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ABSTRACT  1 

Objective. The aim of this study was to develop specific prediction equations based on 2 

acceleration data measured at three body sites for estimating energy expenditure (EE) during 3 

static and active conditions in middle-aged and older adults with and without type 2 diabetes 4 

(T2D). Research methods. Forty patients with T2D (age: 40-74 yr, body mass index (BMI): 21-5 

29.4 kg.m-2) and healthy participants (age: 47-79 yr, BMI: 20.2-29.8 kg.m-2) completed trials 6 

in both static conditions and treadmill walking. For all trials, gas exchange was monitored using 7 

indirect calorimetry and vector magnitude was calculated from acceleration data measured 8 

using inertial measurement units placed to the participant’s center of mass (CM), hip and ankle. 9 

Stepwise multiple regression analyses were conducted to select relevant variables to include in 10 

the three EE prediction equations, and three Monte Carlo cross-validation procedures were used 11 

to evaluate each separate equation. Results. Vector magnitude (p<0.0001) and personal data 12 

(gender, diabetes status and BMI; p<0.0001) were used to develop three linear prediction 13 

equations to estimate EE during static conditions and walking. Cross-validation revealed 14 

similar robust coefficients of determination (R2: 0.81 to 0.85) and small bias (mean bias: 0.008 15 

to -0.005 kcal.min-1) for all three equations. However, the equation based on CM acceleration 16 

exhibited the lowest root mean square error (0.60 kcal.min-1 vs. 0.65 and 0.69 kcal.min-1 for the 17 

hip and ankle equations, respectively; p<0.001). Conclusion. The three equations based on 18 

acceleration data and participant characteristics accurately estimated EE during sedentary 19 

conditions and walking in middle-aged and older adults, with or without diabetes.  20 

 21 

Key words: Inertial measurement unit, Exercise, Energy metabolism, Public health, diabetes 22 

mellitus. 23 

  24 
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ABBREVIATIONS 25 

BMI  Body mass index 26 

CM  Center of mass 27 

EE  Energy expenditure 28 

EEankle  Estimated energy expenditure from ankle acceleration  29 

EECM  Estimated energy expenditure from center of mass acceleration 30 

EEhip  Estimated energy expenditure from hip acceleration 31 

IMU  Inertial measurement unit 32 

RMSE  Root mean square error 33 

SEE  Standard error of estimate 34 

T2D  Type 2 diabetes 35 

VM   Vector magnitude 36 

V� O2  Rates of oxygen consumption 37 

V� CO2  Rate of carbon dioxide production 38 

39 
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1. INTRODUCTION 40 

Although physical activity is an integral part of rehabilitation program, the evaluation of 41 

individual energy requirement is paramount. Aging, whether or not associated with type 2 42 

diabetes (T2D) may result in metabolic alterations. These changes may lead to a decrease in 43 

daily physical activity level (Zhao et al., 2011) due to an elevated physiological relative effort. 44 

Indeed, it has been shown that, unlike young adults, older persons (Peterson & Martin, 2010) 45 

and T2D patients (Caron et al., 2018b; Petrovic et al., 2016) have an increased activity-related 46 

energy expenditure (EE) for a same exercise. Thus, following the exercise prescription, 47 

patients’ nutrition should be adjusted to minimize the risk of dietary imbalance (i.e. malnutrition 48 

or overfeeding) or medication error (insulin therapy). In this context, the quantification of EE 49 

has gained important interest in recent years. 50 

 51 

Actimetry represents a popular and objective alternative to other reference methods (i.e. doubly 52 

labelled water and indirect calorimetry) (Reilly et al., 2008). Inexpensive and unobtrusive, 53 

accelerometer can be integrated into different forms of wearable devises, such as a watch, 54 

waistband or chest belt. It is thus possible to measure accelerations at different body attachment 55 

sites (e.g. ankle, wrist, trunk), which offers the possibility of selecting the most appropriate 56 

placement of the sensor according to the physical activity practiced. Furthermore, this 57 

technology is able to record exhaustive data for extended periods and to estimate precise 58 

minute-by-minute changes in estimated EE throughout a large number of activities. Algorithms 59 

estimating the EE typically use equations developed from multiple regression analysis between 60 

measured EE and accelerometer output (i.e. acceleration of each axis or vector magnitude 61 

(VM)) and basic participant characteristics such as age, gender, and body weight (Bouten et al., 62 

1994; Chen & Sun, 1997). As the output of the accelerometer is influenced by the anatomical 63 

location of the sensor, specific equations are developed depending on the body attachment site 64 

