5313-5329, 2000.

I. A. Basheer and M. Hajmeer, Artificial neural networks: Fundamentals, computing, design, and application, J. Microbiol. Methods, vol.43, pp.3-31, 2000.

M. H. Morowvat and Y. Ghasemi, Medium optimization by artificial neural networks for maximizing the triglycerides-rich lipids from biomass of Chlorella vulgaris, Int. J. Pharm. Clin. Res, vol.8, pp.1414-1417, 2016.

Z. Lan, C. Zhao, W. Guo, X. Guan, and X. Zhang, Optimization of culture medium for maximal production of spinosad using an artificial neural network-genetic algorithm modeling, J. Mol. Microbiol. Biotechnol, vol.25, pp.253-261, 2015.

M. R. Antoniewicz, G. Stephanopoulos, and J. K. Kelleher, Evaluation of regression models in metabolic physiology: Predicting fluxes from isotopic data without knowledge of the pathway, Metabolomics, vol.2, pp.41-52, 2006.

J. Liu, J. Shin, and L. Liu, Guocheng Du JC. Protein and metabolic engineering for the production of organic acids, Bioresour. Technol, vol.239, pp.412-421, 2017.

C. W. Song, D. I. Kim, S. Choi, J. W. Jang, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of fumaric acid, Biotechnol. Bioeng, vol.110, pp.2025-2034, 2013.

J. Yang, Z. Wang, N. Zhu, B. Wang, T. Chen et al., Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions, Microbiol. Res, vol.169, pp.432-440, 2014.

J. M. Clomburg and R. Gonzalez, Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology, Appl. Microbiol. Biotechnol, vol.86, pp.419-434, 2010.

X. Yang, M. Xu, and S. T. Yang, Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose, Metab. Eng, vol.32, pp.39-48, 2015.

J. B. Fiévet, C. Dillmann, G. Curien, and D. De-vienne, Simplified modelling of metabolic pathways for flux prediction and optimization: Lessons from an in vitro reconstruction of the upper part of glycolysis, Biochem. J, vol.396, pp.317-326, 2006.

A. Nagaraja, A. Fontaine, N. Delsaut, M. Charton, P. Damour et al., Flux prediction using artificial neural network (ANN) for the upper part of glycolysis, PLoS ONE, vol.14, pp.1-15, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02196731

A. W. Minns and M. J. Hall, Artificial neural networks as rainfall-runoff models, Hydrol. Sci. J, vol.41, pp.399-417, 1996.

R. M. Balabin and S. V. Smirnov, Interpolation and extrapolation problems of multivariate regression in analytical chemistry: Benchmarking the robustness on near-infrared (NIR) spectroscopy data, Analyst, vol.137, pp.1604-1610, 2012.

S. Wold, K. Esbensen, and P. Geladi, Principal Component Analysis, Chemom. Intell. Lab. Syst, vol.2, pp.37-52, 1987.

M. Ringnér, What is principal component analysis?, Nat. Biotechnol, vol.26, pp.303-304, 2008.

S. Le, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00359835

K. Soetaert, Plotting Multi-Dimensional Data, 2017.

K. Soetaert, Plotting Multi-Dimensional Data-Using "rgl, 2016.

C. Weihs, U. Ligges, K. Luebke, N. Raabe, and . Klar, Analyzing German Business Cycles, Data Analysis and Decision Support, pp.335-343, 2005.

T. Therneau, B. Atkinson, B. Ripley, and . Rpart, Recursive Partitioning and Regression Trees. R Package, vol.4, pp.1-9, 2018.

F. Günther, S. Fritsch, and . J. Neuralnet-;-r, Training of Neural Networks, vol.2, pp.30-38, 2010.

A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura, CellDesigner: A process diagram editor for generegulatory and biochemical networks, Biosilico, vol.1, pp.159-162, 2003.

A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi et al., CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks, Proc IEEE, vol.96, pp.1254-1265, 2008.

I. Schomburg, A. Chang, and D. Schomburg, BRENDA, enzyme data and metabolic information, Nucleic. Acids