(Kim et al., 2014). 65 

 66 

The use of a motion sensor as EE estimation tool needs a preliminary evaluation and validation 67 

in these specific populations. To date, most published algorithms using acceleration data have 68 

been developed with small groups of healthy young adults (Bouten et al., 1994; Chen & Sun, 69 

1997). Only a few have been tested in other populations such as middle-aged adults (Caron et 70 

al., 2018a) or patients with T2D (Caron et al., 2019). Although the Bouten’s algorithm was 71 

reliable to estimate walking-related EE in both populations, it does not take into account the 72 
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age and/or physical deconditioning. This results in a tendency to underestimate EE in 73 

comparison with indirect calorimetry, which may be a source of bias in the patients’ daily 74 

energy requirement. 75 

 76 

In order to go beyond these limitations, the aim of this study was to develop specific prediction 77 

equations with user-specific algorithms based on acceleration data for estimating EE during 78 

static and active conditions in middle-aged and older adults with and without T2D. Three 79 

different equations have been developed according to each accelerometer attachment site (i.e. 80 

center of mass, hip and ankle). 81 

 82 

2. MATERIALS & METHODS 83 

2.1 Participants 84 

Middle age to older participants, healthy or with T2D, were targeted to participate as volunteers 85 

in this study. All participants were fully informed beforehand about the test procedure, and gave 86 

their written informed consent. Exclusion criteria included peripheral neuropathy, uncontrolled 87 

fasting glycaemia (> 1.8 g.L-1), history of orthopaedic lower limb surgery and any neurological 88 

or systemic disease. Moreover, participants were included if they were able to walk without 89 

assistive devices. This study was approved by the local ethics committee of the IRISSE unit 90 

research (EA 4075) and conducted in accordance with the Declaration of Helsinki. 91 

 92 

2.2 Measurements and design 93 

The experimental protocol was already described and previously published, for more details, 94 

see Caron et al., 2018a. Briefly, a total of forty participants volunteered in this study: 20 healthy 95 

(age: 47-79 yr) and 20 diabetics (age: 40-74 yr) middle-aged and older adults. Characteristics 96 

of the participants are presented in Table 1. Participants were asked to complete two 6-min 97 

periods in seated and standing positions and to perform five 6-min level walks at different 98 

speeds (0.5 to 1.50 m.s-1) in a randomised order. Each period was separated by 5 min of rest. 99 

Throughout each period, oxygen uptake (V� O2, in ml.min-1) and carbon dioxide production 100 

(V� CO2, in ml.min-1) were collected using a breath-by-breath gas analyser (Ergostik, Geratherm 101 

Medical AG, Geschwenda, Germany). Furthermore, three inertial measurement units (IMU) 102 

(MTw™, Xsens, Enschede, Netherlands) were used to measure the three-dimensional 103 

accelerations of the center of mass (CM), right hip and ankle, with a sampling frequency at 75 104 

Hz. Metabolic data were used to determine total energy expenditure (in kcal.min-1) for the last 105 
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minute of each period using the Weir formula (Weir, 1949). Acceleration data were post-106 

processed (low-pass and high-pass Butterworth filters with a cut-off frequency at 20 Hz and 0.2 107 

Hz, respectively) using a custom-written program in Matlab (Matlab R2015b, MathWorks, 108 

Natick, MAS, USA). Then, the mean VM integrating the three components of acceleration (ax, 109 

ay and az) was calculated from a 30s interval for each IMU position:  110 

VM = 
�
� ∑ �a(i)� +  a(i)� +  a(i)� ������ . 111 

 112 

2.3 Statistical analysis.  113 

2.3.1 Selection of equation’s variables 114 

Stepwise multiple regression analyses were conducted on the entire sample to examine the 115 

relationships of VM (for each accelerometer placement) and participant’s physical 116 

characteristics to indirect calorimetry across all conditions. Personal data including age (years), 117 

gender (1=male, 0=female), diabetes status (1=adult with T2D, 0=healthy adult), BMI (in kg.m-
118 

2), height (in m) and weight (in kg) were examined for inclusion in equations. Variables were 119 

examined according to their influence on EE and included in the equations if they induced a 120 

significant change in the proportion of variance explained (R2) based on overall R2 change from 121 

nested equations. 122 

 123 

2.3.2 Cross-validation 124 

Following these multiple regression analyses, a Monte Carlo cross-validation procedure was 125 

used to develop EE prediction equations across the three placements (Shao, 1993). This method 126 

randomly divides the participants into two subgroups (60% in a calibration group and 40% in a 127 

validation group) with equal rates of adults with and without T2D. Multiple linear regression 128 

analysis was conducted on the calibration group (n=24) to develop an equation for the 129 

prediction of EE that was then tested in the validation group (n=16). This procedure (sample 130 

division, regression analysis and validation test) was repeated 500 times for each sensor 131 

placement. The final equation represents the average across the 500 replications. At each 132 

repetition, standard error of estimate (SEE), coefficients of determination (R2), mean bias and 133 

mean relative bias between measured and predicted values, and root mean square error (RMSE) 134 

were calculated to evaluate the accuracy of predicted EE using the three equations (three sensor 135 

placements) in comparison with indirect calorimetry. One-way, repeated measures ANOVAs 136 
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on RMSE and bias were used to compare the accuracy of EE obtained between the three 137 

equations (CM, hip and ankle).  138 

 139 

All statistical analyses were performed using SPSS version 21.0 (SPSS Inc., Chicago, IL, USA). 140 

Results are presented as means (± standard deviations) and statistical significance was set at 141 

P<0.05. 142 

 143 

3. RESULTS 144 

All healthy participants completed the entire protocol, however one participant's mechanical 145 

data set at 1.25 m.s-1 was lost due to a technical failure. During the treadmill protocol, two 146 

participants with T2D did not complete the active trials at 1.25 and 1.50 m.s-1 due to physical 147 

deconditioning. Unpaired t-tests were conducted on personal characteristics and no significant 148 

difference was found between subgroups (p>0.05). 149 

 150 

3.1 Selection of equation’s variables 151 

The results of multiple linear stepwise regressions to predict EE from VM and personal data 152 

(gender, age, diabetes status and BMI) for the three attachment sites are presented in Table 2. 153 

Weight and height were excluded as potential predictors because of their collinearity with BMI. 154 

Age was also removed from the three equations because it proved insignificant with regards to 155 

EE variance (0.01 to 0.1 %; p>0.05). Vector magnitude of acceleration accounted for 79.6, 77.8 156 

and 77.1 % of EE variation (p<0.0001) and BMI contributed to increasing the percentage of 157 

explained variance for the CM, hip and ankle equations by 3.8, 3.6, 3.3 % (p<0.0001), 158 

respectively. Moreover, even if both were significant (p<0.0001), gender and diabetes status 159 

explained a small additional percentage of the variance (1.6 to 2.1% for gender and 0.5 to 0.8% 160 

for diabetes status).   161 

 162 

3.2 Cross-validation 163 

Results of the Monte Carlo cross-validation are shown in Table 3. The three predicted equations 164 

[1-3] showed comparable mean R2 and SEE (R2 = 0.86, 0.85, 0.83 and SEE = 0.56, 0.60 and 165 

0.63 kcal.min-1 for the CM, hip and ankle equations, respectively).  166 

 167 

EE�� =  −0.818 + 0.53 ×  VM + 0.066 × BMI + 0.299 ×  Status + 0.455 ×  Gender              (Eq.1) 168 

EE2�3 =  −0.763 + 0.491 ×  VM + 0.063 × BMI + 0.282 ×  Status + 0.47 ×  Gender            (Eq.2) 169 
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EE56789 =  −0.683 + 0.216 ×  VM + 0.063 × BMI + 0.232 ×  Status + 0.42 ×  Gender        (Eq.3) 170 

 171 

where, VM (m.s-2) represents the mean vector magnitude calculated from a 30s interval, BMI 172 

(kg.m-2) the body mass index, Status the diabetic condition with 1 for patients T2D and 0 for 173 

healthy person and Gender is 1 for man and 0 for woman.  174 

 175 

During cross-validation, the three equations presented strong coefficients of determination (R2 
176 

= 0.85 for CM equation, 0.83 for hip equation and 0.81 for ankle equation). Results showed 177 

that the CM equation slightly overestimated EE in comparison with indirect calorimetry (mean 178 

bias = 0.008 kcal.min-1; 4.3 %), while the hip and ankle equations tended to underestimate it 179 

(mean bias = -0.005 kcal.min-1; -4 % for the hip equation and -0.009 kcal.min-1; - 4.1% for the 180 

ankle equation). RMSE were 0.60, 0.65 and 0.69 kcal.min-1 for the CM, hip and ankle equations, 181 

respectively.  182 

 183 

When comparing all three equations, ANOVA presented no significant effect on mean 184 

difference (p=0.16), but did show significant differences in RMSE (p<0.001). The CM equation 185 

presented a RMSE significantly lower than hip (mean difference = -0.05 kcal.min-1 (95%CI: -186 

0.06 to -0.04 kcal.min-1) and ankle equations (mean difference = -0.085 kcal.min-1 (95%CI: -187 

0.09 to -0.07 kcal.min-1). RMSE obtained with hip and ankle equations were significantly 188 

different with a mean difference of -0.037 kcal.min-1 (95%CI: -0.05 to -0.03 kcal.min-1).   189 

 190 

4. DISCUSSION  191 

Regular physical exercise is positively associated with health benefits in middle-aged adults, 192 

regardless of health status (Nordstoga et al., 2019; Emerenziani et al., 2015). Motion sensor 193 

(i.e. accelerometer) may be an objective tool allowing patients to accurately quantify and 194 

estimate their daily physical activity in terms of EE, and to promote a healthy lifestyle. The aim 195 

of this study was to develop equations from accelerometer data and personal characteristics to 196 

estimate EE during static conditions and walking specifically in middle-aged and older adults 197 

with and without type 2 diabetes.  198 

 199 

Results of the regression calculation support the association between body acceleration and 200 

energy expenditure (Bouten et al., 1994; Brandes et al., 2012; Chen & Sun, 1997), with VM of 201 

acceleration explaining a major proportion of EE variance (77.1 to 79.6% vs. ≈ 3.5, 2 and 1% 202 

for BMI, gender and status, respectively). Our results are consistent with past literature 203 
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concerning a positive impact of BMI on the walking related EE (Browning et al., 2006; Peyrot 204 

et al., 2012), with a 3.5% of explained variance of EE. Gender was also added as an independent 205 

variable in multiple regression equations despite no consensus in past literature regarding 206 

differences in walking activity EE between gender (Abadi et al., 2010). While there would not 207 

appear to be a difference in walking EE among women and men at self-selected speeds, women 208 

have a greater walking EE than men at a fixed speed, presumably because of higher step 209 

frequency (Wu, 2007). In contrast, our results demonstrated a greater EE in men than in women 210 

as observed in Waters & Mulroy (1999). However, gender slightly influenced explained 211 

variance (≈ 2%) and predictive precision (≈ -0.01 kcal∙min-1 on SEE) (Table 2). Regarding the 212 

effect of age on EE, results also differ between studies (Abadi et al., 2010). In the current study, 213 

age was not a significant factor in EE variance and it was therefore removed from equations. 214 

The specific age group used (middle-aged and older) in the study, which is not broad enough 215 

to induce age-related differences in EE may explain this result. Finally, our results were 216 

consistent with studies showing a higher metabolic cost for walking in patients with T2D as 217 

compared with healthy people (Caron et al., 2018b; Petrovic et al., 2016). Indeed, even if 218 

minimal, diabetes status was a significant factor explaining the variation in EE in all three 219 

equations (Table 2). 220 

 221 

Some previous studies relied on other activity monitors than those used in the current study to 222 

predict EE or activity-related EE. Previous studies conducted in our laboratory focused on the 223 

validity of Bouten’s algorithm in these particular populations to estimate activity EE during 224 

walking. Despite a slight underestimation (bias ranging from -0.08 to -0.28 kcal.min-1 in healthy 225 

middle-aged adults and patients with T2D), no significant difference was found between 226 

activity EE estimated by Bouten’s algorithm and activity EE measured using indirect 227 

calorimetry during walking, (Caron et al., 2018a; Caron et al., 2019). In the current study, EE 228 

was underestimated only in the hip and ankle equations even though observed mean bias was 229 

negligible (-0.005 and -0.009 kcal∙min-1 for the hip and ankle equations, respectively). Finally, 230 

the study conducted by Machac et al., 2013 was interested in comparing EE assessed using 231 

SenseWear™ Armband Pro3 and Omron in patients with T2D. These findings revealed that 232 

during level walking these two sensors have a tendency to overestimate EE (>70%). 233 

Comparatively, relative bias observed in the current study ranged from -4.1 to 4.3% for level 234 

walking. 235 

 236 
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Our results present clinical relevance for exercise prescription or rehabilitation program. 237 

Currently, general guidelines recommend accumulating 30-min of physical activity at moderate 238 

intensity, five days per week (Pate, et al., 1995). However, energy requirement cannot be 239 

adjusted based on these standardized exercise recommendations because the related EE may be 240 

different between two patients. However, a more widespread use of the EE as a prescription 241 

criterion for physical activity could allow practitioners to optimise beneficial effect of exercise 242 

by precisely regulating the patients’ daily energy balance. In this purpose, we developed 243 

specific prediction equations for estimating EE in middle-aged healthy adults and patients with 244 

T2D. These equations can be used mainly for walking which remains one of the most 245 

recommended physical activity in both populations.   246 

 247 

In the current study, our population was characterised by a wider, more specific age range 248 

(representative of middle-aged to older people, i.e. 40-79 yr) and included both normal-weight 249 

and overweight participants (BMI, 20.2–29.8 kg.m-2). The large diversity of personal 250 

characteristics contributed to improving the accuracy of equations in this age-BMI group but 251 

presents limitations for use with younger persons with a better physical condition. The three 252 

equations being developed from data obtained during standardised activities (that may differ 253 

from free-living conditions), its use is limited to similar activities; e.g. to estimate the EE during 254 

an aerobic exercise on treadmill. Nevertheless, because these equations can be implemented in 255 

any device measuring acceleration using the International System of Units, they offer an 256 

attractive method for EE estimation in both healthy middle-aged individuals as well as those 257 

with T2D. 258 

 259 

Three regression equations based on accelerometer data (according to three sensor body-260 

placements) and personal data were derived to predict EE during static conditions and walking 261 

in a heterogeneous sample of healthy and diabetic middle-aged and older adults. All three 262 

equations showed comparable strong correlation and great agreement between estimated and 263 

measured EE. Nonetheless, for free-living activities, further studies are needed to validate these 264 

equations using a reference method as doubly labelled water to measure related EE. 265 

 266 
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Table 1: Characteristics of the participants. 

Parameters T2D (n = 20) Healthy (n = 20) 

All 

participants 

(n = 40) 

Female/Male 12/8 12/8 24/16 

Age, years 57.5 ± 8.0 57.3 ± 6.7 57.4 ± 7.4 

Weight, kg 70.9 ± 12.3 68.1 ± 13.4 69.5 ± 12.8 

Height, m 1.63 ± 0.1 1.65 ± 0.1 1.64 ± 0.1 

BMI, kg.m-2 25.8 ± 2.7 25.1 ± 2.9 25.4 ± 2.8 

FBG, g.L-1 1.47 ± 0.16* 0.89 ± 0.12 1.20 ± 0.30 

Diabetes duration, yr 10.6 (6.1) / / 

Values are means ± standard deviation. T2D, type 2 diabetes; BMI, body mass 

index; FBG, fasting blood glucose. *: Significant group difference with P < 

0.05.  
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Table 2 - Results of stepwise multiple regression analyses to predict EE from VM, BMI, 

diabetes status, gender and age for each sensor placement. 

Equation Parameter R2 adjusted 
R2 adjusted    % 

of variation 

SEE    

(kcal.min-1) 
p-value 

CM  VM .796 79.6 0.692 p<0.0001 

  BMI .834 3.8 0.624 p<0.0001 

  Gender .854 2.0 0.568 p<0.0001 

  Status .862 0.8 0.609 p<0.0005 

  Age .863 0.01 0.568 0.22 

Hip  VM .778 77.8 0.722 p<0.0001 

  BMI .814 3.6 0.608 p<0.0001 

  Gender .835 2.1 0.662 p<0.0001 

  Status .842 0.7 0.649 p<0.001 

  Age .845 0.1 0.603 0.20 

Ankle  VM .771 77.1 0.733 p<0.0001 

  BMI .804 3.3 0.679 p<0.0001 

  Gender .820 1.6 0.642 p<0.0001 

  Status .825 0.5 0.671 p<0.008 

  Age .826 0.1 0.638 0.061 

VM, Vector magnitude (m.s-2); BMI, Body mass index (kg.m-2). 

Status, T2D = 1 and healthy = 0; Gender, M = 1 and F = 0. 
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Table 3 -Regression coefficients for estimating EE with each sensor placement. 

Parameter 

CM Equation  Hip Equation  Ankle Equation 

Coefficients (95% CI) SEE   Coefficients (95% CI) SEE   Coefficients (95% CI) SEE 

Intercept -0.818 (-1.61 to -0.02) 0.437   -0.763 (-1.61 to 0.08) 0.337   -0.683 (-1.58 to 0.22) 0.126 

VM 0.530 (0.50 to 0.56) 0.014   0.491 (0.46 to 0.53) 0.014   0.216 (0.20 to 0.23) 0.005 

BMI 0.066 (0.03 to 0.10) 0.013   0.063 (0.03 to 0.10) 0.014   0.063 (0.03 to 0.10) 0.005 

Status 0.299 (0.11 to 0.49) 0.075   0.282 (0.08 to 0.48) 0.080   0.232 (0.02 to 0.44) 0.030 

Gender 0.455 (0.26 to 0.65) 0.076   0.470 (0.26 to 0.68) 0.082   0.420 (0.20 to 0.64) 0.030 

VM, Vector magnitude (m.s-2); BMI, Body mass index (kg.m-2); Status, T2D = 1 and Healthy = 0; Gender, M = 1 and F = 0. 

 

 

  




